
IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 1

Improved Exact Enumerative Algorithms for the
Planted (l, d)-Motif Search Problem

Shunji Tanaka, Member, IEEE

Abstract—In this paper efficient exact algorithms are proposed
for the planted (l, d)-motif search problem. This problem is
to find all motifs of length l that are planted in each input
string with at most d mismatches. The “quorum” version of
this problem is also treated in this paper to find motifs planted
not in all input strings but in at least q input strings. The
proposed algorithms are based on the previous algorithms called
qPMSPruneI and qPMS7 that traverse a search tree starting
from a l-length substring of an input string. To improve these
previous algorithms, several techniques are introduced, which
contribute to reducing the computation time for the traversal. In
computational experiments, it will be shown that the proposed
algorithms outperform the previous algorithms.

Index Terms—Planted (l, d)-motif search problem, closest
substring problem, exact enumerative algorithm, tree search

I. INTRODUCTION

THIS study will propose efficient exact enumerative algo-
rithms for the planted (l, d)-motif search problem. This

problem is to extract common substrings that appear in every
input string with some mismatches allowed. Formally, it is
described as follows. Let Σ be an alphabet (a set of letters)
and si (1 ≤ i ≤ N) be input strings of length L over Σ, i.e.,
si ∈ ΣL. The planted (l, d)-motif search problem is to find all
the strings t ∈ Σl such that for all i, there exists an l-length
substring oi of si satisfying dH(t, oi) ≤ d, where dH(x, y)
denotes the Hamming distance between the two strings x and
y. This problem is known to be NP-hard [1]. In this study
the “quorum” version of the problem, which is referred to as
the planted (l, d, q)-motif search problem, is also treated: the
problem to find all the strings t such that there exists an l-
length substring oi of si satisfying dH(t, oi) ≤ d for at least
q input strings si. Hereafter, t and oi are called a motif and
an occurrence, respectively.

The planted (l, d)-motif search problem is also referred to as
the closest substring problem in the literature. Studies on the
closest substring problem are primarily in the field of computer
science, which focus on theoretical worst-case computational
complexity such as PTAS (polynomial-time approximation
scheme), parameterized algorithms, and so on [2]–[8]. On the
other hand, the purpose of studies on the planted (l, d)-motif
search problem is to construct practical algorithms applicable
to motif finding in DNA and protein sequences. This paper
follows the latter line of research. The primary purpose of
this study is to construct practically efficient algorithms for

S. Tanaka is with the Institute for Liberal Arts and Sciences, and with
the Department of Electrical Engineering, Kyoto University, Kyotodaigaku-
Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. e-mail: tanaka@kuee.kyoto-
u.ac.jp.

the planted (l, d)-motif search problem and the planted (l, d,
q)-motif search problem.

Various methods have been proposed so far to solve the
planted (l, d)-motif search problem heuristically or exactly.
Among them, enumerative methods can be roughly categorized
into four approaches. The first approach searches for the
occurrences oi, in place of the motif t itself, that satisfy
dH(oi, oj) ≤ 2d for any 1 ≤ i, j ≤ N , i ̸= j. For
this purpose, a graph is constructed by assigning a vertex
to every substring of length l in the input strings. A pair
of vertices is connected by an edge when they represent
substrings in different input strings and when the Hamming
distance between the substrings is less than or equal to 2d.
Then, cliques of size N are searched for in this graph. The
existing algorithms in this category, which are sometimes
referred to as the sample-driven approach, are: WINNOWER
[9], cWINNOWER [10], the algorithm in [11], DPCFG [12],
RecMotif [13], ListMotif [14], and TreeMotif [15].

The second approach searches for the motifs directly by
extending the length of the motifs from zero to l. Namely, a
trie of depth l is traversed where a node at depth k represents
a k-length prefix of the motif. The existing algorithms in this
category are SPELLER [16], WEEDER [17], MITRA [18],
CENSUS [19], and RISOTTO [20].

The third approach first enumerates candidate motifs, and
then searches them for feasible ones. The existing algorithms
in this category are Voting Algorithm [21], PMS1 [22], PMS2
[22], PMS3 [22], the algorithm in [23], PMSi [24], PMSP
[24], stemming [25], PMS4 [26], PMS5 [27], PMS6 [28], and
PairMotif [29]. These algorithms differ greatly from each other
on how to generate the candidate motifs. For example, Voting
Algorithm considers all the strings of length l at first, while
the other algorithms restrict the initial candidate set by the
information of input strings.

The last approach searches for the motifs by choosing
a candidate from an input string and then modifying its
letters one by one. Since the Hamming distance between an
occurrence and a motif should be at most d, a search tree of
depth d is traversed where each node represents a candidate
motif. The existing algorithms in this category are PMSPrune
[30], Pampa [31], PMS3p [32], Provable [8], qPMSPruneI
[33], and qPMS7 [33].

Among the above-mentioned algorithms, the most efficient
exact algorithms would be qPMSPruneI and qPMS7 in [33]
when d/l is large. In [33], it was shown by computational
experiments for “challenging” DNA and protein instances
that qPMSPruneI performs well for DNA sequences when
l ≤ 15 and qPMS7 for the other cases. To the best of the

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 2

author’s knowledge, qPMS7 is currently the only algorithm
that can solve DNA instances with N = 20, L = 600
and (l, d) = (23, 9) within 1 day or so. qPMSPruneI and
qPMS7 are not the best from the viewpoint of computational
complexities. However, it does not follow that an algorithm
with a less computational complexity works well for randomly
generated instances. Indeed, Provable [8], which was proposed
to improve the computational complexity, was shown to be at
most competitive with PMSPrune, an older and thus much
slower version of qPMSPruneI.

The purpose of this study is to improve qPMSPruneI and
qPMS7. The key observations are as follows:

1) The algorithms work more efficiently by reducing the
size of search trees.

2) It is also important to reduce the computation time
necessary for checking whether subtrees in a search tree
can be pruned or not.

3) The root node of a search tree is an l-length substring
of an input string, and search trees are traversed for
every substring. If two root substrings are similar, the
corresponding search trees will also be similar.

By noting these, several techniques will be introduced. In
computational experiments, it will be exhibited that the im-
proved algorithms outperform qPMSPruneI and qPMS7, and
that challenging DNA instances with N = 20, L = 600 and
(l, d) = (25, 10) become solvable for the first time in 15
hours or so on a desktop computer (single-threaded).

The rest of this paper is organized as follows. In Section II,
notations and definitions will be introduced. In Section III,
qPMSPruneI and qPMS7 will be described briefly. Next,
qPMSPruneI will be improved in Sections IV and V, and
qPMS7 will be improved in Section VI. Then, in Section VII,
the effectiveness of the proposed algorithms will be verified
by computational experiments. Finally, Section VIII will sum-
marize the results in this paper.

II. NOTATIONS AND DEFINITIONS

First, the notations and definitions in this paper will be
presented.

The input data of the problem are given in TABLE I.
Throughout this paper, all strings are assumed to be over Σ.
The notations and definitions are summarized in TABLE II.
With regard to Ri(a, b, c), Ri(a, b, c)∩Rk(a, b, c) = ∅ holds
for any i ̸= k, and

|a| = |b| = |c| =

∣∣∣∣∣
5∪

i=1

Ri(a, b, c)

∣∣∣∣∣ . (1)

In addition, dH(a, b), dH(b, c), and dH(c, a) are expressed by

dH(a, b) = |R3(a, b, c)|+ |R4(a, b, c)|+ |R5(a, b, c)|, (2)
dH(b, c) = |R2(a, b, c)|+ |R3(a, b, c)|+ |R5(a, b, c)|, (3)
dH(c, a) = |R2(a, b, c)|+ |R4(a, b, c)|+ |R5(a, b, c)|. (4)

III. PREVIOUS ALGORITHMS

In this section, qPMSPruneI and qPMS7 proposed in [33]
will be reviewed.

TABLE I
INPUT OF THE PROBLEM

Σ : The alphabet.
si : The input string of length L over Σ (1 ≤ i ≤ N).
l : The motif length.
d : The maximum number of mismatches allowed in each occur-

rences.
q : The minimum number of input strings that should have at least

one occurrence.

TABLE II
NOTATIONS AND DEFINITIONS

|a| : The length of a string a.
a[j] : The jth letter of a string a.
a ◦ b : The string generated by concatenating two strings a and

b.
dH(a, b) : The Hamming distance between two strings a and b of

the same length. It is given by the number of positions
j such that a[j] ̸= b[j].

slij : The l-length substring of an input string si that starts
from the jth position.

Si : The set of all the l-length substrings of an input string
si. Si = {sli1, . . . , s

l
i,L−l+1}.

Sd
i : The set of all the (l + 1)-length substrings of an input

string si defined by Sd
i = {sl+1

i0 , . . . , sl+1
i,L−l+1

}. Here,
sl+1
i0 [1] = sl+1

i,L−l+1
[l + 1] = ∅, and dH(∅, α) = ∞ is

assumed for any α ∈ Σ.
B(a, R) : The set of strings in the sphere of radius R centered at

a . B(a, R) = {b | |b| = |a|, dH(a, b) ≤ R}.
nB(l, d) : |B(a, d)| for an l-length string a.

x|P : The substring of x composed by sequencing the letters
of x at the positions in a vector P . For example, x|P =
GCA for x = ACCGAT and P = (4, 2, 5).

P (j) : The jth element of a vector P .
P+(j) : The j-dimensional vector composed of the first j ele-

ments of a vector P .
P−(j) : The (|P | − j)-dimensional vector composed of the last

|P | − j elements of a vector P .
I : The vector of length l defined by I = (1, . . . , l).

R1(a, b, c) : The set of indices j satisfying a[j] = b[j] = c[j].
R2(a, b, c) : The set of indices j satisfying a[j] = b[j] ̸= c[j].
R3(a, b, c) : The set of indices j satisfying c[j] = a[j] ̸= b[j].
R4(a, b, c) : The set of indices j satisfying b[j] = c[j] ̸= a[j].
R5(a, b, c) : The set of indices j satisfying a[j] ̸= b[j], b[j] ̸= c[j],

and c[j] ̸= a[j].

A. qPMSPruneI

Although qPMSPruneI as well as qPMS7 is for the planted
(l, d, q)-motif search problem, q = N is assumed at first for
ease of explanation. Suppose that x0 ∈ S1 is an occurrence of
a motif t. Then, t ∈ B(x0, d) holds because dH(t, x0) ≤ d.
In other words, t ∈ B(x0, d) for some x0 ∈ S1 if t
is a motif. Therefore, qPMSPruneI searches for motifs by
enumerating B(x0, d) for every x0 ∈ S1. Hereafter, x0 is
referred to as the root occurrence. Since letters in at most d
positions are different between the root occurrence x0 and any
y ∈ B(x0, d), y is uniquely expressed by a sequence of the
pairs of a position and a letter as (p1, α1), . . ., (pd′ , αd′),
where d′ = dH(x0, y) ≤ d, 1 ≤ p1 < p2 < · · · < pd′ ≤ l, and
x0[pj] ̸= αj for any 1 ≤ j ≤ d′. In this case, y is given by

y[j] =

{
x0[j] if j ̸= pk, ∀k,

αk if j = pk.
(5)

By noting this, qPMSPruneI traverses a tree of depth d to
enumerate all y ∈ B(x0, d). In this tree, a node at depth k

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 3

corresponds to the kth pair (pk, αk) and thus can be regarded
as representing the string xk expressed by (p1, α1), . . ., (pk,
αk). The string xk differs from its parent string xk−1 only
at position pk. Similarly, a child string xk+1 differs from xk

only at position pk+1.
To find motifs, whether xk is a valid motif or not is checked

at every node (at depth k). This is performed by checking
whether there exists yi ∈ Si satisfying dH(xk, yi) ≤ d for
every i (2 ≤ i ≤ N). The primary advantage in enumerating
B(x0, d) by the tree traversal is that it is not necessary to
consider all the candidate occurrences in Si (2 ≤ i ≤ N).
To see this, let us define x01 = x0|I+(pk), x02 = x0|I−(pk),
xk1 = xk|I+(pk), and xk2 = xk|I−(pk) = x02. Let us also
denote by O(xk, d) the set of all the offspring of xk (including
xk itself). Then,

O(xk, d) = {x′k ∈ B(x0, d) |x′k|I+(pk) = xk1}
= {xk1 ◦ x′k2 |x′k2 ∈ B(x02, d− dH(xk1, x01))}.

(6)

Hence, for some y to be an occurrence of an offspring of xk,

O(xk, d) ∩ B(y, d) ̸= ∅ (7)

should be satisfied. If we define y1 = y|I+(pk) and y2 =
y|I−(pk), this condition can be rewritten as

B(x02, d− dH(xk1, x01)) ∩ B(y2, d− dH(xk1, y1)) ̸= ∅.
(8)

Therefore, if (8) is not satisfied, y cannot be an occurrence of
any offspring of xk. From the triangle inequality,

2d− dH(xk1, x01)− dH(xk1, y1) ≥ dH(x02, y2) (9)

is necessary for (8) to be satisfied. This condition can be
further transformed into

2d− k ≥ dH(xk1, y1) + dH(x02, y2) = dH(xk, y), (10)

because dH(xk1, x01) = dH(xk, x0) = k. In summary, y
cannot be an occurrence of any (candidate) motif t ∈ O(xk, d)
if (10) is not satisfied. Therefore, it is not necessary to check
this y in the subtree rooted at xk. To take advantage of this
observation, (10) is checked for all y ∈ Si (2 ≤ i ≤ N) at each
node representing xk, and those breaking (10) are removed
from the corresponding sets when the subtree rooted at xk is
traversed. When Si becomes empty for some i (2 ≤ i ≤ N),
the subtree can be pruned.

We should compute dH(xk, y) to check whether xk is a
valid motif and whether (10) is satisfied. qPMSPruneI first
computes the Hamming distances dH(t1, y) for all t1 ∈ S1
and all y ∈ Si (2 ≤ i ≤ N), which takes O(NL2) time. By
using them, the table of dH(x0, y) for x0 ∈ S1 and all y ∈ Si
(2 ≤ i ≤ N) is constructed and initialized at the root node
of a tree. Then, at each node xk, dH(xk, y) can be computed
incrementally from dH(xk−1, y) of the parent xk−1 in O(1)
time because xk differs from xk−1 only at one position.

When q < N , i.e. the planted (l, d, q)-motif search problem
is considered, S1 does not necessarily have an occurrence of a
motif. It follows that the above algorithm is not valid because
it searches only B(x0, d) (x0 ∈ S1). In this case, at least

one set among S1, . . ., SN−q+1 should include an occurrence.
Hence, the root occurrence x0 of a tree should be taken not
only from S1 but also from S2, . . ., SN−q+1. The pruning
condition should also be modified: The subtree rooted at xk

can be pruned if the number of empty sets among S1, . . .,
SN is more than N − q, or, equivalently, if the number of
nonempty sets (except that from which the root occurrence is
taken) is less than q − 1.

The pseudocode of qPMSPruneI is shown in Fig. 1.
FeasibleOccurrences2(k, xk,Q) in line 3 of qPMSPruneI Tree
removes infeasible candidate occurrences from Q that break
(10). IsMotif(xk, q′, T) in line 11 checks whether there exist
at least q′(= q − 1) sets in T that have an occurrence within
a Hamming distance d from xk. Namely, it returns “true” if∣∣∣∣{Q ∈ T | min

y∈Q
dH(xk, y) ≤ d}

∣∣∣∣ ≥ q′. (11)

The time and space complexities of qPMSPruneI are given by
O((N − q + 1)NL2nB(l, d)) and O(NL2), respectively.

B. qPMS7

qPMS7 also searches for motifs by traversing trees. Let
us first assume q = N as in the preceding subsection. The
primary difference from qPMSPruneI is that it utilizes r ∈ S2
as well as x0 ∈ S1 to traverse a tree. In the following, r
is referred to as the reference occurrence. A node at depth
k represents a pair of a position and a letter (pk, αk) as in
qPMSPruneI, while the corresponding string xk is constructed
in a different way. More specifically, xk is expressed by its
parent xk−1 as follows:

1) xk|I+(pk−1) = xk−1|I+(pk−1),
2) xk[pk] = αk ̸= xk−1[pk],
3) If dH(xk|I+(pk), x0|I+(pk

)) > dH(xk|I+(pk), r|I+(pk
)),

xk|I−(pk) = x0|I−(pk). Otherwise, xk|I−(pk) = r|I−(pk).
It is worth noting that only 3) is different from xk in qPM-
SPruneI, where xk|I−(pk) = x0|I−(pk) always holds.

For y to be an occurrence at a node representing xk,

B(xk2, d− dH(xk1, x01)) ∩ B(r2, d− dH(xk1, r1))

∩ B(y2, d− dH(xk1, y1)) ̸= ∅ (12)

should be satisfied, where r1 = r|I+(pk) and r2 = r|I−(pk).
This condition is a natural extension of (8) that utilizes only
xk. In [27], it is shown that (12) can be checked by solving
an ILP (integer linear programming) problem that depends
on the eight variables d − dH(xk1, x01), d − dH(xk1, r1),
d − dH(xk1, y1), and Rj(x02, r2, y2) (1 ≤ j ≤ 5). To avoid
solving the ILP problem every time when (12) is checked,
it is solved in advance for every possible combination of the
eight variables, and an eight-dimensional table is constructed.
qPMS7 employs this table for checking (12), which takes
only O(1) time because all the eight values can be computed
incrementally in O(1) time.

When q < N , the root occurrence x0 and the reference
occurrence r should also be taken from those other than S1 and
S2, respectively, as in qPMSPruneI. Therefore, the pseudocode
of qPMS7 is described as in Fig. 2. In qPMS7, it is sufficient
to consider x0 ∈ Si1 and r ∈ Si2 for 1 ≤ i1 < i2 ≤ N −

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 4

qPMSPruneI
1: M← ∅
2: for i = 1 to N − q + 1 do
3: for j = 1 to L− l + 1 do
4: T ← {Sh | 1 ≤ h ≤ N, h ̸= i}
5: qPMSPruneI Tree(0, slij , 0, T)
6: end for
7: end for
8: Output M

qPMSPruneI Tree(k, xk , pk , T)
1: T ′ ← ∅
2: for all Q ∈ T do
3: Q′ ← FeasibleOccurrences2(k, xk , Q)
4: if Q′ ̸= ∅ then
5: T ′ ← T ′ ∪ {Q′}
6: end if
7: end for
8: if |T ′| < q − 1 then
9: return

10: end if
11: if IsMotif(xk , q − 1, T ′) = true then
12: M←M∪ {xk}
13: end if
14: if k = d then
15: return
16: end if
17: for pk+1 = pk + 1 to l do
18: for all α ∈ Σ \ {xk[pk+1]} do
19: xk+1 ← xk

20: xk+1[pk+1]← α
21: qPMSPruneI Tree(k + 1, xk+1, pk+1, T ′)
22: end for
23: end for

FeasibleOccurrences2(k, xk , Q)
1: Q′ ← ∅
2: for all y ∈ Q do
3: if dH(xk, y) ≤ 2d− k then
4: Q′ ← Q′ ∪ {y}
5: end if
6: end for
7: return Q′

IsMotif(x, q′, T)
1: matched← 0
2: for all Q ∈ T do
3: found← false
4: for all y ∈ Q do
5: if dH(x, y) ≤ d then
6: found← true
7: break the inner loop
8: end if
9: end for

10: if found = true then
11: matched← matched + 1
12: if matched ≥ q′ then
13: return true
14: end if
15: end if
16: end for
17: return false

Fig. 1. Pseudocode of qPMSPruneI

q + 2. The time and space complexities of qPMS7 are given
by O((N − q + 1)2NL3nB(l, d)) and O(NL2), respectively,
It follows that qPMS7 is slower than qPMSPruneI by a factor
of O((N − q + 1)L) in the worst case. However, the former
is superior to the latter in practice when d/l is large or |Σ| is
large.

IV. TRAVERSTRINGSINGLE: AN IMPROVED VERSION OF
QPMSPRUNEI

In this section, three improvements for qPMSPruneI will
be proposed one by one. The algorithms with these is named
TraverStringSingle.

qPMS7
1: M← ∅
2: for i1 = 1 to N − q + 1 do
3: for j1 = 1 to L− l + 1 do
4: for i2 = i1 + 1 to N − q + 2 do
5: for j2 = 1 to L− l + 1 do
6: T ← {Sh | 1 ≤ h ≤ N, h ̸= i1, h ̸= i2}
7: qPMS7 Tree(0, sli1j1

, sli2j2
, sli1j1

, 0, T)
8: end for
9: end for

10: end for
11: end for
12: Output M

qPMS7 Tree(k, x0, r, xk , pk , T)
1: T ′ ← ∅
2: for all Q ∈ T do
3: Q′ ← FeasibleOccurrences3(x0, r, xk , pk , Q)
4: if Q′ ̸= ∅ then
5: T ′ ← T ′ ∪ {Q′}
6: end if
7: end for
8: if |T ′| < q − 2 then
9: return

10: end if
11: if dH(xk, x0) ≤ d and dH(xk, r) ≤ d and IsMotif(xk , q − 2, T ′) = true

then
12: M←M∪ {xk}
13: end if
14: if k = d then
15: return
16: end if
17: for pk+1 = pk + 1 to l do
18: for all α ∈ Σ \ {xk[pk+1]} do
19: z|I+(pk+1−1) ← xk|I+(pk+1−1)

20: z[pk+1]← α
21: xk+1|I+(pk+1) ← z

22: if dH(z, x0|I+(pk+1)) > dH(z, r|I+(pk+1)) then
23: xk+1|I−(pk+1) ← xk|I−(pk+1)

24: else
25: xk+1|I−(pk+1) ← r|I−(pk+1)

26: end if
27: qPMS7 Tree(k + 1, x0, r, xk+1, pk+1, T ′)
28: end for
29: end for

FeasibleOccurrences3(x0, r, xk , pk , Q)
1: Q′ ← ∅
2: dx ← d− dH(xk|I+(pk), x0|I+(pk))

3: dr ← d− dH(xk|I+(pk), r|I+(pk))

4: for all y ∈ Q do
5: dy ← d− dH(xk|I+(pk), y|I+(pk))

6: if B(x0|I−(pk), dx) ∩ B(r|I−(pk), dr) ∩ B(y|I−(pk), dy) ̸= ∅ then
7: Q′ ← Q′ ∪ {y}
8: end if
9: end for

10: return Q′

Fig. 2. Pseudocode of qPMS7

A. Strict Check of (8)

qPMSPruneI checks the feasibility of an occurrence y by
employing (10). However, (10) is only a necessary condition
for (8) and hence redundant candidate occurrences may be
considered. Therefore, a necessary and sufficient condition is
checked in the proposed algorithm, which is given by the
following theorem.

Theorem 1: Two strings a and b of the same length satisfy

B(a, da) ∩ B(b, db) ̸= ∅, (13)

if and only if

da ≥ 0, db ≥ 0, (14)
da + db ≥ dH(a, b). (15)

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 5

The proof is direct from the triangle inequality and thus is
omitted.

From this theorem, we can see that not only (10) but also

d ≥ dH(xk1, x01), (16)
d ≥ dH(xk1, y1), (17)

are necessary for (8). Since (16) is always satisfied because
dH(xk1, x01) = k ≤ d, (17) is checked as well as (10). In
practice, the following equivalent condition is checked instead:

d ≥ dH(xk, y)− dH(x02, y2). (18)

As already explained in the preceding section, dH(xk, y),
which also appears in (10), can be computed incrementally.
To compute dH(x02, y2), a table of dH(x0|I−(j), y|I−(j))
(0 ≤ j ≤ l−1) is constructed for all the candidate occurrences
y in advance at the root node of every search tree. This
table construction takes O(NLl) time for one tree, and hence
the total time complexity is given by O((N − q + 1)NL2l).
Therefore, it does not increase the time complexity of the
overall algorithm because l ≤ nB(l, d) holds if d > 0.

B. Elimination of Unnecessary Combinations

When q < N , qPMSPruneI calls qPMSPruneI Tree(0,
slij , 0, T) by choosing the set of candidate occurrences as
T = {Sh | 1 ≤ h ≤ N, h ̸= i} for 1 ≤ i ≤ N − q + 1
(see the pseudocode of qPMSPruneI in Fig. 1). However,
this choice of T is redundant. For example, suppose that
N = 3 and q = 2. In this case, at least two input strings
should have occurrences. It follows that all the possible
combinations of the input strings that have an occurrence
are {S1, S2, S3}, {S1, S2}, {S1, S3}, and {S2, S3}. Among
these, {S1, S2, S3}, {S1, S2}, and {S1, S3} that include
S1 are considered by calling qPMSPruneI Tree(0, sl1j , 0,
{S2, S3}). To check the last combination {S2, S3}, we need
not assume an occurrence in S1 and hence it is sufficient to
choose a root occurrence from S2 and an occurrence from S3.
In other words, it is sufficient to call qPMSPruneI Tree(0, sl2j ,
0, {S3}). Therefore, line 4 of qPMSPruneI in Fig. 1 can be
modified into “T ← {Sh | i+1 ≤ h ≤ N}.” It is expected that
the algorithm becomes more efficient because the number of
candidate occurrences that should be considered is reduced.

C. String Reordering

In qPMSPruneI, a subtree is pruned if the number of input
strings including an occurrence becomes less than q. Because
the input string from which the root occurrence is taken is
always assumed to include an occurrence (the root occurrence
itself), the pruning condition in qPMSPruneI Tree is given by
|T ′| < q−1 in line 8 of the pseudocode in Fig. 1. It is possible
to check this condition before T ′ is completely constructed
from T . More specifically, |T ′| < q − 1 is satisfied if the
number of the sets in T that newly become empty exceeds
|T | − q + 1. This fact implies that the order of checking the
feasibility of occurrences in Q (in line 3) is important to prune
the subtree as early as possible. From (10), Q ∈ T becomes

empty by the feasibility check of the candidate occurrences
when

min
y∈Q

dH(xk, y) > 2d− k (19)

is satisfied. If we note −1 ≤ dH(xk−1, y) − dH(xk, y) ≤ 1,
we can say that Q is more likely to become empty as
miny∈Q dH(xk−1, y) becomes larger. Therefore, the feasibil-
ity check is applied to Q ∈ T in its nonincreasing order. To
achieve this, the elements of T ′ are sorted in the nonincreasing
order of

min
y∈Q

dH(xk, y) (20)

after the feasibility check is finished. Ties are broken by |Q|:
Q with a smaller cardinality is checked earlier. The time
complexity of this reordering is O(N logN) for each node,
and hence the total time complexity is given by O((N − q +
1)NLnB(l, d) logN).

D. TraverStringSingle

The algorithm with the three improvements in Sec-
tions IV-A-IV-C is named TraverStringSingle. Its pseudocode
is shown in Fig. 3. IsMotifFast is an improved version of
IsMotif in Fig. 1 that returns “false” as soon as the num-
ber of subsets Q ∈ T that do not have any occurrence
exceeds |T | − q′ (see also Section IV-C). Clearly, the time
complexity of TraverStringSingle is given by O((N − q +
1)NL(L + logN)nB(l, d)). The space complexity of qPM-
SPruneI and qPMS7 is O(NL2) due to the computation of
d(x0, y). On the other hand, in TraverStringSingle the table
of dH(x0|I−(j), y|I−(j)) (0 ≤ j ≤ l − 1) is constructed
at the root node of each search tree and dH(x0, y) =
dH(x0|I−(0), y|I−(0)) is computed at the same time. Thus the
space complexity of TraverStringSingle reduces to O(NLl),
although the time complexity for d(x0, y) increases from
O((N − q+1)NL2) of qPMSPruneI and qPMS7 to O((N −
q + 1)NL2l).

V. TRAVERSTRINGDOUBLE: FURTHER IMPROVEMENT ON
QPMSPRUNEI

TraverStringSingle proposed in the preceding section can
further be improved by noting the similarity in the structure of
adjacent search trees. This section will introduce an improved
version of TraverStringSingle, which is named TraverString-
Double.

A. Tree Pairing

Here, q = N is assumed for simplicity of explanation. In
qPMSPruneI, a search tree is traversed from sl1j for every j.
Since slij and sli,j+1 have a common (l− 1)-length substring,
the two search trees rooted at slij and sli,j+1 are assumed to
have a similar structure. This motivates the new algorithm to
traverse the adjacent two search trees at the same time. In the
following, the case when L− l+ 1 is even will be explained.
If L− l + 1 is odd, the last search tree rooted at sl1,L−l+1 is
traversed by TraverStringSingle Tree in Fig. 3, and the other
search trees are paired.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 6

TraverStringSingle
1: M← ∅
2: for i = 1 to N − q + 1 do
3: for j = 1 to L− l + 1 do
4: T ← {Sh | i + 1 ≤ h ≤ N}
5: TraverStringSingle Tree(0, slij , slij , 0, T)
6: end for
7: end for
8: Output M

TraverStringSingle Tree(k, x0, xk , pk , T)
1: T ′ ← ∅
2: missed← 0
3: for all Q ∈ T do
4: Q′ ← FeasibleOccurrencesStrict2(k, x0, xk , pk , Q)
5: if Q′ ̸= ∅ then
6: T ′ ← T ′ ∪ {Q′}
7: else
8: missed← missed + 1
9: if missed > |T | − q + 1 then

10: return
11: end if
12: end if
13: end for
14: if IsMotifFast(xk , q − 1, T ′) = true then
15: M←M∪ {xk}
16: end if
17: if k = d then
18: return
19: end if
20: Sort the elements of T ′ in the nonincreasing order of (20).
21: for pk+1 = pk + 1 to l do
22: for all α ∈ Σ \ {xk[pk+1]} do
23: xk+1 ← xk

24: xk+1[pk+1]← α
25: TraverStringSingle Tree(k + 1, x0, xk+1, pk+1, T ′)
26: end for
27: end for

FeasibleOccurrencesStrict2(k, x0, xk , pk , Q)
1: Q′ ← ∅
2: for all y ∈ Q do
3: d0 ← d + dH(x0|I−(pk), y|I−(pk))

4: if dH(xk, y) ≤ min(d0, 2d− k) then
5: Q′ ← Q′ ∪ {y}
6: end if
7: end for
8: return Q′

IsMotifFast(x, q′, T)
1: matched← 0
2: missed← 0
3: for all Q ∈ T do
4: found← false
5: for all y ∈ Q do
6: if dH(x, y) ≤ d then
7: found← true
8: break the inner loop
9: end if

10: end for
11: if found = true then
12: matched← matched + 1
13: if matched ≥ q′ then
14: return true
15: end if
16: else
17: missed← missed + 1
18: if missed > |T | − q′ then
19: return false
20: end if
21: end if
22: end for

Fig. 3. Pseudocode of TraverStringSingle

The combined search tree is traversed as follows. Let us
define vectors A, B, C, and D by

A = (1, . . . , l), B = (2, . . . , l + 1),

C = (2, . . . , l), D = (1, . . . , l + 1). (21)

The root occurrence xd
0 of length l + 1 is taken from

TraverStringDouble
1: M← ∅
2: for i = 1 to N − q + 1 do
3: j ← 1.
4: while j ≤ L− l + 1 do
5: if j < N − q + 1 then
6: T ← {Sd

h | i + 1 ≤ h ≤ N}
7: TraverStringDouble Tree(0, sl+1

ij
, sl+1

ij
, 1, T)

8: else
9: T ← {Sh | i + 1 ≤ h ≤ N}

10: TraverStringSingle Tree(0, slij , slij , 0, T)
11: end if
12: j ← j + 2.
13: end while
14: end for
15: Output M

TraverStringDouble Tree(k, xd
0 , xd

k , pk , T)
1: T ′ ← ∅
2: missed← 0
3: for all Q ∈ T do
4: Q′ ← FeasibleOccurrencesStrict2Double(k, xd

0 , xd
k , pk , Q)

5: if Q′ ̸= ∅ then
6: T ′ ← T ′ ∪ {Q′}
7: else
8: missed← missed + 1
9: if missed > |T | − q + 1 then

10: return
11: end if
12: end if
13: end for
14: if IsMotifDoubleA(xd

k|A, q − 1, T ′) = true then
15: M←M∪ {xd

k|A}
16: end if
17: if IsMotifDoubleB(xd

k|B , q − 1, T ′) = true then
18: M←M∪ {xd

k|B}
19: end if
20: if k = d then
21: return
22: end if
23: Sort the elements of T ′ in the nonincreasing order of (30).
24: for pk+1 = pk + 1 to l do
25: for all α ∈ Σ \ {xk[pk+1]} do
26: xd

k+1 ← xd
k

27: xd
k+1[pk+1]← α

28: TraverStringDouble Tree(k + 1, xd
0 , xd

k+1, pk+1, T ′)
29: end for
30: end for
31: for all α ∈ Σ \ {xk[1]} do
32: xk+1 ← xd

k|A
33: xk+1[1]← α
34: if IsMotifDoubleA(xk+1, q − 1, T ′) = true then
35: M←M∪ {xk+1}
36: end if
37: end for
38: for all α ∈ Σ \ {xk[l + 1]} do
39: xk+1 ← xd

k|B
40: xk+1[l]← α
41: if IsMotifDoubleB(xk+1, q − 1, T ′) = true then
42: M←M∪ {xk+1}
43: end if
44: end for

Fig. 4. Pseudocode of TraverStringDouble

{sl+1
11 , . . . , sl+1

1,L−l} = Sd1 \ {s
l+1
10 , sl+1

1,L−l+1} and assumed to
denote two occurrences of length l, xd

0 |A and xd
0 |B , at the same

time. A node at depth k corresponds to a pair of a position
and a letter (pk, αk) as in qPMSPruneI, where 1 ≤ pk ≤ l+1
and αk ∈ Σ \ xd

0 [pk]. The node becomes a leaf when pk = 1
or pk = l + 1, and otherwise, pk (pk ̸= 1, pk ̸= l + 1) is
chosen to satisfy pk−1 < pk (pk−1 ̸= 1, pk−1 ̸= l + 1). The
string xd

k represented by the node is constructed by:

1) If pk = 1, xd
k is an l-length string, and xd

k[1] = αk,
xd
k|(2, ...,l) = xd

k−1|C .
2) If pk = l+1, xd

k is an l-length string, and xd
k|(1, ..., l−1) =

xd
k−1|C , xd

k[l] = αk.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 7

3) Otherwise, xd
k is an (l + 1)-length string, and

xd
k[j] =

{
xd
k−1[j] if j ̸= pk,

αk if j = pk.
(22)

A pair of candidate occurrences is also denoted by an (l+1)-
length string. More specifically, for yd ∈ Sdj (2 ≤ j ≤ N),
yd|A and yd|B are assumed to be candidate occurrences of
xd
k|A and xd

k|B , respectively, when |xd
k| = l + 1. From (10)

and (17), for at least yd|A or yd|B to be an occurrence of xd
k

with |xd
k| = l + 1,

2d− k ≥ dH(x
d
k|A, yd|A), (23)

d ≥ dH(x
d
k|C+(pk−1), y

d|C+(pk−1)), (24)

or

2d− k ≥ dH(x
d
k|B, yd|B), (25)

d ≥ dH(x
d
k|C+(pk−1), y

d|C+(pk−1)), (26)

should be satisfied. Let us define dt(x
d
0 , y

d) by

dt(x
d
0 , y

d) = min(dH(x
d
0 [1], y

d[1]), dH(x
d
0 [l + 1], yd[l + 1])).

(27)

Then, at least one of (23) and (25) is satisfied when

2d− k ≥ dH(x
d
k|C , yd|C) + dt(x

d
0 , y

d). (28)

On the other hand, (24) (or (26)) can be transformed into

d ≥ dH(x
d
k|C , yd|C)− dH(x

d
0 |C−(pk−1), y

d|C−(pk−1)). (29)

Therefore, (28) and (29) are checked for the feasibility of yd.
For this purpose, dH(xd

k|C , yd|C) is computed incrementally,
while dH(xd

0 |C−(pk−1), y
d|C−(pk−1)) is computed from a table

constructed in advance at the root node as dH(x02, y2) in (18).
When two search trees are traversed separately, we should

check (23) and (24) for xd
k|A in the first search tree and (25)

and (26) for xd
k|B in the second search tree. On the other hand,

we only need to check (28) and (29) for xd in the paired search
tree. It follows that the tree pairing enables us to reduce the
computational efforts required for the feasibility check.

B. TraverStringDouble

The algorithm with all the four improvements in Sections IV
and V-A is named TraverStringDouble. Its pseudocode is
shown in Fig. 4. When L − l + 1 is odd, TraverStringS-
ingle Tree is called in line 10 of TraverStringDouble. Fea-
sibleOccurrencesStrict2Double in line 4 of TraverStringDou-
ble Tree returns the candidate occurrences that satisfy (28)
and (29) as FeasibleOccurrencesStrict2 in Fig. 3. In line 23
of TraverStringDouble Tree, the sets in T ′ are sorted in the
nonincreasing order of

min
yd∈Q

(dH(x
d
k|C , yd|C) + dt(x

d
0 , y

d)), (30)

by taking into account (28) instead of (10). The procedure
IsMotifDoubleA(x, q′, T) in lines 14 and 34 of TraverString-
Double Tree returns “true” when∣∣∣∣{Q ∈ T | min

yd∈Q
dH(x, y

d|A) ≤ d}
∣∣∣∣ ≥ q′, (31)

as IsMotifFast for TraverStringSingle in Fig. 3. Similarly,
IsMotifDoubleB(x, q′, T) in lines 17 and 41 of TraverString-
Double Tree returns “true” when∣∣∣∣{Q ∈ T | min

yd∈Q
dH(x, y

d|B) ≤ d}
∣∣∣∣ ≥ q′. (32)

The pseudocodes of FeasibleOccurrencesStrict2Double, Is-
MotifDoubleA, and IsMotifDoubleB are omitted here. The
time and space complexities of TraverStringDouble are same
as those of TraverStringSingle: O((N − q + 1)NL(L +
logN)nB(l, d)) and O(NLl), respectively.

VI. TRAVERSTRINGREF: AN IMPROVED VERSION OF
QPMS7

Next, qPMS7 will be improved so that a new algorithm
named TraverStringRef is obtained. In this section, the pro-
posed three improvements will be explained one by one.

A. Feasibility Check without Precomputed Table

In qPMS7, the feasibility check of an occurrence is per-
formed by a table computed in advance. However, it takes 10
seconds to read the table because its size is (l + 1)5(d+ 1)3

(its actual file size is approximately 300MB). To avoid reading
such a large file of the precomputed table, the following
theorem is exploited.

Theorem 2: Three strings a, b and c of the same length
satisfy

B(a, da) ∩ B(b, db) ∩ B(c, dc) ̸= ∅, (33)

if and only if

da ≥ 0, db ≥ 0, dc ≥ 0, (34)
da + db ≥ dH(a, b), (35)
db + dc ≥ dH(b, c), (36)
dc + da ≥ dH(c, a), (37)

da + db + dc ≥ |R2(a, b, c)|+ |R3(a, b, c)|
+ |R4(a, b, c)|+ 2|R5(a, b, c)|. (38)

This theorem is an extension of the necessary and sufficient
condition given in [11] that covers only the case when da =
db = dc. The proof is shown in Supplemental Material.

To apply this theorem to the feasibility check, the string
represented by a node in the search tree is constructed not as
in qPMS7, but as in qPMSPruneI. Namely, the string xk for
a node at depth k that corresponds to (pk, αk) is given by

xk[j] =

{
xk−1[j] if j ̸= pk,

αk if j = pk.
(39)

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 8

Then, applying this theorem to (12) yields

d ≥ dH(xk1, x01), (40)
d ≥ dH(xk1, r1), (41)
d ≥ dH(xk1, y1), (42)

2d ≥ dH(xk1, x01) + dH(xk1, r1) + dH(xk2, r2), (43)
2d ≥ dH(xk1, r1) + dH(xk1, y1) + dH(r2, y2), (44)
2d ≥ dH(xk1, x01) + dH(xk1, y1) + dH(xk2, y2), (45)
3d ≥ dH(xk1, x01) + dH(xk1, r1) + dH(xk1, y1)

+ |R2(xk2, r2, y2)|+ |R3(xk2, r2, y2)|
+ |R4(xk2, r2, y2)|+ 2|R5(xk2, r2, y2)|. (46)

By substituting

xk2 = x02, (47)
dH(xk1, x01) = k, (48)
dH(xk1, r1) = dH(xk, r)− dH(x02, r2), (49)
dH(xk1, y1) = dH(xk, y)− dH(x02, y2) (50)

into the above inequalities, we obtain

d ≥ k, (51)
d ≥ dH(xk, r)− dH(x02, r2), (52)
d ≥ dH(xk, y)− dH(x02, y2), (53)

2d− k ≥ dH(xk, r), (54)
2d ≥ dH(xk, r) + dH(xk, y)

− dH(x02, r2)− dH(x02, y2) + dH(r2, y2), (55)
2d− k ≥ dH(xk, y), (56)
3d− k ≥ dH(xk, r) + dH(xk, y)

− dH(x02, r2)− dH(x02, y2)

+ |R2(x02, r2, y2)|+ |R3(x02, r2, y2)|
+ |R4(x02, r2, y2)|+ 2|R5(x02, r2, y2)|

= dH(xk, r) + dH(xk, y)− |R4(x02, r2, y2)|. (57)

Here, (2) and (4) are employed to derive (57). Since (51)
is trivial and thus can be removed, we should check (52)–
(57). For this purpose, dH(xk, r) and dH(xk, y) are computed
incrementally, while dH(x02, r2), dH(x02, y2), dH(r2, y2),
and |R4(x02, r2, y2)| are computed from a table constructed
at the root node.

It is worth noting that (52) and (54), which correspond to
(18) and (10), respectively, can be checked independently of
y.

B. Elimination of Unnecessary Combinations

The same argument holds for qPMS7 as that in Section IV-B
for qPMSPruneI, and unnecessary checks can be suppressed
when q < N . In this case, line 6 of qPMS7 in Fig. 2 is
replaced by T ← {Sh | i2 + 1 ≤ h ≤ N}.

C. String Reordering

This improvement is also similar to that in Section IV-C
for qPMSPruneI. It is expected that the subtree rooted at
the current node is pruned as early as possible by checking

TABLE III
NUMBER OF NODES AT EACH DEPTH (|Σ| = 4, l = 6, AND d = 3)

depth
(x0, r)

(AAAAAA, AAGGGG) (AAAAAA, GGGGAA)
0 1 1
1 16 10
2 60 42
3 112 112

total 189 165

the feasibility of the occurrences y ∈ Q (Q ∈ T) in
the nonincreasing order of (20). The difference is that it is
also applied when the input string from which the reference
occurrences are taken is determined. Since the number of
strings in B(x0, d) ∩ B(r, d) is a nondecreasing function of
dH(x0, r), the reference occurrences r are taken from the input
string Si that maximizes

min
r∈Si

dH(x0, r), (58)

to reduce the size of the search tree.

D. Position Reordering

To make the pruning of subtrees as efficient as possible, the
structure of the search trees is investigated.

As explained in Section VI-A, (52) and (54) can be checked
independently of the candidate occurrences y, and only those
nodes satisfying (52) and (54) are traversed in a search tree.
The observation here is that the structure of the search tree
changes in accordance with x0 and r even if dH(x0, r) does
not change. For example, suppose |Σ| = 4, l = 6, and
d = 3, and consider the two cases where (x0, r)=(AAAAAA,
AAGGGG) and (x0, r)=(AAAAAA, GGGGAA). In the for-
mer case, the number of feasible nodes at depth 1 satisfy-
ing (52) and (54) is 16 (CAAAAA, GAAAAA, TAAAAA,
ACAAAA, AGAAAA, ATAAAA, AACAAA, AAGAAA,
AATAAA, AAACAA, AAAGAA, AAATAA, AAAACA,
AAAAGA, AAAATA, AAAAAG), while it is 10 (CAAAAA,
GAAAAA, TAAAAA, ACAAAA, AGAAAA, ATAAAA, AA-
CAAA, AAGAAA, AATAAA, AAAGAA) in the latter case.
Moreover, the total number of nodes in the two cases are 189
and 165, respectively, as summarized in TABLE III. It follows
that the tree traversal is more efficient and the pruning of a
subtree cuts more nodes in the latter case than in the former
case. It should be noted that this property does not always
hold. The above two cases do not make any difference when
dH(x0, r) ≥ 2d − 1, and, moreover, the opposite property
is true when dH(x0, r) is small (typically, dH(x0, r) ≤ d).
However, we can almost always assume dH(x0, r) > d
because r is chosen from the input string Si that maximizes
(58).

To take advantage of this observation, the positions of
strings are reordered so that the positions where the letters
of x0 and r are different come earlier. To achieve this, an l-
dimensional vector J is computed for each pair of x0 and r
at the root node of the search tree, where

x0[J(i)] ̸= r[J(i)], 1 ≤ i ≤ dH(x0, r), (59)
x0[J(i)] = r[J(i)], dH(x0, r) + 1 ≤ i ≤ l. (60)

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 9

TraverStringRef
1: M← ∅
2: for i1 = 1 to N − q + 1 do
3: for j1 = 1 to L− l + 1 do
4: T ← {Sh | i1 + 1 ≤ h ≤ N}
5: Sort the elements of T in the nonincreasing order of (58)
6: while |T | ≥ q − 2 do
7: R ← first element of T
8: T ← T \ R
9: for all r ∈ R do

10: Initialize the vector J
11: if dH(sli1j1

, r) ≤ 2d then
12: TraverStringRef Tree(0, sli1j1

, r, sli1j1
, 0, T , J)

13: end if
14: end for
15: end while
16: end for
17: end for
18: Output M

TraverStringRef Tree(k, x0, r, xk , pk , T , J)
1: T ′ ← ∅
2: missed← 0
3: for all Q ∈ T do
4: Q′ ← FeasibleOccurrencesReordered3(k, x0, r, xk , pk , Q, J)
5: if Q′ ̸= ∅ then
6: T ′ ← T ′ ∪ {Q′}
7: else
8: missed← missed + 1
9: if missed > |T | − q + 2 then

10: return
11: end if
12: end if
13: end for
14: if IsMotifFast(xk , q − 2, T ′) = true then
15: M←M∪ {xk}
16: end if
17: if k = d then
18: return
19: end if
20: Sort the elements of T ′ in the nonincreasing order of (20).
21: for pk+1 = pk + 1 to l do
22: for all α ∈ Σ \ {xk[J(pk+1)]} do
23: xk+1 ← xk

24: xk+1[J(pk+1)]← α
25: d0 ← d + dH(x0|J−(pk+1), r|J−(pk+1))

26: if dH(xk+1, r) ≤ min(d0, 2d− k − 1) then
27: TraverStringRef Tree(k + 1, x0, r, xk+1, pk+1, T ′, J)
28: end if
29: end for
30: end for

Fig. 5. Pseudocode of TraverStringRef

Since its time complexity is O(l), this reordering does not
affect the overall time complexity of the algorithm. It is
necessary to modify the feasibility check as well as the
branching to take this reordering into account. However, this
modification is direct and thus the detailed explanation is
omitted.

E. TraverStringRef

The new algorithm TraverStringRef with the the four im-
provements from qPMS7 is summarized in Fig. 5. In line 11
of TraverStringRef and in line 26 of TraverStringRef Tree,
(52) and (54) are checked at the same time. FeasibleOccur-
rencesReordered3 in line 4 of TraverStringRef Tree returns
candidate occurrences that satisfy (53), (55), (56), and (57),
where x02, y2, and r2 are replaced by

x′02 = x0|J−(pk), y′2 = y|J−(pk), r′2 = r|J−(pk), (61)

respectively, due to the position reordering in the preceding
subsection. Its pseudocode is omitted. The time complexity
of TraverStringRef is given by that of TraverStringSingle and

TABLE IV
PARAMETER SETTING FOR DATA SET

parameter setting
|Σ| 4 (DNA), 20 (protein)
N 20
L 600
q 10, 20
l 13, 15, 17, . . .

TraverStringDouble multiplied by O((N − q + 1)L) and thus
O((N − q + 1)2NL2(L+ logN)nB(l, d)) (see also the time
complexity of qPMS7 in Section III-B). The space complexity
does not change from TraverStringSingle and TraverString-
Double, and is given by O(NLl).

VII. COMPUTATIONAL EXPERIMENTS

The effectiveness of the proposed algorithms will be ex-
amined by computational experiments. As in previous studies
including [33], the random data set was generated according
to the FM (fixed number of mutations) model [9]. First, N
base strings of length L were generated randomly so that each
letter in Σ appears with the equal probability 1/|Σ|. Then, a
motif of length l was generated in the same manner. Next, q
occurrences were generated from the motif by mutating letters
at exactly d random positions1 Finally, they were planted in q
input strings chosen randomly, where the planting locations
were also determined randomly. The parameter setting is
summarized in Table IV. The remaining parameter, d, was
determined to generate “challenging” instances. Its choice
follows [33]. For each combination of parameters, 10 instances
were generated.

The proposed algorithms were written in C, whose
source code is downloadable from https://sites.google.com/
site/shunjitanaka/motif. The computation was performed on a
laptop computer with an Intel Core i7-3610QM CPU (2.3GHz)
and 16GB memory. In the tables shown from now on, Traver-
StringSingle, TraverStringDouble, and TraverStringRef are
abbreviated to TravStrS, TravStrD, and TravStrR, respectively.

A. Comparison with qPMSPruneI and qPMS7

First, TraverStringDouble and TraverStringRef will be com-
pared with qPMSPruneI and qPMS7, respectively. The pro-
gram of qPMS7 was downloaded from http://pms.engr.uconn.
edu/downloads/qPMS7.zip. Since the program of qPMSPruneI
was not available, the CPU times of qPMSPruneI were esti-
mated from those given in [33] by using the results of qPMS7.
More specifically, it was calculated as follows: (The average
CPU time of qPMS7 obtained in this study)×(The ratio of the
CPU time of qPMSPruneI to that of qPMS7 in [33]). It should
be noted that qPMS7 did not work correctly for the protein
instances with |Σ| = 20 because the program always assumes
|Σ| = 21 for them.

The results are summarized in Tables V and VI, where
the minimum (min), average (ave), and maximum (max) CPU

1In [33], the authors claims that the data set was generated by mutating
letters at most d positions. However, it seems that letters at exactly d positions
were mutated also in their data set.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 10

TABLE V
COMPUTATIONAL RESULTS FOR DNA SEQUENCES (|Σ| = 4)

(a) q = 20 (100% match)

(l, d) TravStrD TravStrR qPMSPruneI∗ qPMS7
min 4.0 10.9 39

(13, 4) ave 4.0 11.3 14.3 39.4
max 4.2 11.6 40
min 27.6 45.5 129

(15, 5) ave 28.3 46.5 132.6 132.6
max 29.8 48.3 134
min 199.3 175.2 499

(17, 6) ave 202.4 179.5 1046.8 509.5
max 209.2 182.3 529
min 1527.4 728.4 2182

(19, 7) ave 1547.4 744.6 8465.6 2240.9
max 1581.8 775.5 2325
min 10781.7 3039.2 10367

(21, 8) ave 10943.9 3098.6 71749.6 10994.6
max 11116.9 3192.1 11352
min 12721.9 52741

(23, 9) ave 13027.0 56097.2
max 13385.5 62164
min 51796.5

(25, 10) ave 53781.6
max 56628.8

∗Estimated from [33] and the results of qPMS7.

(b) q = 10 (50% match)

(l, d) TravStrD TravStrR qPMSPruneI∗ qPMS7
min 2.0 5.5 31

(13, 3) ave 2.0 5.5 12.8 31.0
max 2.0 5.6 31
min 13.3 31.5 151

(15, 4) ave 13.5 32.0 126.7 152.0
max 13.6 32.2 153
min 120.7 162.9 839

(17, 5) ave 123.0 166.1 1116.5 850.7
max 124.5 168.8 857
min 1137.7 763.1 4770

(19, 6) ave 1148.6 779.9 10540.8 4865.0
max 1174.2 794.2 4978
min 10020.7 3659.2 28820

(21, 7) ave 10067.7 3700.6 29258.0
max 10149.8 3745.7 29856
min 17676.5

(23, 8) ave 17922.2
max 18181.7

∗Estimated from [33] and the results of qPMS7.

times are shown in seconds for DNA sequences (|Σ| = 4) and
protein sequences (|Σ| = 20), respectively. From these tables,
we can verify that TraverStringDouble and TraverStringRef
outperform qPMSPruneI and qPMS7, respectively. In the case
of the DNA sequences, TraverStringDouble is 5 or 6 times as
fast as qPMSPruneI, and TraverStringRef is 3 or 4 times as
fast as qPMS7 when q = 20 (TABLE V(a)). The advantage of
the proposed algorithms is more apparent when q = 10 (TA-
BLE V(b)), probably due to the improvement in Sections IV-A
and VI-A. Indeed, TraverStringDouble is 10 times as fast as
qPMSPruneI (except for l = 13), and TraverStringRef is 5
or 6 times as fast as qPMS7. With regard to the relation
between the proposed two algorithms, TraverStringDouble
is faster than or at least competitive with TraverStringRef
when l ≤ 17. It will be because the time complexity of
TraverStringDouble is O((N−q+1)NL(L+logN)nB(l, d))
in the worst case, while that of TraverStringRef is O((N −

TABLE VI
COMPUTATIONAL RESULTS FOR PROTEIN SEQUENCES (|Σ| = 20)

(a) q = 20 (100% match)

(l, d) TravStrD TravStrR qPMSPruneI∗ qPMS7
min 98.5 3.2 59

(13, 6) ave 105.6 3.3 916.5 61.1
max 113.7 3.4 64
min 644.2 3.9 80

(15, 7) ave 666.5 4.1 6790.7 89.6
max 720.9 4.5 114
min 2262.7 4.9 104

(17, 8) ave 2394.8 6.0 34680.0 231.2
max 2746.1 9.6 838
min 7554.7 9.4 157

(19, 9) ave 11379.0 17.8 1891.2
max 18031.7 37.8 8672
min 44.2

(21, 10) ave 109.6
max 286.9
min 125.8

(23, 11) ave 1068.3
max 2070.3
min 1712.1

(25, 12) ave 8333.8
max 25639.2

∗Estimated from [33] and the results of qPMS7.

(b) q = 10 (50% match)

(l, d) TravStrD TravStrR qPMSPruneI∗ qPMS7
min 6.8 3.2 18

(13, 5) ave 7.0 3.2 97.1 18.2
max 7.2 3.2 19
min 27.9 5.2 29

(15, 6) ave 30.3 5.3 403.3 32.7
max 33.9 5.3 43
min 215.9 9.1 51

(17, 7) ave 236.7 9.2 74.0
max 262.0 9.3 146
min 671.7 15.2 87

(19, 8) ave 1328.5 16.3 413.9
max 4158.6 21.7 865
min 25.2 359

(21, 9) ave 28.0 2551.7
max 32.6 10653
min 45.5

(23, 10) ave 141.0
max 628.0
min 94.0

(25, 11) ave 406.0
max 1788.4
min 226.1

(27, 12) ave 8956.5
max 68598.1

∗Estimated from [33] and the results of qPMS7.

q+ 1)2NL2(L+ logN)nB(l, d)) due to the consideration of
reference occurrences. Nonetheless, its effect makes Traver-
StringRef outperform TraverStringDouble when l ≥ 19.

In the case of the protein sequences (TABLE VI), qPMS7
(and qPMSPruneI, probably) would be slower than was ex-
pected because of an additional unnecessary letter (|Σ| = 21
instead of |Σ| = 20). Even if it is taken into account, the
improvement from the previous algorithms is more than that
for the DNA sequences: For the instances with (l, d, q) =
(17, 8, 20), TraverStringDouble and TraverStringRef are ap-
proximately 15 times and 40 times as fast as qPMSPruneI
and qPMS7, respectively. A similar tendency is observed in

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 11

TABLE VII
EFFECT OF IMPROVEMENTS FOR DNA SEQUENCES

(TRAVERSTRINGDOUBLE)

(a) (l, d) = (17, 6), q = 20 (100% match)

TravStrS
TravStrS TravStrS
w/o IV-C w/o IV-C, IV-A

time ratio time ratio time ratio
min 277.9 1.35 372.9 1.82 641.0 3.11
ave 280.7 1.39 379.3 1.87 648.5 3.20
max 283.4 1.39 384.0 1.91 654.1 3.26

(b) (l, d) = (17, 5), q = 10 (50% match)

TravStrS
TravStrS TravStrS
w/o IV-C w/o IV-C, IV-A

time ratio time ratio time ratio
min 168.9 1.39 265.4 2.17 347.5 2.84
ave 172.1 1.40 269.2 2.19 353.2 2.87
max 173.8 1.40 272.9 2.20 362.7 2.95

TABLE VIII
EFFECT OF IMPROVEMENTS FOR PROTEIN SEQUENCES

(TRAVERSTRINGDOUBLE)

(a) (l, d) = (17, 8), q = 20 (100% match)

TravStrS
TravStrS TravStrS
w/o IV-C w/o IV-C, IV-A

time ratio time ratio time ratio
min 3305.5 1.46 5417.9 2.27 18553.4 7.67
ave 3531.2 1.47 6116.8 2.55 21590.1 9.00
max 4050.4 1.49 7681.9 2.80 27381.6 10.02

(b) (l, d) = (17, 7), q = 10 (50% match)

TravStrS
TravStrS TravStrS
w/o IV-C w/o IV-C, IV-A

time ratio time ratio time ratio
min 282.9 1.31 433.6 1.99 786.2 4.09
ave 310.3 1.45 490.2 2.58 923.5 6.05
max 344.6 1.60 532.7 3.18 1029.9 8.93

the case of q = 10. In addition, TraverStringRef always
outperforms TraverStringDouble as qPMS7 outperforms qPM-
SPruneI. Another difference from the DNA sequences is that
the variation of the CPU times is more significant. One reason
for it would be that the number of motifs found varies greatly.
Indeed, the minimum and maximum numbers of motifs found
for the protein instances with (l, d, q) = (27, 12, 10) are 566
and 13,953,017, respectively. This fact implies that the number
of nodes that should be traversed varies greatly, which resulted
in the variation of CPU times. The protein instances in this
study seems too challenging: The motifs were so weak that it
was difficult to distinguish them from the background noise,
and the number of motifs found was affected severely by the
randomness of the instances.

B. Effect of Proposed Improvements

Next, the effect of the proposed improvements will be exam-
ined. The algorithms without some of the improvements were
applied to the instances with l = 17 (TraverStringDouble)
or l = 19 (TraverStringRef). The results are summarized in
Tables VII–X. In these tables, “time” denotes the CPU time
of the algorithms, and “ratio” is the ratio of the CPU time
over that of the original algorithm, i.e. TraverStringDouble in

TABLE IX
EFFECT OF IMPROVEMENTS FOR DNA SEQUENCES

(TRAVERSTRINGREF)

(a) (l, d) = (19, 7), q = 20 (100% match)

w/o VI-D w/o VI-C
w/o VI-D,
w/o VI-C

time ratio time ratio time ratio
min 1065.1 1.46 947.7 1.27 1490.1 2.00
ave 1097.0 1.47 979.1 1.32 1536.1 2.06
max 1154.8 1.49 1011.0 1.36 1598.5 2.16

(b) (l, d) = (19, 6), q = 10 (50% match)

w/o VI-D w/o VI-C
w/o VI-D,
w/o VI-C

time ratio time ratio time ratio
min 920.4 1.20 977.3 1.26 1276.5 1.65
ave 942.8 1.21 995.3 1.38 1300.4 1.67
max 962.8 1.21 1029.8 1.30 1331.2 1.68

TABLE X
EFFECT OF IMPROVEMENTS FOR PROTEIN SEQUENCES

(TRAVERSTRINGREF)

(a) (l, d) = (19, 9), q = 20 (100% match)

w/o VI-D w/o VI-C
w/o VI-D,
w/o VI-C

time ratio time ratio time ratio
min 12.1 1.10 13.6 1.20 16.9 1.54
ave 26.0 1.37 121.2 8.51 360.7 25.49
max 73.2 1.93 259.8 27.64 1085.1 78.97

(b) (l, d) = (19, 8), q = 10 (50% match)

w/o VI-D w/o VI-C
w/o VI-D,
w/o VI-C

time ratio time ratio time ratio
min 15.3 1.00 17.1 1.12 17.3 1.14
ave 16.8 1.02 21.8 1.32 33.9 1.94
max 24.6 1.13 34.8 1.87 119.5 5.50

Tables VII and VIII and TraverStringRef in Tables IX and X.
A larger “ratio” means that the corresponding improvements
removed from the original algorithm are more effective.

The results indicate that all the proposed improvements
contribute to the reduction of the computation time. From
Tables VII and VIII, we can see that TraverStringDouble
with the tree pairing in Section V-A is about 1.4 times as
fast as TraverStringSingle without it. The string reordering in
Section IV-C is at least as efficient as this improvement, while
the strict check in Section IV-A is more efficient for the protein
instances. It would be because the improvement by the strict
check in pruning subtrees becomes more notable when the
size of a search tree increases as |Σ| increases. “TravStrS w/o
IV-C, IV-A” in Tables VII(a) and VIII(a) is still faster than
qPMSPruneI, although the former should be identical to the
latter for the instances with q = N because the improvement in
Section IV-B is active only when q < N . The algorithm seems
to have been implemented less efficiently in qPMSPruneI.

With regard to TraverStringRef in Tables IX and X, the
position reordering in Section VI-D is competitive with the
string reordering in Section VI-C for the DNA sequences,
while the effect of the former is not so impressive and the latter
is much more effective for the protein instances especially

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 12

TABLE XI
EFFECT OF MULTI-THREADING FOR DNA SEQUENCES (4 THREADS)

(a) q = 20 (100% match)

(l, d)
TravStrD TravStrR

time 1/ratio time 1/ratio
min 1.2 3.11 3.0 3.57

(13, 4) ave 1.2 3.25 3.1 3.64
max 1.3 3.39 3.2 3.70
min 7.4 3.62 12.3 3.55

(15, 5) ave 7.7 3.67 12.8 3.65
max 8.1 3.75 13.2 3.69
min 53.2 3.70 48.3 3.53

(17, 6) ave 54.3 3.73 50.0 3.59
max 55.4 3.78 51.2 3.68
min 409.3 3.69 201.6 3.48

(19, 7) ave 416.0 3.72 206.4 3.61
max 426.4 3.74 221.7 3.66
min 2888.8 3.63 835.5 3.59

(21, 8) ave 2969.8 3.69 853.5 3.63
max 3051.0 3.73 875.8 3.67
min 3443.8 3.62

(23, 9) ave 3549.3 3.67
max 3657.6 3.72
min 14345.2 3.53

(25, 10) ave 14839.9 3.62
max 15322.3 3.70

(b) q = 10 (50% match)

(l, d)
TravStrD TravStrR

time 1/ratio time 1/ratio
min 0.6 3.53 1.5 3.56

(13, 3) ave 0.6 3.63 1.5 3.64
max 0.6 3.71 1.5 3.70
min 3.7 3.47 8.8 3.62

(15, 4) ave 3.8 3.57 8.8 3.65
max 3.9 3.64 8.9 3.72
min 33.7 3.40 45.5 3.62

(17, 5) ave 34.6 3.55 45.5 3.65
max 36.2 3.68 46.4 3.69
min 318.1 3.42 214.4 3.61

(19, 6) ave 324.8 3.54 214.4 3.64
max 343.4 3.58 219.1 3.67
min 2771.6 3.28 1043.3 3.44

(21, 7) ave 2940.3 3.43 1043.3 3.55
max 3055.9 3.66 1087.7 3.63
min 5064.2 3.43

(23, 8) ave 5064.2 3.54
max 5260.3 3.63

when q = N . These results imply that TraverStringRef
works differently for the DNA sequences and for the protein
instances. Indeed, the number of search trees not pruned at
the root node in TraverStringRef was 500 on average for the
protein instances with (l, d, q) = (19, 9, 20), while that for
the DNA instances with (l, d, q) = (19, 7, 20) was 174,000
on average. This difference can be explained by the probability
of a random string to fall into B(x0, d)∩B(r, d). It decreases
exponentially as |Σ| increases, and a search tree is more likely
to be pruned by the feasibility check when x0 and r are not
valid occurrences, because at least q − 2 out of the other
N − 2 input strings should have an occurrence belonging to
B(x0, d) ∩ B(r, d), whereas it rarely happens by chance.

C. Effect of Multi-threading

The algorithms are easy to parallelize by traversing several
search trees in parallel [34]. The results of the algorithms

TABLE XII
EFFECT OF MULTI-THREADING FOR PROTEIN SEQUENCES (4 THREADS)

(a) q = 20 (100% match)

(l, d)
TravStrD TravStrR

time 1/ratio time 1/ratio
min 26.7 3.60 0.9 3.26

(13, 6) ave 28.9 3.66 1.0 3.41
max 31.1 3.70 1.1 3.53
min 174.8 3.42 1.1 3.35

(15, 7) ave 190.9 3.49 1.2 3.48
max 203.9 3.69 1.3 3.62
min 656.8 3.27 1.4 3.24

(17, 8) ave 700.1 3.42 1.8 3.43
max 802.1 3.51 2.8 3.54
min 2196.6 2.78 2.6 2.99

(19, 9) ave 3493.3 3.30 5.5 3.32
max 5475.5 3.54 12.7 3.57
min 17.4 2.35

(21, 10) ave 37.1 2.93
max 88.7 3.39
min 59.4 1.75

(23, 11) ave 446.6 2.43
max 870.2 3.01
min 779.0 1.83

(25, 12) ave 3347.3 2.54
max 11547.6 3.19

(b) q = 10 (50% match)

(l, d)
TravStrD TravStrR

time 1/ratio time 1/ratio
min 2.0 3.22 0.9 3.24

(13, 5) ave 2.1 3.31 0.9 3.41
max 2.2 3.44 1.0 3.65
min 8.9 2.65 1.5 3.39

(15, 6) ave 9.8 3.10 1.5 3.53
max 12.1 3.34 1.6 3.61
min 62.8 2.74 2.5 3.38

(17, 7) ave 75.3 3.17 2.6 3.49
max 95.6 3.67 2.7 3.64
min 201.4 1.62 4.2 3.41

(19, 8) ave 574.7 2.96 4.6 3.58
max 2567.4 3.35 6.1 3.68
min 7.1 3.23

(21, 9) ave 8.0 3.51
max 10.1 3.56
min 12.8 1.98

(23, 10) ave 57.5 3.16
max 317.4 3.61
min 26.0 2.66

(25, 11) ave 133.9 3.22
max 599.5 3.62
min 80.6 1.67

(27, 12) ave 3353.5 2.24
max 22614.1 3.03

run in 4 threads are shown in Tables XI and XII, where
“1/ratio” denotes the ratio between the CPU times in 4
threads and in a single thread (given in Tables V and VI).
A larger “1/ratio” means that multi-threading works more
effectively. These tables verify that multi-threading makes
the algorithms 3 times faster on average, except for the
protein instances with N = 20, L = 600, and (l, d, q) =
(23, 11, 20), (25, 12, 20), (27, 12, 10). As explained in Sec-
tion VII-A, motifs in the protein instances with large l’s are
so weak that traversing some specific search trees requires a
considerable amount of computation time because they include
many valid motifs. Thus the CPU time of each thread was not

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 13

TABLE XIII
RESULTS FOR REAL DNA DATA SETS

data set (l, d) number of motifs found

preproinsulin
(15, 1) 1
(15, 2)∗ 379

DHFR
(11, 1) 7
(11, 2)∗ 9880

c-fos
(9, 1) 3
(9, 2)∗ 7492

metallothionein
(15, 2)∗ 8
(15, 3) 3487

Yeast ECB
(16, 3)∗ 117
(16, 4) 8648

∗Choice of (l, d) in [29].

balanced, which made the multi-threading less advantageous.

D. Results for Real Data Sets

The proposed algorithms were applied to the real DNA data
sets, preproinsulin, DHFR, c-fos, metallothionein and Yeast
ECB data sets as in [29]. The results are summarized in
TABLE XIII. The CPU time was less than 1 s even in a single-
thread and so is omitted. In the table, only the number of
motifs found is shown to concentrate on the planted motif
finding problem itself, although post-processing is necessary
to filter the motifs by some scoring schemes in order to predict
motifs. It was verified that all the motifs predicted in [29] are
among the motifs found by the algorithm when the same (l,
d) as in [29] is chosen.

VIII. CONCLUSION

This study proposed several improvements for the exist-
ing algorithms for the planted motif search problem. Com-
putational experiments showed that TraverStringDouble and
TraverStringRef outperform qPMSPruneI and qPMS7, re-
spectively. Specifically, TraverStringRef is the first algorithm
that solves the challenging DNA instances with (l, d, q) =
(25, 10, 20) in a reasonable computation time. Although its
practical effectiveness is obvious, the theoretical time com-
plexity is not so impressive because it is worse than that
of TraverStringDouble. It would be necessary to reduce the
time complexity of TraverStringRef in future research. It is
possible to apply the tree pairing in Section V-A also to
TraverStringRef. However, the result of preliminary experi-
ments was not positive due to complicated pruning conditions.
Hence, it is another direction of future research to improve
TraverStringRef by the tree pairing in a more sophisticated
way.

REFERENCES

[1] M. Frances and A. Litman, “On covering problems of codes,” Theory
of Computing Systems, vol. 30, no. 2, pp. 113–119, Apr. 1997.

[2] M. Li, B. Ma and L. Wang, “On the closest string and substring
problems,” Journal of the ACM, vol. 49, no. 2, pp. 157–171, Mar. 2002.

[3] J. Gramm, R. Niedermeier, and P. Rossmanith, “Fixed-parameter algo-
rithms for closest string related problems,” Algorithmica, vol. 37, no. 1,
pp. 25–42, Sep. 2003.

[4] P. A. Evans and Andrew D. Smith, “Complexity of approximating closest
substring problems,” Proc. Symposium on Fundamentals of Computation
Theory (FCT 2003), LNCS 2751, Springer, pp. 210–221, 2003.

[5] D. Marx, “Closest substring problems with small distances,” SIAM
Journal on Computing, vol. 38, no. 4, pp. 1382–1410, 2008.

[6] J. Wang, J. Chen, and M. Huang, “An improved lower bound on ap-
proximation algorithms for the closest substring problem,” Information
Processing Letters, vol. 107, no. 1, pp. 24–28, June 2008.

[7] B. Ma and X. Sun, “More efficient algorithms for closest string and
substring problems,” SIAM Journal on Computing, vol. 39, no. 4,
pp. 1432–1443, 2009.

[8] Z.-Z. Chen and L. Wang, “Fast exact algorithms for the closest string and
substring problems with application to the planted (L, d)-motif model, “
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 8, no. 5, pp. 1400–1410, Sep.-Oct. 2011.

[9] P. A. Pevzner and S.-H. Sze, “Combinatorial approaches to finding
subtle signals in DNA sequences,” Proc. 8th International Conference
on Intelligent Systems for Molecular Biology (ISMB2000), pp. 269–278,
Aug. 2000.

[10] S. Liang, “cWINNOWER algorithm for finding fuzzy DNA motifs,”
Proc. Computational Systems Bioinformatics Conference (CSB2003),
pp. 260–265, Aug. 2003.

[11] S.-H. Sze, S. L. Lu, and J. Chen, “Integrating sample-driven and pattern-
driven approaches in motif finding,” Proc. 4th Workshop on Algorithms
in Bioinformatics (WABI2004), LNCS 3240, Springer, pp. 438–449,
Sep. 2004.

[12] X. Yang and J. C. Rajapakse, “Graphical approach to weak motif
recognition,” Genome Informatics, vol. 15, no. 2, pp. 52–62, Dec. 2004.

[13] H. Q. Sun, M. Y. H. Low, W. J. Hsu, and J. C. Rajapakse, “RecMotif:
A novel fast algorithm for weak motif discovery,” BMC Bioinformatics,
vol. 11 (Suppl. 11), art. no. S8, 2010.

[14] H. Q. Sun, M. Y. H. Low, W. J. Hsu, and J. C. Rajapakse, “ListMotif:
A time and memory efficient algorithm for weak motif discovery,”
Proc. IEEE International Conference on Intelligent Systems and Knowl-
edge Engineering (ISKE2010), pp. 254–260, Nov. 2010.

[15] H. Q. Sun, M. Y. H. Low, W. J. Hsu, C. W. Tan, and J. C. Rajapakse,
“Tree-structured algorithm for long weak motif discovery,” Bioinformat-
ics, vol. 27, no. 19, pp. 2641–2647, Oct. 2011.

[16] M.-F. Sagot, “Spelling approximate repeated or common motifs using
a suffix tree,” Proc. Third Latin American Theoretical Informatics
Symposium (LATIN’98), LNCS 1380, Springer, pp. 374–390, Apr. 1998.

[17] G. Pavesi, G. Mauri, and G. Pesole, “An algorithm for finding signals of
unknown length in DNA sequences,” Bioinformatics, vol. 17 (Suppl. 1),
pp. S207–S214, June 2001.

[18] E. Eskin and P. A. Pevzner, “Finding composite regulatory patterns in
DNA sequences,” Bioinformatics, vol. 18 (Suppl. 1), pp. S354-S363,
July 2002.

[19] P. A. Evans and A. D. Smith, “Toward optimal motif enumera-
tion,” 8th International Workshop on Algorithms and Data Structures
(WADS2003), LNCS 2748, Springer, pp. 47–58, July-Aug. 2003.

[20] N. Pisanti, A. M. Carvalho, L. Marsan, and M.-F. Sagot, “RISOTTO:
Fast extraction of motifs with mismatches,” Proc. 7th Latin American
Theoretical Informatics Symposium (LATIN2006), LNCS 3887, Springer,
pp. 757–768, Mar. 2006.

[21] F. Y. L. Chin and H. C. M. Leung, “Voting algorithms for discover-
ing long motifs,” Proc. Third Asia-Pacific Bioinformatics Conference
(APBC2005), pp. 261–271, Jan. 2005.

[22] S. Rajasekaran, S. Balla, and C.-H. Huang, “Exact algorithms for planted
motif problems,” Journal of Computational Biology, vol. 12, no. 8,
pp. 1117–1128, Oct. 2005.

[23] S.-H. Sze and X. Zhao, “Improved Pattern-Driven Algorithms for Motif
Finding in DNA Sequences,” LNCS 4023, Springer, pp. 198–211, 2006.

[24] J. Davila, S. Balla, and S. Rajasekaran, “Space and time efficient
algorithms for planted motif search,” Proc. 2nd International Workshop
on Bioinformatics Research and Applications (IWBRA’06), pp. 822–829,
May 2006.

[25] P. P. Kuksa and V. Pavlovic, “Efficient motif finding algorithms for large-
alphabet inputs,” BMC Bioinformatics, vol 11 (Suppl. 8), art. no. S1,
May 2010.

[26] S. Rajasekaran and H. Dinh, “A speedup technique for (l, d) motif
finding algorithms,” BMC Research Notes, vol. 4, art. no. 54, Mar. 2011.

[27] H. Dinh, S. Rajasekaran, V. K. Kundeti, “PMS5: An efficient exact
algorithm for the (l, d)-motif finding problem,” BMC Bioinformatics,
vol. 12, art. no. 410, Oct. 2011.

[28] S. Bandyopadhyay, S. Sahni, and S Rajasekaran, “PMS6: A fast algo-
rithm for motif discovery,” Proc. 2nd IEEE International Conference on
Computational Advances in Bio and Medical Sciences (ICCABS2012),
Feb. 2012. doi:10.1109/ICCABS.2012.6182627.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY 2000 14

[29] Q. Yu, H. Huo, Y. Zhang, and H. Guo, “PairMotif: a new pattern-driven
algorithm for planted (l, d) DNA motif search, “ PLoS One, vol. 7,
art. no. e48442, Oct. 2012.

[30] J. Davila, S. Balla, and S. Rajasekaran, “Fast and practical algorithms for
planted (l, d) motif search,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 4, no. 4, pp. 544–552, Oct.-Dec. 2007.

[31] J. Davila, S. Balla, and S. Rajasekaran, “Pampa: An improved
branch and bound algorithm for planted (l, d) motif search,”
BECAT Technical Report, School of Engineering, University of
Connecticut, BECAT/CSE-TR-07-5, 2007. http://becat.engr.uconn.edu/
becat technical reports/BECAT-CSE-TR-07-5.pdf.

[32] D. Sharma and S. Rajasekaran, “A simple algorithm for (l, d) mo-
tif search,” Proc. IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB’09), pp. 148–154,
Mar.-Apr. 2009.

[33] H. Dinh, S. Rajasekaran, and J. Davila, “qPMS7: a fast algorithm for
finding (l, d)-motifs in DNA and protein sequences,” PLoS One, vol. 7,
no. 7, art. no. e41425, July 2012.

[34] M. M. Abbas, M Abouelhoda, and H. M. Bahig, “A hybrid method for
the exact planted (l, d) motif finding problem and its parallelization,”
BMC Bioinformatics, vol. 13 (Suppl. 17), art. no. S10, Dec. 2012.

Shunji Tanaka (M’05) received BE, ME and PhD
(Eng) degrees in electrical engineering from Kyoto
University in 1993, 1995 and 2000, respectively.
He is an Associate Professor with the Institute for
Liberal Arts and Sciences at Kyoto University since
2014. His current research interests include exact
and heuristic algorithms for real-world problems
such as production scheduling, elevator group con-
trol, bioinformatics and so on.

