
Product Grammars for Alignment and Folding
Christian H€oner zu Siederdissen, Ivo L. Hofacker, and Peter F. Stadler

Abstract—We develop a theory of algebraic operations over linear and context-free grammars that makes it possible to combine

simple “atomic” grammars operating on single sequences into complex, multi-dimensional grammars. We demonstrate the utility

of this framework by constructing the search spaces of complex alignment problems on multiple input sequences explicitly as

algebraic expressions of very simple one-dimensional grammars. In particular, we provide a fully worked frameshift-aware,

semiglobal DNA-protein alignment algorithm whose grammar is composed of products of small, atomic grammars. The compiler

accompanying our theory makes it easy to experiment with the combination of multiple grammars and different operations.

Composite grammars can be written out in LATEX for documentation and as a guide to implementation of dynamic programming

algorithms. An embedding in Haskell as a domain-specific language makes the theory directly accessible to writing and using

grammar products without the detour of an external compiler. Software and supplemental files available here: http://www.bioinf.

uni-leipzig.de/Software/gramprod/

Index Terms—linear grammar, context free grammar, product structure, multiple alignment, Haskell

Ç

1 INTRODUCTION

THE well-known dynamic programming (DP) algorithms
for the simultaneous alignment of n sequences [1] have

a structure that is reminiscent of topological product struc-
tures. This is expressed e.g., by the fact that intermediary
tables are n-dimensional. Here we explore whether this intu-
ition can be made precise and operational. To this end we
build on the conceptual framework of Algebraic Dynamic
Programming (ADP) [2], [3]. In this setting a dynamic pro-
gramming algorithm is separated into a context-free gram-
mar (CFG) that generates the search space and an
evaluation algebra. In this contribution we will mainly be
concerned with a notion of product grammars to facilitate
the construction of the search space.

Recent advances in RNA folding with pseudoknots [4],
RNA-RNA interactions [5], [6], or RNA consensus structure
prediction [7] have lead to the design of dynamic program-
ming algorithms with dozens of intermediate tables. Their
direct implementation in C or C++ is amajor effort that is not

only time-consuming but also error prone. The framework of
algebraic dynamic programming could improve this situa-
tion considerably, but still does not provide a satisfactory
solution because even the underlying grammars with nearly
a hundred non-terminals are non-trivial to check. It is impos-
sible to explore variants and refinements of these algorithms
without major programming efforts unless ways and means
can be found to construct the underlying grammars in a
modular fashion. Product constructions, as introduced in [8]
and significantly expanded in the present work, are one
promising approach towards this end.

Before we delve into a more formal presentation, consider
the context-free grammar for pairwise sequence alignment
with affine gap costs as an example. Gotoh’s algorithm [9]
uses three non-terminalsM,D, I, depending on whether the
right end of the alignment is a match state, a gap in the first
sequence, or a gap in the second sequence. The correspond-
ing productions are of the form

M ! M u
v

� � �� D u
v

� � �� I u
v

� � �� $
$

� �
D ! M u

�
� � �� D u

:

� � �� I u
�

� �
I ! M �

v

� � �� D �
v

� � �� I :
v

� �
;

(1)

where u and v denote terminal symbols, ‘�’ corresponds to
gap opening, while ‘:’ denotes the (differently scored) gap
extension. The $ here takes the role of the “sentinel charac-
ter”, i.e., matches the end of the input. Each of the non-ter-
minals reads simultaneously from two separate input tapes.
To make this property more transparent in the notation, we
write Mˆ X

X

� �
, Dˆ X

Y

� �
, and Iˆ Y

X

� �
. This yields produc-

tions such as

X
X

� �
! X

X

� �
u
v

� �
’ Xu

Xv

� �
or

Y
X

� �
! X

Y

� � �
v

� �
’ X�

Yv

� �
:

(2)

Apart from the conspicuous absence of Y
Y

� �
, i.e., alignments

ending in an all-gap column, to which we will return later,
this notation strongly suggests to consider the 1-dimen-
sional projections of the two-dimensional productions of

� C. H€oner zu Siederdissen is with the Department of Theoretical Chemistry
University of Vienna, W€ahringerstrasse 17, A-1090, Vienna, Austria.
E-mail: choener@tbi.univie.ac.at.

� I.L. Hofacker is with the Department of Theoretical Chemistry, University
of Vienna, W€ahringerstrasse 17, A-1090, Vienna, Austria, the Research
Group Bioinformatics and Computational, W€ahringerstrasse 29 A-1090,
Vienna, and the Center for RNA in Technology and Health, University of
Copenhagen, Grønnega�rdsvej 3, Frederiksberg C, Denmark.
E-mail: ivo@tbi.univie.ac.at.

� P.F. Stadler is with the Bioinformatics Group of the Department of Com-
puter Science and with the Interdisciplinary Center for Bioinformatics of
the University of Leipzig, D-04107, Leipzig, Germany, the Max Planck
Institute for Mathematics in the Sciences, Inselstraße 22, D-04103, Leip-
zig, Germany, the Fraunhofer Institute for Cell Therapy and Immunology,
Perlickstrasse 1, D-04103, Leipzig, Germany, the Department of Theoreti-
cal Chemistry of the University of Vienna, W€ahringerstrasse 17, A-1090,
Vienna, the Center for RNA in Technology and Health, Univ. Copenha-
gen, Grønnega�rdsvej 3, Frederiksberg C, Denmark, and the Santa Fe Insti-
tute, 1399 Hyde Park Road, Santa Fe NM 87501.
E-mail: studla@bioinf.uni-leipzig.de.

Manuscript received 12 Dec. 2013; revised 29 Apr. 2014; accepted 10 May
2014. Date of publication 21 May 2014; date of current version 1 June 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2014.2326155

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 3, MAY/JUNE 2015 507

1545-5963 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Eq. (2), which obviously have the form

X ! Xu
�� Yu �� $ and Y ! Y:

�� X � : (3)

This simple grammar either reads a symbol (non-terminal
X) or it ignores it (non-terminal Y , with ‘:‘ extending a gap,
‘�‘ opening a gap). Each copy of the “step grammar” (3)
operates on its own input tape. This example suggests that
dynamic programming algorithms for alignment problems
in general have a product-like structure. Indeed, n-way
alignments can be seen as an n-fold product of the simple
step grammar with itself.

The aim of the present work is more general than align-
ments. We introduce products of grammars as a very gen-
eral framework to facilitate a more effective design of
dynamic programming algorithms. This requires that we
clarify the precise meaning of a product of CFGs. Since
alignment algorithms are naturally expressed as left-linear
CFGs we first develop a theory for this special case and
demonstrate in some detail how our framework can facili-
tate the construction of complex alignment algorithms. As a
showcase application we consider mixed nucleotide/pro-
tein alignments with frameshifts. We then proceed to
explore possibilities to generalize the product construction
to context free grammars in general and show that normal
forms can be employed to guide such constructions. We
find that the Greibach normal form (GNF) admits an asso-
ciative product that conserves the normal form but does not
subsume the direct product of linear grammars.

2 ALGEBRAIC OPERATIONS ON LINEAR
GRAMMARS

2.1 Notation

A CFG G ¼ ðN;T; P; SÞ consists of a finite set N of non-ter-
minals, a finite set T of terminals so that N \ T ¼ ;, a set P
of productions X ! a where X 2 N and a 2 ðT [NÞ�, and
a start symbol S 2 N . (It will be convenient below to con-
sider also grammars without a start symbol S). Further-
more, we need at least one special symbol $ denoting the
empty string, an “empty production” ? and the " symbol
denoting a “none”-symbol. This symbol emits nothing
(like $). As a parsing symbol, however, it succeeds always
(in contrast to $, which only succeeds on empty substrings).

Single and multiple tapes. Below we will make use of the
term tape. A (single) tape is an input sequence. Grammars
operating simultaneously on k > 1 input sequences are
called multi-tape grammars of dimension k [10]. All termi-
nal symbols of a k-tape grammar are k-dimensional,
t 2

Q
iðTi [�Þ, where Ti is the alphabet of the ith tape. Non-

terminals are not necessarily tied to individual tapes. It will
be convenient in many cases, however, to use “multi-
dimensional” symbols for the non-terminals to emphasize
their semantics.

The sentinel terminal. The use of $ is arguably optional as
the ruleX ! t with t 2 T also terminates a derivation and it
is possible to append a sentinel character as the last charac-
ter to each input string. While there is no formal requirement
for $, an explicit treatment of the terminating case can be
advantageous in practical implementations as it does not
require adding a sentinel symbol to the alphabet.

The none symbol. The “none” symbol ("), on the other hand
is a purely formal symbol that is used here for notational con-
venience. As a terminal, it denotes the empty string. Inmulti-
tape algorithms such as Needleman-Wunsch it denotes the
deletion in an in-del event (by not reading a character). More
generally, it allows a more compact notation by recasting
several rules into a single common format, as in the case of a
non-terminal followed by terminal in left-linear grammars
or the Greibach normal form, see Section 3.4 below. When-
ever "-only symbols appear in projections (defined below),
they can be savely eliminated. It is possible to avoid ", albeit
at the expense of a somewhatmore lengthy presentation.

In the next two sections we will consider in particular
left-linear grammars, i.e., those for which all productions
are of the form A ! Bxwith A;B 2 N and x 2 T .

The example of Gotoh’s algorithm in the introductory
section motivates us to introduce algebraic operations on
grammars in a more systematic way. As a running example,
we will use one of the simplest alignment algorithms. The
Needleman-Wunsch algorithm [11] aligns two sequences
x1...n and y1...m so that the sum of matches and in/del scores
is maximized. The basic recursion over the memoization
table T reads

Tij ¼ max

Ti�1;j þ d
Ti;j�1 þ d
Ti�1;j�1 þmðxi; yjÞ
0 if i ¼ 0 and j ¼ 0:

8>><
>>:

(4)

In the recursive scheme, the base case is given by the align-
ment of two empty substrings “on the left”, while the other
cases extend the already aligned part of the strings to the
left. This slightly unusual variant of the algorithm was cho-
sen to be identical to the grammatical description that fol-
lows. The first two cases denote an in/del operation with
cost d, whilemð : ; : Þ scores the (mis)match xi with yj.

A two-tape grammar equivalent to the recursion in
Equ. (4) is

X
Y

� �
! X

Y

� �
a
"

� � �� X
Y

� �
"
a

� � �� X
Y

� �
a
a

� � �� � $
$

�
: (5)

There are several differences between the formulation in
Eq. (4) and Eq. (5). The recursive formulation working on the
memoization table T does not store the alignment directly
but rather the score of each partial, optimal alignment. The
grammatical description, on the other hand, describes the
search space of all possible alignments without any notion of
scoring. In addition, recursive descriptions usually include
explicit annotations for base cases, here the empty alignment.
The production rule

�
X
Y

�
!

�
$
$

�
has this role in our example.

In general, grammatical descriptions abstract away certain
implementation details. Some of these will, however,
become important when constructing more complex gram-
mars from simpler ones, as we shall see below.

Our task will be to construct Eq. (5) from even simpler,
“atomic” constituents. These grammars are

S ¼ ðfXg; fag; fX ! Xa
�� Xg; XÞ ; (6)

N ¼ ðfXg; f$g; fX ! $g; XÞ ; (7)

508 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 3, MAY/JUNE 2015

L ¼ ðfXg; fg; fX ! Xg; XÞ : (8)

The rules in Eqs. (6–8) can be associated with single-tape
rules for Eq. (5) by writing X ! X as X ! X", which con-
forms to the intuition built up in the introduction and
Eq. (1). The grammar S in Eq. (6) performs a “step”. It
either reads a single character on the right and recurses on
the left, or simply recurses. S describes the action of an
alignment algorithm as seen by a single tape, i.e., without
knowledge to what the recursion is doing simultaneously
on other tapes. Note that by itself these rules do not termi-
nate. The grammar N , Eq. (7), matches the empty input (or
any empty substring of the input) and immediately termi-
nates. Finally, L (Eq. (8)) singles out the non-terminating
loop case already seen in Eq. (6). Intuitively, we can com-
bine these three components on a single tape as

S þN � L ¼ ðfXg; fa; $g; fX ! Xa
�� $g; XÞ (9)

to obtain a grammar that simply reads an input tape. While
not particularly useful in its own right, S þN � L is the sin-
gle-tape analog of an alignment grammar. More impor-
tantly, it highlights the convenience of algebraic operations
on grammars, which we shall introduce rigorously below
for linear grammars.

Each operator introduced below primarily acts on sets
of production rules. They implicitly carry over to the
involved sets of terminals and non-terminals in an obvious
manner. Two production rules are equivalent if they are
isomorphic as in Eq. (14). This is of relevance insofar that
it leads to idempotency in one of the operators below, but
does not otherwise interfere with parsing.1 In the following
we use the notation Pn to emphasize that the productions
operate on n tapes. We will refer to dim G ¼ n as the
dimension of the grammar.

2.2 Algebraic Operations on Grammars

The þ monoid. The þ operator is defined as the union of all
production rules of the two grammars Pn

1 and Pn
2 each of

dimension n:

Pn
1 þ Pn

2 ¼ Pn
1 [Pn

2 : (10)

We enforce explicitly that the þ operator requires that the
two operand grammars have the same dimensionality. The
þ operation forms a monoid over the set of production
rules. Since the production rules form a set, isomorphic
rules collapse to a single rule. The empty set Pn ¼ fg is a
neutral element and Pn þ Pn ¼ Pn, i.e., the þ monoid is
idempotent. Isomorphism on production rules is also sym-
bolic, that is, X ! X is isomorphic to X ! X but not to
fX ! Y; Y ! Xg, even though the latter set of two rules
reduces to the first. For our example, we have ðX ! Xa

��
XÞ þ ðX ! $Þ ¼ ðX ! Xa

�� X �� $Þ.
Please note that the þ operation has different semantics

than the usually encountered union of two grammars. In
particular, the union g [h of two grammars is typically
defined in such a way that the intersection of non-terminals

is empty, i.e., each non-terminal is tagged with a unique
identifier. This is in contrast to our definition of the þ opera-
tion, where we explicitly treat symbols as equal if they have
the same name.

The � operator. While the þ operator unifies two sets of
production rules, the � operator acts as a set difference
operator

Pn
1 � Pn

2 ¼
�
p 2 Pn

1 j p =2 Pn
2

�
: (11)

As forþ, it requires operands of the same dimensionality. By
construction,� is not associative. Thus does not form a semi-
group but merely a magma. The empty set of production
rules acts as the neutral element on the right. This operator is
important to explicitly remove production rules that yield
infinite derivations. In our example, we need to remove
fX ! Xg. With the help of � we can write ðX ! Xa

�� XÞ�
ðX ! XÞ ¼ ðX ! XaÞ. We shall see that it is often conve-
nient to “temporarily” introduce productions that later on
are excluded again from the final algorithm.

The �monoid. The definition of a direct product of left lin-
ear grammars lies at the heart of this contribution.

Definition 1. Let G1 ¼ ðN1; T1; P1; S1Þ and G2 ¼ ðN2; T2; P2;
S2Þ be left-linear CFGs, i.e., all productions are of the form
A ! Bx or A ! y. Their direct product G1 � G2 is the gram-
mar G ¼ ðN; T; P; SÞ with non-terminals N ¼ N1 �N2 [
N1 � f"g [f"g �N2, terminals T ¼ T1 � T2 [T1 � f"g[
f"g � T2, the start symbol of the product is S ¼

�
S1
S2

�
. The pro-

ductions are of the forms

� A1
A2

�
!

� B1
B2

� x1
x2

� � �� B1
"

� � x1
y2

� � �� "
B2

� � y1
x2

� � �� y1
y2

� �
�
A1
"

�
! B1

"

� � x1
"

� � �� y1
"

� �
� "
A2

�
! "

B2

� � "
x2

� � �� "
y2

� �
;

(12)

where A1 ! B1x1 and A1 ! y1, are productions in P1 and
A2 ! B2x2 and A2 ! y2 are productions in P2, respectively.

By construction G is again a left-linear CFG that now oper-
ates on two bands. It will be convenient to abuse the notation
and write productions of the form Ai ! yi as Ai ! "yi.
Hence all productions in the product grammar can be writ-
ten as

� A1
A2

�
!

� B1
B2

�� x1
x2

�
with Ai;Bi 2 Ni [f"g, xi 2 Ti [f"g

subject to the following conditions: Ai ¼ " implies
Bi ¼ xi ¼ ",

� A1
A2

�
6¼

� "
"

�
, and

� "
"

�
on the r.h.s. is omitted. We

will also make use of notation ðA1 ! B1y1Þ � ðA2 ! B2y2Þ
for the product of two individual productions. By construc-
tion, we have

dimðG1 � G2Þ ¼ dim G1 þ dim G2: (13)

The empty string " in the two-dimensional terminals and
non-terminals is not necessarily associated with terminating
the reading from the input band(s) as it denotes the absence
of a parsing symbol. The $ terminal symbol, on the other
hand, explicitly parses only the empty (sub)-string.

To see that � is associative we need to demonstrate that
the productions of ðG1 � G2Þ � G3 and G1 � ðG2 � G3Þ are iso-
morphic, i.e.,

� x1
x2

�
x3

� �
!

a1
a2

� �
a3

� �
’

x1� x2
x3

�� �
!

a1� a2
a3

�� �
: (14)1. This is not completely true in the context of stochastic linear

grammars: replication of a rule in an SCFG that already has duplicated
rules requires that we sum over the probabilities for isomorphic rules.

SIEDERDISSEN ET AL.: PRODUCT GRAMMARS FOR ALIGNMENT AND FOLDING 509

This is most easily seen in the notation with the extra " sym-
bols since in this case the ai are strings of length 2 that are
simply decomposed in a column-wise fashion. Hence multi-
ple products are well-defined. Furthermore, permutations
of rows are isomorphisms. Thus G1 � G2 ’ G2 � G1, i.e.,
exchanging the order of factors affects the order of the coor-
dinates only. Due to the associativity of �, we can safely
extend these constructions to more than two factors. One
easily checks that � and þ are distributive, i.e., ðG1þ
G0
1Þ � ðG2 þ G0

2Þ ¼ G1 � G2 þ G1 � G0
2 þ G0

1 � G2 þ G0
1 � G0

2.
The canonical projection pi : G1 � G2 ! Gi is obtained by

formally isolating the ith coordinate and contracting the
empty strings " and the empty productions ? ¼ ð" ! "Þ.
Clearly we have piðT Þ ¼ Ti, piðNÞ ¼ Ni, piðSÞ ¼ Si, and
piðP Þ ¼ Pi. The grammar product � thus has the basic
properties of a well-defined product.

Let lanðGÞ denote the language generated by G. Note that
a “string” in lanðGÞ is, by construction, a sequence of
terminals, each of which is either of the form ð

x1
x2

Þ with
x1 2 T1 and x2 2 T2, or of the form ð

x1
" Þ with x1 2 T1, or of

the form ð
"
x2

Þ with x2 2 T2. Thus lanðG1 � G2Þ consists of
alignments of strings ai 2 Gi. To see this, note that each
string ai 2 Gi is generated from si using a finite sequence
}i ¼ ðp1i ; p2i ; . . .Þ of productions. Any partial matching of the
}1 and }2 that preserves the sequential order of the two
input sequences gives rise to a sequence } of productions of
the product grammar by matching all unmatched pki with
the empty production ? . By construction pið}Þ ¼ }i, i.e., }
derives an alignment of the input strings b1 and b2. Con-
versely, given a sequence } of productions of the product
grammar, we know that pið}Þ is a sequence of productions
of Gi; hence it constructs strings in lanðGiÞ. It follows that
the product language satisfies

piðlanðG1 � G2ÞÞ ¼ lanðGiÞ: (15)

Similarly, we find that parse trees have a natural align-
ment structure. Let t be a parse tree for an input b 2
lanðG1 � G2Þ. Its interior nodes are labeled by the produc-
tions, i.e., pairs of the form ð

A1!B1x1
A2!B2x2

Þ, ð A1!B1x1
"

Þ, or ð
"

A2!B2x2
Þ.

The projections piðtÞ are explained by retaining only the ith
coordinate of the vertex label and contracting all vertices
labeled by " in piðtÞ yields a valid parse tree for piðbÞ w.r.t.
Gi. Thus t is a tree alignment of the parse trees for the two
input strings.

The direct product � forms a monoid on grammars with
arbitrary dimensions since

Pm
1 � Pn

2 ¼
�
ðp1 � p2Þmþn j pm1 2 Pm

1 ; pn2 2 Pn
2

�
; (16)

where p1 � p2 is explained in Definition 1. The neutral ele-
ment of the � monoid is the zero-dimensional grammar
which has one production rule "0 ! "0 that neither reads
nor writes anything as it does not operate on a tape. Albeit
rather artificial at first glance, it is useful to have a neutral
element available. For our example, we have

ðX ! Xa jXÞ � ðX ! Xa jXÞ
¼ X

X

� �
! X

X

� �
a
a

� � �� X
X

� �
a
"

� � �� X
X

� �
"
a

� � �� X
X

� �
:

(17)

This grammar contains the two-dimensional loop rule�
X
X

�
!

�
X
X

�
, derived from ðX ! XÞ � ðX ! XÞ that even-

tually needs to be eliminated. To this end, it will be conve-
nient to consider yet another operation on productions.

The structure-preserving power � For any k-dimensional
grammar G and any natural number n 2 Z, G � n denotes
the k� n-dimensional grammar with the same structure.
Each k-dimensional (terminal or non-terminal) symbol
ða1; . . . ;akÞ> is transformed to an k� n-dimensional symbol
ðða1 . . .akÞ; . . . ; ða1 . . .akÞÞ>. Note that for a grammar with a
single production rule we have G�G � G � 2.

For our example grammar, this operation is useful as
short-hand for both Eq. (7) and Eq. (8). In the case of linear
grammars, the � operator is mostly useful as shorthand to
expand singleton grammars. It is worth noting, however,
that some algorithms in computational biology, notably the
Sankoff algorithm [12], work on multiple tapes with a gram-
mar structured very similar to the one-dimensional rela-
tives. We will return to the topic in Section 3.3.

2.3 The Needleman-Wunsch Alignment Grammar

We can now construct the full Needleman-Wunsch align-
ment grammar from the much simpler 1-dimensional con-
stituents of Eqs.(6–8) in the following way:

NW ¼ S � S þN � 2�L � 2 : (18)

Written in terms of the productions only, this can be
rephrased as

ðX ! XajXÞ � ðX ! XajXÞ
þ ðX ! $Þ � 2� ðX ! XÞ � 2

¼ X
X

� �
! X

X

� �
a
a

� � �� X
X

� � a
"

� � �� X
X

� �
"
a

� � �� � $
$

�
:

(19)

Again we have used a distinct symbol $ to highlight the ter-
mination case deriving from N . Since our construction of
the Needleman-Wunsch grammar is based on well-defined
algebraic operations we can readily use the same approach
to construct much more complex alignment algorithms.
Before we proceed, however, we provide with Gotohs algo-
rithm a more complex example and address the technical
issue of loop rules.

2.4 Gotoh’s Grammar in Product Form

The construction of Gotoh’s algorithm (Eq. 1) is a bit more
complicated than the simple product construction for the
Needleman-Wunsch grammar. It will make use of the fol-
lowing simple component grammars, of which grammar S
(Eq. 24) defines a start symbol:

G ¼ ðfX; Y g; fag; fX ! Xa
�� Ya; Y ! X

�� Y gÞ ; (20)

V ¼ ðfX; Y; Sg; fag; fX ! Ya; Y ! Y; S ! Y gÞ ; (21)

W ¼ ðfX;Y g; fg; fY ! X
�� Y gÞ ; (22)

N ¼ ðfXg; f$g; fX ! $gÞ ; (23)

510 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 3, MAY/JUNE 2015

S ¼ ðfX;Y; Sg; fg; fS ! X
�� Y g; SÞ ; (24)

Grammar G encodes the generic “step” and distinguishes
between “non-gap” state X and gap state Y . Correspond-
ingly, the two-tape product G � G generates the core of the
pairwise Gotoh grammar. The rules X ! Xa

�� Ya align a
character, while Y ! X

�� Y denotes a deletion. Gap opening
or gap extension costs are assigned to Y ! X and Y ! Y ,
respectively. G � G has the 16 two-tape productions

X
X

� �
! X

X

� �
a
a

� � �� X
Y

� �
a
a

� � �� Y
X

� �
a
a

� � �� Y
Y

� �
a
a

� �
X
Y

� �
! X

X

� � a
"

� � �� X
Y

� � a
"

� � �� Y
X

� � a
"

� � �� Y
Y

� � a
"

� �
Y
X

� �
! X

X

� �
"
a

� � �� X
Y

� �
"
a

� � �� Y
X

� �
"
a

� � �� Y
Y

� �
"
a

� �
Y
Y

� �
! X

X

� � �� X
Y

� � �� Y
X

� � �� Y
Y

� �
:

(25)

There are seven productions that involve the semantically
meaningless non-terminal

�
Y
Y

�
, which would denote a dele-

tion on both tapes. S � S introduces transitions from the start
symbol. The grammar V � V comprises exactly the rules that
produce ð Y

Y
Þ, while W �W provides the production with�

Y
Y

�
on their left hand side. Subtracting these from G � G

leaves the well known transitions of Gotoh’s algorithm. It
only remains to add the termination rule N � 2. This con-
struction immediately generalized to arbitrary dimensions:
the k-tape Gotoh grammar can be written as

�
k

1
G þ �

k

1
S � �

k

1
V ��

k

1
W þN � k : (26)

In this notation, alignment grammars for affine gap cost
functions can be generated easily for any fixed dimension k.
Already for k ¼ 3 this task is quite a bit of chore if it has to
be done manually.

Specialized to k ¼ 2, Eq. (26) evaluates to

S
S

� �
! X

X

� � �� X
Y

� � �� Y
X

� �
X
X

� �
! X

X

� �
a
a

� � �� X
Y

� �
a
a

� � �� Y
X

� �
a
a

� � �� � $
$

�
X
Y

� �
! X

X

� � a
"

� � �� X
Y

� � a
"

� � �� Y
X

� � a
"

� �
Y
X

� �
! X

X

� �
"
a

� � �� X
Y

� �
"
a

� � �� Y
X

� �
"
a

� �
:

(27)

Here,
�
X
X

�
corresponds to the match M in Eq. (1), while D is

replaced by
�
X
Y

�
and I by

�
Y
X

�
. This notation has the addi-

tional advantage that it makes explicit on which tape(s) a
match or insertion takes place, since for k 	 3 the three non-
terminals for match (M), deletion (D), insertion (I) are not
sufficient. We also include an explicit start symbol

�
S
S

�
now.

The distinction between a gap opening and a gap extension
is encoded at the level of the tagged rules. Compared to
Eq. (1) we do not distinguish terminal symbols ‘:’ and ‘�’
anymore. Instead we use " to denote a missing character
without incurring a loss of expressability.

It could be argued that both V and W are unnecessary if
the production rules are somehow tagged as “illegal” in
the scoring algebra. We suggest, however, to always
remove unwanted production rules (and non-terminals)
explicitly. This ensures that the grammar describes exactly
the search space under consideration in a formally correct
manner and reduces the danger of introducing bugs into
the implementation by, say, accidentally evaluating an
“illegal” rule with a finite score.

2.5 Grammars with Loops

In Eq. (18)we explicitly added a terminating base caseX ! $
and removed a production rule with infinite derivations
X ! X, or, equivalently X ! X". Why do we insist on per-
forming this operation explicitly instead of modifying the
definition of the direct product� accordingly?

The main reason lies in performance considerations. An
“intelligent” product operator would first need to deter-
mine which rules have infinite derivations. For linear gram-
mars with only one non-terminal a rule is not infinite if a
single terminal (except ") is present. $ rules are also fine, as
long as only the empty word case X ! $ is present. Produc-
tions of the form fX ! Y; Y ! Xg, however need to be fol-
lowed up to a depth of the number of production rules
present. For context-free grammars, the complexity will
increase further, as in general multiple non-terminals may
exist on the right-hand side. For both convenience and effi-
ciency (by a constant factor), it does not seem to be desirable
to transform the grammar into Chomsky normal form
(CNF). The second problem is the need for rewriting. In the
case of fX ! Y; Y ! Xg, rewriting yields X ! X by insert-
ing the rules for Y wherever Y is used. More complicated
grammars might quite easily require major rewrites before
all loop cases can be removed.

Finally, using looping productions can be conceptually
useful during construction. In case of Eq. (6), we either want
to read a character in a “step” X ! Xa or perform an in/
del with a “stand” X ! X. The direct product of Eq. (6)
then yields all possibilities of stepping or standing on two
(or more) tapes. Of these cases we only want to remove the
case where all tapes “stand”. This case is quite easily deter-
mined as Eq. (8) and just needs to be scaled (with �) to the
correct dimension and subtracted from the complete
grammar.

2.6 Implementation

We have implemented a small compiler for our grammar
product formalism with four output targets. First, we
generate LATEX output. This supports researchers in the
development of complex, multiple dimensional linear
and context-free (in 2-GNF) grammars, facilitates the
comparison with the intended model for an elaborate
alignment-like algorithm. It assists implementation of the
grammar in the users’ programming language of choice
as the mathematical description of the recurrences
reduces the chance that a production rule or recursion is
simply forgotten.

In addition, we directly target the functional program-
ming language Haskell [13]. It is possible to emit a Haskell
module prototype which then needs to be extended with
user-defined evaluation (scoring) algebras. This mode mir-
rors the LATEX output. Advanced users may make use of
TemplateHaskell [14] and QuasiQuotation [15] to directly
embed our domain-specific language as a proper extension
of Haskell itself. Both Haskell-based approaches ultimately
make use of stream fusion optimizations [16] by way of the
ADPfusion [17] framework that produces efficient code for
dynamic programming algorithms.

Currently, the emitted Haskell code for non-trivial appli-
cations is slower than optimized C by a factor of 2 [17].

SIEDERDISSEN ET AL.: PRODUCT GRAMMARS FOR ALIGNMENT AND FOLDING 511

Recent additions to the compiler infrastructure [18], which
provide instruction-level parallelism, will reduce this factor
further. As ADPfusion is built on top of the Repa [19]
library for CPU-level parallelism, we can expect improve-
ments in this regard to be available for our dynamic pro-
gramming algorithms in the near future.

Finally, we provide colored, pretty-printed diagnostics to
aid during grammar development.

3 ALIGNMENT ALGORITHMS

The overwhelming majority of alignment programs solve
pairwise alignment problems by exact DP but use heuristics
to combine the pairwise solutions to multiple alignments.
The main reason is practicality. Full-fledged n-way DP
alignments have exponential running time in n and hence
are of little practical use for large n despite of elaborate
divide-and-conquer strategies have been proposed to prune
the search space, see e.g., [1]. Three-way alignments never-
theless are employed in practise in particular when high
accuracy is crucial, see e.g., [20], [21], [22], [23]. Four-way
alignments were recently explored for aligning short words
from human language data [24]. We suspect that DP
approaches for moderate values of n have not been explored
for specialized application because of the effort for their
implementation. In this section we demonstrate how the
product construction can help, using a combined nucleic-
acid/protein alignment algorithm as an example.

3.1 Global, Semi-Global, and Local Alignments

3.1.1 Global Alignments

The global alignment described above is the simplest variant
of pairwise sequence alignment. Needleman-Wunsch style
global alignments in grammatical formhave a very convenient
structure. The global alignment of k sequences (and therefore k
tapes) can be written as SWk ¼ �k

i¼1S � L � kþN � k, where
�k

i¼1S denotes the k-fold product of a grammar with itself. By
virtue of having a monoidal (and hence associative) structure
of the� operator it iswell-defined.

This property of the global alignment grammar was quite
useful in recent work on historical linguistics [25] where all
alignments for k-tuples with k 2 f2; 3; 4g, or two- to four-
way alignments, were required. Scoring in these grammars
was done by algebras using the sum-of-pairs scheme. We
will come back to these kinds of scoring schemes in the con-
clusion, as they open up ways to describe automatic genera-
tion of algebras2 for grammar products.

In many applications one is interested in local align-
ments that allow prefixes and suffixes to remain
unaligned. It is possible to perform a local alignment
with an adapted scoring scheme (as done in the Smith-
Waterman algorithm [26]). Within the grammar-centered
framework explored here, however, it seems preferable to
devise a grammar that describes such a local alignment.
Below we consider two natural extensions that are practi-
cal importance as semi-global (glocal) or local alignment
algorithms.

3.1.2 Semi-Global Alignments

We first modify the Needleman-Wunsch grammar,
equ. (18), in such a way that it models a semi-global align-
ment, i.e., to allow the grammar to act locally on one or
more tapes. This allows us to construct scanning-type algo-
rithms that can be used in genome-wide applications such
as HMMer [27] and Infernal [28], [29]. The basic idea is to
replace the one-dimensional “step grammar” by a slightly
more complex one that allows us to skip a prefix or a suffix:

S ¼ ðfXg; fag; fX ! Xa
�� XgÞ (28)

NL ¼ ðfLg; f$g; fL ! $gÞ (29)

NX ¼ ðfXg; f$g; fX ! $gÞ (30)

L ¼ ðfXg; fg; fX ! Xg; XÞ (31)

O ¼ðfX;R;Lg; fag;
fR ! Ra

�� X;X ! L;L ! Lag; RÞ:
(32)

The extension from a global to a semi-global (or global)
alignment is done using another grammar with a total of
four rules. These rules allow the removal of nucleotides on
the right (via R rules) or left (L rules) and switching to and
from the actual alignment grammar. The extended step
grammar O introduces the transitions from the right
“ignored” part R to the aligned part X, and finally from X
to the left “ignored” part L. It reads through the “ignored”
parts with R ! Ra and L ! La rules. The “stop grammar”
N now needs to recognize the end of the tape $ as the r.h.s.
of the non-terminal L.

The combined semi-global grammar can be written as

SG ¼ S � S þO� L� L � 2þNL �NX (33)

has the eight productions

R
X

� �
! R

X

� � a
"

� � �� X
X

� �
X
X

� �
! X

X

� �
a
a

� � �� X
X

� �
"
a

� � �� X
X

� �
a
"

� � �� L
X

� �
L
X

� �
! L

X

� �
a
"

� � �� $
$

� � (34)

with R
X

� �
as the start symbol. It embeds the core of the

alignment grammar, S � S into a head and tail part that
steps through the first band only. By construction SG is
local only on the first tape, and global on the second
tape. Intuitively, we can understand it as SG
 NWþ
O� L, i.e., as the Needleman-Wunsch grammar plus the
skipping of a prefix and suffix on the first tape.

3.1.3 Local Alignments

The Smith-Waterman algorithm [26] for local sequence
alignment is usually implemented via the scoring
scheme. Including a neutral element (i.e., 0 for max-opti-
mizations where sub-scores are summed up) into the
optimization function yields a local alignment algorithm.
As for the semi-global alignment, we again employ a

2. We do not use the term algebra product in this case as algebra prod-
ucts already describe well-defined combinations of algebras in ADP [2].

512 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 3, MAY/JUNE 2015

grammar-based scheme to derive a local algorithm from
a global one. Our construction is based on the observa-
tion that we can interpret the Smith-Waterman algorithm
as a “concatenation” of three interconnected Needleman-
Wunsch algorithms, where the first and the last one
score only the excluded parts of the sequences. This can
be written as

SW ¼ þ2
i¼0 ðSi � Si �Li � 2Þ þ N 2 � 2þ T � 2 : (35)

Here, S;L;N are derived from the global alignment ver-
sions

Si ¼ ðfXig; fag; fXi ! Xia
�� XigÞ

Li ¼ ðfXig; fg; fXi ! XigÞ
N 2 ¼ ðfX2g; f$g; fX2 ! $gÞ
T ¼ ðfX0; X1; X2g; fg; fX0 ! X1; X1 ! X2g; X0Þ

and T defines the transitions between the grammars. The
resulting product grammar contains 12 production rules
with ð

X0
X0

Þ as start symbol:

X0
X0

� �
! X1

X1

� ��� X0
X0

� �
"
a

� ��� X0
X0

� �
a
"

� ��� X0
X0

� �
a
a

� �
X1
X1

� �
!

X2
X2

� ��� X1
X1

� �
"
a

� ��� X1
X1

� �
a
"

� ��� X1
X1

� �
a
a

� �
X2
X2

� �
! $

$

� ��� X2
X2

� �
"
a

� ��� X2
X2

� �
a
"

� ��� X2
X2

� �
a
a

� �
:

(36)

The na€ıve formulation is not ideal in practise in that it
requires three memoization tables for the three non-termi-
nals

�X0
X0

�
,
�X1
X1

�
, and

�X2
X2

�
. In case of a local scoring system

where the excluded parts of the alignment (
�X0
X0

�
and

�X2
X2

�
)

are scored by a constant, it is possible to replace the OðnmÞ
memo-tables with tables of size Oð1Þ. This is possible by rec-
ognizing that every subword (index) in such a table can be
memoized by the same single value. We will come back to
this point in the discussion section.

3.1.4 Symmetric and Asymmetric Scoring

It is important to recognize that the grammar alone is a
device that enumerates all possible alignments of a DNA
sequence with a protein sequence. In particular, the gram-
mar itself will not disallow alignments that are biologically
unsound. However, each grammar created using our frame-
work has all of its rules tagged with function symbols.
These function symbols are also known as algebra symbols
in the context of ADP [2] where we also borrowed the tag-
ging symbol ‘<<<‘ used in Fig. 1. In this sense, our frame-
work is very similar to S-attribute grammars [30].

Nevertheless, we can support the construction of the
scoring algebra already during grammar design be explic-
itly making use of symmetries in the model. The alignment
of two sequences of the same type is usually simplified due
to mirrored operations. Recalling the alignment grammar
from above, we speak of in/del operations as an insertion in
one sequence that may just as well be described as a deletion
in the other sequence. In addition, it does not matter which
sequence is bound to which input tape. In some applications
this symmetry is broken. For example, ancient DNA is par-
tially chemically degraded by cytosin deamination, i.e., C is

misread as T in sequencing [31]; to model such effects,
asymmetric substitution score matrices are required. The
same is true for alignments of lexical data in a computa-
tional linguistics setting because sound changes are direc-
tional between two languages [24]. To enforce symmetry we
may use the same non-terminal symbols for each tape, while
asymmetry can be indicated by the use of different (or
indexed) symbols on the different tapes.

3.2 DNA-Protein Alignment

The problem of aligning a protein sequence to a nucleic acid
(RNA or DNA) sequence is a rather specialized problem
that arises in particular in the context of (homology-based)
gene annotation. The best example is probably NCBI’s
prosplign, which aligns a protein query sequence to a
piece of genomic DNA allowing also for introns. A detailed
description of this dynamic programming algorithm has not
yet become available. An interesting variation on this theme
is gene annotation in the presence of extensive insertion/
deletion editing as observed in the mitochondria of Physa-
rum polycephalum or trypanosomatids. Frequent changes of
the reading frame make it virtually impossible to identify
homologs of mitochondrial proteins by tblastn, thus call-
ing for specialized alignment algorithms [32], [33].

Our task is to align the amino acid sequence of a protein
that may be present in a mitochondrial genome to the entire
nucleic acid sequence of a mitogenome. Since we suspect
that mRNAs may be subject to insertion or deletion editing,
it is necessary to track frameshifts. Fig. 1 shows a general
version of such an approach. The DNA sequence is read in
one of three reading frames (RFs), and a deletion or inser-
tion does not yield a “simple” in/del but also a frame shift
to account for the effect of in/dels on the translation of the
DNA into protein according to the “codons” of the genetic
code. In Fig. 1 frame shifts (with scoring functions rf1 and
rf2) are enabled. Staying within a frame is modelled either
by a (mis)match stay or by the deletion of all three charac-
ters of a codon (del). Finally, the alignment is to be calcu-
lated locally w.r.t. the DNA sequence but globally w.r.t. the
amino acid sequence. In the grammar of Fig. 1 this is
achieved by adding a component grammar that “skips” an
unaligned prefix and suffix on the DNA band while leaving
the protein band untouched. This follows the same insight
as in the simpler alignment grammars above.

As each of the three frames, and shifts to the other two
frames, is by itself similar to the other two frames, a special
encoding saves a lot of work. The F non-terminal indicating
the current frame is indexed with indices 0, 1, and 2. Frame
shifts are thus calculated modulo 3 instead of explicitly creat-
ing all three frame indices F0 to F2 and their corresponding
production rules. Furthermore, all alignments are local with
respect to the DNA sequence but global with respect to the
protein sequence. The product of an embedding grammar
(DNAlocal) with a grammar that does not read any amino
acid character yields the correct semi-global embedding.
For the protein sequence, the corresponding PROstand

grammar can simply be reused.
The complexity of the DNA-protein alignment stems

from the fact that we need to “align” the different frame
shifting possibilities in the DNA input while matching

SIEDERDISSEN ET AL.: PRODUCT GRAMMARS FOR ALIGNMENT AND FOLDING 513

zero to three nucleotides to zero or one amino acid in the
protein input. In addition, once a frame shift has occurred
all following alignments of three nucleotides against one
amino acid are scored in the new reading frame until
another frame shift occurs or the alignment is completed.
Under normal circumstances, the scoring algebra for the
DNA-Protein grammar will assign very high costs to
frameshift productions rf1 and rf2. In order to model
the frequent cytosine insertions in P. polycephalum, how-
ever, we simply use a moderate or low penalty for rf1

when the incomplete codon is corrected by the inclusion of
a ‘C’ that is not encoded in the DNA.

Our framework simplifies the complexity of designing
this algorithm considerably. While the combined grammar is
highly complex, the individual grammars are rather simple.
As already mentioned, the protein “stepping grammar” is
one of the simplest possible ones. The DNA grammar is
more complex as we need to handle stepping and frame
shifts in all three reading frames. But considering that we
allow indexed non-terminals and calculations on these indi-
ces (modulo 3 in the frame shift case), even the frame shift
grammar has only four rules, just twice as much as the sim-
plest stepping grammar.

The resulting 34-production rule grammar is easily calcu-
lated in our frame work. We emphasize that one may read-
ily extend this grammar to allow for, say, an alignment of

two DNA sequences with two protein sequences. This
grammar can be calculated at basically no additional cost but
would pose a daunting task if implemented by hand.

In addition to the 34-production rule grammar, a set of
(10þ 1) function types3 is created. Each function type is asso-
ciated with a pair of function symbols, one for the DNA and
one for the protein tape; apart from the choice function (the
“þ1”). This signature, as it is called in Algebraic Dynamic
Programming [2], [17], associates one type with one or more
of the production rules. For example, the production rule
created from the product of F{i} -> stay <<< F

{i} c c c and P -> amino <<< P a creates, among others,
the production rule

�
F0
P

�
!

�
F0
P

��
c
a

�� c
"

�� c
"

�
.

The corresponding evaluation function stay_amino

has type S� ðN �AÞ � ðN � EÞ � ðN � EÞ ! S. This type
specifies that stay_amino accepts the score (of type S)
of the alignments as calculated up to this position fol-
lowed by tuples of characters read from each tape. The
first nucleotide character (of the set N ¼ fA;C;G;Tg) is
aligned with the corresponding amino acid character (of
the set A of the 20 amino acids). The remaining two
nucleotides are aligned with elements from the empty
set (E which emits the “non-informative character”

Fig. 1. Atomic grammars for the DNA-Protein alignment example. (I) Nucleotides are read in triplets (three nucleotides each). The genome is aligned
locally to the complete amino acid sequence. Using DNAlocal, nucleotides can be removed from the left or right end of the DNA sequence. The
choice between local or global alignment for each tape is made based on adding the grammar product DNAlocal>< PROstand. The DNA grammar
switches between reading frames. DNAdone and DNAstand handle the terminating and looping case. (II) The PROtein grammar works similarly, but
reads only a single amino acid at a time. The expansion of the DNA grammar is more complicated, as the indexed non-terminal symbol F expands to
three different non-terminals corresponding to the three possible reading frames. (III) The grammar product of DNA and PROtein without the looping
case “stand” and with the terminating case “done”. In code, >< represents the direct product (�). The resulting 34-production rule grammar is
shown in the Supplemental Material, available online, together with an extended description.

3. The 11th function type designates the optimizing choice function,
which is part of every evaluation algebra.

514 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 3, MAY/JUNE 2015

represented by the empty tuple ()). This design allows
us to effectively align the single amino acid character
with three nucleotide characters. Finally, the stay_

amino function emits a score of type S.
General scoring for Frameshift-aware alignments: The user

can now implement the required scoring functions. The scor-
ing we describe here makes no assumptions on the knowl-
edge of frequent cytosin (C) insertions. Instead we
implement scoring for a generic frameshift-aware alignment
algorithm which we then evaluate.

To this end we use three score lookup tables: (i) The
alignment of three nucleotides to a single amino acid is
performed by translating the codon into its respective
amino acid, after which the, say, BLOSUM similarity matri-
ces can be used to score the alignment. (ii) In case of a
frame shift combined with a (mis)match either only one or
two nucleotides are aligned with an amino acid. For, say,
two nucleotides on the DNA sequence there are 12 possible
codons: ac1c2, c1ac2, and c1c2a, where a 2 fA;C;G; Tg and
c1; c2 are the data of the DNA sequence. The insertion that
maximizes the BLOSUM similarity is used to score the (mis)
match. (iii) In addition to the BLOSUM-based scores, six gap
parameters are required. Complete deletions of either a
three-nucleotide codon or an amino acid (gccc ¼ �15,
ga ¼ �10), as well as the frame shift versions are penalized.
To model the abundance of insertion editing sites, one-
nucleotide frameshifts receive only a moderate penalty
(approximately four strong mismatches (�20), partially off-
set by the BLOSUM-based match score for the repaired
codon). Aligning a single nucleotide to an amino acid
incurs a malus of �60, while nucleotide deletions incurring
a frameshift are heavily penalized with a malus of �45 or
�75. Finally, given that we want to align the protein semi-
globally to the DNA sequence, transitions to and from the
flanking part of the DNA have zero cost.

It is important to keep in mind that the generation of can-
didate alignments by the grammar is completely separate
from the concrete scoring of the alignment by a scoring alge-
bra. The amalgamation of the two concepts grammar and
scoring algebra is taken care of by the ADPfusion frame-
work [17], which also optimizes the resulting code such that
its running time performance is competitive with hand-
written C-based implementations.

3.2.1 Application of the Frame-Shift Grammar

To evaluate our DNA-Protein alignment algorithm we use
a scenario as a test case in which frameshifts are rather fre-
quent events. The mitochondrial genome of the amoeba
Physarum polycephalum has long resisted comprehensive
annotation because insertion editing is so frequent in most
of its transcripts that blastp-based searches for homo-
logs of known mitochondrial proteins have long remained
unsuccessful [32]. This situation has changed only with
the construction of a dedicated DNA/protein alignment
algorithm that specifically modelled the C insertion [33],
[34]. With the recent characterization of the mitochondrial
transcriptome of P. polycephalum [35] a comprehensive list
of insertion editing sites became available.

Here we test the implementation of the frameshift DNA/
protein alignment algorithm given in Fig. 1 for the task of
annotating the P. polycephalum mitogenome (62,862 nt [36])
by homology search. We use the 67 protein sequences
encoded by the mitochondrial genome of Reclinomonas amer-
icana. This jakobid excavate is only very distantly related to
P. polycephalum. It has been reported, however, to host the
most complete, bacterial-like protein complement of all
mitogenomes investigated so far [37]. We therefore aligned
each of the Reclinomonas americana proteins semi-globally
against the mitogenome of P. polycephalum.

The P. polycephalum mitogenome contains 39 protein
coding genes annotated in Redbase4 [35], 32 of which have
a homolog in R. americana. For 18 of these the best hit of
the DNA-Protein alignment correctly identifies the geno-
mic location of the gene in P. polycephalum with only minor
deviations of the exact start and stop positions. In [33] 9
genes previously not identified in P. polycephalum were
annotated with a handcrafted DNA-Protein alignment
algorithm that specifically favours C insertions using all
proteins in NCBI’s non-redundant protein database.

Our approach recovers three of these nine proteins.
However, we have made no efforts to optimize parameters,
our algorithm does not distinguish between C insertions
and other frame-shifting insertions or deletions, and we use
only a single, evolutionary very remote mitogenome as
query. We recover also nearly half of the C insertion sites.
Using the P. polycephalum proteins as query, we find nearly
all editing sites located in the coding regions (e.g., 76 of the
79 in nad5).

The purpose of this application example, however, is not
to improve the annotation of the P. polycephalum mitoge-
nome beyond the level of accuracy that was achieved with
the help of transcriptome sequencing [35]. Our point is that
a pilot study into this rather specialized topic can be set up
literally within a few hours with the help of grammar prod-
ucts and the software support described in Section 2.6.

Applications such as the alignment of tens or more pro-
tein sequences to full genomes, albeit a rather small one in
this case, require a modicum of performance considerations.
Since we need to scan a full genome (though one only about
60,000 nt in length), we have opted for a sliding window
approach for the DNA sequence, whereas the protein
sequence is always aligned in full.

Fig. 2. Alignment of R. americana proteins to the P. polycephalum
mitogenome. The central panel displays expression data from [35].
Above and below the known protein-coding (P) and ncRNA (R)
genes are shown (thick black lines with delimiters for each gene)
together with the alignment scores (normalized per nucleotide) for
the R. americana proteins.

4. http://bioserv.mps.ohio-state.edu/redbase/.

SIEDERDISSEN ET AL.: PRODUCT GRAMMARS FOR ALIGNMENT AND FOLDING 515

In addition, the algorithm makes use of multiple cores
on a single machine in a parallel setup. This algorithm is
embarrassingly parallel as all pairs of DNA windows and
proteins can be aligned simultaneously, given enough
resources.

The final ingredient to good performance is the imple-
mentation of the dynamic programming algorithm itself.
Our implementation uses ADPfusion as the underlying
dynamic programming framework. In this way, questions
of performance for grammar products are reduced to those
of better grammar design. ADPfusion then transforms the
resulting grammar into efficient Haskell code.

Our larger-scale DNA-Protein example performs quite
well—although we, of course, have no algorithm in C to
compare against. The alignments of the 67 protein sequen-
ces of various lengths ranging from around 100 amino
acids to several hundred to the approximately 60,000 nt of
the mitogenome can be done in 289 minutes on an Intel
Xeon E5-2680 running at 2.7 GHz running in single
threaded mode.

3.3 Sankoff’s Consensus Structure Algorithm

A classical problem in RNA bioinformatics is the simulta-
neous computation of a pairwise alignment and a consensus
secondary structure of two input RNA sequences. David
Sankoff already noticed in [12] that this problem smells of
product structures.

For the sake of brevity we consider here only a variant of
the “Nussinov grammar” [38] that distinguishes the non-
terminal S for unconstrained structures and the non-termi-
nal B for secondary structures enclosed by a base pair
instead of the more commonly used “Zuker grammar” that
accounts for the full loop decomposition [39]. The grammar
NUS has the productions

S ! $ j Sa j SB
B ! aSâ;

(37)

where the terminals a and â denote nucleotides that can pair
with each other. This is just a short hand for the six legal
base pairs explicitly, i.e., aSâ ¼ aSu

�� cSg �� gSc �� gSu ��
uSa

�� uSg.
The �-operation is easily generalized to arbitrary CFGs in

the form ðA ! ab . . . gÞ � 2 ¼
�
A
A

�
!

�
a
a

��
b
b

�
. . .

� g
g

�
, where

a;b; . . . ; g are either terminals or non-terminals. The natural
version of the Sankoff algorithm for two input sequences is

S
S

� �
!

�
$
$

� �� S
S

� �
a
a

� � �� S
S

� � a
"

� � �� S
S

� �
"
a

� �
S
S

� �
! S

S

� �
B
B

� �
B
B

� �
! a

a

� �
S
S

� �
â
â

� �
:

(38)

This can be expressed much more compactly in the form

SANK ¼ NW þ ðS ! SB; B ! aSâÞ � 2; (39)

when we allow base pairs in either sequence only when
they also appear in the consensus. More complex grammars
are required when we allow e.g. also the breaking of arcs,
the insertion and deletion of entire base pairs, or alignments
of paired and unpaired bases, see e.g., [7]. This begs the

question whether such generalization could be obtained as
subsets of the product ofNUS with itself:

S
S

� �
!

�
$
$

� �� � $
Sa

� �� � $
SB

� �� � Sa
$

� �� � Sa
Sa

� �� � Sa
SB

� ���
SB
$

� �� � SB
Sa

� �� � SB
SB

�
�
S
B

�
!

�
$

aSâ

� �� � Sa
aSâ

� �� � SB
aSâ

�
�
B
S

�
!

�
aSâ
$

� �� � aSâ
Sa

� �� � aSâ
SB

�
�
B
B

�
!

�
aSâ
aSâ

�
:

(40)

A closer inspection of this “formal” product reveals several
problems.

While some of the formal right hand sides have natural
explanations, such as

�
Sa
Sa

�
’

�
S
S

��
a
a

�
, others require the

introduction of " symbols, such as
�
aSâ
Sa

�
’

�
a
"

��
S
S

��
â
a

�
.

Other terms are more difficult to make sense of. For instance,
what should we mean by

�
Sa
SB

�
? We might write

�
Sa
SB

�
’�

S
S

��
a
B

�
leaving us with an undesirable combination of a ter-

minal and a non-terminal. In line with our construction for
linear grammars we may include all order-preserving
combinations in a form such as the following

�
Sa
SB

�
’�

S
S

�� a
"

��
"
B

�
j
�
S
S

��
"
B

�� a
"

�
or possibly even more general

expansions. In contrast to the linear grammars considered in
the previous section general CFGs can have arbitrary strings
of terminals and non-terminals as the r.h.s. of their produc-
tions. This may lead to an exponentially large number of
“padded” terms in the interpretation of a formal product
term. As a consequence it becomes very difficult to establish
the algebraic properties of such a product.

A possible remedy comes from considering normal
forms, of which several types have been explored in detail
for CFGs. The two best known ones are the Chomsky nor-
mal form and the Greibach normal form [40], [41]. Both nor-
mal forms have been useful both in practise and as a
theoretical device. We therefore explore here the possibility
to construct direct products of context-free grammars in
Greibach normal form as the two-GNF has the useful prop-
erty of a r.h.s. with a single terminal followed by zero, one,
or two non-terminal symbols. This property simplifies ques-
tions of alignment considerably.

3.4 A Product for Greibach Normal Forms

Every context free grammar that does not produce $ can
be transformed into an equivalent grammar with rules of
the form

A ! aBC j bD j c (41)

known as its Greibach normal form of order 2, or simply
two-GNF. If the empty string is produced, the rule S ! $
must be added, where S is the start symbol. We ignore this
technicality for brevity of exposition. It is easily included if
one allows $ as a terminal symbol. It is however mostly a
question of semantics if a grammar should consider empty
input tapes legal input or not.

A natural product for grammars in two-GNF, which we
denote by } , can be obtained as follows: Terminals in the
product are pairs of terminals of the input grammars, and
the set of non-terminals is, as in the case of linear grammars,
the Cartesian product of the sets of input non-terminals

516 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 3, MAY/JUNE 2015

augmented by non-terminals of the form
�
A
"

�
and

�
"
A

�
. The

production rules of the product are the following:

ðA1 ! a1B1C1Þ } ðA2 ! a2B2C2Þ

¼ A1
A2

� �
! a1

a2

� � B1
B2

� �
C1
C2

� �� �
ðA1 ! a1B1C1Þ } ðA2 ! b2D2Þ

¼ A1
A2

� �
! a1

b2

� � B1
D2

� �
C1
"

� � �� a1
b2

� �
B1
"

� �
C1
D2

� �� �
ðA1 ! a1B1C1Þ } ðA2 ! c2Þ

¼ A1
A2

� �
! a1

c2

� �
B1
"

� �
C1
"

� �� �
ðA1 ! b1D1Þ } ðA2 ! a2B2C2Þ

¼ A1
A2

� �
! b1

a2

� �
D1
B2

� �
"
C2

� � �� b1
a2

� �
"
B2

� � D1
C2

� �� �

ðA1 ! b1D1Þ } ðA2 ! b2D2Þ

¼ A1
A2

� �
! b1

b2

� �
D1
D2

� � ���

b1
b2

� �
D1
"

� � "
D2

� � �� b1
b2

� �
"
D2

� �
D1
"

� � 	

ðA1 ! b1D1Þ } ðA2 ! c2Þ ¼ A1
A2

� �
! b1

c2

� �
D1
"

� �� �
ðA1 ! c1Þ } ðA2 ! a2B2C2Þ

¼ A1
A2

� �
! c1

a2

� � "
B2

� � "
C2

� �� �

ðA1 ! c1Þ } ðA2 ! b2D2Þ ¼ A1
A2

� �
! c1

b2

� � "
D2

� �� �

ðA1 ! c1Þ } ðA2 ! c2Þ ¼ A1
A2

� �
! c1

c2

� �� �
:

(42)

By construction, } is commutative (up to exchanging the
coordinates). One easily checks that the product grammar is
again in two-GNF since the r.h.s. of each production consists
of a terminal followed by zero, one, or two non-terminal
symbols. As in the case of the linear grammars we explain
the productions of non-terminals of the form

�
A
"

�
by the pro-

ductions of A in the first factor grammar, for instance�
A
"

�
!

� a
"

��
B
"

��
C
"

�
. The distributive law ðP1 þ P2Þ } P3 ¼

P1 } P3 þ P2 } P3 also holds by construction.
To show that } is associative, it therefore suffices to

show that the product is associative for any three pro-
ductions. Since there are only three types of rules in a
two-GNF, it suffices to consider the 27 possible products
of triples of production rules, which altogether lead to
57 rules. We used a computational proof to establish that
associativity is indeed satisfied, see Supplemental Mate-
rial, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2014.2326155. It is important to note that the two
“decoupling rules” for ðA1 ! b1D1Þ } ðA2 ! b2D2Þ indi-
cated by the box in Eq. (42) are necessary for associativ-
ity of the product.

Linear grammars can be understood as special cases
of two-GNF with productions of the form A ! Bx

�� y
(except that we now deal with right linear instead of left
linear grammars). A comparison of the definition of � in
Eq. (12) and } in Eq. (42) shows that the restriction of }
to linear grammars does not recover (the mirror image
of) �. The discrepancy are exactly the two “decoupling
rules” necessary for associativity of the } product. For

instance, the } -square of the step grammar ðX ! aX j
"XÞ has the productions

X
X

� �
! a

a

� �
X
X

� � �� a
a

� �
X
"

� � �� a
a

� �
"
X

� � ��
a
"

� �
X
X

� � �� a
"

� �
X
"

� � �� a
"

� �
"
X

� � ��
"
a

� �
X
X

� � �� "
a

� �
X
"

� � �� "
a

� �
"
X

� � ��
"
"

� �
X
X

� � �� "
"

� �
X
"

� � �� "
"

� �
"
X

� �
:

(43)

Only the first term in each line appears in the � product.
We have fully implemented definition of the } product

for the two-GNF of Eq. (42), so that general CFGs in two-
GNF can be defined and multiplied like linear (left-, right-,
and general linear) grammars in our domain-specific lan-
guage, providing access to an efficient implementation of
the resulting multi-tape product grammars.

4 DISCUSSION

Our main contribution is a formal, abstract algebra on linear
grammars. This algebra provides operations to create com-
plex, multi-tape grammars from simple, single-tape atomic
ones.More informally, we have created amethod and imple-
mentation to “multiply” dynamic programming algorithms.
We also provide a compiler framework that makes the gram-
mars readily available for actual deployment with good per-
formance of the resulting code. Products of linear grammars
make it very easy to construct the grammars underlying key
algorithms in the field of string comparison starting from
almost trivial single-tape factors. This approach is particu-
larly fruitful in highly specialized applications as it drasti-
cally reduces the efforts required for implementing
prototypes, as the example of DNA/protein alignments with
frameshifts shows. The work presented here is just a first
step towards a general theory of grammar products. Many
questions, both theoretical and practical, remain open.

Although we have succeeded in constructing an algebrai-
cally meaningful product operation of CFGs in normal form
it is currently restricted to the Greibach normal form. A
fully generic version of the grammar product currently
eludes us. While this poses no theoretical problem given
that every CFG can be transformed into an equivalent CFG
in (Greibach) Normal Form, it poses a problem in practice.
Often, a production rule is associated with a certain struc-
tural feature that one wants to retain. Transformations into
normal form also increase the number of non-terminals
(and thereby resource usage) by a polynomial depending
on the number of non-terminals [42].

It will also be important to explore both the interplay of
different operators on grammars (especially our þ opera-
tion and the union ([) of grammars), and to formalize
meaning and operation. This will provide, in the long-term,
a full-fledged algebraic framework in which it should be
easily possible to describe even complex grammatical prob-
lems. As pointed out by a reviewer, it may sometimes be
convenient to introduce a grammar G ¼ ðfZg; fg; fgÞ for the
purpose of introducing the non-terminal Z (using þ) or for
the purpose of removing all rules that contain Z (using �).
For instance, ðfY g; fg; fgÞ � k could remove the unwanted
double-deletion Y

Y

� �
in Equ. (25) in a quite convenient man-

ner. Our formalism, however, defines algebraic operations

SIEDERDISSEN ET AL.: PRODUCT GRAMMARS FOR ALIGNMENT AND FOLDING 517

primarily on sets of production rules. This construction thus
will require careful (re-)definition of the algebraic opera-
tions acting on grammars.

An intriguing idea (proposed by Robert Giegerich) is to
identify irreducible grammars from which more complex
ones can be constructed, possibly in a unique way. To that
end, we will require a much better understanding of abstract
algebras on grammars as well as the impact of constructions
such as (Z; fg; fg). Since k-tape grammars can formally be
written without making the dimension of the non-terminals
explicit, a conceptually related question is whether product
grammars can be efficiently recognized. More abstractly: ist
there a “unique prime-factorization theorem” for grammars
akin to analogous results for graphs? [43].

Another avenue of future research is the question of
semantic ambiguity [44] of the resulting grammars. Simple
products of the same grammar yield ambiguous alignments
on sequences of in-dels, that is multiple derivations exist
that yield the same alignment. This problem was studied
extensively for stochastic context-free grammars imple-
menting covariance models for structural RNA search [45].
It is typically dealt with a good grammar design that explic-
itly allows only one order of successive insertions and dele-
tions on multiple tapes. Automatic dis-ambiguation is
probably complicated but would further simplify the crea-
tion of complex multi-tape grammars.

In this contribution we have focussed entirely on the
grammars underlying the dynamic programming algo-
rithms and disregarded almost entirely the construction of
scoring algebras for product grammars. We anticipate that
in many cases, a scoring algebra can be expressed as a
form of product itself where the two scoring functions (one
for each grammar) are themselves combined in some well-
defined form. One possibility is the use of a folding opera-
tion to combine scores for subsets of the individual dimen-
sions. It then follows that given two algebras AG1

and AG2

for grammars G1 and G2 we should be able to define an
operation AG1

�k AG2
which generates appropriate alge-

bras from algebras for atomic grammars. As long as k has
some structure similar to a fold or another operation on
subsets of the dimensions (of the grammars) involved,
appropriate products can be automatically defined. This
will become particularly useful when aiming at ADP-like
[46] algebra-products to explore the rich space of combined
algebras on grammars constructed from algebraic opera-
tions on atomic grammars.

In Section 3.1 on local alignments we mentioned that a
na€ıve memoization of the three non-terminals of the Smith-
Waterman algorithm leads to a three-fold increase in mem-
ory usage compared to the usual implementation based on
one table and a neutral element in the scoring function. In
case of local alignments, the evaluation functions attached
to each production rule return a constant value, often the
neutral element (i.e., a score of 0 for summations), for all
productions and all substrings.

We plan to extend our framework to make it possible to
evaluate combinations of grammars and algebras in more
complex ways. This should allow us to automatically deter-
mine what kind of memo-table is required for each gram-
mar and algebra, thereby optimizing memory consumption
of the dynamic programming algorithms.

Good and optimal table designs based on yield size anal-
ysis have been considered in [47], extending earlier ideas on
more restricted dynamic programming algorithms [48]. Our
proposed extension will consider not only the yield size but
the actual evaluation algebra, thereby including more
domain-specific knowledge.

ACKNOWLEDGMENTS

This work was funded, in part, by the Austrian FWF, project
“SFB F43 RNA regulation of the transcriptome” and the
German DFG project “MI439/14-1”. CHzS thanks Jing,
Katja, Lydia, and Nancy (and gin, as well as a mad man in a
box). The authors thank Maria Walter for her hospitality
that was very conducive for the development of this work,
and the referees – Prof. Robert Giegerich and one anony-
mous – for providing in-depth comments.

REFERENCES

[1] D. J. Lipman, S. F. Altschul, and J. D. Kececioglu, “A tool for mul-
tiple sequence alignment,” Proc. Nat. Acad. Sci. USA, vol. 86,
no. 12, pp. 4412–4415, 1989.

[2] R. Giegerich and C. Meyer, “Algebraic dynamic programming,”
in Proc. Algebraic Methodol. Softw. Technol., 2002, vol. 2422,
pp. 349–364.

[3] R. Giegerich, C. Meyer, and P. Steffen, “A discipline of dynamic
programming over sequence data,” Sci. Comput. Program., vol. 51,
no. 3, pp. 215–263, 2004.

[4] C. M. Reidys, F. W. D. Huang, J. E. Andersen, R. C. Penner, P. F.
Stadler, and M. E. Nebel, “Topology and prediction of RNA
pseudoknots,” Bioinformatics, vol. 27, pp. 1076–1085, 2011.

[5] H. Chitsaz, R. Salari, S. C. Sahinalp, and R. Backofen, “A partition
function algorithm for interacting nucleic acid strands,” Bioinfor-
matics, vol. 25, pp. i365–i373, 2009.

[6] F. W. D. Huang, J. Qin, C. M. Reidys, and P. F. Stadler, “Partition
function and base pairing probabilities for RNA-RNA interaction
prediction,” Bioinformatics, vol. 25, pp. 2646–2654, 2009.

[7] S. Will, C. Schmiedl, M. Miladi, M. M€ohl, and R. Backofen,
“SPARSE: Quadratic time simultaneous alignment and folding of
RNAs without sequence-based heuristics,” in Proc. 17th Int. Conf.
Res. Comput. Mol. Biol., 2013, pp.289–290.

[8] C. H€oner zuSiederdissen, I. L. Hofacker, and P. F. Stadler, “How
to multiply dynamic programming algorithms,” in Proc. Brazilian
Symp. Bioinformat., 2013, pp. 82–93.

[9] O. Gotoh, “An improved algorithm for matching biological
sequences,” J. Mol. Biol., vol. 162, pp. 705–708, 1982.

[10] F. Lefebvre, Grammairs s-attribu�ees multi-bandes et applications �a
l’analyse automatique de s�equences biologiques, Ph.D. dissertation,
�Ecole Politechnique, Palaiseau, France, 1997.

[11] S. B. Needleman and C. D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins,” J. Mol. Biol., vol. 48, no. 3, pp. 443–453, 1970.

[12] D. Sankoff, “Simultaneous solution of the RNA folding, alignment
and protosequence problems,” SIAM J. Appl. Math., vol. 45,
pp. 810–825, 1985.

[13] The GHC Team. (1989–2013). The Glasgow Haskell Compiler
(GHC) [Online]. Available: http://www.haskell.org/ghc/

[14] T. Sheard, and S. P. Jones, “Template Meta-programming for
Haskell,” in Proc. ACM SIGPLANWorkshop Haskell, 2002, pp. 1–16.

[15] G. Mainland, “Why it’s nice to be quoted: Quasiquoting for
Haskell,” in Proc. ACM SIGPLAN Workshop Haskell Workshop,
2007, pp. 73–82.

[16] D. Coutts, R. Leshchinskiy, and D. Stewart, “Stream fusion: From
lists to streams to nothing at all,” in Proc. 12th ACM SIGPLAN Int.
Conf. Funct. Program., 2007, pp. 315–326.

[17] C. H€oner zu Siederdissen, “Sneaking around concatMap: Efficient
combinators for dynamic programming,” in Proc. 17th ACM SIG-
PLAN Int. Conf. Funct. Program., 2012, pp. 215–226.

[18] G. Mainland, R. Leshchinskiy, S. P. Jones, and S. Marlow,
“Exploiting vector instructions with generalized stream fusion,”
in Proc. 18th ACM SIGPLAN Int. Conf. Funct. Program., 2013,
pp. 37–48.

518 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 3, MAY/JUNE 2015

[19] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones,
and B. Lippmeier, “Regular, shape-polymorphic, parallel arrays
in Haskell,” in Proc. 15th ACM SIGPLAN Int. Conf. Funct. Program.,
2010, pp. 261–272.

[20] O. Gotoh, “Alignment of three biological sequences with an effi-
cient traceback procedure,” J. Theor. Biol., vol. 121, pp. 327–337,
1986.

[21] T. G. Dewey, “A sequence alignment algorithm with an arbitrary
gap penalty function,” J. Comput. Biol., vol. 8, pp. 177–190, 2001.

[22] A. S. Konagurthu, J. Whisstock, and P. J. Stuckey, “Progressive
multiple alignment using sequence triplet optimization and three-
residue exchange costs,” J. Bioinf. Comput. Biol., vol. 2, pp. 719–
745, 2004.

[23] M. Kruspe, and P. F. Stadler, “Progressive multiple sequence
alignments from triplets,” BMC Bioinformat., vol. 8, p. 254, 2007.

[24] L. Steiner, P. F. Stadler, and M. Cysouw, “A pipeline for computa-
tional historical linguistics,” Lang. Dynamics Change, vol. 1, pp. 89–
127, 2011.

[25] N. Retzlaff, “Bigramm-Alignierung und ihre Anwendung in
der historischen Linguistik,” Bachelors Thesis, Department of
Computer Science, Eberhard Karls Universit€at Tbingen, Tb€uin-
gen, Germany, 2013.

[26] T. F. Smith, and M. S. Waterman, “Identification of common
molecular subsequences,” J. Mol. Biol., vol. 147, pp. 195–197, 1981.

[27] S. R. Eddy, “HMMER: Profile HMMs for protein sequence analy-
sis,” Bioinformatics, vol. 14, pp. 755–763, 1998.

[28] S. R. Eddy, and R. Durbin, “RNA sequence analysis using covari-
ance models,”Nucl. Acids Res., vol. 22, pp. 2079–2088, 1994.

[29] E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy, “Infernal 1.0: infer-
ence of RNA alignments,” Bioinformatics, vol. 25, no. 10, pp. 1335–
1337, 2009.

[30] F. Lefebvre, “An optimized parsing algorithm well suited to
RNA folding,” in Proc. 3rd Int. Conf. Intell. Syst. Mol. Biol.,
1995, pp. 222–230.

[31] K. Pr€ufer, U. Stenzel, M. Hofreiter, S. P€a€abo, J. Kelso, and R. E.
Green, “Computational challenges in the analysis of ancient
DNA,” Genome Biol., vol. 11, p. R47, 2010.

[32] J. M. Gott, N. Parimi, and R. Bundschuh, “Discovery of new genes
and deletion editing in Physarummitochondria enabled by a novel
algorithm for finding edited mRNAs,” Nucl. Acids Res., vol. 33,
pp. 5063–5072, 2005.

[33] C. Beargie, T. Liu, M. Corriveau, H. Y. Lee, J. Gott, and R.
Bundschuh, “Genome annotation in the presence of insertional
RNA editing,” Bioinformatics, vol. 24, pp. 2571–2578, 2008.

[34] R. Bundschuh, “Computational approaches to insertional RNA
editing,”Methods Enzymol., vol. 424, pp. 173–195, 2007.

[35] R. Bundschuh, J. Altm€uller, C. Becker, P. N€urnberg, and J. M.
Gott, “Complete characterization of the edited transcriptome of
the mitochondrion of Physarum polycephalum using deep sequenc-
ing of RNA,”Nucl. Acids Res., vol. 39, pp. 6044–6055, 2011.

[36] H. Takano, T. Abe, R. Sakurai, Y. Moriyama, Y. Miyazawa, H.
Nozaki, S. Kawano, N. Sasaki, and T. Kuroiwa, “The complete
DNA sequence of the mitochondrial genome of Physarum poly-
cephalum,”Mol. General Genetics, vol. 264, pp. 539–545, 2001.

[37] B. F. Lang, G. Burger, C. J. O’Kelly, R. Cedergren, G. B. Golding, C.
Lemieux, D. Sankoff, M. Turmel, and M. W. Gray, “An ancestral
mitochondrial DNA resembling a eubacterial genome in mini-
ature,” Nature, vol. 387, pp. 493–497, 1997.

[38] R. Nussinov, G. Piecznik, J. R. Griggs, and D. J. Kleitman,
“Algorithms for loop matching,” SIAM J. Appl. Math., vol. 35,
pp. 68–82, 1978.

[39] R. D. Dowell, and S. R. Eddy, “Evaluation of several lightweight
stochastic context-free grammars for RNA secondary structure
prediction,” BMC Bioinformat., vol. 5, p. 71, 2004.

[40] S. A. Greibach, “A new normal-form theorem for context-free
phrase structure grammars,” J. ACM, vol. 12, pp. 42–52, 1965.

[41] A. Ehrenfeucht, and G. Rozenberg, “An easy proof of Greibach
normal form,” Inf. Control, vol. 63, pp. 190–199, 1984.

[42] N. Blum, and R. Koch, “Greibach normal form transformation
revisited,” Inf. Comput., vol. 150, pp. 112–118, 1999.

[43] R. Hammack, W. Imrich, and S. Klav�zar, Handbook of Product
Graphs, 2nd ed. Boca Raton, FL, USA: CRC Press, 2011.

[44] R. Giegerich, “Explaining and controlling ambiguity in dynamic
programming,” in Combinatorial Pattern Matching. New York, NY,
USA: Springer, 2000, pp. 46–59.

[45] R. Giegerich, and C. H€oner zu Siederdissen, “Semantics and ambi-
guity of stochastic RNA family models,” IEEE/ACM Trans. Com-
put. Biol. Bioinformat., vol. 8, no. 2, pp. 499–516, Mar. 2011.

[46] P. Steffen, and R. Giegerich, “Versatile and declarative
dynamic programming using pair algebras,” BMC Bioinformat.,
vol. 6, p. 224, 2005.

[47] P. Steffen and R. Giegerich, “Table design in dynamic pro-
gramming,” Inf. Comput., vol. 204, no. 9, pp. 1325–1345, 2006.

[48] H. L. Bodlaender and J. A. Telle. (2004, Dec.). Space-efficient con-
struction variants of dynamic programming. Nordic J. Comput.
[Online]. 11(4), pp. 374–385. Available: http://dl.acm.org/
citation.cfm?id=1062991.1062995

Christian H€oner zu Siederdissen is a postdoc-
toral researcher with the Institute for Theoretical
Chemistry at the University of Vienna. His
research interests include optimization problems
in biology, Bayesian statistics, formal languages,
and functional programming.

Ivo L. Hofacker is a professor at the Departments
of Chemistry and of Computer Science at the Uni-
versity of Vienna, where he heads the Institute for
Theoretical Chemistry and the Research Group
Bioinformatics and Computational Biology,
respectively. His research interests focus on the
prediction of RNA structures, noncoding RNA
annotation, and the analysis of folding landscapes.

Peter F. Stadler received the PhD degree in
Chemistry from the University of Vienna in 1990,
and then worked as an assistant and associate
professor for theoretical chemistry at the same
School. In 2002, he moved to Leipzig as a full pro-
fessor for bioinformatics. Since 1994, he is an
external professor at the Santa Fe Institute. He is
an external scientific member of the Max Planck
Society since 2009 and a corresponding member
abroad of the Austrian Academy of Sciences
since 2010.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SIEDERDISSEN ET AL.: PRODUCT GRAMMARS FOR ALIGNMENT AND FOLDING 519

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

