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Abstract—Identifying patterns in temporal data is key to uncover meaningful relationships in diverse domains, from stock trading to

social interactions. Also of great interest are clinical and biological applications, namely monitoring patient response to treatment or

characterizing activity at the molecular level. In biology, researchers seek to gain insight into gene functions and dynamics of biological

processes, as well as potential perturbations of these leading to disease, through the study of patterns emerging from gene expression

time series. Clustering can group genes exhibiting similar expression profiles, but focuses on global patterns denoting rather broad,

unspecific responses. Biclustering reveals local patterns, which more naturally capture the intricate collaboration between biological

players, particularly under a temporal setting. Despite the general biclustering formulation being NP-hard, considering specific

properties of time series has led to efficient solutions for the discovery of temporally aligned patterns. Notably, the identification of

biclusters with time-lagged patterns, suggestive of transcriptional cascades, remains a challenge due to the combinatorial explosion of

delayed occurrences. Herein, we propose LateBiclustering, a sensible heuristic algorithm enabling a polynomial rather than

exponential time solution for the problem. We show that it identifies meaningful time-lagged biclusters relevant to the response of

Saccharomyces cerevisiae to heat stress.

Index Terms—Time series, time lag, biclustering, string matching, pattern recognition, local pattern, pattern matching
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1 INTRODUCTION

GENE expression is a dynamic process, reflecting
changes orchestrated by the underlying regulatory

mechanisms involved in cellular control. Temporal gene
expression profiling enables to monitor the responses of a
large number of regulatory players over time and is recog-
nized as a key strategy to gain insight into the intricate cir-
cuitry of gene regulation. Ultimately, the analysis of time
series gene expression data is critical to advance our under-
standing of complex biological mechanisms involved in
processes such as growth and development, disease suscep-
tibility and progression, and response to treatment [1], [2].

1.1 Motivation

The assumption that genes involved in a particular biologi-
cal process tend to exhibit coherent behavior has long
driven the discovery of common patterns in gene expres-
sion profiles. Effectively capturing relationships between
gene responses requires consideration of specific features
inherent to transcriptional activity. For instance, expres-
sion patterns have a local nature, since biological processes
occur within delimited time frames [3], [4]. Moreover, each
gene can potentially collaborate with different sets of part-
ners in multiple biological processes. Additionally, genes

may be activated or inhibited with particular delays, which
causes resembling patterns to be shifted in time. Locality,
overlap and time lags between transcriptional patterns are
therefore prominent features of gene expression time
series and should assume major relevance in the analysis
of these data.

1.2 Background

Biclustering can effectively unravel local patterns, but its
general formulation is NP-hard upon reduction to the
maximum edge biclique problem [5]. Many general pur-
pose biclustering algorithms have been proposed [4].
However, most are unsuitable for the analysis of time
series data given that they disregard important temporal
properties, such as time point dependency and time conti-
guity inherent to biological processes. The assumption that
processes last for a delimited period of time motivates the
discovery of local patterns spanning consecutive time
points (time frames). Notably, this restriction coupled with
a formulation based on discretized expression data have
enabled a linear time solution for the temporal biclustering
problem [6]. This is the most efficient temporal biclustering
algorithm to date, also effective in unraveling biologically
meaningful gene sets [6], [7]. However, it is limited to tem-
porally aligned patterns.

Time-lagged relationships between gene expression pro-
files are an important aspect of gene regulation, as different
target genes are often activated with a certain time delay
rather than simultaneously. Temporal programs of expres-
sion in which genes are activated one by one in a predefined
order are well-known and can be generated by widespread
network topologies, including regulatory cascades [8]. The
identification of time-lagged patterns to uncover such rela-
tionships has been addressed before [9], [10], but available
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approaches are hampered by the potential explosion of pat-
tern combinations which makes exhaustive enumeration
infeasible in most cases of interest.

1.3 Our Approach

In this work, we discuss the exponential complexity of a
solution for identifying and exhaustively reporting occur-
rences of time-lagged local patterns in temporal data [10].
We propose LateBiclustering, a heuristic algorithm with
polynomial time complexity. Finally, we show that LateBi-
clustering identifies meaningful time-lagged biclusters and
patterns relevant to the response of Saccharomyces cerevisiae
to heat stress.

2 METHODS

In this section, we propose LateBiclustering, an efficient
algorithm for biclustering of time-lagged patterns. We
first provide an overview of concepts related to bicluster-
ing in time series data and describe CCC-Biclustering [6],
a linear time algorithm that identifies temporal biclusters
with aligned pattern occurrences. We then present Late-
Biclustering in a constructive way, supported by defini-
tions and theoretical results together with proofs. In this
context, we describe bicluster identification and report-
ing heuristics that lead to a polynomial time complexity
algorithm.

2.1 Time Series Data Matrix

Let M 0 be a matrix defined by a set of genes (rows), G, and a
set of time points (columns), T , where M 0

ij represents the
expression of gene i at time point j. Real values in M 0 are
discretized to a set of symbols, S, representing activation
levels in a new matrix M. We use S ¼ fD;N;Ug, denoting
down-regulation, no-change and up-regulation (Fig. 1). A rea-
sonable approach for time series can be converting matrix
M 0 into M such that Mij 2 S reflects the expression trend of
gene i between time points j and jþ 1 [6], [9].

Discretization causes loss of information and may induce
further noise or errors. Notably, it is also an effective
dimensionality reduction technique that can be exploited to
derive tractable formulations of an inherently difficult prob-
lem [6]. Moreover, there is a growing interest in capturing
trends by focusing on pattern shape rather than values [11],
and biologists have long been using thresholds on fold
changes to detect differentially expressed genes. Consider-
ing that the algorithms in this work are not tied to a particu-
lar discretization method, the use of sensible application-
specific strategies can lead to improved results.

2.2 Mining Temporally Aligned Local Patterns

We briefly describe CCC-Biclustering [6], a linear time algo-
rithm for mining biclusters of temporally aligned local pat-
terns in a time series matrix.

2.2.1 (Maximal) CCC-Bicluster

A CCC-BiclusterMIJ is a subset of genes I � G and a subset
of contiguous time points J � T such that Mij ¼ Mlj,
8i; l 2 I and 8j 2 J . This means that every gene in I shares
the same expression pattern spanning the time points in J . A
CCC-Bicluster is maximal (Fig. 3) if adding rows to I violates
the coherence of the expression pattern (row-maximality)
and adding a symbol to the beginning or end of the expres-
sion pattern induces changes in I (left-/right-maximality).
CCC-Biclusters containing a single row are biologically
uninteresting and are thus disregarded.

2.2.2 CCC-Biclustering

To find all maximal CCC-Biclusters, CCC-Biclustering first
performs a simple alphabet transformation that appends
the column number to each symbol in the discretized
matrix (Fig. 2). This transformation ensures that patterns
match only when both the symbol and time point match,
and therefore when the patterns are temporally aligned.
Regarding the rows of the transformed matrix as strings,
denoting gene expression profiles, a generalized suffix tree
T [12] is then built to match the common local patterns in
the profiles and identify the maximal CCC-Biclusters
(Fig. 3). Such identification relies on the following relation-
ship between maximal CCC-Biclusters and nodes in T :
every right and row-maximal CCC-Bicluster with at least
two rows corresponds to one internal node in T and every
internal node in T corresponds to one right and row-maxi-
mal CCC-Bicluster with at least two rows. Right- and row-
maximality of the CCC-Bicluster identified by an internal
node v are guaranteed by generalized suffix tree construc-
tion. Left-maximality of a CCC-Bicluster identified by an
internal node v is guaranteed when either v has no incom-
ing suffix links [12] or it has incoming suffix links only
from nodes for which the number of leaves in their subtree
is equal to the number of leaves in the subtree rooted at v.
CCC-Biclustering uses efficient string matching techniques
to find these nodes and report all maximal CCC-Biclusters
in time linear on the size of the matrix.

2.3 Mining Time-Lagged Local “Late” Patterns

In this work, we address the goal of finding occurrences of
the same pattern which might not necessarily be tempo-
rally aligned. We shall focus on the general case of

Fig. 1. Illustrative (a) time series expression matrix, together with its
(b) discretized version using alphabet fD;N;Ug and interval � � 0:25;
0:25� for N.

Fig. 2. Transformed matrix and strings used in suffix tree construction:
(a) discretized matrix from Fig. 1b after alphabet transformation;
(b) strings obtained from matrix (a) and used to build the suffix tree.
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unbounded time lags. For completeness, we present a sam-
ple matrix with missing values (Fig. 4).

2.3.1 (Maximal) LateBicluster and LateBiclustering

We first introduce key concepts, namely pattern, occurrence
and bicluster in time series data, together with properties
such as time delay and maximality.

Definition 1 (Pattern). A string containing symbols from alpha-
bet S used in the discretization ofM.

Definition 2 (Occurrence of a Pattern). Instance of a given
pattern found within a string representing a particular row
of a time series matrix M. Besides the pattern itself, an
occurrence is also characterized by its set of matrix “location
coordinates”: gene identifier (row) and earliest time point (left-
most column):

Definition 3 (Right-Maximal Pattern). Pattern whose exten-
sion to the right through the addition of any valid symbol from
alphabet S induces a decrease in the number of occurrences of
such pattern inM.

Definition 4 (LatePattern). Right-maximal pattern with at least
two occurrences inM.

Note that the occurrences of a LatePattern are not neces-
sarily in distinct gene profiles (rows ofM).

Definition 5 (Time Lag). Absolute difference between the earli-
est time points (left-most columns) of two occurrences of a
given pattern.

Definition 6 (Starting Occurrence). The earliest (left-most)
occurrence amongst all occurrences of a pattern.

Definition 7 (LateBicluster). A LateBicluster MIJ is composed
of a subset of genes (rows) I � G, a pattern P , and a collection
J containing one subset of contiguous time points (columns)
Ji � T per gene i 2 I. Each time frame Ji denotes an occur-
rence of P in the profile of gene (row) i in matrix M, which we
denote byMiJi . Thus, P ¼ MiJi for all i 2 I.

For clarity, if MxJx is the starting occurrence of P for a
LateBicluster MIJ , the occurrence MiJi in MIJ exhibits a
time lag lagi relative to MxJx . Therefore a time point (col-
umn) ji 2 Ji is given by ji ¼ jx þ lagi.

Definition 8 (Maximal LateBicluster). A LateBicluster MIJ is
maximal if no rows can be added to I and no contiguous col-
umns can be added to the left or right of Jl, for all l 2 I, while
maintaining the coherence property in Definition 7. A Late-
Bicluster is maximal if it is row-maximal, left-maximal and
right-maximal.

When considering unbounded time lags, the range of
possible lags is naturally upper bounded by the number
of time points (columns). If we require a minimum number
of time points QT per LateBicluster, then the time lag range
is ½0; jT j �QT �. In practice, there can be multiple instances of
the pattern associated with a LateBiclusterMIJ in the expres-
sion profile of any gene in I. As a result, the number of
instances over all LateBiclusters can be exponentially large.
We exploit strategies to make reporting efficient, including
allowing only one occurrence per gene (Definition 7).

We propose an efficient algorithm enabling the identifica-
tion of maximal LateBiclusters with unbounded time lags in
a time series matrix. We discuss that reporting all maximal
LateBiclusters is computationally infeasible in most cases of
interest and propose heuristic approaches to select the Late-
Biclusters to report, achieving a polynomial time solution.

2.3.2 From Rows to Strings

When focusing on patterns potentially occurring with a
time delay, similar patterns should match regardless of
their starting time point (column). In this context, alpha-
bet transformation becomes unnecessary and is therefore
not performed. Consider that each row of the discretized
matrix M is regarded as a string, corresponding to a sin-
gle time series or temporal gene expression profile. Pre-
processing techniques can be used to deal with missing
values, namely by filtering the gene profiles where these
occur or filling empty cells with predicted values. If
missing values are still found at the string generation

Fig. 4. Discretized matrix and strings for LateBiclustering: (a) illustrative
discretized matrix with missing values; (b) strings obtained from matrix
(a) and used to build a generalized suffix tree for LateBiclustering.

Fig. 3. Maximal CCC-Biclusters identified in the matrix in Fig. 2, shown
in: (a) the suffix tree, and (b) the matrix.
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stage, we split any string where they occur into multiple
substrings, assuming the symbol denoting a missing
value as the separator character. Each resulting substring
receives the same gene (row) identifier of the original
string. We note that string splitting can break longer pat-
terns into several parts, but this can also occur when
replacing missing values by predictions. Fig. 4 shows the
strings obtained for an illustrative discretized matrix.

2.3.3 LatePatterns in Suffix Tree

A generalized suffix tree T can be built to find temporal pat-
terns shared by multiple time series, or gene expression pro-
files, in matrix M (Fig. 5). LatePatterns are of particular
interest, as each of them is guaranteed to be the longest pat-
tern matching for as many occurrences, at least two, when
extending the pattern to the right from a given starting time
point. The fact that a LatePattern is right-maximal relative
to its set of occurrences is an important property, given that
we are not interested in reporting patterns that could be
extended to the right while keeping their number of occur-
rences. Notably, there is a one-to-one relationship between
LatePatterns in M and internal nodes in T , which we will
exploit further and that we present in Lemma 1. A proof of
this lemma is provided in supplementary material, avail-
able on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2014.2312007).

Lemma 1. Every LatePattern in M is identified by one internal
node in T , and every internal node in T identifies one LatePat-
tern inM.

2.3.4 LateBiclusters in Suffix Tree

We investigate the relationship between LatePatterns and
LateBiclusters, and between LateBiclusters and nodes in
T . For clarity, we focus on LateBiclusters with at least
two genes (rows). LateBiclusters with a single gene are
trivial and uninteresting, and considering them would
unnecessarily extend the proofs. In this context, we
observe that a leaf node in T cannot identify a LateBiclus-
ter with at least two genes given that it denotes a single
occurrence of a pattern, pertaining to only one gene (see
leaf nodes in Fig. 5a).

We then observe that a maximal LateBicluster with at
least two genes (rows) always has a LatePattern. The exis-
tence of a LatePattern does not imply, however, that any
LateBicluster associated with it either satisfies the minimum
number of (two) genes or the conditions for maximality. We
present this relationship in Lemma 2 (proof in supplemen-
tary material available online). Knowing that only LatePat-
terns can be associated with maximal LateBiclusters with at
least two genes (rows) in M is quite important, as it enables
to narrow down the set of patterns of interest from all possi-
ble patterns to those that are LatePatterns (Definition 4).

Lemma 2. A LatePattern is necessary but not sufficient for the
maximality and genes (rows) quorum of a LateBicluster with
at least two genes (rows).

Furthermore, we know from Lemma 1, that every Late-
Pattern is identified by a single internal node in T . It follows
that a LateBicluster with a given LatePattern in M that
matches the pattern of a specific internal node in T must be
identified by such node. We also note that, although there is
only one internal node per LatePattern in T , there can be
several LateBiclusters with such LatePattern due to the
potential existence of multiple occurrences of such pattern
in the individual gene profiles (rows) in M. We formalize
these relationships in Lemma 3 (proof in supplementary
material, available online).

Lemma 3. Every LateBicluster with a LatePattern inM is identi-
fied by one internal node in T , and every internal node in T
identifies at least one LateBicluster with a LatePattern inM.

We have shown that each internal node in T identifies at
least one LateBicluster with a LatePattern in M. However,
we also know that the right-maximality of a LatePattern is
not sufficient to determine the maximality of a LateBiclus-
ter. Moreover, the guarantee that the number of occurrences
of a LatePattern is at least two does not ensure that any
LateBicluster with such pattern will have at least two genes
(rows). We now focus on determining maximality.

2.3.5 Row-Maximal LateBiclusters in Suffix Tree

According to Definition 8, a LateBicluster is maximal iff it is
row-maximal, right-maximal and left-maximal. In other
words, a LateBicluster is maximal if its occurrences are not
fully contained in any other LateBicluster. Recall that every
internal node v in T identifies a unique pattern and every

Fig. 5. Internal nodes in T , LatePatterns and occurrences inM: (a) inter-
nal nodes in the suffix tree T built for the strings in Fig. 4; the pairs of val-
ues associated with each internal node denote the number of leaves and
distinct genes (rows) found in its subtree; (b) occurrences of the LatePat-
tern identified by each internal node in T highlighted in the matrixM.
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occurrence of that pattern in M can be identified by the
leaves in the subtree rooted at v. In addition, there can be
multiple occurrences of the pattern per gene. Since a Late-
Bicluster contains only one occurrence per gene (row), in
order to identify a LateBicluster it is necessary to select a
valid combination of occurrences from those in the subtree
of v. Row-maximality is guaranteed as long as the LateBiclus-
ter generated for v contains one occurrence per distinct gene
identifier found at the leaves in the subtree of v. This is true
given that all occurrences of the LateBicluster pattern can be
found labelling the leaves under v, and therefore such Late-
Bicluster contains the maximum number of gene profiles
(rows) where that particular pattern occurs (see Lemma 4).

Lemma 4. A LateBicluster identified by an internal node v in T is
row-maximal iff it contains one occurrence for every distinct
gene labelling the leaves in the subtree rooted at v.

Proof of Lemma 4.We split the statement into two:

1) If a LateBicluster B for internal node v has one
occurrence per distinct gene found at the leaves in
the subtree of v, then B is row-maximal.

2) If a LateBicluster B for internal node v is row-
maximal, then B has one occurrence per distinct
gene labelling the leaves in the subtree of v.

Proof of statement 1), by contraposition. Let B be a non-
row-maximal LateBicluster in M. By Definition 7 there
must exist at least one occurrence of the pattern of B in
the profile of a gene in M that is not included in B, other-
wise B would be row-maximal. By Lemma 3, B is identi-
fied by a single internal node v in T , which denotes the
pattern of B. By the properties of suffix trees, all occur-
rences of the pattern denoted by a node v, thus the pat-
tern of B, can be found at the leaves under v [12]. As a
result, the occurrence pertaining to the gene not included
in B can also be found at the leaves in the subtree of v. It
follows that B cannot contain an occurrence per gene in
the subtree of v.

Proof of statement 2), by contraposition. Let v be an
internal node in T identifying a LateBicluster B, such
that B does not contain an occurrence for every gene
labelling the leaves in the subtree of v. This means that
an occurrence of the pattern of B can be found at the
leaves in the subtree of v for at least one additional
gene not in B. As a result, such gene could be added to
the subset of genes of B while maintaining the pattern
and the properties in the definition of a LateBicluster
(Definition 7). If B can be extended by adding genes, it
cannot be row-maximal. tu

We note that, if the number of distinct genes is the same
as the number of leaves in the subtree of v, then every leaf
denotes an occurrence from a distinct gene and only one
row-maximal LateBicluster exists. Otherwise, when the
number of leaves is larger, several row-maximal occur-
rence combinations leading to row-maximal LateBiclusters
can be computed.

2.3.6 Left/Right-Maximal LateBiclusters in Suffix Tree

Ensuring left- and right-maximality requires additional
work, since the occurrences under an internal node v need

to be matched and checked against those of other nodes in
T . In particular, we note that every valid extension of the
LatePattern identified by v to the left is represented by an
internal node in T from which v has an incoming suffix
link. Likewise, any valid extension of the LatePattern
denoted by v to the right is represented by an internal node
that is a child of v in T . As a result, internal nodes from
which v has incoming suffix links, or of which v is a parent,
need to be investigated in order to guarantee that no Late-
Bicluster is generated from v with a set of occurrences that
can be found in another LateBicluster whose pattern is an
extension of the pattern of v.

Let LðvÞ and GðvÞ respectively denote the number of
leaves and the number of distinct genes in the subtree
rooted at node v in T . In Lemma 5, we present the two cases
in which the left- and right-maximality, and thus maximal-
ity, of a row-maximal LateBicluster in M identified by an
internal node v in T is directly determined by constraints
on these properties of v.

Lemma 5. A row-maximal LateBicluster identified by an internal
node v in T is maximal if v satisfies one of the following
conditions:

1) It does not have incoming suffix links or internal chil-
dren nodes.

2) It has incoming suffix links or internal children nodes
only from nodes u such that GðuÞ < GðvÞ is true for
every u.

Proof of Lemma 5. We prove the following: “If a row-
maximal LateBicluster B is identified by an internal
node v satisfying 1) or 2), then B is maximal.” For the
purpose of contraposition, let B be a row-maximal
LateBicluster identified by an internal node v. Assume
also that B is not left/right-maximal.

Proof for condition 1). Since B is not left- or right-
maximal, then its pattern can be extended to the left or
right while maintaining the set of occurrences inM. Since
v is the node identifying B and B can be extended, there
must be at least one node u from which v has incoming
suffix links or of which v is a parent, and for which the
row-maximal set of occurrences of B can be found in the
leaves under u. As a result, condition 1) is false under the
contrapositive assumption, thus condition 1) is sufficient
for the maximality of B.

Proof for condition 2). Let Bext be a LateBicluster
identified from an internal node u that extends the pat-
tern of B to the left or right with the same row-maximal
set of occurrences. From Lemma 4, B and Bext contain
one occurrence per distinct gene labelling the leaves in
the subtree of their corresponding internal nodes,
respectively v and u. Note that the row-maximal sets of
occurrences for u and v contain GðuÞ and GðvÞ distinct
genes, respectively. Since the sets of occurrences of Bext

and B are the same, then GðuÞ ¼ GðvÞ must be true. As a
result, condition 2) is false under the contrapositive
assumption, thus condition 2) is sufficient for the maxi-
mality of B. tu

If an internal node v in T does not have incoming suffix
links or internal children nodes, then there are no valid
extensions of the LatePattern denoted by v and therefore all
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LateBiclusters identified by v are maximal. If any internal
node u from which v has an incoming suffix link or of which
v is a parent has less genes in its subtree than v, GðuÞ < GðvÞ,
then any row-maximal LateBicluster generated from v will
always contain one additional gene (row) and it will there-
fore be maximal on genes (rows) relative to any of the Late-
Biclusters with extended patterns.

The most difficult case arises, however, when v does not
satisfy any of the conditions in Lemma 5. Specifically, if at
least one node from which v has an incoming suffix link or
of which v is a parent has the same number of distinct genes
in its subtree as v. A straightforward solution would be to
generate all possible combinations of occurrences and then
filter them against the combinations of every incoming suf-
fix link and internal child node. Unfortunately this is infea-
sible in most cases, as there can be OðjT jjGjÞ combinations,
leading to the same number of distinct LateBiclusters, per
each of the OðjGkT jÞ internal nodes in T . Efficient reporting
approaches can be exploited to address this problem, but
they usually require one to disregard the definitions of Late-
Bicluster and/or maximality. We postpone such discussion
to a later section and proceed by describing a solution to
ensure LateBicluster maximality for the case in which one
still wants to report maximal LateBiclusters.

2.3.7 Maximal LateBiclusters in Suffix Tree

We note that all row-maximal LateBiclusters arising from a
given internal node v have the same pattern and set of genes
(rows). Considering that the goal in biclustering is to group
entities in both dimensions rather than exhaustively enu-
merating the conditions leading to a grouping, it seems rea-
sonable to report at most one row-maximal LateBicluster
per internal node v. This also leads to more efficient solu-
tions, given that it allows some freedom in filtering occur-
rences leading to non-maximal LateBiclusters if v does not
satisfy the conditions stated in Lemma 5.

If v is in this situation, some row-maximal occurrence
combinations may lead to non-maximal LateBiclusters.
Take as an example the row-maximal LateBicluster defined
by the occurrences of pattern N at time point T5 in the pro-
files of genes G1 and G3, found under node V 2 in Fig. 5.
This row-maximal LateBicluster is not left-maximal, given
that node V 5 defines another row-maximal LateBicluster
with a larger pattern UN occurring in the profiles of the
same genes G1 and G3, and spanning time points T4 and
T5. However, there is one maximal LateBicluster identified
by node V 2, when considering time points T2 and T5 in
genes G1 and G3, respectively.

We present an efficient heuristic approach, termed maxi-
mality update, that enables to filter all occurrences leading
to non-maximal combinations for certain internal nodes.
Consider a “problematic” internal node v in T , together
with nodes u 2 UðvÞ, where UðvÞ is the set of nodes from
which v has incoming suffix links or of which v is a parent
and such that GðuÞ ¼ GðvÞ. The main idea of the maximality
update for v is as follows: (1) assume v as invalid if every
occurrence in the subtree of v can be found in the subtree of
a node u; (2) for genes that have at least one occurrence in
the subtree of v that is not found in the subtree of any node
u, preserve only the occurrences not in the subtree of any

node u (filter the remaining); for the other genes, keep the
original occurrences.

For this purpose, we store a bit array with jGkT j bits per
node v, colorsðvÞ, such that each bit denotes an occurrence
that can potentially be used to compute maximal Late-
Biclusters. Consider that index k 2 f0; . . . ; jGkT j � 1g, with
k increasing from right (least significant) to left (most signif-
icant) in the bit representation. In colorsðvÞ, each group of
contiguous jT j bits represents all potential starting positions
j 2 T of occurrences of a pattern for a particular gene i 2 G.
Genes and time points underlying the occurrences are
found in increasing order of their identifiers from left to
right in the bit representation. Table 1 shows the representa-
tion of a bit array colors, together with gene and time point
identifiers, and bit indexes.

We first compute colorsðvÞ for each node in T as follows.
The bit in position k is set, colorsðvÞ½k� ¼ 1, whenever there
is a gene and time point pair ði; jÞ labelling an occurrence in
the subtree rooted at v such that jT jðjGj � iþ 1Þ � j ¼ k
(otherwise colorsðvÞ½k� ¼ 0). Table 1 shows colorsðV 2Þ for
node V 2 in Fig. 5. We then update colorsðvÞ by clearing bits
that can lead to non-maximal LateBiclusters (Fig. 6). We
compute the union of all occurrences in the subtrees of the
nodes u 2 UðvÞ through bitwise ORing of their colorsðuÞ
arrays, denoted by colorsprobðvÞ (1-8). When processing a bit
array colorsðuÞ from a node u from which v has an incoming
suffix link, we use a copy of colorsðuÞ that has been right-
shifted by one position before the OR, so as to align the
starting points with the bit array of v (3-4). Next, we seek
for differences between the occurrences under nodes
in UðvÞ and those under v by computing colorsdiffðvÞ, a bit-
wise XOR between colorsprobðvÞ and colorsðvÞ (9). If
colorsdiffðvÞ ¼ 0, meaning that every bit in colorsdiffðvÞ is
clear, then every occurrence in the subtree of v is present in
the subtree of at least one node in UðvÞ and we clear the
updated colors for v (10-11). Otherwise, we transform
colorsdiffðvÞ into a bit mask colorsmaskðvÞ that will be used in
the update of colorsðvÞ (12-24). In this transformation, we
process colorsdiffðvÞ as follows. For each gene i, if all bits
corresponding to gene i in colorsdiffðvÞ are clear (value 0),
we set all such bits and otherwise we skip them. The inter-
val of bits for a given gene i includes all indexes k such that
k ¼ jT jðjGj � iþ 1Þ � p for all p 2 f1; . . . ; jT jg. Finally, we
compute the updated bit array colorsuðvÞ by performing a
bitwise AND between colorsðvÞ and colorsmaskðvÞ (25).

We observe that the described maximality update can
eliminate combinations leading to the identification of maxi-
mal LateBiclusters whose occurrences are not fully enclosed
in any other maximal LateBicluster. Specifically, this can
happen for v if every occurrence in its subtree is also in the
subtree of some internal node u 2 UðvÞ with GðuÞ ¼ GðvÞ

TABLE 1
Bit Array colors Representation
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and from which v has an incoming suffix link or of which v
is a parent. Then the maximality update filters all occur-
rences for v and v can no longer identify maximal
LateBiclusters.

Counteracting such behavior would require a solution
for choosing a row-maximal set of occurrences from the
subtree of v that cannot be found in the subtree of one of the
nodes u. Doing this efficiently is a challenge and we post-
pone a more thorough analysis to future work. We develop
our heuristic approach for the case in which at least one
occurrence in the subtree of v is not found in the subtree of
any of the nodes in UðvÞ. For such a case, the update proce-
dure guarantees the identification of at least one maximal
LateBicluster for v, as formalized by Lemma 6.

Lemma 6. The maximality update of colorsðvÞ for an internal
node v in T with at least one internal node u for which
GðuÞ ¼ GðvÞ among those nodes from which v has incoming
suffix links or of which v is a parent, preserves at least one
row-maximal combination of occurrences leading to the identi-
fication of a maximal LateBicluster iff at least one occurrence
for at least one gene is present at the leaves under v but not at
the leaves under any of the nodes u.

Proof.We split the Lemma into two statements:

1) If colorsuðvÞ obtained by maximality update of
colorsðvÞ contains at least one row-maximal occur-
rence combination, then at least one occurrence

for at least one gene is found at the leaves under v
but not at the leaves of any node u.

2) If at least one occurrence for at least one gene is at
the leaves under v but not at the leaves under any
node u, then the maximality update of colorsðvÞ
preserves at least one row-maximal occurrence
combination for v.

Let v be a “problematic” internal node. This means
that there is at least one internal node u with GðuÞ ¼ GðvÞ
among all the internal nodes of which v is a parent or
from which v has an incoming suffix link.

Proof of 1), by contraposition. Assume that every
occurrence at the leaves under v is also found at the
leaves under that one node u. Since colorsprobðvÞ contains
the union of occurrences at the leaves under nodes u,
then every bit in colorsprobðvÞ that corresponds to an
occurrence at the leaves under v is set. This means that
colorsprobðvÞ and colorsðvÞ are equal and therefore the dif-
ference between the two, denoted by colorsdiffðvÞ, is zero
(all bits in colorsdiffðvÞ are clear). In this case, no row-
maximal occurrence combination is preserved, thus no
maximal LateBicluster can be identified from v. There-
fore, 1) must be true.

Proof of 2), by contraposition. Assume that colorsuðvÞ
does not contain any row-maximal occurrence combina-
tion. In other words, it does not contain at least one set
bit per gene found at the leaves under v. This can only
happen if all bits in colorsdiffðvÞ are clear and therefore
colorsprobðvÞ and colorsðvÞ are the same. If this was not
the case and colorsdiffðvÞ had at least one set bit, then the
updated array colorsuðvÞ would contain at least one set
bit per gene at the leaves under v and thus an occurrence
combination denoting a maximal LateBicluster (see
below), contrary to our initial assumption. Therefore, 2)
is true.

To support the proof of 2) we show, by construc-
tion, that if at least one occurrence at the leaves under
v is not at the leaves of some node u, and therefore
colorsdiffðvÞ has at least one set bit, then at least one
bit is set for every gene at the leaves under v in
colorsuðvÞ after the update. The transformation of
colorsdiffðvÞ into a bit mask colorsmaskðvÞ is such that:
(i) genes with at least one set bit in colorsdiffðvÞ are
left unchanged in colorsmaskðvÞ; (ii) genes with all bits
clear in colorsdiffðvÞ have all their bits set in
colorsmaskðvÞ. In such a case, the update colorsuðvÞ
obtained by computing the bitwise AND between
colorsmaskðvÞ and colorsðvÞ will result in the following:
(i) for genes with at least one set bit in colorsdiffðvÞ,
there will be at least one set bit in colorsuðvÞ, given
that any set bit in colorsdiffðvÞ corresponds to one
occurrence that is at the leaves under v but not at the
leaves under any of the challenging nodes u, meaning
that the bit is set in both colorsdiffðvÞ and colorsðvÞ
and therefore the bit in the result of the AND opera-
tion is also one; (ii) for genes with all bits clear in
colorsdiffðvÞ, the corresponding bits in colorsmaskðvÞ are
all set, meaning that the values of the bits in the result
of the AND operation will be the same as those in the
original colorsðvÞ. This means that, if there is at least
one bit set in colorsdiffðvÞ, there is at least one set bit

Fig. 6. Maximality update for a “problematic” node v, with non-empty
UðvÞ. Every internal node u 2 UðvÞ has GðuÞ ¼ GðvÞ and is either a child
of v, or its suffix link points to v. Function prevSetBitPos (a,p)
returns the index of the first set bit in array a to the right of index p (see
Table 1). Procedure setBits (a,pi,pf) sets all bits of a in the range of
indexes ½pi; pf ½. Logical connectives _, ^ and � are used to represent
the bitwise operators OR, AND andXOR, respectively.
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for every gene at the leaves under v in colorsuðvÞ after
the update. tu

2.3.8 Maximal LateBicluster Node Identification

Below we present Theorem 1, the main result leading to an
efficient solution to identify nodes in T , together with a set
of valid occurrences, which denote at least one maximal
LateBicluster inM.

Theorem 1. An internal node v in T identifies at least one maxi-
mal LateBicluster with at least two genes if it satisfies
GðvÞ � 2, together with one of the following conditions:

1) node v does not have incoming suffix links or internal
children nodes;

2) for every node u from which v has an incoming suffix
link or of which v is a parent, GðuÞ < GðvÞ is true;

3) GðuÞ ¼ GðvÞ holds for at least one node u from which v
has an incoming suffix link or of which v is a parent;
and colorsuðvÞ, obtained upon maximality update of
colorsðvÞ, has at least one set bit for at least two genes.

Proof. Let v be an internal node in T for which GðvÞ � 2 is
true. First we show that v identifies at least one Late-
Bicluster. By Lemmas 1 and 3, node v identifies at least
one LateBicluster (Definition 7) with a LatePattern
(right-maximal pattern with at least two occurrences—
Definition 4) in the time series matrix M. By Lemma 2, a
LatePattern is a necessary condition for the maximality
of a LateBicluster. We then show that v identifies at least
one maximal LateBicluster with at least two genes.
According to Lemma 4, a LateBicluster obtained for
node v is row-maximal iff it contains one occurrence per
gene labelling the leaves in the subtree rooted at v. If v
satisfies conditions 1) or 2), all the occurrences under v
are considered and therefore it is always possible to
select a combination that identifies a row-maximal Late-
Bicluster. Additionally, by Lemma 6 any row-maximal
LateBicluster generated for a node v satisfying condi-
tions 1) or 2) is also left- and right-maximal, and there-
fore maximal. Since GðvÞ � 2 is true, every maximal
LateBicluster generated for node v has at least two
genes. If v does not satisfy condition 1) or 2), then
whether v identifies maximal LateBiclusters or not is
dependent on the output of the maximality update pro-
cedure. By Lemma 6 the maximality update is guaran-
teed to either filter all occurrences or preserve at least
one valid combination of occurrences leading to the
identification of a maximal LateBicluster. The latter case
is guaranteed by condition 3), which states that some
occurrences are still present after the update. Condition
3) further specifies that there is at least one set bit for at
least two genes in the updated bit array colorsuðvÞ and
therefore there are occurrences for at least two distinct
genes. It follows that at least one maximal LateBicluster
with at least two genes can be identified from a node v
satisfying condition 3). tu

2.4 Reporting Strategies

When focusing on aligned patterns (CCC-Bicluster), there
can be at most one occurrence of the pattern per gene. As a

result, the number of maximal CCC-Biclusters is OðjGkT jÞ.
Since the information to report per CCC-Bicluster is OðjGjÞ,
the time necessary for reporting all maximal CCC-Biclusters
is then OðjGj2jT jÞ.

In the time-lagged setting, however, it is possible to find
multiple occurrences of a pattern within the profile of a
given gene at different starting time points. In such a case,
the number of maximal LateBiclusters corresponds to the
number of all possible combinations of one occurrence of
the pattern per gene, for every distinct gene labelling the
leaves in the subtree of each internal node of interest. In the
worst case, the number of maximal LateBiclusters that can
be obtained for a given temporal pattern is therefore
OðjT jjGjÞ. The fact that the number of maximal LateBiclus-
ters can grow exponentially with the number of genes often
makes exhaustive enumeration infeasible. Take the rather
small (5� 5) illustrative matrix in this section as an example
(Figs. 4 and 5), for which we obtain 40 maximal LateBiclus-
ters with at least two genes (rows) (Fig. 7). We discuss alter-
natives for reporting the information under each valid
internal node v in T , such that reporting becomes tractable.

2.4.1 LatePatterns and Occurrences

If we disregard the definition of LateBicluster and its maxi-
mality, we can accomplish the identification of internal
nodes yielding LatePatterns as described in Sections 2.3.1 to
2.3.3. Each internal node satisfies Lemma 1 and therefore
identifies a LatePattern, which essentially guarantees the
right-maximality of the pattern relative to its set of occur-
rences. Left-maximality of the LatePattern can additionally
be enforced by checking the internal node against other
nodes from which it has incoming suffix links. This is simi-
lar to what is done in CCC-Biclustering, but in this case tak-
ing into account that leaves identify occurrences rather than
genes. Finally, for each internal node, we report the LatePat-
tern together with information found at the leaves in the
subtree of such node. We consider two reporting options.
The first outputs only the genes labelling the leaves in the

Fig. 7. Exhaustive reporting of 40 maximal LateBiclusters for nodes
V 1-V 5 in the suffix tree from Fig. 5a. Each individual matrix shows the
pattern occurrences of a LateBicluster. A single LateBicluster is obtained
for V 1, V 2, V 4, V 5. The remaining 36 LateBiclusters are generated for
node V 3 (in purple, only 16 are shown).
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subtree of the internal node, provided that one is not inter-
ested in where the pattern occurs in the profile of each gene.
The second reports every gene together with the starting
points of all occurrences of the pattern in the profile of each
of such genes (similar to Fig. 5b).

2.4.2 Maximal LateBiclusters

An alternative reporting procedure consists in identifying a
single maximal LateBicluster per internal node satisfying
the conditions in Theorem 1. When identifying maximal
LateBiclusters as described in Sections 2.3.1 to 2.3.7, maxi-
mality can sometimes be automatically determined if the
node satisfies Lemma 5. Alternatively, a new set of occur-
rences containing only instances leading to the identifica-
tion of maximal LateBiclusters is computed according to
Lemma 6. Since this new set may still contain multiple
occurrences per gene, we further need to select a single
occurrence per distinct gene. We propose two different
strategies for choosing a single row-maximal combination
of occurrences for a given node.

Left-most occurrence per gene. Consider the left-most time
point among the starting positions of all the occurrences
of the pattern in the subtree rooted at a valid node v in T
as the starting point of a cascade of delayed activations/
inhibitions. In this context, it seems reasonable to store for
each gene only the starting time point of the left-most
occurrence of the pattern. Fig. 8a shows the output
expected when applying this heuristic approach to the
LateBiclustering output for the matrix in Fig. 4.

Most frequent starting time point. Consider the most fre-
quent time point among the starting positions of all the
occurrences of the pattern in the subtree rooted at a valid
internal node v in T , denoted as p, as the starting time point
of a cascade of delayed activations/inhibitions. In this con-
text, we propose the following heuristic approach: for each
gene, we store the starting point of the first occurrence

starting at or after p; whenever such occurrence does not
exist, we store the starting point of the closest occurrence
before p. Fig. 8b shows the output expected when applying
this heuristic approach to the LateBiclustering output for
the matrix in Fig. 4.

2.5 Complexity

In this section we present the complexity analysis of the
identification of nodes denoting maximal LateBiclusters
(Section 2.3) and of different strategies for reporting the
results (Section 2.4).

2.5.1 Suffix Tree and LatePatterns

To identify nodes denoting LatePatterns, we first build a
generalized suffix tree T for the set of strings, which can be
done in OðjGkT jÞ time using Ukkonen’s algorithm [12], [13].
If left-maximality of LatePatterns relative to its occurrences
is to be enforced, then an additional calculation of the num-
ber of leaves in the subtree of each node v, previously
denoted by LðvÞ, is needed. This can be done for all nodes
with a single traversal of T , requiring constant time process-
ing at each node, and therefore taking OðjGkT jÞ time. The
number of leaves LðvÞ is also used when determining maxi-
mality of LateBiclusters (see Lemma 5).

2.5.2 Suffix Tree and Maximal LateBiclusters

The identification of nodes denoting LateBiclusters (maxi-
mal or not) described in Section 2.3.4 does not require any
further processing of T . However, if the goal is to report
only those LateBiclusters that are maximal, then additional
operations are necessary.

For exhaustive enumeration, the most immediate solu-
tion to ensure maximality would be to check all row-maxi-
mal occurrence combinations generated for a given internal
node against those generated for nodes in the conditions of
challenging maximality. Given that the number of maximal

Fig. 8. Heuristic reporting of maximal LateBiclusters B1 to B5 for nodes V 1 to V 5 in the suffix tree from Fig. 5a. (a) earliest (left-most) pattern occur-
rence per gene; and (b) earliest starting time point per gene larger than the most frequent starting time point among all occurrences of the pattern
(otherwise, the closest starting point smaller than the most frequent one): most frequent starting points, after maximality update, are T3 for V 1/B1,
T2 for V 2/B2, T4 for V 3/B3, T2 for V 4/B4, and T4 for V 5/B5.
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LateBiclusters can be exponential on the number of genes,
reporting is often infeasible. For this reason, we do not dis-
cuss maximality checking for exhaustive enumeration.

In the case of heuristic enumeration, maximality is
ensured as described in Sections 2.3.5 to 2.3.7. Specifically,
maximality can be automatically determined if the node
satisfies Lemma 5, provided that we know the number
GðvÞ of distinct genes labelling the leaves under each node
v in T . This can be obtained in OðjGkT jÞ time using the
solution of Chi and Hui for the color set size problem [12],
[14]. It requires an OðjGkT jÞ time preprocessing of T to
enable constant time lowest common ancestor queries,
which has been first proposed by Schieber and Vishkin
[15] and Gusfield [12].

In the case in which maximality cannot be directly con-

firmed, the maximality update procedure from Section 2.3.7

is applied. We analyze its complexity below. Initializing the

bit arrays colorsðvÞ for all nodes v in T takes OðjGkT jdjGkT j
jwj eÞ

time by ORing the bit arrays using a single traversal of T ,

where jwj is the number of bits per computer word. This is

so given that there are OðjGkT jÞ nodes in T , a single bitwise

OR operation is performed per node (at its unique parent)

and that the cost of such operation is OðdjGkT j
jwj eÞ. It is reason-

able to assume that a bitwise operation involving two bit

arrays of the size of a computer word can be performed in

constant time.

Updating the bit arrays colorsðvÞ also takes

OðjGkT jdjGkT j
jwj eÞ. In the worst case, all internal nodes need

to be investigated and the complexity of the update is as

follows. First, computing the union colorsprobðvÞ of the

colors arrays of all nodes that can challenge the maximality

of LateBiclusters identified by a node v requires bitwise

OR operations and can be done for all nodes using a single

traversal of T . The total number of operations is OðjGkT jÞ,
including an OR per node in T (with the colors array of

the corresponding parent) and a right-shift and an OR per

internal node with an outgoing suffix link in T (with the

colors array of the node to which the suffix link points).

Assuming that the right shift can also be performed in

time linear on the number of bit words in colors, comput-

ing the union can therefore be done in OðjGkT jdjGkT j
jwj eÞ

time. Second, computing the difference colorsdiffðvÞ for

every internal node v in T is also OðjGkT jdjGkT j
jwj eÞ, given

that it requires a single traversal of T and a bitwise XOR

operation per node v. Third, the transformation of

colorsdiffðvÞ into a bit mask requires iterating through set

bits and at most one per gene. Since we actually do not

need to know the position of the set bits, the transforma-

tion can be done by checking and manipulating entire

and/or partial words in the range pertaining to each gene.

In the worst case, there are no set bits and it is necessary

to process the whole range of words (if there are more

than one). After this scanning, if no set bit is found, all bits

in the range need to be set. Retrieving and setting whole

words can be performed in constant time using AND and

OR operations and an auxiliary bit mask. We also assume

that a bit mask can be created in constant time to enable

the retrieval and setting of bits for partial words, consider-

ing that most modern CPUs can shift a word by an arbi-

trary number of positions in one cycle using barrel

shifting. Each (partial) word is processed at most twice,

one for retrieving and another for setting, the latter only if

the condition above is satisfied. The total number of (par-

tial) words to process is given by the maximum between

the number of genes and the number of words in a bit

array colors representation, thus OðmaxfjGj; djGkT j
jwj egÞ.

Therefore, the maximality update procedure can be per-

formed for all nodes in OðjGkT jmaxfjGj; djGkT j
jwj egÞ time.

2.5.3 Reporting LatePatterns and Occurrences

Recall that we considered two reporting options for LatePat-
terns and their occurrences in Section 2.4. We also men-
tioned the choice between reporting all LatePatterns or only
those that are also left-maximal relative to their sets of
occurrences. However, this option does not have an impact
in the asymptotical complexity of the solution, given that
ensuring left-maximality only requires the computation
of the number of leaves LðvÞ for all nodes and an additional
traversal of T in order to mark invalid nodes. Both opera-
tions can be done in OðjGkT jÞ.

The first reporting option is to output the gene identifier

for each of the OðjGjÞ genes in the subtree of each valid

internal node in T , without specifying the starting time

points of all the OðjT jÞ occurrences of the pattern. This type

of reporting takes OðjGj2jT jÞ. The second option is to report

the gene identifier for each of the OðjGjÞ genes in the subtree

together with the starting time points of all occurrences of

the pattern in each gene expression profile. Reporting this

information takes OðjGj2jT j2Þ time.

2.5.4 Reporting Maximal LateBiclusters

Exhaustive enumeration of maximal LateBiclusters takes
OðjGj2jT j1þjGjÞ time in the worst case, considering that:
(i) there can be OðjT jjGjÞ maximal LateBiclusters to report
per each of the OðjGkT jÞ potentially valid internal nodes in
T ; (ii) for each maximal LateBicluster with time lags, we
have to report OðjGjÞ genes together with the starting point
of the pattern occurrences for each gene. This combinatorial
explosion is practically challenging and often infeasible
(Fig. 7). To address this issue, we introduced two heuristic
approaches that report a single maximal LateBicluster per
internal node in T satisfying the conditions in Theorem 1
(see Section 2.4). One selects the left-most starting time point
per gene. The other chooses the starting time point closest to
the most frequent starting time point per gene. Using either
of them the reporting step takes OðjGj2jT jÞ time to generate
a maximal LateBicluster with OðjGjÞ genes, together with a
single time point per gene, for each of the OðjGkT jÞ poten-
tially valid internal nodes in T .

3 RESULTS

In order to show the usefulness of LateBiclustering, we
applied the algorithm to a real expression time series
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dataset. We used data from Gasch et al. [16], concerning Sac-
charomyces cerevisiae’s response to heat shock. This data set
comprises expression levels of 6,142 genes measured at
eight distinct time points (5’, 10’, 15’, 20’, 25’, 30’, 40’, 60’
and 80’) for over an hour of exposure to 37	 C. Similar to
previous analyses of this kind [6], we first filtered all genes
with missing values and normalized the expression levels
per gene to zero mean and unit standard deviation. We also
discretized the preprocessed matrix using a technique based
on transitions between time points [6], [9].

3.1 Exhaustive versus Heuristic Reporting

We applied LateBiclustering using exhaustive enumeration
(Section 2.4), and also the left-most time point heuristic
reporting. Our tests were performed in a machine with an
Intel�i7-3632QM CPU and 8 GB of RAM running Windows
8 64-bit, which can be considered a reasonably accessible
user setting in a modern biology lab. To provide a real-
world estimate, we included and ran the algorithms in BiG-
GEsTS [17], a free software tool for biclustering analysis of
time series gene expression data. The exhaustive version
rapidly exceeded the amount of memory in the system and
aborted computation, while the heuristic finished within
1 minute using less than 1 GB of RAM.

3.2 LateBiclustering Heuristic Results

We provide an overview of the results obtained using Late-
Biclustering with unbounded time lags, combined with
the left-most time point heuristic reporting. We restricted
the search to LateBiclusters with at least 10 genes and four
time points, which are reasonably sized and potentially
more interesting from a biological perspective. The algo-
rithm delivered 542 LateBiclusters.

3.2.1 Statistical Significance of Functional Annotations

We assessed the enrichment of functional annotations of the
genes in each LateBicluster by computing the statistical
overrepresentation of Gene Ontology (GO) terms [18]. For
this purpose, we used the Ontologizer package [19],
together with ontology and annotation files downloaded
from the GO repository on May 20, 2013. We calculated a
p-value based on the hypergeometric distribution and term-
for-term calculation, and further applied a Bonferroni
correction for multiple testing [19]. For approximately
12 percent of the LateBiclusters, there was at least one

highly significant GO term (corrected p-value < 0:01).
Table 2 presents 10 LateBiclusters with interesting patterns
and enriched functions, sorted by number of highly signifi-
cant GO terms. Alternative sorting criteria can be used,
such as pattern length or p-value [17]. Each row corresponds
to a given LateBicluster and the different columns contain
the following information: ‘Rank’, the rank in the overall
sorted list; ‘Bicluster ID’, a sequential bicluster identifier,
‘#Genes’ the number of genes, ‘#Time Points’ the number of
time points, ‘Starting Time Points’ the starting time points
of the different instances of the pattern, and ‘#Highly Sig.
Terms’ the number of highly significant GO terms. The last
column, ‘Best p-value’, shows the best corrected p-value for
any term annotated with the genes in the LateBicluster. As a
result of the discretization denoting variations between
time points, the number of time points is one unit larger
than the pattern length.

3.2.2 Biological Relevance and Statistical Significance

For LateBicluster 459, “ribosome biogenesis” and “rRNA
processing” were among the most enriched GO terms. The
corresponding expression profile shows a sharp decrease
during the first 5 minutes (Fig. 9a), consistent with the inhi-
bition of ribosome and rRNA synthesis observed in yeast
cells as part of the response to heat stress [16]. LateBicluster
78 was associated with “carbohydrate catabolic process”
and “trehalose metabolic process”. Heat shock reportedly
activates energy consuming defense mechanisms and the
yeast cell seeks alternative carbon sources, namely by pro-
duction of ATP through glycolysis and trehalose synthesis
[16]. The increased activity of these pathways is reflected by
the pattern of this LateBicluster (Fig. 9b). Prior analysis of
heat shock time series data using CCC-Biclustering revealed
CCC-Biclusters with similar patterns and annotations (see
CCC-Biclusters 124, and 27 or 14 in [6]). However, due to
the inherent temporal alignment restriction, those CCC-
Biclusters did not include genes exhibiting a similar but
slightly delayed response, which could be involved in the
same biological response. By grouping delayed responses
together, LateBiclustering further delivers a more manage-
able number of biclusters: CCC-Biclustering reported 924
CCC-Biclusters when applied to the data in this work
(under the same constraints). This is a desirable property if
computational analysis is to be followed by manual
inspection.

TABLE 2
Maximal LateBiclusters with at Least 10 Genes and Four Time Points, Obtained Using the Left-Most Occurrence Heuristic

We show 10 LateBiclusters with interesting patterns and annotations, sorted by number of highly significant terms (p-value < 0:01: hypergeometric
distribution, term-for-term calculation, Bonferroni correction).
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Statistical significance suggests potential bicluster func-
tions. These are indicative of bicluster quality, but do not
constitute a necessary condition for biological relevance. In
addition, most enrichment tests are suitable for the analysis
of large gene lists [20]. Even if parent-child relationships
between GO terms are considered [19], many associated
terms are assessed independently. This fragmentation of
the GO term space only augments the limitations inherent
to the analysis of small samples. As a result, small biclusters
often yield few or no statistically significant functions.

We analyze LateBicluster 102 in greater detail. The 20
genes in this LateBicluster were enriched only for “protein
kinase regulator activity”. Their pattern denotes a drastic
increase in expression level within the first minutes of expo-
sure to heat (Fig. 9c). Broadly, this behavior is consistent
with the role of kinases in the activation of signal transduc-
tion cascades that mediate several specific stress-related
responses in the subsequent time points. The LateBicluster
exhibits two sets of genes with distinct activation points.
The earliest reaches an expression peak at 10’ and is com-
posed of six genes, of which four yield functional annota-
tions on the Saccharomyces Genome Database (SGD) [21].
Two of them are triggers of cell wall integrity signalling and
plasma membrane reorganization (CKB1, APS2). In addi-
tion, there is a regulator of oxidation reduction homeostasis
and stress-related vacuole functions, as well as growth fac-
tor signalling (TRX1). Finally, the group includes a mediator
of energy generation through glycolysis (GPM1). The sec-
ond set, with 14 genes, has its peak at 15’ and contains addi-
tional key players in cellular defense mechanisms against
heat stress. For instance, LRE1 and YPK1 are relevant to the
control of pathways such as the Pkc1-MAPK involved in
confering resistance of the cell wall structure [21], [22].
Notably, Ckb1p (first set) has been suggested as a regulator
of LRE1 (second set), which can be a potential explanation
for the delay between the activation of the corresponding
genes. Four genes in the set, ASH1, CLN3, DHH1 and PCL5,
encode inhibitors of the cell cycle, which is likely related to
the growth arrest experimented by the yeast cell following
exposure to heat shock [16]. Strikingly, ASH1 is regulated
by Ace2p, whose phosphorylation promoted by Ckb1p (first
set) delays the M/G1 transition [21]. Two other genes,
FMP37 and TDH2, have roles in glycolysis. Specifically,

Tdh2p catalyzes a reaction within the conversion to pyru-
vate, and Fmp37p mediates mitochondrial pyruvate uptake
[21]. Interestingly, the existence of a sudden expression
increase observed for FMP37 and TDH2 between 10’ and
15’, following a similar behavior of GPM1 (first set) between
5’ and 10’, is consistent with the participation of the latter at
an earlier stage of glycolysis (glucose breakdown). The sec-
ond set further includes genes linked to protein degradation
(NTA1, SEL1) and response to DNA damage (MEC1). In
reality, the mechanisms underlying LateBicluster 102 are
tightly interconnected and assume complementary roles in
the yeast response to heat stress [22]. For instance, CKB1
(first set) is also involved in the response to DNA damage,
and in growth and proliferation.

4 CONCLUSION

In this work, we discussed the complexity of identifying
and reporting groups of genes exhibiting a similar temporal
pattern, with potential delay, in a time series gene expres-
sion matrix. Available algorithms yield exponential time
complexity due to the combinatorial explosion of pattern
occurrences, which makes exhaustive enumeration of maxi-
mal time-lagged biclusters infeasible in most cases of inter-
est [9], [10]. We proposed LateBiclustering, a heuristic time-
lagged biclustering algorithm able to deliver biologically
meaningful biclusters while enabling a significant reduction
of the result space. Our strategy guarantees a time complex-
ity that is polynomial on the size of the input.

Using real data concerning the response of Saccharomyces
cerevisiae to heat stress, LateBiclustering was able to: (i) com-
pute successfully in a regular desktop machine, while the
exhaustive version quickly exceeded the amount of memory
available in the system; (ii) capture interesting cascades of
time-lagged patterns whose associated genes, functions and
delays were consistent with the adaptations experimented
by the yeast cell under those adverse conditions.

The results highlight that LateBiclustering is practical
and can provide valuable insight into the functioning of bio-
logical systems. To make LateBiclustering accessible, we
will integrate it into the BiGGEsTS software [17]. Addition-
ally, we plan to address the discovery of patterns with
bounded time lags, useful for discarding instances with

Fig. 9. Expression profiles of genes in LateBiclusters. ‘Ghs-1’ denotes the sample (Gasch heat shock 1).
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unreasonable delays in long time series. Further challenges
deserve investigation. For instance, although pattern match-
ing uncovers interesting relationships, it is known that
genes may exhibit similar expression profiles even if not
functionally related. Likewise, players involved in the same
biological process can yield distinct behavior.
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