IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11,

NO. 4, JULY/AUGUST 2014

Index of Clustering for Gene Expression Data
Rui Fa and Asoke K. Nandi

Abstract—Validity indices have been investigated for decades. However, since there is no study of noise-resistance performance
of these indices in the literature, there is no guideline for determining the best clustering in noisy data sets, especially microarray
data sets. In this paper, we propose a generalized parametric validity (GPV) index which employs two tunable parameters « and g
to control the proportions of objects being considered to calculate the dissimilarities. The greatest advantage of the proposed
GPV index is its noise-resistance ability, which results from the flexibility of tuning the parameters. Several rules are set to guide
the selection of parameter values. To illustrate the noise-resistance performance of the proposed index, we evaluate the GPV
index for assessing five clustering algorithms in two gene expression data simulation models with different noise levels and
compare the ability of determining the number of clusters with eight existing indices. We also test the GPV in three groups of real
gene expression data sets. The experimental results suggest that the proposed GPV index has superior noise-resistance ability
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and provides fairly accurate judgements.
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1 INTRODUCTION

LUSTERING analysis has been extensively employed in
many scientific fields, including biology, physics,
image and vision processing, and medical research [1], [2],
[3], [4]. In particular, gene expression data and protein
expression data analysis has used clustering as one of main
exploratory tools for nearly one and a half decades [5], [6],
[7], [8]. Gene expression data measured by high-throughput
methods, including microarray or ribosomal nucleic acid
sequencing (RNA-seq), are organized in a matrix where
each row represents a gene and each column represents
sample values at the same time. The goal of the clustering
analysis is to group individual genes or samples from a
population into a cluster within which the objects are more
similar to each other than those in other clusters [3], [5], [6],
[71, 18], [4], [9], [11], [12], [13], [14], [15]. However, due to its
unsupervised nature, there is no existing guideline to guar-
antee an optimal clustering and is still an open question
how to tell that a clustering algorithm or a clustering result
is better. Thus, the task of assessing the results of clustering
algorithms can be as important as the clustering algorithms
themselves. The procedure for evaluating clustering algo-
rithms and their results is known as clustering validation
[16], [171.
There has been a lot of clustering validation algorithms
in the literature since 1960s [18]. The most of clustering
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validation algorithms can be classified into three classes
[16], [17], namely external criterion, internal criterion and rela-
tive criterion. The classification hierarchy of clustering vali-
dation algorithms is illustrated in Suppl. Fig. 1, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2014.2312006.

External criterion implies that the results of a clustering
algorithm are evaluated based on a pre-specified structure,
which is imposed on a data set to reflect the clustering struc-
ture of the data set. The best examples are Rand index (RI)
[19] and adjusted Rand index (ARI) [20]. However, the
demarcation of internal criterion and relative criterion is vague
and sometimes they are mixed up [21], [22]. Internal crite-
rion evaluates the clustering algorithms in terms of the
inner structures of the data sets themselves, for example re-
sampling based methods, like figure of merit (FOM) [23]
and Clest [24]. This class of algorithms may have good esti-
mates of number of clusters in a data set and also have good
indication of the effectiveness of clustering algorithms. But
due to their nature of re-sampling approach, the two main
issues are that 1) they are computationally expensive,
2) they cannot validate individual partition result. Relative
criterion evaluates the clustering partitions by the relative
relationship between compactness and separation. We are
more interested in the relative criterion because of the fol-
lowing three reasons: 1) their simplicity, 2) low computa-
tional load, and 3) their ability of judge the quality of
respective clustering partitions. Relative criterion can be
further classified into two main subclasses: a) model-based
or information theoretic validation, e.g., minimum descrip-
tion length (MDL) [25], minimum message length (MML)
[26], [27], Bayesian information criterion (BIC) [28], Akaike’s
information criterion (AIC), the informational complexity
criterion (ICOMP), classification likelihood criterion (CLC),
and the normalized entropy criterion (NEC); b) geometry-
based validation, which considers the ratio of within-group
distance to between-group distance (or its reciprocal), also
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Inner space (A)

Intra outer space (B) Inter outer space (C)

Fig. 1. lllustration of the proposed GPV. Symbols “x” and “0” represent
two clusters. Considering “x” cluster, the yellow area is the inner space,
labelled by “A”; the blue area is the intra outer space, labelled by “B”;
and the red area is inter outer space, labelled by “C”.

known as validity index. There are two further sub-sub-
classes in geometry-based validation i.e., fuzzy and crisp.
Fuzzy validity indices include partition coefficient (PC),
partition entropy (PE) [29], [30], Fukuyama-Sugeno (FS)
index [31], Xie-Beni (XB) index and Kwon’s extended XB
(KEXB) index [30], [32]. Crisp validity indices include Calin-
ski-Harabasz (CH) index [33], Dunn’s index (DI) [34],
Davies-Bouldin (DB) index [35] (DB is the counterpart of XB
with crisp clustering), I index [36], Silhouettes [37], Krza-
nowski and Lai index (KL) [38], the geometrical index (GI)
[39], and the validity index V; [40]. Since the real gene
expression data, especially microarray data, has high back-
ground noise, the noise resistance ability is important to the
clustering algorithms and the validity indices. To the best of
our knowledge, although some of these indices have been
applied in the clustering analysis of gene expression data,
there is no study to investigate their noise resistance ability
and there is no validity index claimed to have this property.
Besides aforementioned criteria, there has been some
other effort devoted into the research of integrating a priori
biological knowledge into clustering and clustering valida-
tion [42], [43]. However, one should be very cautious to
exploit those a priori biological knowledge in clustering
analysis, especially clustering validation, because two
serious issues may be easily neglected. First, is the a priori
knowledge enough to judge the clustering? Second, even
though we have strong enough a priori knowledge, can we
exploit them to guide or judge the clustering of the newly
collected data, especially noisy data? These two issues limit
the practical use of this type of methods. In this paper, we
do not integrate any a priori knowledge into the algorithm.
Recently, Lingras et al. proposed a decision-theoretic
measure of rough cluster quality [44]. Although this method
is designed for rough clustering specifically and not appli-
cable to other types of clustering, it reveals an idea of
parametric clustering validation. In this method, there is an
important parameter, threshold, to control the ranges of
lower bound, upper bound and boundary areas. The most
important advantage of the parametric validation is the
robustness, i.e., the validation can deal with various cluster-
ing algorithms for various data sets by adjusting the param-
eters. However, there are also two challenges in developing
such parametric validation: one is the choice of the metric
for cluster validation that is influenced by the parameters
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and the other, most essentially, are the optimal values for
these parameters for different clustering algorithms and dif-
ferent data sets. In [44], the first challenge was tackled well
by proposing a risk measurement strategy based on deci-
sion-theoretic framework; however, the second problem
was left unaddressed.

In this paper, we propose a generalized parametric valid-
ity (GPV) index which is one of geometry-based indices to
calculate the ratio of the inter-cluster dissimilarity to the the
intra-cluster dissimilarity. We introduce two tunable
parameter « and g in the new index to control the propor-
tions of objects being taken into account to calculate the dis-
similarities. The greatest advantage of the proposed GPV
index is its noise-resistance ability. The noise-resistance
ability results from the flexibility of tuning the parameters,
which in turn leads to its robustness, to meet different data
sets (especially the microarray data sets). Several rules are
set to guide the selection of parameter values. By examining
the dissimilarity densities of different data sets, the maximal
appropriate values of the parameters for individual data set
can be obtained. To validate our validity index, we must
have: (1) some test data sets whose structures are already
known, (2) some reference clustering results which has been
evaluated by external indices, say ARI, (in this paper, we
use five clustering algorithms, namely K-Means, K-
Medoids, hierarchical clustering (HC), self-organizing map
(SOM) and model-based clustering (MCLUST)), and (3) one
or more metrics to indicate the effectiveness of the tested
indices. We first obtain reference clustering results by clus-
tering the test data sets and evaluating the results with ARI;
then we test the proposed index with these reference clus-
tering results and compare its ability to indicate the correct
structure of the given data set with other existing validity
indices. In this paper, we evaluate the new GPV in both sim-
ulated and real gene expression data sets. Although we
focus on the gene expression data, our proposed index can
also be applied in other expression data analysis like protein
expression data. We employ simulated data because, first,
we can control the noise levels by tuning the noise-control-
ling parameters in the model; second, both the true mem-
bership and the true number of clusters can be employed to
evaluate the performance of validity indices in the simu-
lated data sets. We investigate our proposed index in many
real data sets. The first group contains three data sets from
different experiments or species, which have different noise
levels. We also consider other two data sets, namely Gasch
set [45] and Ogawa set [46], which has been widely used for
testing clustering algorithms [47], [48], and extract two sub-
sets (one tight set and one loose set) from each of them. We
demonstrate that some existing validation algorithms work
well in one “clean” data set, but are problematic in the other
noisy data set. In this case, the contribution of this paper
turns to be twofold: on one hand, we propose GPV and the
methods determining the parameters; on the other hand,
to evaluate the proposed GPV, we investigate its noise-
resistance ability and compare it with eight other existing
validity indices, namely, Dunn’s index [34], the I-index (II)
[36], the Calinski Harabasz index [33], the geometrical index
([39], the validity index V; [40], Davies-Bouldin index [35],
Silhouettes [37], and the Krzanowski and Lai index [38].
The experimental results suggest that the proposed GPV
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has relatively good noise-resistance performance and pro-
vides fairly accurate judgements.

The rest of the paper is organised as follows, In Sec-
tion 2, both the synthetic data sets and real data sets are
introduced first since an example data set will be used in
demonstrating the development of the algorithm. Section
3 presents the principle of the proposed GPV and the
selection rules for the parameters. Section 4 presents the
experimental results and conducts a detail discussion
regarding the clustering validations. Finally, conclusions
are made in Section 5.

2 DATA SETS

2.1 Simulated Data Sets

We employ two microarray gene expression data models
to simulate or synthesize gene expression data. One sim-
ulates the state-based gene expression data [13] and
another one simulates the periodic behaviour of yeast
cell cycle [12], [49]. The advantages of using simulated
data are that the ground truth is known and we have
the freedom to manipulate the noise level of the data by
tuning a few parameters.

The first simulating model (S1) is a stochastic model
which simulates the state-based gene expression data [13].
Unlike [13], we only simulate gene expression data sets
without scatter genes. There are 11 clusters {Cilk =
1,...,11} of genes with M = 50 samples in the simulated
data. Random noise from normal distribution with standard
deviations o, =0,0.05,0.1,0.2,0.4,0.8, and 1.2 is added.
The interested readers are referred to [13] for the details.
The parameters used in this model are set as: u© = 6,0 =1,
oy =1.0,00 = 0.1, and A = 10. We generate 100 data sets for
each o,,.

The second simulating model (S2) was originally pro-
posed in [49]. We employ it to generate a number of
synthetic gene expression data sets with 500 synthetic
genes in each data set and 24 samples for each gene.
These 500 genes belong to K =5 clusters and each clus-
ter has 100 members. The model of cyclic gene expres-
sion is given by

xij =r+[d+yr](r+ [d+ yr]sin(27j/8 — w; + zr), (1)

where z;; is the expression value of the ith gene at the jth
time point, each instant of r is an independent random
number from the standard normal distribution A(0,1), d
controls the magnitude of the sinusoid and it is fixed to
three here, y controls the random component added to the
magnitude, z controls the random component added to the
phase, and w; is the phase shift of the ith gene. w; will deter-
mine which cluster the gene ¢ will be in. Since the noise in
this model is not additive, we have to couple y and z to be a
pair, and raise their values to change the noise power. By
increasing values of y and z will increase the noise power.
The paired parameters are listed as (y, z) € {(0.1,0.01), (0.3,
0.03), (0.5,0.05), (0.7,0.07), (0.9,0.09), (1.1,0.11), (1.3,0.13),
(1.5,0.15), (1.7,0.17), (1.9,0.19), (2.1,0.21), (2.3,0.23), (2.5,
0.25)}. Thus, there are 13 parameter pairs (PPs) from PP1 to
PP13, representing 13 noise levels from low to high. For
each pair of parameters, we generate 1,000 data sets, and

subsequently, we get 1,000 clustering results from each clus-
tering algorithm.

2.2 Real Data Sets
22.1 Group 1

This group contains three real gene expression data sets,
one Leukaemia data set and two Yeast cell cycle data sets.
The leukemia data set [7] consists of 38 bone marrow sam-
ples obtained from acute leukemia patients at the time of
diagnosis. The samples include 11 acute myeloid leukemia
(AML) samples, eight T-lineage acute lymphoblastic leuke-
mia (ALL) samples, and 19 B-lineage ALL samples. There
are 999 genes in the data set. One of two Yeast cell cycle
data sets is @-38, which was presented in [52]. The data set
employed in the paper consists of 500 genes with highest
periodicity scores and each gene has 25 time samples. Addi-
tionally, the peak times in (0, 100 percent] of these 500 genes
in the cell cycle are provided, as the whole cell cycle is
100 percent. Another yeast cell cycle data set cdc-28 was
published by Cho et al. [5]. It consisted of more than 6,000
genes over 17 time points taken at 10 minutes intervals. The
data set we investigate in this paper is a subset of 384 genes
out of 6,000 genes, which were demonstrated consistent
periodic changes in transcript level [12]. It is available at
http:/ /faculty.washing ton.edu/kayee/model/. It was
commonly believed that the time course was divided into
early G1, late G1, S, G2, and M phases biologically, and
those 384 genes would peak at one of the five phases. In the
recent research [53], an extra statistical cluster called Q
(questioned) phase, was identified. However, the members
in the Q phase are more likely to belong to different biologi-
cal groups in other recent data sets. We choose these three
data sets because they have different noise levels: the leuke-
mia data set has the lowest noise among three data sets,
«-38 has moderate noise, and cdc-28 has highest noise.

222 Group?2

This group contains two subsets, one tight set and one loose
set, which are extracted from Ogawa set [46]. The original
Ogawa set about the phosphate accumulation and the poly-
phosphate metabolism of yeast S. cerevisiae contains 5,783
genes and eight samples after removing the genes with
missing values. We borrow the idea in the Bi-CoPaM
method [14], [15] to extract the test subsets. What Bi-CoPaM
did is to fuse many clustering results from different cluster-
ing algorithms, generate a fuzzy consensus partition matrix
and then binarize the fuzzy consensus partition matrix
according to the threshold. Different values of the threshold
will lead to clustering results with different levels of tight-
ness. In this work, we used five clustering algorithms,
namely K-Means, K-Medoids, HC, SOM and MCLUST, to
partition the whole gene expression data with the number
of clusters equal to 20 and generated the fuzzy consensus
partition matrix based on the normalised votes of each gene
to each cluster by individual clustering algorithm. In the
fuzzy consensus partition matrix, “1” means all algorithms
vote the gene to the cluster, “0” means no algorithm votes
the gene to the cluster, and the value between 0 and 1 means
that at least one algorithm votes, in this case, which could be
0.2, 0.4, 0.6 and 0.8. We employed a binarization technique
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TABLE 1
Structure Summary of Data Sets in Group 2 and Group 3

Group 2 (Ogawa set) Group 3 (Gasch H202 set)
Cl1 C2 C3 C4 C1 C2 C3 C4
Tight subset 219 | 257 62 60 119 | 236 77 60
Loose subset | 368 | 266 | 220 | 186 || 228 | 426 | 360 | 195
Both Groups 2 and 3 respectively contain one tight subset and one loose
subset, which are extracted from Ogawa set and Gasch set respectively.
The subsets of both groups have four clusters.

called difference threshold binarization (DTB), which
assigns each gene to the maximum membership value clus-
ter only if the difference between the maximum member-
ship value and its closet membership value is larger than or
equal to the threshold, otherwise does not assign the gene
to any cluster. Thus, clusters lose genes significantly and
many clusters are empty in the tightening. We extract four
clusters which survive in the tightening with the threshold
equal to 0.6 and form the tight set and extract the loose set
choosing the same four clusters as the tight set with the
threshold equal to 0.2. We summarise the subsets in Table 1.
In total, the tight set contains 498 genes and the loose set
contains 1,040 genes. Their profiles in four clusters are dis-
played in the supplementary, available in the online supple-
mental material.

223 Group3

Using the same process in Group 2, we extract the tight sub-
set and loose subset from Gasch set [45], which also have
four clusters. The original Gasch set contains 6,153 genes
and 178 experimental samples. In this group, we only con-
sider the condition with H,Oy osmotic shock, which con-
tains 10 samples. The structure summary is given in
Table 1. The tight set totally contains 492 genes and the
loose set totally contains 1,209 genes. Their profiles in four
clusters are also displayed in the supplementary, available
in the online supplemental material.

3 GENERALIZED PARAMETRIC VALIDITY INDEX

Suppose that gene expression data objects are formalized as
numerical vectors z; = {z;;|1 < j < p}, where p is the num-
ber of features and x;; is the value of the jth feature and the
ith object. To be specific to gene expression data, “object”
means gene and “feature” means sample. There are n
objects in the data sets. In this section, we detail the princi-
ple of the proposed generalized parametric validity index.
The GPV belongs to the class of geometry-based indices to
calculate the ratio of the intra-cluster dissimilarity to the
inter-cluster dissimilarity.

3.1 Proposed GPV Index

We introduce two tunable parameter « and g in the new
index to control the proportions of objects that are involved
in the calculation of the intra-cluster dissimilarities and the
inter-cluster dissimilarities. For the sake of simplification,
let us look at a 2-D plane first, as depicted in Fig. 1. The
objects marked by ‘x” and ‘0" belong to two different clus-
ters. In this case, the intra-cluster dissimilarity is repre-
sented by the distance of two objects within one cluster
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while the inter-cluster dissimilarity is represented by the
distance of two objects in two different clusters. In some
noisy scenario, the boundaries among clusters are blurred,
and moreover, the boundary areas are more dominant in
determining the quality of a clustering result than center
areas. Thus, in order to calculate the dissimilarities
efficiently, we must determine those objects at both ends of
the dissimilarities. We define the inner space representing
the objects in the cluster under test, which are used to calcu-
late both intra-cluster and inter-cluster dissimilarities, as the
objects in the area marked “A” in Fig. 1. The outer ends
objects in the same cluster lie in the intra outer space, which
is the area marked “B” in Fig. 1, and the outer ends objects
in the different clusters lie in the inter outer space, which is
the area marked “C” in Fig. 1. Thus, let us define Ni, Nay,
Nej to denote the numbers of objects in the inner space, the
mtra outer space and the inter outer space, respectively, for
the kth cluster. The fractions, « and B, are used to control
NZ’,, Nay, Nej, which can be expressed as

Nj = [aNy], Naj = [BNi], Nej = [B(N = Ni)I,  (2)
where Ny, is the number of the objects in the kth cluster, N is
the number of all objects in the data set and [-] is the ceiling
operator. Both « and S can be chosen from the range of
(0, 1]. Thus, N,i, Naj, Nej can be any integer within the
range of [1, Ni], [1, Ni], and [1, N — Ny, respectively.

There are a few steps to calculate the GPV. First, we need
to form the subset A, for the objects in the inner space. For
each object in the kth cluster, we can obtain a total dissimi-
larity by the summation of dissimilarities between it and all
others in the kth cluster, as

)Vk
D, = ZD(xn,7:I:m),n =1,...,

m=1

N, (3)

where D(-,-) denotes the calculation of the dissimilarity of
two objects. Note that there are many methods for dissimi-
larity measure (or similarity measure), such as euclidean
distance, Pearson’s correlation coefficient, and so on [3], [4].
In this paper, we calculate the dissimilarity for the proposed
GPV based on Pearson’s correlation coefficient. Pearson’s
correlation coefficient is defined as

Zd_ Tpd — ) (:Lmd Mo, )
(4)
\/Zd 1@na— 1) \/Zd 1 @ma— Mm)

PCC@nv zm

where p,, and pu,, are means for z, and z,, respectively.
Thus, the dissimilarity is obtained by

D(xp, ) =1 — PCC(zyy, ). (5)

We pick Nj most centrally located objects, which have
relatively smaller total dissimilarities, from the kth cluster
to form Ay, which is {af|la =1,...,Ni}. Second, for each
object in the inner space a, we need to form subsets 3;, and
Cy. for the object in the intra outer space and the inter outer
space, respectlvely The objects in B, denoted as
(/)b =1,..., Nag}, are those Nag objects in the kth cluster,



FA AND NANDI: NOISE RESISTANT GENERALIZED PARAMETRIC VALIDITY INDEX OF CLUSTERING FOR GENE EXPRESSION DATA 745

1000 1000

500 500

500 10000

5000

—
[ >
B
E—

s al bAoAy Al

0 0.5 1 1.5 2 0 0.5 1 1.5 2

o

Fig. 2. The process to calculate the bounds of « and g. (I) Dissimilarity
distribution of the synthetic gene data set and points a, b and c are what
we need to find out to calculate the bounds. (II) The smoothed distribu-
tion curve filtered by a rectangular window with the size of 10. (lll) The
derivative of the distribution function. (IV) A methods to find the zero
points in the derivative of the distribution function.

which are farthest from af, while the objects in C}, denoted
as {c}“|lc=1,...,Nej}, are those Nej objects in the clusters
but the kth cluster, which are closest to a}. Afterwards, we

need to do some calculations as follows:

Naf, a b
Dt = St Dt b1
b=
Naj,

]\( ,O_ .
>t D(a, c°)
9
Ne‘,;

(6)
Dej, =

where Daj denotes a normalized intra-cluster dissimilarity
and Dej denotes a normalized inter-cluster dissimilarity for
the ath inner end in the kth cluster. Finally, the GPV can be
obtained by

GPV(K,a, ) = EA: 3 (gZ) . (7)

There are two advantages for choosing the new index.
On one hand, the GPV only involves some objects into the
calculation rather than all objects, which reduces the
computational complexity depending on the settings of «
and B. On the other hand, the flexibility obtained through
two tunable parameters leads to its robustness and the GPV
may be useful in many different data sets. As the settings of
the parameters are largely dependent on the data set struc-
ture, it is crucial to explore the data set structure to obtain
the optimal parameters. Thus, we develop a strategy to
obtain the optimal « and g from any given data set, which is
presented in the next part.

3.2 Selection of Parameters

In this part, we discuss the selection of parameters « and
p. To this end, we have to first specify the physical

meaning of these two parameters. Let us draw an analogy
between a cluster and any objects with core and shell, say
a fruit like an apple or a planet like the Earth. The “A”
area shown in Fig. 1, which is determined by «, is the
core of the cluster. The “B” area is analogous to the
“shell”, the “skin” or the “crust,” and the “C” area is anal-
ogous to the “environment” and the “atmosphere”, which
is the interconnection between clusters. That is, the values
of « and B are dependent on the definition of the “core”,
the “shell” and the “atmosphere”. Undoubtedly, it is
fairly easy to distinguish two clusters when the noise is
relatively low. In this case, the inner space can be reason-
ably large (« is large) while the intra outer space and the
inter outer space can be very thin and only small number
of objects in there (8 is small). However, when the noise
increases and clusters spread out, the inner space
becomes sparser while the intra outer space and the inter
outer space expand and eventually mingle (« is going
downwards, while g is going upwards). Thus in such sce-
nario, the boundary areas among clusters are more domi-
nant in determining the quality of the clustering results.
Taking all within-cluster distances and between-cluster
distances many diminish the subtle difference between
within-cluster and between-cluster distances, and conse-
quently degrade the performance of the validity index.

Since it is difficult to find the optimum value for « and B,
what we can do is to find their upper or lower bounds. The
first general rule is that there should be a good number of
objects in all three spaces, otherwise GPV may be vulnerable
to the outliers and its performance will degrade signifi-
cantly. Our experience is that the minimum number of
objects in any of these three spaces is five. The second gen-
eral rule is that we avoid the overlapping between core and
the shell, that is, « + B is smaller than or equal to one.

We further compute the upper bound of the parameter
values, since the above two general rules are too loose. We
investigate the dissimilarity density (obtained by histo-
gram), which describes the distribution of all pairwise dis-
similarities between the objects in the data set. Let us take a
synthetic data set as an example, whose dissimilarity den-
sity, say f(z), is shown in Fig. 2I. Note that there are clearly
four wave shapes which means that there are at least four
classes in the data set. Let us look at the figure from the left
side to the right side, with the dissimilarity values ranging
from O to 2. The first wave represents all the dissimilarities
within a cluster, whichever cluster the objects belong to and
its peak indicates the dissimilarity level with relatively high
density. The second wave represents the cluster(s) closest to
the cluster which the current object belongs to. The others
waves we do not care about. In Fig. 2I, we mark a, b, c to
indicate the dissimilarity values of the first peak, the first
trough, and the second peak of the density, respectively.
The area under the density is normalised by the total num-
ber of pairwise dissimilarities to be 1. Let us define A(z, y)
to denote the area under the density from z to y, thus
A(0,2) = 1. The boundary values of parameters « and f can
be obtained by

A(0, a)
A(0,0)

Ala,c)

B = 400,2)° )

and Bﬂ =
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TABLE 2
The List of Functions and Platforms to Implement
the Clustering Algorithms
Algorithms Platform Functions Options
KMeans MATLAB kmeans KA initialization

HC MATLAB linkage& cluster ‘complete’

SOM MATLAB | newsom & train & sim -
MCLUST R mclust -
KMedoids | MATLAB - KA initialization

Thus, we get Rule 3, « < B, and g < By. Fig. 211, 21II, 2IV
show the process that we get the turning points a, b, and c.
The details can be found in the supplementary, available in
the online supplemental material.

4 RESULTS AND DISCUSSIONS

4.1 Clustering

We use “kmeans” function in MATLAB to implement
KMeans clustering. However, instead of a random initiali-
zation, we use a deterministic initialization, Kaufman
approach (KA) [54], which was reported to be superior to
other initialization approaches [50]. To implement HC clus-
tering, we use “linkage” function with “complete” option
and “cluster” function in MATLAB. To implement SOM
clustering, we use “newsom”, “train” and “sim” functions
in MATLAB. Library “mclust” in R [55] is used to imple-
ment MCLUST. We implement KMedoids using MATLAB
codes and employ the deterministic KA initialization. The
list of functions and platform to implement the clustering
algorithms is shown in Table 2.

4.2 Parameter Selection for GPV

Parameter selection is the first step of GPV. In this section,
we determine the parameters based on the selection rules
we developed in Section 3.2. Note that different data sets
have their own proper parameters. For the S1 data sets, we
calculate B, and Bg based on (8), whose error bar plots are
shown in Fig. 3a. We find that the mean value of B,
decreases while the mean value of Bj increases with the
increase of noise, which means that the proportion of mem-
bers in the core reduces and the boundary enlarges. We also
find the variances of both B, and Bj increase when the
noise goes higher. These observations match what we
expected as while the noise is getting heavier, clusters are
spreading out and boundaries are getting blurred, so that «
is going downwards, and on the contrary, g is going
upwards. To guarantee the overall consistent validation
performance, we select & and g for each o, based on B, and
By as o =[0.75,0.7,0.65,0.55,0.5,0.45,0.4] and B = [0.05,
0.05,0.05,0.05,0.2,0.4,0.4].

We synthesize 1,000 S2 data sets for each of 13 parameter
pairs, corresponding to 13 different noise levels, that is,
there are 13,000 data sets being examined. Similar to S1 data
sets, using (8), we calculate all the values of B, and Bg, and
the error bar plots of B, and By are shown in Fig. 3b. Note
that although the noise is not linearly increase in this case,
the estimation variances of B, and Bg increase with the
increase of the noise level. Thus, we can set « = 0.4 and
B = 0.2 for all S2 data sets.
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Fig. 3. (a) The error bar plots of B, and By values against o, in the S1
data sets. (b) The error bar plots of B, and By values for all PPs in the
S2 data sets. The vertical bar represents the standard deviation.

We did the same with different real data sets to find B,
and Bpg. In the leukemia data set case, we obtain B, = 0.78
and Bg = 0.21. Thus, we choose o = 0.75 and = 0.2. In the
yeast cdc-28 data set case, we obtain B, =0.43 and
Bg = 0.26, and then we choose o = 0.4 and g = 0.2. In the
yeast «-38 data set case, we obtain B, = 0.49 and By = 0.33,
and then we choose « = 0.45 and 8 = 0.3.

4.3 Synthetic Data Sets

Since the clustering validity indices have to work in an
unsupervised situation, the ground truth of the data sets,
like the number of clusters and the membership of each
cluster, is not available to judge the quality of the clustering
in the most of real data sets. To “validate” these validity
indices, we have to test these indices in the data sets whose
ground truth is available, and make use of the ground truth
of these data sets. It is logical to deduce that the best index
will also work well in the similar type of data set when the
ground truth is not available. To this end, we first assess the
clustering algorithms by using an external criterion, namely
ARI [20], which is a modification of original RI [19]. We also
define accurate estimate ratio of number of clusters
(AERNC) to measure the performance of determining the
number of clusters for validity indices. Mathematically,
AERNC is given by

N, .
AERNC = —E=K 9)

total

where Nj_, is the number of accurately estimating the
number of clusters in Ni., total experiments. Note that
the AERNC performance of the indices are sensible only
if the clustering results are sensible, which is a critical
point to use AERNC as a metric to judge the quality of
the validation results.

In the first place, we show the results of ARI and its
AERNC against o, of S1 data sets in Fig. 4 as a reference.
Overall, MCLUST has the best clustering performance while
HC has the poorest among the five clustering algorithms.
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Fig. 4. Results for S1 data sets: (a) ARl versus o, for five clustering algo-
rithms when K =11. (b) AERNC versus o, of ARI for five clustering
algorithms.

SOM has a very strange behavior: its ARI value is low when
the noise is low, subsequently increase while the noise
increases, and then falls down while the noise keeps
increasing. Its AERNC performance, which goes up with
the increase of the noise, is also odd. The reason for this
observation is that the performance of SOM is highly related
to the grid configuration. Let us look at the performance of
AERNC against o, for all compared validity indices. In the
main body of the paper, we only show KMeans and
MCLUST results, which are depicted in Figs. 5a and 5b
respectively, since they are top best clustering algorithms.
Other results can be found in the supplementary, available
online. In terms of the AERNC result, the proposed GPV
index has the best performance among the compared indi-
ces in both clustering results. It is slightly better than CH
when the noise is low. With the increase of noise, CH
degrades sharply while GPV degrades gradually. GI, II, DI
and KL do not perform well even at very low noise in S1
case. For comparison purposes, we also plot the AERNC
performance of ARI for KMeans and MCLUST in bold lines.
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Fig. 5. AERNC versus o, of all compared indices for KMeans and
MCLUST in S1 data sets. (a) KMeans and (b) MCLUST.
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Fig. 6. Results for S2 data sets: (a) ARI versus PPs for five clustering
algorithms when K = 5. (b) AERNC versus PPs of ARl for five clustering
algorithms.

It has reasonably good AERNC performance since external
knowledge is employed.

We depict the results of ARI and its AERNC against
noise levels of S2 data sets in Fig. 6. In Fig. 6a, ARI suggests
that MCLUST performs best, KMeans and SOM are rela-
tively good and HC is the worst one. The results of AERNC
performance in Fig. 6b are consistent with those in Fig. 6a,
except that SOM has an odd “V” shape. The results of
AERNC against noise levels of all compared indices for
KMeans and MCLUST are shown in Figs. 7a and 7b respec-
tively. Same as in S1, GPV has the superior noise-resistance
performance among all indices. KL is in the second place in
the moderate noise but it has small estimation errors in the
low noise. CH and Silhouette have good performance in the
low noise, but degrade sharply while the noise rises.

In summary, the results in both simulated data sets
strongly support that our proposed GPV has the superior
noise-resistant performance among all compared indices.
Although ARI has much better performance than validity
indices, it cannot work without external knowledge. In this
case, GPV is the best choice.
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Fig. 7. AERNC versus PPs of all compared indices for KMeans and
MCLUST in S2 data sets. (a) KMeans and (b) MCLUST.
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4.4 Real Data Sets
4.4.1 Group 1

In this part, we test the proposed GPV index in three real
data sets and compare its performance with existing indices.
We employ adjusted FOM, which is one of internal valida-
tion algorithms [23], as reference to indicate the actual num-
ber of clusters. However, adjusted FOM might not be
effective in some high noise data sets. In that case, a deeper
investigation into the data set has to be done to determine
the number of clusters.

1) Leukemia data set. In Fig. 8, we only depict the results of
GPV, adjusted FOM and Silhouette due to the space limit.
Other results can be found in Suppl. Figs. 4 and 5, available
in the online supplemental material. We notice from the
results that for the leukemia data set, many indices, namely
DI, DB, GI, KL, VI, 1II, Silhouette and GPV, except CH, indi-
cate that there are clearly three clusters more or less, which
is consistent with the description in [7]. Adjusted FOM is
not an objective and automatic index so that we have to
determine the number of clusters subjectively based on the
“knee” shape. In this case, Adjusted FOM also indicates the

best number of clusters equal to three. The low noise level
in Leukemia data is the main reason that many indices
work well.

2) «-38 yeast cell cycle data set. We then test the indices in
«-38 Yeast cell cycle data set. The well established biological
knowledge tell us that there are four phases in the cell cycle,
namely, G1, S, G2 and M phases. We depict the results of
GPV, adjusted FOM and GI in Figs. 9a, 9b and 9c, respec-
tively. Only these three indices indicate that the best num-
ber of clusters is four while most of others, which can be
found in the Suppl. Figs. 6 and 7, available in the online sup-
plemental material, indicate that three is the best number of
clusters. We believe that in this data set, four is best number
of cluster because of two reasons: 1) it is consistent with bio-
logical knowledge, 2) GPV is consistent with adjusted FOM,
which has more reliability than other indices.

3) cdc-28 yeast cycle data set. Next, we discuss the results of
cdc-28 yeast cycle data. At first, we notice that cdc-28 is such
a very noisy data set that our results shows a great disagree-
ment among the compared indices. To determine which
indices indicate the correct number of clusters, we have

(b) ©
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Fig. 9. Comparison of validity indices against the number of cluster K in «-38 data for five clutering algorithms: (a) GPV, (b) Adjusted FOM,

and (c) DI.



FA AND NANDI: NOISE RESISTANT GENERALIZED PARAMETRIC VALIDITY INDEX OF CLUSTERING FOR GENE EXPRESSION DATA

749

() (b)
1.5 14 : -
—O©— K-Means
12 —&— K-Medoids |1
s —H&— Hierarchical
S 10l —b>— SOM g
> - —%— MClust S
o [} c
(O} k7 —
2 8 o
©
<
6
n n n n n n 4 n n n n n n n n n n n n
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Number of clusters (K)

Number of clusters (K)

Number of clusters (K)
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FOM, and (c) DI.

taken a close look into the clustering memberships for the
data set. A clustering is given with the data set by [12]
showing that one complete cell cycle consists of five phases,
namely Early G1, Late G1, S, G2 and M phases. However
note that the memberships of the clustering in [12] and other
clustering results are much different, i.e., KMedoids and
MCLUS split Late G1 into many sub-groups and many clus-
tering algorithms, namely HC, SOM and KMeans, discover
a separated group apart from the five phases, called Q
phase in [53]. The PCA of the yeast data is depicted in
Suppl. Fig. 8, available in the online supplemental material,
in which the Q phase remarked by “3” obviously stands
out. We also examine the mean profile of each cluster shown
in Suppl. Fig. 9, available in the online supplemental mate-
rial. Thus, we can claim that Q phase is a numerically sepa-
rate cluster, but we still do not know if these genes in Q

phase belong to same functional group. The 12 genes in the
Q phase (union of the results of HC, SOM and KMeans) are
listed in Suppl. Table 1, available in the online supplemental
material. Their profiles are individually depicted in Suppl.
Fig. 10. The profiles of the same genes in another yeast time-
course data set, yeast metabolic cycle (YMC) [56], are plot-
ted in Suppl, available in the online supplemental material.
Fig. 11. Comparing their patterns, we may find that three
out of 12 genes, namely YBR067c (TIP1), YDL124w and
YPL186¢c (UIP4), are most likely to be in same group, while
another three out of 12, namely YLRO15w (BRE2), YLRO14c
(PPR1) and YOR274w (MODS5) are most likely to be in
another group. It turns out that these genes locate in the Q
phase, which is not a biological group, maybe because of
the temperature-induced effect, which was also mentioned
in [5]. Thus, the Q phase is an oddity.
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TABLE 3
The Number of Memberships for Clustering Algorithms,
Where L G1 and E. G1 Denote Late G1 and Early G1,
Respectively, Q Denotes the Questioned Phase

Algorithms E. Gl L. Gl S G2 | M Q
[12] 67 135 75 1 52 | 55 -
HC (K=4) 73 135 138 11
HC (K=5) 73 135 88 77 11
HC (K=6) 73 135 88 77 | 3/8
SOM (K=5) 72 148 77 77 10
SOM (K=6) 72 144 36 | 53 | 69 10
K-Means (K=5) 73 142 49 | 50 | 70 -
K-Means (K=6) 72 141 46 | 47 | 67 11
K-Medoids (K=5) 71 76/74 77/86 -
K-Medoids (K=6) 69 35/48/84 70/78 -
MCLUST (K=5) 68 36/128 69/83 -
MCLUST (K=6) 70 33/125 2952175 -

Normally, the logic behind validating the validity indices
using real biological data is that the validity index, which
assigns high values to those clustering algorithms with
higher accuracy membership by referring to the knowledge
of biological ground truth, is the better index. That is, there
is an implicit assumption that the numerical data is consis-
tent with the biological truth. However, it is not always the
case; for example, the co-expressed genes are not necessarily
co-regulated, which means that two functionally uncon-
nected genes might be co-expressed in a certain situation (or
maybe faulty experimental conditions). In our case, the Q
phase exists as an independent numerical cluster no matter
whether its members belong to same biological group or
not. A good validity index have to indicate its existence.
GPV, adjusted FOM and DI are presented in Figs. 10a, 10b
and 10c, respectively. The proposed GPV, shown in Fig. 10a,
indicates that the HC with five and six clusters, the SOM the
five and six clusters, and the KMeans with six clusters have
relatively high index values. The Q phase appears in all
these clustering results as shown in Table 3. In Fig. 10c, DI
shows that the highest value among all clustering results is

1
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O HC

0.9
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MCLUST with 10 clusters, which does not make any sense.
It shows that KMeans with six clusters, where the Q phase
appears, has a high index value; while it also shows a high
value of the SOM with five clusters but a low value of the
SOM with six clusters, when Q phase appears in both
results. All these observations at least lead to one fact that DI
is not sensitive to the Q phase. Note that since adjusted FOM
is a re-sampling algorithm, its result does not make any
sense to individual clustering partition. Thus, our proposed
GPV, which assigns high values to the clustering algorithms
that discover the Q phase, is faithful to the underlying statis-
tical patterns rather than the biological knowledge.

4.4.2 Group2

In this part, we investigate the performance of all indices in
Group 2 data sets, which are extracted from Ogawa set [46].
In Fig. 11, performance of all index values against the num-
ber of clusters K are shown respectively. Fig. 11a shows the
ARI performance as a reference, which reflects that there
are four clusters in the data sets and all clustering algo-
rithms work reasonably well in both tight and loose sub-
sets. Comparing all validity indices, we find that GPV and
GI provide correct indications in both tight and loose sub-
sets; DB, II, and silhouette have correct indications only in
the tight subset, but fail in the loose subset; CH and DI fail
to provide any sensible results in both subsets.

4.4.3 Group 3

All performance of index values against the number of
clusters K for Group 3 data sets are shown in Fig. 12
respectively. Group 3 data sets are extracted from Gasch
H,0, set [45]. Fig. 12a shows the ARI performance, as we
did for Group 2 data sets. In this group, only GPV pro-
vides correct indications in both tight and loose subsets,
while all other indices fail to provide sensible results,
even in the tight subset.
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Fig. 12. Performance of index values against the number of clusters K for Group 3 data sets. (a) ARI, (b) GPV, (c) CH, (d) DB, (e) GlI, (f) DI, (g) Il, and
(h) Silhouette. Legend: solid lines represent the performance in the tight subset; broken lines represent the performance in the loose subset; the
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diamond markers stand for K-Medoids; and triangular markers stand for SOM.
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5 CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a new validity index, GPV,
which employs two tunable parameter « and 8 to control
the numbers of objects being used to calculate the index.
The most important advantage of the GPV is that it has
flexibility of tuning the parameters, which leads to its
noise-resistance, in dealing with different data sets, espe-
cially microarray data sets. We discussed the physical
properties of the parameters and developed several rules
for the selections of the bounds of parameter values rather
than parameters themselves. The rationale behind the pro-
posed index is that in the noisy scenario, the boundary
areas among clusters are more dominant in determining
the quality of the clustering results. Taking all within-
cluster distances and between-cluster distances may
diminish the subtle difference between within-cluster and
between-cluster distances, and consequently degrade the
performance of the validity index.

To validate our proposed index, we first obtain refer-
ence clustering results by clustering the test data sets and
evaluating them with external validation, say ARI; then
we test the proposed index with these reference clustering
results and compare its ability to indicate correct structure
of the given data set with many other indices. By varying
the noise level of two types of simulated gene expression
data, we conducted a set of experiments to investigate the
validation performance of all compared indices. The
results suggested that the proposed GPV index has supe-
rior noise-resistance performance among all indices. We
also tested the proposed GPV in three groups of real
microarray gene expression data sets. Group 1 contains
three data sets where one of them is relatively “clean”
data, one is with moderate noise and the other one is
somewhat noisy. Group 2 and Group 3 are groups of sub-
sets extracted from Ogawa set and Gasch H,O; set respec-
tively and contain two data sets, one tight set and loose
set, in each group. The experimental results support that
the proposed GPV has high noise-resistant ability and
high fidelity to the numerical data. In different circum-
stances, the GPV always has relatively robust performance
and provides fairly correct judgements.
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