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Abstract—Biological pathways are important elements of systems biology and in the past decade, an increasing number of pathway

databases have been set up to document the growing understanding of complex cellular processes. Although more genome-sequence

data are becoming available, a large fraction of it remains functionally uncharacterized. Thus, it is important to be able to predict the

mapping of poorly annotated proteins to original pathway models. Results:We have developed a Relational Learning-based Extension

(RLE) system to investigate pathway membership through a function prediction approach that mainly relies on combinations of simple

properties attributed to each protein. RLE searches for proteins with molecular similarities to specific pathway components. Using RLE,

we associated 383 uncharacterized proteins to 28 pre-defined human Reactome pathways, demonstrating relative confidence after

proper evaluation. Indeed, in specific cases manual inspection of the database annotations and the related literature supported the

proposed classifications. Examples of possible additional components of the Electron transport system, Telomere maintenance and

Integrin cell surface interactions pathways are discussed in detail. Availability: All the human predicted proteins in the 2009 and 2012

releases 30 and 40 of Reactome are available at http://rle.bioinfo.cnio.es.

Index Terms—Pathway relationship prediction, sequence-based prediction, knowledge relational representation, machine learning, function

prediction, human reactome pathways
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1 INTRODUCTION

BIOMOLECULAR pathways represent an abstract compi-
lation of knowledge that pertains to metabolic, regu-

latory and signalling events, organised as cascades of
protein interactions influenced by other molecules [1], [2].
Deregulation of such signalling systems has been impli-
cated in diverse human pathologies, including cancer,
neuronal degeneration, muscle atrophy, immune defi-
ciency and diabetes [3].

Recent years have seen renewed interest in storing and
annotating pathways [4], [5], although this presents several
notable challenges. Among these is the growing amount of
experimental information available, the obvious limitations
of databases and annotation resources, and the uncertainty
as to what are the boundaries of a pathway.

Due to the lack of uniformity in the definitions of path-
ways found in the literature [6], there may be considerable
variation among the data available in different databases,
such as Reactome [7], KEGG [8] and MetaCyc [9]. Indeed,
efforts to develop a standardized form of annotation are

currently under-way (e.g., Pathway Commons [5] and Wiki-
Pathways [10]).

Our research focuses on predicting the pathway mem-
bership of uncharacterized proteins not included in the
original model pathway. Typically, additional proteins
associated with a biological process of interest (such as reg-
ulators) are not considered part of the pathway for several
reasons [11], due to: the introduction of indirect noise in
empirical procedures; a lack of data in specific databases
devoted to a particular functional area or organism, and
using the classical isolated entity representation; or the sub-
jective opinion of experts who designed the pathways based
on their knowledge and experience.

It is important that we establish a relationship between
previous publications and the approach presented here,
which is Relational Learning-based Extension (RLE). First,
our approach does not use homologies and it is not based
on the extrapolation of pathways between species on the
basis of sequence similarity, distinguishing it essentially
from other published methods [12], [13]. Second, our
approach attempts to predict pathway membership of new
potentially related proteins and not to define new path-
ways. In this sense it is very different from the methods that
analyze protein interaction networks and other features to
discover new pathways [14], [15], [16]. Third, our approach
differs but is related to another approach that also uses
molecular interaction data to propose candidates that are
part of known pathways [17]. The difference is that this ear-
lier method [17] exclusively uses protein interactions and in
the approach presented here, interactions represents only a
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minor component (i.e., RLE uses the similarity of features
with interacting proteins instead of explicit information on
interactions).

Finally, RLE uses simple sequence features as its input,
which makes it part of a range of function prediction strate-
gies that combine simple properties in different scenarios
[18], [19], [20]. Of these, the most similar to RLE is the Prot-
Fun method developed by Soren Brunak’s group when it
assigns different Gene Ontology (GO) Biological Process
categories to human genes [19]. Although RLE uses simpler
sequence properties than ProtFun, both systems use
sequence features to predict an association with biological
processes. Despite the apparent contradiction, these systems
do not search for characteristics common to all the proteins
in the pathway but rather, they look for specific characteris-
tics associated with some of the components in the pathway.
Hence, the proposed protein memberships bear similarities
to some of the original pathway proteins rather than to
some characteristics common to all of them. Thus, RLE
looks for unannotated proteins with similar features to path-
way proteins instead of physical links to pathway proteins.

One of the key differences from previous approaches is
the use of a relational representation that allows individual
and pair-wise information to be combined. In this case, RLE
uses information on features associated to each individual
sequence, as well as information about the features of neigh-
bouring proteins in the interaction network.

The relational representation allows RLE to apply a
sophisticated combination of relational and propositional
machine learning algorithms to retrieve frequent patterns
and to induce relational decision trees. This machine learn-
ing combination has previously been applied successfully
to other functional annotation problems, such as assigning
GO and MIPS terms to Arabidopsis thaliana [21] and S.cerevi-
siae [22] genomes, although using homology, secondary
structure, sequence and expression data. Although these
applications are used for predictive analyses in simpler spe-
cies, they require more complex homology data than in the
present study. Nevertheless, the results of these studies
indicated that the machine learning combination used by
RLE is readily applicable to other function prediction tasks,
including those involving the sharing of common data.

Here, we defined and used the RLE system to predict
putative pathway membership for uncharacterized human
proteins according to the definitions of Human Reactome
pathways [7], an expert-authored, peer-reviewed, manually
curated pathway database widely used in biological and
computational studies (see [23], [24]). The results of our pre-
dicted Reactome annotations are presented and some rele-
vant biological cases are discussed in detail.

2 MATERIALS AND METHODS

2.1 Relational Representation

Protein-protein interactions and protein complexes repre-
sent important relationships in biological pathways. For
that reason, we have included these interactions in the
learning process as relational information that may influ-
ence the final predictions. The classical data mining
approach represents data in a propositional manner, i.e.,
one table featuring one row per protein and a list of

columns (or features) for each specific protein. Propositional
representation of the data used in the present study would
require thousands of Boolean attributes per protein (one for
each of the potential interacting partners in the entire prote-
ome), and where most of the columns would have no val-
ues. By contrast, using a relational representation [25] it is
sufficient to define one binary predicate and to include as
many instances as true interaction partners exist. Relational
representation also allows us to consider sequence features
of the interaction partner in the learning process through a
link with its identifier. For example, we can annotate a pro-
tein A with the membrane trafficking pathway because protein
A is involved in a complex interaction with protein B, which
contains a transmembrane region.

The main relational representation language is logic pro-
gramming, a subset of first-order logic (also known as predi-
cate logic) in which each element is a logical predicate. All
the data collected (described in Section 2.2) are represented
as logical facts in Prolog syntax (see Fig. 1 for a fragment and
Text S1 and S2 in the Supplementary Material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2014.2318730,
for the complete relational representation). This representa-
tion enables relational learning to be applied.

2.2 Input Data Sources

In constructing the system used here, we took data from mul-
tiple sources to build our own data set. Using amino acid
sequences as the input, the three numerical protein sequence
features (length, positive and negative charge) were computed
with BioWeka software [26] and made discrete to increase
their expressiveness (see details about discretization in Text
S1 of the Supplementary Material, available online). Simple
predictions or annotations from protein sequences were also
included (e.g., whether the protein contains a transmembrane
region, signal peptide or coiled-coil domain). The gene fea-
tures used were chromosome name, length, strand and num-
ber of transcripts or isoforms (see gene predicate in Fig. 1).
These properties were retrieved from Ensembl [27], release 56
(through to BioMart Central Portal [28]).

Two types of relationships between proteins were con-
sidered: protein-protein interactions; and protein com-
plexes, represented in the form of interaction partners
(ppinteraction_pair and complex_interaction

predicates, respectively, as represented in Fig. 1). Due to the
high quantity and quality of the interactions extracted from
literature and high-throughput experiments, the data per-
taining to protein-protein interaction pairs was retrieved
from the BioGRID repository (2.0.59 release) [29]. These
data are curated together with expert partners such as
MINT [30], IntAct [31] and HPRD [32]. We selected Bio-
GRID pairs from real binary relationships identified
through evidence codes Co-crystal structure, Far Western blot,
FRET, PCA and Two-Hybrid studies. Protein complexes
were considered as protein pairs, since the databases repre-
sent complexes as pairs and the information available to
rebuild the complex is neither complete nor curated. We
retrieved complexes from the same BioGRID release, select-
ing relationships identified by evidence codes Affinity Cap-
ture, Co-purification and Reconstituted complex. We also
included sequence features for the interaction partners.
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Finally, since Reactome pathways [7] were the annotation
objective, we analyzed 37 of the 52 top-level human
Reactome pathways, release 30. These 37 pathways
corresponded to pathways fulfilling a minimum size
requirement of at least 50 proteins in the original pathway.
This minimum number of proteins required by the RLE
method to learn, was arbitrarily selected as a rule of thumb
to avoid some bias information from scarcity data.

Briefly, we collected 22,304 genes, 72,731 protein iso-
forms, 229,407 protein interaction pairs, 478,420 complex
interaction pairs and 37 pathways with an average of 142
non-redundant proteins per pathway.

As the data sources use different gene or protein identi-
fiers, the original identifiers were all mapped to Ensembl
(gene or protein) IDs using the cross-reference system from
BioMart [28].

2.3 Building Data Sets: Training, Testing and
Application

2.3.1 Training and Test Data Sets

As our goal is to capture ‘functional’ sequence features as
opposed to sequence similarities, we built a non-redundant
data set. In this way, we avoid biases in the learning process
due to indirect relationships between similar proteins in the
training and test data sets. The reduction in redundancy is a
typical conservative process, which is the best option when
the relationship between evolutionary origin and sequence
features may not be readily determined.

Redundancy was removed from two terms: isoforms and
sequence similarities. A single gene can express itself as sev-
eral proteins or transcripts, called isoforms, produced by
processes such as alternative splicing. The number of iso-
forms is preserved as a sequence feature for the learning
process (see Fig. 1). However, to reduce the redundancy in
our data set we only selected a reference isoform for all the
proteins expressed by the same gene. We considered the ref-
erence isoform as the protein with most annotations in
Reactome, as this is the prediction goal. In cases where sev-
eral isoforms had the same number of annotations, the lon-
gest sequence was considered as the reference isoform and

accordingly, we extracted 3,510 reference isoforms from
Reactome. Note that 97.5 percent of our reference isoforms
corresponded to the longest isoforms.

Next, a sequence-similarity reduction of isoforms was
applied to the protein sequences based on BLAST [33] align-
ments. We applied one of the Hobohm algorithms [34] for
homology reduction that had been expanded [35] and
applied in previous studies [19], [36], [37]. Since RLE predic-
tions are entirely based on amino acid sequence instead of
protein structure data, the Hobohm algorithm 2 was slightly
modified to define similarity based on amino acid sequen-
ces rather than protein structures. The original algorithm is
based on the same dynamic sequence alignment algorithm
[38] used in BLAST, and we use BLAST results as a measure
of similarity.

We calculated sequence similarity in the complete
human proteome with BLASTP [39] (see Section 2.2), run-
ning BLASTP with default parameters except for an E-value
¼ 0.01. An E-value of 0.01 means that we expect one random
match in every hundred for the given score. Setting a low
threshold for the E-value (BLASTP default is 10) would
reduce the number of potential errors. A sequence identity
threshold of 30 percent was applied.

Following sequence similarity reduction of the main iso-
form proteins, we were left with 1,654 unique annotated
proteins (2,762 increased by different pathway annotations)
in the 37 selected Reactome pathways. Two thirds of these
proteins (1,108 proteins) were randomly grouped into the
training data set and one third (546 proteins) were grouped
into the test data set.

One alternative validation to our two thirds for training
and one third for testing would be a Cross-Validation (CV)
process. However, a 10-fold CV experiment is not suitable
for this specific biological domain. The main reason is the
multi-class and multi-label nature of this pathway annota-
tion problem, together with the small number of available
proteins in several classes or pathways. Many pathways are
small and the process of redundancy reduction sequence-
similarity proteins and isoforms, make them even smaller.
As explained above, redundancy reduction is essential in

Fig. 1. Knowledge representation language in the pathway prediction domain. protein/4 predicate represents properties associated to a protein;
transmembrane_domain represents a protein with transmembrane region/s; ncoils_domain represents a protein with coiled-coil domains/s;
signal_domain represents a protein with signal peptide sequence; protein_gene represents the relation between a protein and the gene
encoding it; gene predicate represents the properties associated to a gene; ppinteraction_pair represents a protein related to other protein by
Protein-Protein Interaction data; complex_interaction represents a protein related to other protein with a described interaction in a complex
and protein_class represents a protein belonging to a specific Reactome pathway. The goal of RLE, in knowledge representation terms, is to
associate the predicate protein_class to those proteins without annotations in Reactome. Panel A shows main predicates in the knowledge
representation language defined to this domain. In panel B, you can see an example of the set of logical facts that represent the human protein
FEZ2_HUMAN (ENSP00000368547, fasciculation and elongation protein zeta 2) according to the knowledge representation described in panel A.
These facts imply that features for this protein are: protein with coiled-coil domain/s; long gene sequence, since third argument (97,723) is higher
than 30,447 (see Text S1 for a detailed list of thresholds); high number of transcripts, because 15 is greater than 4; and with relations in protein-pro-
tein interactions and protein complexes. ppinteraction_pair(. . .) and complex_interaction(. . .) mean this protein has more relations
than those shown here, by Protein-Protein Interaction and in protein complexes, respectively.
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order to avoid biases in the learning process introduced by
indirect relationships. Moreover, according to the literature,
it has been suggested that stratified 10-fold CV experiments
can be suitable for evaluation of solutions in imbalanced
multi-class problems if the partitions can have the same com-
position than the full data set [40]. In our case this means that
each of the 10 partitions in which the proteins are split must
follow the same distribution of classes as the whole set, with
a number of proteins belonging to each pathway exactly
equal in each partition. With few proteins per pathway and
each protein often assigned to more than one pathway
(multi-label condition) makes impossible to create 10 parti-
tions with the same proportion of proteins per pathways and
therefore it is impossible to perform a non-biased CV.

2.3.2 Application Data Set

The proteins not annotated in Reactome (i.e., the application
data set) are used as the input to identify additional proteins
related to the Reactome pathways with the RLE system. Of
the proteins in the 37 Reactome pathways of interest, 18,794
were not annotated in Reactome (22,304 main isoform
proteins minus 3,510 with Reactome annotations). The
sequence similarity reduction procedure allocated 8,187
proteins to the application data set, which was itself non-
redundant as well as being non-redundant in relation to the
training and test data sets. These 8,187 proteins not anno-
tated in Reactome represent the application data set.

2.4 Prediction Method: Frequent Patterns and
Decision Tree

The RLE method is split into three steps: the retrieval of
relational frequent patterns; the generation of a proposi-
tional decision tree; and application of this decision tree to
unannotated proteins (see Fig. 2).

In the first step, we retrieved the frequent patterns (i.e., a
relevant sequence of logical facts) with the first-order logic

association rule mining algorithmWARMR [41], which uses
a relational data set as the input and that is implemented
with the ACE tool [42]. The WARMR algorithm identifies
all patterns that satisfy a language bias in the training data
set and that exceed a minimum frequency. Moreover, like
the propositional APRIORI algorithm [43], the WARMR
algorithm performs a level-wise search that is quick and
efficient in large databases. We applied WARMR to the pro-
teins in each independent pathway to retrieve the frequent
patterns that characterize each particular pathway. This is a
novel application that differs from previous use of frequent
patterns in combination with decision trees [21], [22] where
patterns are retrieved for all examples together, without
splitting them according to the different pathways or clas-
ses. Subsequently, frequent patterns for all the pathways
were kept individually to construct the predictor system.
Finally, frequent patterns were used as the input for the
next step to generate a propositional decision tree, trans-
forming each pattern into a Boolean attribute in function of
whether the pattern was satisfied by the specific protein.

In the second step, we built decision trees with our
defined training data set using the CLUS system [44]. This
implements the predictive clustering tree framework that
induces propositional decision trees using an algorithm
similar to C4.5 [45], but that views the decision trees as hier-
archies of clusters. The root-node is a cluster with all instan-
ces, which is then split into smaller clusters recursively,
thereby minimizing the intra-cluster variation. This frame-
work allows us to tackle more complex prediction prob-
lems. We selected CLUS over other decision tree algorithms
as CLUS readily facilitates multi-class and multi-label learn-
ing. It corresponds to our pathway annotation problem, as
the number of possible pathways is greater than two (multi-
class) and each protein may belong to more than one path-
way (multi-label). The relational decision tree/s obtained
after applying both WARMR and CLUS to our relation data
allow us to associate new similar proteins to the Reactome

Fig. 2. Schema of the RLE system. In the learning process, the rectangles correspond to methods and the ellipses correspond to data with different
knowledge representations. In the pre-processing tools, BLAST and Hobohm algorithm 2 are applied to redundancy reduction.
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pathways (Supplementary Text S2, available online, shows
a further description about the representation of the results).

In the third step, we predict proteins that may be
related to the Reactome pathways by applying our
approach to the unannotated proteins (i.e., the application
data set - see Section 2.3.2). This last step is completely
new and was designed for this study, making it distinct
from other earlier combinations of WARMR and CLUS.
RLE predicts proteins with similar properties to the path-
way, without providing explicit information about how
they interact in the pathway. Our relational learning sys-
tem associates a list of scores to each protein it classifies
and as a result, each protein has one score associated to
each pathway. Hence, we must select a list of thresholds to
separate the proteins predicted to be similar to given path-
way proteins from those that are not. Among the multiple
options, we selected the next combination as a reasonable
criterion. We sought to predict similar proteins by up to 20
percent of the non-redundant pathway size. For each pre-
dicted pathway, we sorted the proteins in the application
data set by decreasing the score value and we then
selected all the proteins up to that where the last change in
score values reached the first 20 percent of the pathway
size. In cases where no change occurred, the system did
not propose any protein associated to the pathway, and
the pathway threshold was the lowest score of the selected
proteins. Where possible, and as an additional criterion,
the system should apply more than one rule per pathway
in the application data set (i.e., different branches from
root to leaf) in order to maximize protein diversity.

The prediction method described can generate many dif-
ferent annotation systems depending on the configuration
parameters used. For the current problem of predicting
pathway associations, we have configured a RLE with a
minimum frequency of 0.2 and a maximum depth of 4 as
the WARMR parameters. These parameters were selected to
build decision trees with different attributes depending on
the specific pathway, since we are interested in predicting a
range of proteins related to each pathway in parallel to the
molecular variability of the proteins in the corresponding
pathway. Of the various configurations produced, we
applied a tradeoff between performance (measured as
AUPRC in test data set) and diversity of rules for each path-
way when making our selection. This means that a system
with better performance could have been selected at the
expense of decreasing (or even removing) the diversity
among the proteins predicted, which would be similar to
the features of just one pathway protein rather than several,
as we obtain with the configuration selected (a detailed con-
figuration for the selected system appears in Text S3 in Sup-
plementary Material, available online).

Fig. 2 illustrates the entire workflow of the RLE system
applied to annotate proteins through Reactome pathways
as described in Section 2.

3 RESULTS

3.1 Prediction Performance

The following section discusses the performance of our
RLE system, both overall and in relation to each inde-
pendent pathway.

We measured the performance of the test data set with
Precision-Recall (PR) curves, as these curves fit our highly-
skewed class distribution and addressed our interest in pos-
itive predictions in this domain (the prediction of proteins
with similar characteristics to pathways rather than those
without them) [46]. Moreover, standard Receiver Operating
Characteristic (ROC) curves were also generated (Fig. 3).

To combine the 37 pathway-wise performance measures
in an overall measure, we chose macro-average (the average
area under the PR curves) rather than micro-average (the
area under the average PR curve) [47]. Macro-average Area
Under Curve (AUC) does not bias the result towards more
frequent classes, providing a more homogeneous view of
the results [22]. The macro-average measure computes indi-
vidual curves first, one for each independent pathway, and
then it averages these curves to compute a single average
curve. By contrast, the micro-average measure computes a
global contingency table using the sum of the scores for all
pathways (true and false positives and negatives), and it
then computes a single curve based on these global scores.

In quantitative terms, RLE resulted in an Area Under
the PR Curve (AUPRC) value of 0.1337 and an Area Under
the ROC (AUROC) value of 0.6914. While these AUPRC
and AUROC values are small, they are clearly above the
random and default classifiers. Combining sequence fea-
tures and protein interactions, as RLE does, is better
than using either sequence data or interaction data alone
(Fig. 3), as evident when the RLE system was tested
with subsets of input features.

Fig. 3. Precision-Recall and ROC curves. Macro-average PR and ROC
curves for the RLE system, the random and default classifiers. The
default classifier corresponds to a unique leaf decision tree, which has
class frequencies as scores for any given protein. The random classifier
simply consists of generating a random score for each protein in the test
set. The ‘RLE (interaction data only)’ classifier is built according to the
RLE specification with interaction data alone and the ‘RLE (sequence
data only)’ with the remainder. The Glaab et al. point results from apply-
ing this method to the same training and test data set as the RLE system
(see Section 3.6).
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Analyzing the performance per pathway revealed varia-
tions that fell both above and below the average values (see
Table S1 in Supplementary Material, available online, for
the detailed performance per pathway values). While 16
pathways exhibited greater than average AUPRC values
(very reliable pathway predictions), only three pathways
had AUPRC values lower than the random or default classi-
fication values (poorly reliable pathway predictions).

In general, the larger the pathway the higher the AUPRC
value, with some exceptions, such as the integrin cell surface
interactions (PathwayID:8) and transmembrane transport of
small molecules (PathwayID:16) pathways, which represent
small pathways with higher than average AUPRC values.

3.2 Relevant Feature Analysis

In the following section, we will discuss the relevant fea-
tures of each pathway in the learning process.

We applied the same two relevance measures used in the
ProtFun prediction method [19]. The first involves evaluat-
ing performance after training the system using each of the
predicates individually (Fig. 4, see red circles representing
these AUPRC values obtained in this way). The second mea-
sure shows the decrease in the AUPRC following the
removal of a particular predicate. The performance of system
training without one predicate is subtracted from the origi-
nal AUPRC, which corresponds to the combination of all the
predicates (in Fig. 4 these AUPRC differences are visualized
as purple circles). The first of these measures only indicates

the relevance of a given predicate by itself, without taking
into account those that may also be relevant when combined
with other predicates (as demonstrated by the second mea-
sure). As both measures are complementary, a predicate is
deemed relevant if either of thesemeasures is high [19].

With our relational data representation, logical predi-
cates rather than features were used as input data (see pred-
icates and their arguments in Fig. 1). Accordingly, the
columns in Fig. 4 correspond to predicates, single argu-
ments or an aggregate of several predicates.

By analyzing the graph (Fig. 4) it was evident that for the
‘average’ pathway (in the middle of Fig. 4), no predicate is
more important than others and thus, no feature contributes
disproportionately. Moreover, the relevance is clearer as the
prediction improves. Obviously no predicate is relevant in
cases of poor prediction (upper part of Fig. 4) and for
example, while the transmembrane_domain would be
expected to be relevant in the membrane trafficking pathway
(PathwayID:04), no significant relationship was detected. In
cases of reliable predictions (below the ‘average’ pathway in
Fig. 4), we found clear differences in the relevance of dis-
tinct predicates within the same pathway. The most impor-
tant predicate (i.e., the column with the largest points) was
protein/4, which is an aggregate of the most discriminat-
ing features of proteins: protein length and positive

charge. By contrast, interactions were not such fundamen-
tal features for the learning process (first three columns).

When some specific cases were analyzed, almost all iso-
lated predicates performed well for the gene expression path-
way [35], while all predicates were dependent on one
another for transmembrane transport [16], integrin cell surface
interactions [08] and Signaling by Wnt [02], with little inde-
pendent contribution (several purple circles of similar size).

3.3 Prediction of Putative Proteins Related to
Reactome Pathways

We check the capacity of our RLE system to identify addi-
tional proteins related to curated Reactome pathways when
applied to unannotated proteins.

Following the procedure described above (Section 2.4),
RLE associated 383 uncharacterized proteins (including 329
distinct proteins) to 28 pathways. The 37 original non-
redundant pathways consist of 2,762 proteins, of which
1,654 are distinct proteins. In terms of the importance of the
diversity in the rules that predict proteins in the same path-
way, note that RLE applies several rules in 15 pathways.
Therefore, our system attributed strong molecular variabil-
ity to the proteins related to the same pathway in more than
half of the predicted pathways. A detailed summary with
respect to class is provided in Table S1 of Supplementary
Material, available online.

RLE predicts proteins that share specific sequence fea-
tures with one or more of the proteins in the original path-
way but not with the overall characteristics of the pathway.
The proteins predicted by RLE (hereafter referred to as pre-
dicted proteins) have not been annotated previously in Reac-
tome and they were not redundant to Reactome annotated
proteins in terms of sequence (see Section 2.3.2). Given the
biased nature of Reactome pathways, the predicted proteins
also share an intrinsic bias to these RLE design considera-
tions, evident when the frequency of the properties shared

Fig. 4. Relevant learning predicate analysis. Red circles (on the left) rep-
resent features that are relevant alone and the purple circles (on the
right) represent features that are relevant in combination with others.
The pathways (rows) are sorted from those with the lowest AUPRC in
our RLE system to those with the highest (from top to bottom).
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by the RLE predicted proteins was compared to those of the
proteins used for training and to test the system (Supplemen-
tary Fig. S3, available online). We intended to find unique
proteins, although we also checked whether their homo-
logues were also predicted. The Reactome non-annotated
protein data sets (sequences redundant to our application
data set), contain some homologues of the predicted pro-
teins. RLE does not predict almost any of these homologues,
because RLE learns with features other than amino-acid
sequences, the only input to define homology. Since RLE
uses additional properties (number of transcripts, gene
length, protein-protein interactions and complexes) RLE
should not predict the homologous partner if there were dif-
ferences in these properties (mainly due to the discrepancy
in the interaction annotations or in the sequence features of
the interaction partner).

We complemented the results by searching for similar
annotations that could provide an independent evaluation
of our predictions. Indeed, a semantic similarity analysis
showed that on the basis of GO Biological Process
annotations, most of the original pathways were more
semantically similar to RLE predicted proteins than to ran-
dom predictions.

3.4 Representation of Resulting Patterns

In computational terms, the explicit learning output of the
RLE system is represented as a set of rules defining the pat-
terns that fulfill a particular protein to be associated to a
specific Reactome pathway. Fig. 5 shows an example of rule
(or patterns) defining association of proteins to the Signal-
ling by NGF pathway, according to the RLE prediction. In
this example (see also description of the Fig. 1 legend and
Supplementary text S1 and S2, available online), the first
logical conjunction of this rule represented by the three first
lines, means the predicted protein FEZ2_HUMAN (letter
‘A’) is related to the protein ‘B’ by a protein-protein interac-
tion. The corresponding gene of the interaction partner ‘B’
(gene ‘C’) has a short sequence (E< 3,860), and the corre-
sponding gene of protein ‘A’ (gene ‘H’) has a long sequence
(J> 30,447). In the next logical conjunction, one or several of
the logical predicates are false (ends with “¼0”). Finally, the
last logical conjunction means our main protein ‘A’ interacts
in a complex with other protein characterized by a signal
peptide sequence and at least a coiled-coil domain.

Supplementary Text S2 describes a different example of
rule giving more details. In addition, in the RLE web
(http://rle.bioinfo.cnio.es) there are links to rules and sim-
ple sequence features for each predicted protein in the stud-
ied pathways.

3.5 Biological Interpretation of the Predicted
Proteins

Using complex combinations of simple properties, as
reported elsewhere [18], [19], [20], it is difficult to interpret
our RLE results according to those properties through a
general analysis. However, it is possible to analyze the pre-
dictions for a given pathway or protein of interest by study-
ing the frequency of predicates. It means, to compare
predicates of the predicted protein(s) with those of the
annotated proteins in the pathway (see Supplementary Fig.
S2, available online). If possible, also to compare the predic-
tions using different computational methods and comple-
mentary information available in databases.

To further investigate the biological implications of the
RLE prediction and confirm that prediction is consistent
with patterns in the input, UniProt functional annotations
and the literature available on the predicted proteins were
analyzed. As examples of de novo predictions, we used the
Electron transport chain, Telomere maintenance and Integrin cell
surface interactions pathways, due to the tendency towards a
similarity between more frequent predicates and UniProt
annotations, as it is explained in the next paragraphs.

In the Electron transport chain pathway, the five proteins
predicted (UniProt ID: SMIM4_HUMAN, MOS1_HUMAN,
A8MTT3_HUMAN, MANBL_HUMAN and SPAT9_HU-
MAN) were annotated as single-pass membrane proteins,
and the ‘transmembrane_domain’ predicate was observed
in 42 percent of the 77 proteins annotated in this pathway.
Furthermore, the predicate ‘protein_length_low’ has
appeared in all (100 percent) of the predicted proteins in the
Electron transport chain pathway and in 78 percent of the
annotated proteins in Reactome for this pathway; so, pro-
teins in this pathway could be characterized by short pro-
tein sequences. Interestingly, SMIM4 and MOS1 are
localized in mitochondrion according to UniProt annota-
tions, where several enzyme complexes involved in the
electron-transport system are anchored in place by trans-
membrane proteins. In addition, as a source of energy, mito-
chondria participate in other events like cell differentiation
[48]. Although the mitochondrion annotation is not speci-
fied, another membrane-protein that was predicted, SPAT9,
has “cellular differentiation” as a biological process annota-
tion. By contrast, the A8MTT3 and MANBL are uncharac-
terized proteins.

Analysis of the Telomere maintenance pathway revealed
a frequency of 100 percent for the predicate
‘complex_interaction’ and ‘transcripts_low’ in the pre-
dicted proteins (UniProt ID: HPGDS_HUMAN, CSN4_HU-
MAN, PIAS4_HUMAN, DTX1_HUMAN and
APBP2_HUMAN). Moreover, these predicates were associ-
ated with 64 and 49 percent of the 45 annotated proteins in
this pathway, respectively. This pathway was the only
pathway predicted using the predicate ‘transcripts_low’,
i.e., the predicted proteins were encoded by only one tran-
script. With the exception of HPGDS, a bi-functional
enzyme (hematopoietic prostaglandin D synthase –EC
5.3.99.2–and glutathione S-transferase –EC 2.5.1.18–), the
remaining four proteins all contained annotated nucleic
acid binding motifs, such as: the Winged helix-turn-helix
transcription repressor DNA-binding motif; the SAP-motif,
a putative DNA binding motif found in diverse nuclear

Fig. 5. Example of rule or patterns resulting from the RLE system predic-
tion. This rule associates the human protein FEZ2_HUMAN represented
with logical facts in Fig. 1 to the Signalling by NGF pathway (see main
text for details).
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proteins involved in chromosomal organization; the Zinc-
finger domains now recognized to bind DNA, RNA, pro-
tein and/or lipid substrates; and the tetratrico peptide
repeat region, which despite mediating protein-protein
interactions and the assembly of multiprotein complexes in
a wide-range of proteins, also adopts a helix-turn-helix
arrangement commonly found in DNA-binding proteins
(see InterPro annotations of these proteins).

“Telomeres are protein-DNA complexes at the ends of lin-
ear chromosomes that are important for genome stability”
[7]. In humans, the mechanism of telomere replication
remains poorly understood and further knowledge regard-
ing transcriptional, translational and post-translational regu-
lation of telomere-binding proteins is required [49].

“Ubiquitin (Ub) attachment principally regulates interac-
tions with other macromolecules, such as proteasome-
substrate binding or protein recruitment to chromatin” [50].
Furthermore, although several similarities are evident in
pathways involved in activating and conjugating Ub and
ubiquitin-like (Ubl) proteins to particular lysine residues
within target proteins, the mechanism of exchange between
small-Ubl-modifier (SUMO) proteins and the ubiquitination
process remains unclear [50], [51].

Interestingly, UniProt annotations associated three of the
RLE predicted proteins to Ub/Ubl conjugation pathway
(CSN4, PIAS4 and DTX1), although Ub conjugation is
involved in many eukaryotic cell processes. One of these
three predicted proteins (CSN4) is a component of the
COP9 signalosome complex and an essential regulator of
the Ub-conjugation pathway in response to DNA damage
[52]. PIAS4 is an E3 SUMO-protein ligase [53] and DTX1
also exhibits Ub-ligase activity in vitro [54]. Notably, the C-
terminal domain (residues 946-1,132) of human telomerases
is efficiently ubiquitinated in vivo by the E3-ligase MKRN1
and the ligase RING-finger domain is essential for the phys-
ical interaction between these proteins [55]. The predicted
ligases PIAS4 and DTX1, as well as MKRN1, contain a
RING-finger domain with conserved histidine and cysteine
residues. Indeed, mutating His307Glu in the RING-finger
domain of MKRN1 abolishes its ubiquitination activity [55].
Moreover, a connection between the maintenance of
genome stability and the evolutionary conserved family of
SUMO-targeted Ub-ligases has recently been proposed [56].

In the last example, we discuss the Integrin cell surface
interactions pathway (partially represented in Fig. 6), where
almost all of the five predicted proteins are cell surface
receptors with a single-pass type I membrane architecture.
The pathway shown includes some of the annotated pro-
teins, their connections and their similarities with predicted
proteins. The connector line indicates the proteins with the
most similar predicates between RLE predictions and
Reactome annotations (Fig. 6). According to this result we
hypothesize that predicted proteins could have similar or
related functions to the proteins annotated in Reactome:
IL3RB_HUMAN is a cytokine receptor subunit B;
CD22_HUMAN is the B-cell receptor CD22; NPHN_HU-
MAN is a specific cell adhesion receptor; and FPRP_HU-
MAN is a prostaglandin F2 receptor. CNTN1_HUMAN
(contactin-1 or glycoprotein gp135) mediates cell surface
interactions during nervous system development and is
attached to the membrane by a lipid-anchor.

Taken together, these domain annotations and literature
findings provide evidences that RLE de novo predictions
have a biological sense.

3.6 Comparison with Pathway Prediction Based on
Interaction Networks

We compared our RLE system with an alternative method
used for pathway prediction that relies on molecular inter-
action network data [17].

This previous methodology, that expands pathways and
other cellular processes, maps the proteins onto protein-
protein interaction networks, expanding the pathway with
densely interconnected interaction partners that increase
pathway compactness. In this method the interaction net-
work is the only input data used. Hence, the only candi-
dates for expansion are proteins that interact directly with
proteins pertaining to the original pathway and that fulfil a
series of topological conditions [17].

Due to the novelty of the goal, RLE comparison to similar
state-of-the-art methods is not easy. First, the ProtFun
method [19], which uses sequence data alone, is a historical
and unavailable method. This method uses a different
approach, predicting GO terms instead of Reactome path-
ways as RLE does. A second method by Glaab et al. [17],
which use interaction data alone, is not directly comparable
to RLE in the same test performance terms, since it is not
based on scores. Nevertheless, to illustrate the test perfor-
mance of Glaab et al. method, we included a specific point
in the PR and ROC curves (see Fig. 3), due to the lack of
scores do not allow to represent a line. Fig. 3 shows how the
Glaab et al. test performance point is under the RLE test per-
formance line. For a proper comparison between RLE and
Glaab et al. method, we evaluated these two methods with
the application data set, described in Section 2.3.2. Glaab
et al. method needs our complete pathways (instead of the
network of non-redundant proteins in sequence-similarity
terms) as input in order to suitably compute its topological
metrics. Thus, Glaab et al. method predicted proteins in 29
of the 37 pathways with a total of 150 directly connected
proteins, 90 different proteins (60 percent of the 150 proteins
that were added overall). Therefore, the prediction coverage
is greater in our RLE approach (383 proteins) than in this
earlier method (150 proteins).

These two methods associated new proteins to 21 com-
mon pathways, although for each individual pathway
there were very few common proteins that were predicted
by both methods. Specifically, we detected only five com-
mon proteins using the two methods: two in the Gene
Expression (PathwayID:35) and three in the Transcription
(PathwayID:21). Furthermore, if we consider proteins pre-
dicted by the two methods in different pathways, neither
produced an increase in the number of coincidences (for
overlaps see Supplementary Fig. S1, available online).
Accordingly, TAF2_HUMAN, RPC3_HUMAN and
B3KRR0_HUMAN were proposed to be related to the
Transcription pathway, while MED29_HUMAN and
PDCD4_HUMAN were related to the Gene Expression path-
way. TAF2_HUMAN is the transcription initiation factor
TFIID subunit 2, while RPC3_HUMAN is the DNA-
directed RNA polymerase III subunit C3, both proteins
that are located in the nucleus. B3KRR0_HUMAN is an
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uncharacterized protein that has strong similarity to the
DNA excision repair protein ERCC-1. In the second path-
way, MED29_HUMAN is a mediator of RNA polymerase
II transcription subunit 29, and PDCD4_HUMAN is the
programmed cell death protein 4 that inhibits translation
initiation by binding to eukaryotic initiation factor 4A
(eIF4A), as well as inhibiting the helicase activity of eIF4A.
While the biological relevance of these findings requires
further study, UniProt annotation of these proteins and
their simultaneous prediction by two independent meth-
ods could increase the reliability of these results.

In addition, we used a functional semantic similarity
measure [57], [58] in order to compare both pathway predic-
tion methods on the basis of GO Biological Process annota-
tions. We use Jiang and Conrath’s similarity measure [57],
with GO Biological Process terms (from Ensembl Release
56, all evidence codes except ISS). We computed the best-
match average similarity measure [58] between all

pair-wise combinations of proteins, obtaining a semantic
similarity value for each pathway. This semantic similarity
between the original pathway proteins and the predicted
proteins was stronger for the method of Glaab et al. than for
our RLE approach. The average similarity according to the
number of predicted pathways in each system was 0.700
using the method of Glaab et al. for 29 pathways and 0.591
with the RLE for 28 pathways. Moreover, the proteins pre-
dicted by each approach were more semantically similar to
the original pathway than to each other (0.412 for Glaab
et al. versus RLE), demonstrating that the proteins identi-
fied by both methods differ significantly.

The overlap between proteins related to different path-
ways using the RLE approach was lower than that found
using the molecular interaction network based method [17],
as 15 percent of proteins were associated to more than
one pathway in the RLE system as opposed to approximately
30 percent using the latter method (see overlaps in

Fig. 6. A hypothetical diagram of the human Integrin cell surface interactions pathway defined by the RLE system. In the diagram (panel A), some of
the annotated proteins in the pathway, their connections and three RLE predicted proteins are represented. The dashed lines represent proteins pre-
dicted by the RLE system. Panel B shows a comparison of the simple sequence-property vectors for the annotated and predicted proteins: yellow
represents true (1) and red represents false (0). The numerical vector shown is the mode of the above five coloured vectors above. �Cytokine recep-
tor common subunit beta (IL3RB_HUMAN) is a high affinity receptor for interleukin-3, interleukin-5 and granulocyte-macrophage colony-
stimulating factor; the B-cell receptor CD22 (CD22_HUMAN) mediates interactions between B-cells; contactin-1 (CNTN1_HUMAN) mediates cell
surface interactions during nervous system development.

GARC�IA-JIM�ENEZ ET AL.: PREDICTING PROTEIN RELATIONSHIPS TO HUMAN PATHWAYS THROUGH A RELATIONAL LEARNING APPROACH BASED... 761



Supplementary Fig. S1, available online). If we ignore this
overlap (i.e., proteins predicted to be related to more than
one pathway), both methods are closer to the original path-
way in semantic similarity terms. Taken together, these find-
ings suggest that the RLE approach provides better results in
15 pathways,while themethod using onlymolecular interac-
tion networks is superior in another 15 pathways. Without
taking into account the overlap, our RLE system associated
proteins to only 1 pathway less (27 different pathways),
while the Glaab et al. method stopped predicting some pro-
teins in 10 pathways (that is 19 different predicted path-
ways). Thus, this result confirms that the prediction method
presented by Glaab et al. is limited to a small functional area
(i.e., proteins highly connected in specific pathways), while
the proteins predicted by RLE highlight more distant rela-
tionships and they are related to a wider functional realm.

We conclude that the two pathway prediction methods
are complementary given the different number of proteins
predicted by the two systems, the small overlap between
the proteins predicted by both methods, and the distinct
distances in terms of the exploration space. This means that
while the expansion with the Glaab et al. method involves
few proteins connecting many pathways, RLE predicts
many proteins that are different for each pathway.

3.7 Application to New Releases

We have applied the RLE system to the new releases of the
Reactome and the rest of the input databases. In the case of
Reactome release 40, Ensembl release 67 and BioGrid
release 3.1.89, RLE finds proteins with similar characteris-
tics to the original pathway in 32 of the previously analyzed
37 pathways. According to the molecular diversity per path-
way, RLE applies several rules to predict proteins related to
the Reactome pathway proteins in 24 of these pathways.
RLE predicts 572 proteins associated to pathways, with 91
of them predicted to be associated to more than one path-
way, and thus, only 16 percent of the predicted proteins
connect two or more pathways. The list of specific proteins
with similar properties to each pathway is available on the
RLE web (http://rle.bioinfo.cnio.es), where the prediction
of the human proteome will appear for future releases of
the Reactome pathway database.

4 DISCUSSION AND CONCLUSIONS

This study describes a system that predicts pathway associ-
ations based on a function prediction approach that relies
on combinations of simple properties associated with each
protein. The predictions are based mainly on sequence fea-
tures (including the number of isoforms), independent of
the existence of homologies, which means this method can
be applied to poorly characterized proteins. The predictions
also consider some properties related to the position of the
proteins in protein-protein interaction networks and protein
complexes (i.e., interaction partners and their correspond-
ing features). This relational information distinguishes this
system from others based only on individual characteristics.
Using this approach, we searched for specific proteins with
molecular similarities to pathway fragments rather than
proteins with characteristics common to the overall path-
way at the biological process level.

Since it is an approach that searches for proteins with sim-
ilar simple properties to pathway proteins, its novelty
involves the difficulty of finding an established framework
as a reference, such as secondary structure prediction or pro-
tein-protein interaction prediction. In turn, this fact makes it
difficult to prove the results obtained with additional data
and to compare this approachwith other applications.

We are aware that comprehensive validation is always a
key step in the evaluation of machine learning methods.
However, the validation strategy has to be adequate to the
characteristics of the problem and data sets. For example, as
described in Section 2.3.1, a typical 10-CV is not suitable to the
small and diverse data set typical of the problem described
here, since proteins assigned to Reactome pathways can not
be split in consistent, equivalent and unbiased partitions. In
other words amulti-class andmulti-label problemwithmany
small data sets is not appropriate for this 10-CV strategy. On
the other hand, a comparison with BLAST results it is not
appropriated, since RLE and BLAST are based on different
assumptions. RLE includes additional input data different
from amino-acid sequences (i.e., number of transcript, gene
length, protein-protein interactions and complexes) that
BLAST doesn’t take into account and, consequently, the pre-
dictions wouldn’t be comparable. Therefore, the adequate
validation strategy in this case is the partition of the data sets
in large (2:1) sets, and the systematic comparison with the
most similar available method (Glaab et al. method).We have
also carried out a detailed interpretation of the biological rele-
vance of the results of the predictionmethod.

By using a relational representation and applying the
new RLE system, we have associated 383 uncharacterized
proteins to 28 human Reactome pathways, given the specific
chosen cut-offs (see Section 2.4). As each RLE prediction has
an associated score, a more restricted cut-off could be cho-
sen, taking into account that several predicted proteins
share the same score (i.e., they are classified by the same
decision tree branch). The level of predicted proteins differs
from pathway to pathway in terms of performance and of
the different molecular properties of the proposed associa-
tions. RLE enhances the annotations of both groups of pro-
teins, those predicted to be related to the pathway and those
originally annotated in the pathway.

Regarding the use of sequence and interaction features,
the prediction results indicate that interactions are not the
only useful feature in the learning process, as interactions
alone do not reach performance values as high as the
complete system. Therefore, the results we obtained sup-
port the use of sequence features in addition to interac-
tion information.

As expected, our proposed proteins associated to path-
ways differed from those predicted by the previous method
based only on interaction networks [17], both these methods
being complementary. The RLE system proposed here pre-
dicts proteins with more diverse functions, searching within
and beyond the proximal space (for example, less proteins
in the intersection of pathways). Indeed, as this RLE system
focuses on pathway-specific proteins rather than on the con-
nections between pathway proteins, the prediction avoids
overlap between different pathways.

Proteins predicted by RLE provide alternative hypothe-
sis for some of the cellular processes studied. Of particular
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note were the proteins predicted to be related to Transcrip-
tion, Gene expression, Electron transport chain, Telomere mainte-
nance and Integrin cell surface interactions pathways. In
addition, combining UniProt annotations and literature
findings with RLE results slightly augments the reliability
of the relationship of a predicted protein to a specific path-
way. These results also confirm that in terms of the biologi-
cal implications of specific proteins, a low AUPRC value
(such as that obtained for the Telomere maintenance pathway)
does not always indicate a poor prediction.

Finally, the sophisticated Relational Learning-based
Annotation procedure may be applied to predict proteins
with similar properties to some other pathway databases
when the annotated proteins available fulfil the learning
requirements. Furthermore, this system may be employed
for the functional annotation of unknown genes and pro-
teins with a different vocabulary, even permitting data to
be shared that have already been represented relationally
in our knowledgebase.
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