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Maximizing Protein Translation Rate in the
Ribosome Flow Model: the Homogeneous Case

Yoram Zarai, Michael Margaliot and Tamir Tuller

Abstract—Gene translation is the process in which intracellular
macro-molecules, called ribosomes, decode genetic information
in the mRNA chain into the corresponding proteins. Gene
translation includes several steps. During the elongationstep,
ribosomes move along the mRNA in a sequential manner and
link amino-acids together in the corresponding order to produce
the proteins.

The homogeneous ribosome flow model (HRFM) is a deter-
ministic computational model for translation-elongation under
the assumption of constant elongation rates along the mRNA
chain. The HRFM is described by a set ofn first-order nonlinear
ordinary differential equations, where n represents the number
of sites along the mRNA chain. The HRFM also includes two
positive parameters: ribosomal initiation rate and the (constant)
elongation rate.

In this paper, we show that the steady-state translation rate
in the HRFM is a concave function of its parameters. This
means that the problem of determining the parameter values that
maximize the translation rate is relatively simple. Our results
may contribute to a better understanding of the mechanisms
and evolution of translation-elongation. We demonstrate this by
using the theoretical results to estimate the initiation rate in M.
musculus embryonic stem cell. The underlying assumption is that
evolution optimized the translation mechanism.

For the infinite-dimensional HRFM, we derive a closed-
form solution to the problem of determining the initiation and
transition rates that maximize the protein translation rate. We
show that these expressions provide good approximations for the
optimal values in then-dimensional HRFM already for relatively
small values of n. These results may have applications for
synthetic biology where an important problem is to re-engineer
genomic systems in order to maximize the protein production
rate.

Index Terms—Systems biology, synthetic biology, gene trans-
lation, maximizing protein production rate, convex optimization,
continued fractions.

I. I NTRODUCTION

Proteins are micro-molecules involved in all intracellular ac-
tivities. DNA regions, called genes, encode proteins as ordered
lists of amino acids. During the process of gene expression
these regions are first transcribed into mRNA molecules. In the
next step, calledgene translation, the information encoded in
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the mRNA is translated into proteins by molecular machines
called ribosomesthat move along the mRNA sequence [1].
During the translation process, each triplet of consecutive
nucleotides, called a codon, is decoded by a ribosome into
a suitable amino-acid.

Gene translation is a fundamental cellular process and
its study has important implications to numerous scientific
disciplines ranging from human health to evolutionary biology.
Computational models of translation are becoming increas-
ingly more important due to the need to integrate, analyze,
and understand the rapidly accumulating biological findings
related to translation [54], [10], [17], [29], [50], [49], [8].

Computational models of translation are also of importance
in synthetic biology. Indeed, a major challenge in this field
is to re-engineer genomic systems to produce a desired pro-
tein translation rate. Computational models of translation are
crucial in achieving this goal, as they allow to simulate and
analyze the effect of various manipulations of the genomic
mechanism on the translation rate.

A standard mathematical model for translation-
elongation is the Totally Asymmetric Simple Exclusion
Process(TASEP) [45], [55], [24], [7]. TASEP is a stochastic
model for particles moving along a track. A chain of sites
models the tracks. Each site can be either empty or occupied
by a particle. The termsimple exclusionrefers to the fact that
particles hop randomly from one site to the next, but only if
the target site is not already occupied. In this way, TASEP
encapsulates theinteraction between the particles. The term
totally asymmetricis used to indicate unidirectional motion
along the lattice. Despite its rather simple description, it
seems that rigorous analysis of TASEP is non-trivial. See [42]
for a detailed exposition of these issues.

In 2011, Reuveni et al. [40] considered adeterministicmath-
ematical model for translation-elongation called theribosome
flow model(RFM). This model may be derived as a mean-field
approximation of TASEP (see, e.g. [4, p. R345]).

Recent biological studies have shown that in some cases
the elongation rates along the mRNA are approximately
constant [19], [39]. Under the assumption of constant elon-
gation rates, the RFM becomes thehomogeneous ribosome
flow model(HRFM) [32]. This model includes two positive
parameters: the initiation rateλ and the constant elongation
rateλc. In this paper, we show that the steady-state translation
rate in the HRFM is aconcavefunction of these parameters.
This implies that the problem of optimizing the translationrate
under a simple constraint on the rates is aconvex optimization
problem. Thus, this problem admits a unique solution, and
this solution can be easily found (numerically) using simple
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and efficient algorithms. We also derive anexplicit expression
for the optimal solution for the particular case of the infinite-
dimensional HRFM, that is, whenn → ∞.

These results may have important applications in the context
of synthetic biology. Indeed, a fundamental problem in this
field is to re-engineer a genetic system by manipulating the
transcript sequence, and possibly other intra-cellular variables,
in order to maximize the translation rate. Also, it is reasonable
to expect that in most organisms evolutionary forces act to
optimize translation costs. For example, in micro-organisms
the growth rate is globally strongly dependent on the transla-
tion rate/efficiency (see, for example, [23], [48], [12], [13]).
In addition, it has been shown that in all organisms highly
expressed genes undergo selection for sequence features that
improve their translation rate efficiency (see, for example, [23],
[48], [27]). The mathematical results described here may be
applied to study these issues in a rigorous manner.

Concavity of the translation rate with respect to various
variables can also be examined experimentally. A recent
paper [15] studied the effect of the intracellular translation
factor abundance on protein synthesis. Experiments based on
a tet07 construct were used to manipulate the production of
the encoded translation factor to a sub-wild-type level [15],
and measure the translation rate, or protein levels, for each
level of the translation factor(s). Their results suggest that the
mapping from levels of translation factors to translation rate is
indeed concave (see Fig.1 in [15]). Our results thus provide
the first mathematical support of the observed concavity in the
experiments of [15].

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews the RFM and HRFM. Section III
presents the main results. Section IV describes an application
of the theoretical results for estimating the initiation rate in M.
musculusembryonic stem cell. The underlying assumption is
that evolution optimized the translation mechanism. The final
section summarizes and describes several possible directions
for further research. In order to streamline the presentation,
all the proofs are placed in the Appendix.

II. PRELIMINARIES

In the RFM, mRNA molecules are coarse-grained inton
consecutive sites. The RFM is given byn first-order nonlinear
ordinary differential equations:

ẋ1 = λ(1 − x1)− λ1x1(1− x2),

ẋ2 = λ1x1(1 − x2)− λ2x2(1− x3),

ẋ3 = λ2x2(1 − x3)− λ3x3(1− x4),

...

ẋn−1 = λn−2xn−2(1 − xn−1)− λn−1xn−1(1− xn),

ẋn = λn−1xn−1(1 − xn)− λnxn. (1)

Here, xi : R+ → [0, 1] is the occupancy level at sitei at
time t, normalized so thatxi(t) = 0 [xi(t) = 1] implies
that site i is completely empty [completely full] at timet.
The parameterλ > 0 is the initiation rate into the chain,
and λi > 0, i ∈ {1, .., n}, is a parameter that controls the

transition rate from sitei to sitei+1. In particular,λn controls
the output rate at the end of the chain.

The rate of ribosome flow into the system isλ(1− x1(t)).
The rate of ribosome flow exiting the last site, i.e., theprotein
translation rate, is λnxn(t). The rate of ribosome flow from
site i to site i + 1 is λixi(t)(1 − xi+1(t)) (see Fig. 1). Note
that this rate increases withxi(t) (i.e., when sitei is fuller)
and decreases withxi+1(t) (i.e., when the consecutive site is
becoming fuller). In this way, the RFM, just like the TASEP,
takes into account theinteraction between the ribosomes in
consecutive sites.

Let x(t, a) denote the solution of the RFM at timet for the
initial conditionx(0) = a. Since the state-variables correspond
to normalized occupation levels, we always consider initial
conditionsa in the closedn-dimensional unit cube:Cn :=
{x ∈ R

n : xi ∈ [0, 1], i = 1, . . . , n}. It is straightforward
to verify that this implies thatx(t, a) ∈ Cn for all t ≥ 0
(see [33]).

Let Int(Cn) denote the interior ofCn. It was shown in [33]
that the RFM is amonotone dynamical system[46] and that
this implies that (1) admits a unique equilibrium pointe ∈
Int(Cn). Furthermore,limt→∞ x(t, a) = e for all a ∈ Cn.
This means that all trajectories converge to the steady-state e.
From a biological viewpoint, this means that the ribosome
distribution profile along the chain converges to a steady-state
profile that does not depend on the initial profile, but only on
the parameter values.

We note in passing that monotone dynamical systems have
recently found many applications in systems biology, see
e.g. [2], [26], [47] and the references therein.

Let
R := λnen (2)

denote thesteady-state translation rate. An important problem
is to understand the dependence ofe and, in particular,R on
the RFM parameters. Forx = e the left-hand side of all the
equations in (1) is zero, so

λ(1 − e1) = λ1e1(1 − e2)

= λ2e2(1 − e3)

...

= λn−1en−1(1− en)

= λnen. (3)

This yields

R = λiei(1 − ei+1), i ∈ {1, . . . , n}, (4)

where we defineen+1 := 0. Also,

en = R/λn,

en−1 = R/(λn−1(1 − en)),

...

e2 = R/(λ2(1 − e3)),

e1 = R/(λ1(1 − e2)), (5)

and
e1 = 1− R

λ
. (6)
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Fig. 1. The RFM: Codons are grouped into sites;xi(t) is the occupancy level at sitei at time t; the λis control the transition rates between consecutive
sites; the protein production rate at timet is λnxn(t).

Combining (5) and (6) provides a finite continued fraction [28]
expression forR:

1−R/λ =
R/λ1

1− R/λ2

1− R/λ3

. . .
1−

R/λn−1

1−R/λn.

(7)

Note that (7) has multiple solutions forR (and thus also multi-
ple solutions foren = R/λn), however, we are interested only
in the unique feasible solution, i.e. the solution corresponding
to e ∈ Int(Cn).

Recent biological findings suggest that in some cases the
transition rate along the mRNA chain is approximately con-
stant [19]; this may be also the case for gene transcription [14].
To model this case, Ref. [32] has considered the RFM in the
special case where

λ1 = λ2 = · · · = λn := λc, (8)

that is, the transition ratesλi are all equal, andλc denotes
their common value. Since thisHomogeneous Ribosome Flow
Model (HRFM) includes only two parameters,λ andλc, the
analysis is simplified. In particular, (7) becomes

R/λ = 1− R/λc

1−
R/λc

1−
R/λc

. . .
1− R/λc

1−R/λc

(9)

where λc appears a total ofn times. Note that the right-
hand side here is a1-periodiccontinued fraction [28]. Eq. (9)
yields a polynomial equation of degree⌈(n+1)/2⌉ in R. For
example, forn = 2 Eq. (9) becomes

R2 − (2λ+ λc)R+ λλc = 0. (10)

Several recent papers analyzed the RFM/HRFM. In [31]
it has been shown that the state-variables (and thus the
translation rate) in the RFMentrain to periodically time-
varying initiation and/or transition rates. This providesa com-
putational framework for studying entrainment to a periodic
excitation, e.g., the24 hours solar day or the cell-cycle, at
the genetic level. Ref. [34] has considered the RFM with

positive linear feedback as a model for ribosome recycling.It
has been shown that the closed-loop system admits a unique
globally asymptotically stable equilibrium point. Ref. [53]
has considered the HRFM in the case of an infinitely-long
chain, (i.e. whenn → ∞) and derived a simple expression
for e∞ := limn→∞ en, as well as bounds for|e∞ − en| for
all n ≥ 2.

Summarizing, the RFM is a deterministic model for
translation-elongation, and perhaps also other stages of gene
expression [56], [14], that is highly amenable to analysis.

In the HRFM, the steady-state translation rateR is a
function of the positive parametersλ, λc, i.e.R = R(λ, λc). In
this paper, we study the dependence ofR on these parameters.

III. M AIN RESULTS

Our first result shows thatR is a concave function.

A. Concavity

Theorem 1 Consider the HRFM with dimensionn ≥ 2. The
steady-state translation rateR = R(λ, λc) is a concave
function onR2

+.

The next example demonstrates Theorem 1 for the particular
casen = 2.

Example 1 Consider the HRFM withn = 2. In this case,
the feasible solution of (5) and (6) (i.e., the solution satisfy-
ing e2 ∈ (0, 1) for all λ, λc > 0) is

e2(λ, λc) = (2λ+ λc −
√

4λ2 + λ2
c)/(2λc), (11)

so
R(λ, λc) = (2λ+ λc −

√

4λ2 + λ2
c)/2. (12)

It is useful to demonstrate Theorem 1 for this special case.
By (12), ∂

∂λR = 1 − 2λ√
4λ2+λ2

c

. Note that this implies

that ∂
∂λR > 0. Differentiating again and simplifying yields

∂2

∂λ2R = −2λ2
c(4λ

2 + λ2
c)

−3/2 < 0. Similarly, ∂
∂λc

R =

(1 − λc√
4λ2+λ2

c

)/2 > 0, ∂2

∂λ2
c

R = −2λ2(4λ2 + λ2
c)

−3/2 < 0,

and ∂2

∂λc∂λ
R = 2λλc(4λ

2 + λ2
c)

−3/2 > 0. Thus, the Hessian
matrix of R is

H : =

[

∂2R
∂λ2

∂2R
∂λc∂λ

∂2R
∂λc∂λ

∂2R
∂λ2

c

]

(13)

= γ

[

−λ2
c λλc

λλc −λ2

]

,
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Fig. 2. Steady-state translation rateR(λ, λc) as a function ofλ and λc

for n = 2.
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Fig. 3. Steady-state translation ratẽR(λ, λc) as a function ofλ andλc.

whereγ := 2(4λ2 + λ2
c)

−3/2. The eigenvalues ofH are 0
and−(λ2 + λ2

c)γ. Recall that a twice differentiable function
is a concave function of its parameters if and only if its Hessian
matrix is negative semidefinite (see e.g. [6]), i.e. if and only if
all its eigenvalues are non-positive. It follows that forn = 2
the mapping(λ, λc) → R is concave. Fig. 2 depictsR in (12)
as a function of its arguments. It may be seen that this is
indeed a concave function.

Example 2 Consider the HRFM withn → ∞, i.e. with the
length of the chain going to infinity. As shown in [53], in this
caseR̃(λ, λc) := limn→∞ R(λ, λc) exists and satisfies

R̃(λ, λc) =

{

λ− λ2/λc, λ < λc/2,

λc/4, λ ≥ λc/2.
(14)

In view of Theorem 1, we expect̃R to be a concave function.
Indeed, this may be observed from Fig. 3 that depictsR̃(λ, λc)
as a function of its variables. This could also be verified
analytically from (14).

Recall that a functionf(·) : Rk
+ → R is calledpositively

homogeneousif f(cx) = cf(x) for all c > 0 and allx ∈ R
k
+.

Since in (7)R always appears in a term in the formR/λi,
it follows that R in the RFM is positively homogeneous. In
other words,

R(cλ, cλ1, . . . , cλn) = cR(λ, λ1, . . . , λn), for all c > 0.
(15)

From a biophysical point of view this means that scaling
the initiation rate and all the transition rates by the same
multiplicative factor c > 0 in the RFM yields an increase
of the steady-state translation rate by a factor ofc.

Recall that a functionf(·) : Rk
+ → R is calledsuperadditive

if f(x + y) ≥ f(x) + f(y) for all x, y ∈ R
k
+. It is well-

known that for a positively homogeneous function, concavity
is equivalent to superadditivity (see, e.g., [3]). Combining this
with Theorem 1 yields the following result.

Corollary 1 Consider the HRFM with dimensionn ≥ 2. The
functionR = R(λ, λc) is superadditive onR2

+.

This means that

R(λ+ λ̄, λc + λ̄c) ≥ R(λ, λc) +R(λ̄, λ̄c),

for all λ, λc, λ̄, λ̄c ≥ 0. From a biophysical point of view this
means the following. Consider two HRFMs, one with initiation
rate λ and transition rateλc, and the second with initiation
rateλ̄ and transition ratēλc. The total production rate of these
two HRFMs is smaller or equal than the production rate of a
single HRFM with parametersλ+ λ̄ andλc + λ̄c.

B. Maximizing translation rate

Consider the problem of determining the parameter val-
uesλc, λ thatmaximizeR or, equivalently, thatminimize−R,
in the HRFM. Obviously, to make this problem meaningful
we must constrain the possible parameter values. This leads
to the following optimization problem.

Problem 1 Given the parametersw1, w2, b > 0, mini-
mize−R = −R(λ, λc), with respect to its parametersλ and
λc, subject to the constraints:

w1λc + w2λ ≤ b, (16)

λc, λ ≥ 0.

In other words, the problem is to maximize the protein
translation rate under an affine constraint on the total available
“resources”, namely, the initiation rateλ and the common tran-
sition rateλc. The constraint onλ [λc] may be related, among
others, to the number of intracellular ribosomes [number of
intracellular tRNA molecules]. The values ofw1, w2 can be
used to provide a different weighting to these two resources.

Theorem 1 implies that Problem 1 is aconvexoptimization
problem [6]. It thus benefits from many desirable properties.
In particular, it always admits a solution(λ∗, λ∗

c), and it can
be solved numerically using efficient algorithms.

The next result shows that increasingλ or λc can only
increase the translation rate.

Proposition 1 Consider the HRFM withn ≥ 2. Then∂R
∂λ > 0,

and ∂R
∂λc

> 0.
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Fig. 4. Translation rateR as a function ofλc for the parameters in
Example 3.

Remark 1 Note that this implies that the first constraint
in (16) can always be replaced by

w1λc + w2λ = b. (17)

Example 3 Consider Problem 1 for the HRFM with dimen-
sion n = 2, and with b = w1 = w2 = 1, i.e. the constraint
is

λc + λ = 1. (18)

Substituting this in (12) yields

R =
(

2− λc −
√

4(1− λc)2 + λ2
c

)

/2.

Fig. 4 depictsR as a function ofλc. It may be seen thatR = 0
whenλc = 0, as a zero transition rate means zero translation
rate, and also whenλc = 1, as then the initiation rate isλ =
1−λc = 0. The maximal value,R∗ = 0.2, is obtained forλ∗

c =
0.6, soλ∗ = 1− λ∗

c = 0.4.

In general, one cannot expect analgebraicexpression forR
in terms of λ, λc. This is true already for the casen = 2
(see (12)). Surprisingly, perhaps, it is possible to give an
algebraic expression for the optimal valueR∗ = R(λ∗, λ∗

c)
as a function of the optimal parameter valuesλ∗, λ∗

c and the
parameters in the affine constraint.

Theorem 2 Consider Problem 1 for the HRFM withn ≥ 2.
Then

R∗ =
w2(n(λ

∗λ∗

c − (λ∗)2) + λ∗λ∗

c − 2(λ∗)2)− w1(λ
∗

c)
2

w2(λ∗

c(n+ 1)− 2λ∗)− 4w1λ∗

c

.

(19)

Example 4 Consider again Example 3. Substitutingn = 2,
w1 = w2 = b = 1, λ∗ = 0.4 andλ∗

c = 0.6 in (19) yields

R∗ = 0.2,

and this agrees with the result in Example 3.

When the dimensionn of the HRFM goes to infinity we
can say much more about the optimal solution.

0
0.5

1
1.5

2

0

0.5

1

1.5

2
0

0.5

1

1.5

2

w
1

w
2

Fig. 5. R̃∗/b in (20) as a function ofw1 ∈ [0.1, 2] andw2 ∈ [0.1, 2].

C. Optimizing the infinite-dimensional HRFM

Proposition 2 Consider Problem 1 for the infinite-
dimensional HRFM. The optimal values are given by

λ̃∗

c = b/
√

w1(w1 + w2),

λ̃∗ = b
(

1−
√

w1/(w1 + w2)
)

/w2,

R̃∗ = b
(

2w1 + w2 − 2
√

w1(w1 + w2)
)

/w2
2. (20)

In other words, forn → ∞ we have simple closed-form
expressions for the solution of Problem 1 in terms of the
constraint parametersw1, w2, andb.

The expression in (20) shows that̃R∗ increases linearly
with b. This is reasonable, as increasingb corresponds to
allowing larger values ofλ andλc.

Fig. 5 depictsR̃∗/b as a function ofw1 andw2. It may be
observed that for large values of eitherw1 or w2 the optimal
value R̃∗/b decreases quickly. This is reasonable, as a large
value of w1 [w2] implies a tight constraint onλc [λ], and
decreasing any one of these rates implies a small translation
rate. On the other-hand, when bothw1 and w2 go to zero,
R̃∗/b increases quickly.

Let α := w2/w1. Then it follows from (20) that

λ̃∗

c/λ̃
∗ = 1 +

√
1 + α. (21)

Thus, the ratioλ̃∗

c/λ̃
∗ is a strictly increasing and concave

function of α. Note that (21) also implies that̃λ∗

c/λ̃
∗ ≥ 2.

In other words, in the infinite-dimensional HRFM the optimal
transition rate is always at least twice as big as the initiation
rate.

The parametersλc andλ in the optimization problem are
upper-bounded byb/w1 and b/w2 respectively (see (16)). It
follows from (20) that

lim
w1→0

[

λ̃∗

c , λ̃∗, R̃∗
]

=
[

∞, b/w2, b/w2

]

,

lim
w2→0

[

λ̃∗

c , λ̃∗, R̃∗
]

=
[

b/w1, b/(2w1), b/(4w1)
]

.

The casew1 → 0 implies that there is no constraint onλc

and thusλ̃∗

c = ∞. Also, the maximal possible value forλ
is λ̃∗ = b/w2. This becomes the rate limiting factor sõR∗ =
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λ̃∗ = b/w2. Whenw2 → 0 the constraint (17) yields̃λ∗

c =
b/w1. Also, in this caseα = 0 and the ratio in (21) attains its
minimal value, namely,̃λ∗

c/λ̃
∗ = 2, so λ̃∗ = λ̃∗

c/2 = b/(2w1).
It turns out that the expressions in (20) actually provide

good approximations for the optimal parameter values infinite-
dimensionalHRFMs. The next example demonstrates this.

Example 5 Consider Problem 1 for the HRFM withn = 20,
andw1 = w2 = b = 1. Applying a simple numerical algorithm
to solve Problem 1 yields

λ∗

c = 0.7069, λ∗ = 0.2931, R∗ = 0.1716,

(all numbers are to four digit accuracy). On the other-hand,
for w1 = w2 = b = 1 Eq. (20) yields

λ̃∗

c = 1/
√
2 ≈ 0.7071,

λ̃∗ = 1−
√

1/2 ≈ 0.2929,

R̃∗ = 3− 2
√
2 ≈ 0.1716.

Thus, the optimal values for the infinite-dimensional HRFM
agree well with the optimal values already for the20-
dimensional HRFM.

It is important to note that the typical length of mRNA
sequences is larger than20 sites. For example, inS. cerevisiae
the mean length is about33 sites; in mammals the mRNA
chains are much longer; thus, the closed-form asymptotic
results here provide a good approximation for the optimal
parameter values in finite-dimensional HRFM models of gene
translation.

IV. A BIOLOGICAL EXAMPLE

There exist effective experimental approaches for estimating
the translation-elongation rates and the protein synthesis rate,
but currently there is no experimental approach for measuring
the initiation rate. Indeed, initiation is a highly complex
mechanism and its efficiency is based on numerous biophysical
properties of the coding sequence including: the nucleotide
context of the START codon (i.e., the first codon that is
translated in a gene) [22], [57]; the folding of the RNA
near the beginning of the open reading frame (ORF) and the
nucleotide composition in this region [57], [51]; the number of
ribosomes and mRNA molecules in the cell; the length and the
nucleotide context of the 5’UTR; interaction between initiation
and elongation steps [57], [51], and more. Thus, although there
exist experimental approaches for measuring positions on the
mRNA suspected to correspond to initiation sites [19], [25],
there are no large scale direct measurements of initiation rate.

Several papers addressed the problem of estimating the
initiation rate using computational models of translation[53],
[41], [9]. One possible application of our results is to estimate
the initiation rate based on measurements of elongation and
translation rates. Indeed, we may assume, without loss of
generality, thatb = 1. Then, givenR̃∗ and λ̃∗

c , we can
determinew1, w2 based on (20). Pluggingw1, w2 back in (20)
yields the initiation ratẽλ∗. The underlying assumptions here
are that the mRNA chain is relatively long; that all elongation

rates are equal; and that the parameters of the translation
process are indeed optimized by evolution.

To demonstrate this we consider a specific example. In-
golia et al. [19] estimated the constant transition rate inM.
musculusembryonic stem cell by applying cyclohexamide to
halt translation, and harringtonin to halt initiation at different
time steps. This allows estimating the speed of elongation by
measuring the movement of the “ribosomal density wave”.
They concluded that in mouse embryonic cells5.6 codons are
translated per second (in terms of the HRFM, this corresponds
to λc = 5.6/15 = 0.3733 sites per second (all numbers
are to four digit accuracy), as a ribosome spans about15
codons [18]). According to [19], this elongation speed is
typical, and does not vary much between different genes.

A recent study by Schwanhausseret al. [43] estimated
the translation rate inM. musculusfibroblasts by simultane-
ously measuring protein abundance and turnover by parallel
metabolic pulse labeling for more than5000 genes in mouse.
They found that the median translation rate in mouse is
about40 proteins per mRNA per hour (i.e.,R = 40/3600 =
0.0111 proteins per mRNA per second).

Summarizing, in terms of the HRFM these biological find-
ings suggest thatλ∗

c = 0.3733 andR∗ = 0.0111. To estimate
the initiation rateλ∗ in mouse, we plug these values (andb =
1) in (20). This yields (w1, w2) = (84.6477,−84.5629)
or (w1, w2) = (0.0848, 84.5629). The first case is impossible,
as in our optimization problem thewis must be positive, so we
conclude that these values correspond to a solution of Prob-
lem 1 with (w1, w2, b) = (0.0848, 84.5629, 1). Applying (20)
with these values yieldsλ∗ = 0.0114 sites per second. This
corresponds to0.1718 codons per second. Note that this agrees
well with the estimate in [53] that was obtained using (14).
However, the approach here is based on a different argument,
namely, that evolution shaped the parameters of the translation
process so that they correspond to an optimal solution for
Problem 1.

V. D ISCUSSION ANDCONCLUSION

The RFM is a deterministic computational model for ribo-
some flow along the mRNA. It may be viewed as a mean-
field approximation of the stochastic TASEP model and in
particular encapsulates both the simple exclusion and the total
asymmetry properties of TASEP.

The RFM is characterized by an ordern, corresponding to
the number of sites along the mRNA chain, a positive initiation
rateλ and a set of positive transition ratesλ1, . . . , λn. Under
the assumption (or approximation) of equal transition rates
(i.e. λ1 = · · · = λn := λc), the RFM becomes the HRFM.
Recent studies have suggested that this is the case in some
organisms/conditions [19], [39].

In this paper, we showed that in the HRFM the steady-
state translation rateR = R(λ, λc) is a concavefunction
of its parameters. This implies that a local maximum ofR
is the global maximum. Furthermore, this allows posing the
problem of maximizing the steady-state translation rateR in
a meaningful way as a convex optimization problem. Such
problems can be solved using efficient numerical algorithms
(see, e.g., [11], [21], [5]).
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We also provide an explicit algebraic expression for the op-
timal translation rateR∗ in terms of the optimal parameter val-
uesλ∗, λ∗

c , and the parameters in the affine constraintw1, w2,
andb, as well as anexplicit solution to the convex optimization
problem in the infinite-dimensional HRFM.

The reported results may potentially be used for re-
engineering gene expression for various biotechnologicalap-
plications. Specifically, an important problem is to optimize
the translation efficiency and protein levels of heterologous
genes in a new host [36], [48], [16], [20]. In Section IV we
show howw1 andw2 can be estimated. The idea is to use the
explicit equations forR∗, λ∗ andλ∗

c in the infinite-dimensional
HRFM. We show that based on experimental measurements of
the elongation rates (λ∗

c ), and translation rates (R∗), we can
estimatew1 andw2. The underlying assumptions for this ap-
proach are that: (1) evolution optimized the translation process;
and (2) the mRNA chain is relatively long. In addition, we
would like to emphasize that in the case of biotechnological
engineering of gene translation,w1 andw2 may be evaluated
based on intra-cellular measurement of the concentration and
metabolic costs of proteins and genes related to the translation
machinery such as initiation factors, elongation factors,tRNA
molecules, aminoacyl-tRNA synthetases, etc; these valuesare
related to the ’cost’ of increasingλ andλc.

Our results may also be related to the evolution of gene ex-
pression, and specifically translation and transcript sequences.
Indeed, translation is the process consuming most of the cell
energy [36], [48], [1], and it is reasonable to assume that
for organisms under strong evolutionary pressure, evolution
shapes the genomic machinery so that it optimizes the protein
translation rate for the given finite resources.

A natural topic for further research is whether the steady-
state translation rateR = R(λ, λ1, . . . , λn) in the RFM is a
concave function of its parameters. This question seems to be
technically more demanding, as the Hessian matrix of then-
dimensional RFM has dimensions(n+1)× (n+1), whereas
that of the HRFM is2×2. A more general question is related to
the concavity of other models of translation including various
versions of the TASEP model [34], [50], [48], [44], [8], [38].

More generally, the asymmetric simple exclusion pro-
cess (ASEP) has become the “default stochastic model for
transport phenomena” [52], and has been used to model and
analyze many important natural and artificial processes [42].
We believe that the RFM and the HRFM can also be applied
to model and analyze more natural and artificial processes.
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APPENDIX – PROOFS

Proof of Theorem 1.The proof is based on analyzing the
Hessian matrix ofR. Define thenormalized initiation rateη
by

η := λ/λc.

Then we can rewrite (9) as

en = ηfn(en), (22)

with

fn(z) := 1− z

1− z

1− z

. . .
1−

z

1− z

, (23)

where on the right-hand sidez appearsn times. Note
that fn(z) is not necessarily well-defined for allz ∈ (0, 1).
For example,

f3(z) = 1− z

1− z

1− z

=
z2 − 3z + 1

−2z + 1

is not well-defined forz = 1/2.
Eq. (22) implies thaten = en(η), and sinceen ∈ (0, 1),

0 < fn(en) < 1/η.

The following results are needed to prove Theorem 1.

Proposition 3 Fix arbitrary n ≥ 2 and η > 0. Let en =
en(η). Then for allz ∈ [0, en] the functionsfn(z), f ′

n(z) :=
dfn(z)/dz, and f ′′

n (z) := d2fn(z)/dz
2 are well-defined and

satisfy

fn(z) > 0,

f ′

n(z) < 0,

f ′′

n (z) < 0. (24)

In other words, for allz ∈ [0, en] the functionfn(z) is
positive, strictly decreasing, and concave.

Example 6 Consider the casen = 4. It follows from the
results in [32] that for allη > 0, e4(η) ∈ (0, a), wherea :=
1/(4 cos2(π/6)) = 1/3. Fig. 6 depicts the functionf4(z)
for z ∈ [0, a]. It may be seen thatf4(z) is well-defined,
positive, strictly decreasing, and concave in this range.

Proof of Proposition 3.Pickη > 0. The proof is by induction
on n. For n = 2, f2(z) = 1 − z

1−z , so f2(z) > 0 for all z ∈
[0, 1/2). By (11),

e2 = η + (1/2)−
√

η2 + 1/4,

so e2 < 1/2. Differentiatingf2 yields

f ′

2(z) = −(1− z)−2,

f ′′

2 (z) = −2(1− z)−3.

Thus forn = 2, Eq. (24) holds for allz ∈ [0, e2].
For the induction step, it is useful to letp ∈ (0, 1)n

denote the equilibrium point of then-dimensional HRFM, and
let q ∈ (0, 1)n+1 denote the equilibrium point of the(n+1)-
dimensional HRFM. It was shown in [53, Proposition 1] that

qn+1 < pn. (25)
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Fig. 6. f4(z) as a function ofz.

In other words, for two HRFM chains with the sameη
the translation rate in the longer chain is smaller than the
translation rate in the shorter chain. Assume that (24) holds
for all z ∈ [0, pn]. By (23),

fn+1(z) = 1− z

fn(z)
. (26)

By the induction hypothesis,fn(z) > 0 for all z ∈ [0, pn],
so fn+1(z) is well-defined for allz ∈ [0, pn]. Differentiat-
ing (26) yields

f ′

n+1(z) =
f ′

n(z)z − fn(z)

f2
n(z)

. (27)

Combining this with the induction hypothesis implies that the
right-hand side of (27) is well-defined and strictly negative for
all z ∈ [0, pn], so in particular

f ′

n+1(z) < 0, for all z ∈ [0, qn+1]. (28)

We now show that

fn+1(z) > 0, for all z ∈ [0, qn+1]. (29)

Seeking a contradiction, assume that (29) does not hold. Then
since fn+1(0) = 1, there exists a minimaly ∈ [0, qn+1]
such thatfn+1(y) = 0. Combining this with (28) implies that
fn+1(qn+1) ≤ 0. But sinceq ∈ (0, 1)n+1 is the equilibrium
point of the(n+1)-dimensional HRFM,qn+1 = ηfn+1(qn+1),
so qn+1 ≤ 0. This contradiction proves (29).

Differentiating (27) yields

f ′′

n+1(z) =
zf ′′

n(z)f
2
n(z)− 2zfn(z)(f

′

n(z))
2 + 2f2

n(z)f
′

n(z)

f4
n(z)

,

and using (27) yields

f ′′

n+1(z) =
zf ′′

n(z)f
2
n(z)− 2f3

n(z)f
′

n(z)f
′

n+1(z)

f4
n(z)

. (30)

We already know thatf ′

n+1(z) < 0 for all z ∈ [0, pn] and
combining this with the induction hypothesis implies that

f ′′

n+1(z) < 0, for all z ∈ [0, pn]. (31)

Combining (29), (28), (31), and (25) completes the proof of
the induction step.�

Proposition 4 Fix an arbitrary n ≥ 2. Let hn(·) : R+ →
(0, 1) be the function such thaten = hn(η). Then

h′

n(η) :=
dhn(η)

dη
> 0,

h′′

n(η) :=
d2hn(η)

dη2
< 0, (32)

for all η > 0.

In other words, the mappingη → en(η) is strictly increasing
and concave.

Proof of Proposition 4.We can write (22) as a polynomial
equation in en with coefficients that are smooth functions
of η. It is possible to show that the feasibleen (i.e. the one
corresponding to the solutione ∈ Int(C)) is a simple root of
this polynomial for allη > 0 [37]. Hence,hn(·) is a smooth
function.

Rewriting (22) ashn(η) = ηfn(hn(η)) and differentiating
with respect toη yields

(1− ηf ′

n(hn))h
′

n = fn(hn). (33)

Combining this with Proposition 3 implies thath′

n > 0.
Differentiating (33) with respect toη yields

(1− ηf ′

n(hn))h
′′

n = 2h′

nf
′

n(hn) + ηf ′′

n (hn)(h
′

n)
2.

Combining this with the fact thath′

n(η) > 0 and Proposition 3
implies that h′′

n(η) < 0, and this completes the proof of
Proposition 4.�

We can now complete the proof of Theorem 1. Differenti-
atingR = λch(η) with respect toλc yields

∂R

∂λc
= hn(η)− λλ−1

c h′

n(η), (34)

and

∂2R

∂λ2
c

= λ2λ−3
c h′′

n(η).

Similarly,

∂R

∂λ
= h′

n(η), (35)

∂2R

∂λ∂λc
= −λλ−2

c h′′

n(η),

∂2R

∂λ2
= λ−1

c h′′

n(η).

Substituting these expressions in the Hessian matrix (13)
yields

H =

[

λ−1
c −λλ−2

c

−λλ−2
c λ2λ−3

c

]

h′′

n(η),

A calculation shows that the eigenvalues ofH are0 and(λ2
c+

λ2)λ−3
c h′′(η). Since h′′

n(η) < 0 this implies thatH is a
negative semidefinite matrix. This completes the proof of
Theorem 1.�
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Proof of Proposition 1.Since f ′

n(en) < 0, it follows
from (33) thath′

n(η) < fn(hn(η)), so (22) yieldsh′

n(η) <
en/η = hn(η)/η. Combining this with (34) implies that

∂R/∂λc > 0.

Using (35) and Proposition 4 implies that

∂R/∂λ > 0,

and this completes the proof of Proposition 1.�

Proof of Theorem 2.The proof is based on formulating the
Lagrangian function associated with Problem 1 and determin-
ing the optimal parameters by equating its derivatives to zero
(see, e.g., [6]). We require the following result.

Proposition 5 Consider then-dimensional HRFM withn ≥
2. Then

∂

∂λ
en =

{

3
4λ(n+3) , en = 1/4,

λc(4en − 1)/(rλ), otherwise,
(36)

∂

∂λc
en =

{

−3
4λc(n+3) , en = 1/4,

(1− 4en)/r, otherwise,
, (37)

where

r := 2λc + λ2
c(n+ 1)λ−1 + (n+ 2)(λ− λc)e

−1
n . (38)

Proof of Proposition 5.It is well-known that there is a strong
connection between continued fractions andChebyshev poly-
nomials(see, e.g., [30]). We begin by stating some properties
of these polynomials that are used in the proof. For more
details, see e.g. [35].

The Chebyshev polynomial of the second kind of degreen
is defined byUn(x) := sin (n+1)θ

sin θ , where x = cos θ. For
example,

U2(x) =
sin 3θ

sin θ

=
−4 sin3 θ + 3 sin θ

sin θ
= −4 sin2 θ + 3

= −4(1− x2) + 3.

These polynomials can also be defined recursively by

U0(x) = 1,

U1(x) = 2x,

Un+1(x) = 2xUn(x)− Un−1(x), n = 1, 2, .... (39)

It is not difficult to prove that this implies that

Un(1) = n+ 1, U ′

n(1) = n(n+ 1)(n+ 2)/3

for all n. More generally, it is well-known that the derivative
of Un(x) satisfies

2(1− x2)U ′

n(x) = −nUn+1(x) + (n+ 2)Un−1(x). (40)

It has been shown in [34] that the last coordinate of the
equilibrium point of then-dimensional HRFM satisfies

λUn+1(s) = λcUn(s)e
1/2
n , (41)

where

s := 1/(2
√
en).

Note that sinceen ∈ (0, 1), s ∈ (1/2,∞).
Eq. (41) implies in particular that

Un(s) 6= 0, for all λ, λc > 0. (42)

Indeed, if Un(s) = 0 then (41) yieldsUn+1(s) = 0
and then repeatedly applying the recursive definition (39)
yieldsU0(s) = 0 which is a contradiction.

Differentiating (41) with respect toλ yields

λc

(

Un(s)

2
e−1/2
n

∂

∂λ
en + e1/2n

∂

∂λ
Un(s)

)

= Un+1(s) + λ
∂

∂λ
Un+1(s)

=
λc

λ
Un(s)e

1/2
n + λ

∂

∂λ
Un+1(s).

Thus,

λc

(

1

2
e−1/2
n Un(s)

∂

∂λ
en + e1/2n U ′

n(s)
∂

∂λ
s

)

=
λc

λ
Un(s)e

1/2
n + λU ′

n+1(s)
∂

∂λ
s. (43)

By the definition ofs,

∂

∂λ
s = −1

4
e−3/2
n

∂

∂λ
en,

and substituting this in (43) yields

g
∂

∂λ
en =

4λc

λ
Un(s)en, (44)

where

g := 2λcUn(s) + e−1
n

(

λU ′

n+1(s)− λce
1/2
n U ′

n(s)
)

. (45)

Differentiating (41) with respect toλc yields

(Un(s) + λc
∂

∂λc
Un(s))e

1/2
n +

1

2
λcUn(s)e

−1/2
n

∂

∂λc
en

= λ
∂

∂λc
Un+1(s),

and simplifying similarly yields

g
∂

∂λc
en = −4Un(s)en. (46)

We consider two cases.
Case 1.Suppose thats = 1. Thenen = 1/4 and (41) yields

λc = 2λ(n + 2)/(n + 1). Substituting these values in (45)
yieldsg = 8λ(n2+5n+6)/3. Substituting this in (44) and (46)
proves Proposition 5 in the caseen = 1/4.

Case 2.Suppose thats 6= 1 (so en 6= 1/4). To simplify g,
let y := λU ′

n+1(s)− λce
1/2
n U ′

n(s). Using (40) yields

2(1− s2)y = λ(n+ 3)Un(s)− λ(n+ 1)Un+2(s)

− λc(n+ 2)e1/2n Un−1(s) + λce
1/2
n nUn+1(s),
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and applying (39) yields

2(1− s2)y = λ(n+ 3)Un(s)

− λ(n+ 1)(2sUn+1(s)− Un(s))

− λc(n+ 2)e1/2n (2sUn(s)− Un+1(s))

+ λce
1/2
n nUn+1(s)

= (2n+ 4)(λ− sλce
1/2
n )Un(s)

+ (2n+ 2)(−λs+ λce
1/2
n )Un+1(s).

Substitutings = 1/(2
√
en), Un+1(s) from (41), and simpli-

fying yields

2(1 − s2)y

=

(

λ(2n+ 4)− λc(2n+ 3) +
λ2
c

λ
(2n+ 2)en

)

Un(s).

Thus,

2(1− s2)g

= 2(1− s2)
(

2λcUn(s) + e−1
n y

)

= 4(1− s2)λcUn(s)

+ e−1
n

(

λ(2n+ 4)− λc(2n+ 3) +
λ2
c

λ
(2n+ 2)en

)

Un(s),

and simplifying this yields

(1 − e−1
n /4)g = Un(s)r. (47)

Substituting (47) in (44) and (46) completes the proof of
Proposition 5.�

We can now prove Theorem 2. The Lagrangian function
associated with Problem 1 is

L(λc, λ, θ) := λcen + (b − w1λc − w2λ)θ,

whereθ is the Lagrange multiplier. Differentiating this with
respect toλc and equating to zero yields

e∗n + λ∗

c

∂

∂λc
e∗n = w1θ

∗, (48)

whereλ∗

c , λ
∗ are the optimal values ofλ, λc, e∗n = en(λ

∗

c , λ
∗)

and ∂
∂λc

e∗n = ∂
∂λc

en(λ
∗

c , λ
∗). DifferentiatingL with respect

to λ and equating to zero yields

λ∗

c

∂

∂λ
e∗n = w2θ

∗,

and combining this with (48) yields

e∗n
λ∗

c

=
w1

w2

∂

∂λ
e∗n − ∂

∂λc
e∗n. (49)

We now consider two cases.
Case 1.Suppose thats∗ = 1 (i.e. e∗n = 1/4). We know that

in this caseλ∗

c = 2λ∗(n+2)/(n+1). It is straightforward to
show that this equation implies that the term on the right-hand
side of (19) isλ∗

c/4. On the other-hand,R∗ = λ∗

ce
∗

n = λ∗

c/4.
This proves (19) for the cases∗ = 1.

Case 2.Suppose thats∗ 6= 1 (i.e. e∗n 6= 1/4). Combin-
ing (49) with (36) and (37)

r
en
λc

= (4en − 1)
b

λw2
|∗,

where |∗ means that this equation holds for the optimal
parameter values. Substitutingr from (38) and simplifying
yields

α∗e∗n = β∗, (50)

whereα∗ := 2λ∗λ∗

cw2 + (λ∗

c)
2(n+ 1)w2 − 4bλ∗

c , andβ∗ :=
(n+ 2)(λ∗

c − λ∗)λw2 − bλc.
Suppose for a moment thatα∗ = 0. Then (50) implies that

alsoβ∗ = 0 and combining this withb = w1λ
∗

c +w2λ
∗ yields

(nw2 − 4w1)(w2 + (n+ 2)(nw2 − 4w1)) = 0. (51)

This implies thatα∗ = 0 only whenw2 = (n + 2)(4w1 −
nw2), i.e.w2 = 4w1(n+2)

(n+1)2 . Thus,b = w1(λ
∗

c +
4λ∗(n+2)
(n+1)2 ), and

substituting this inα∗ = 0 yields

λ∗

c(n+ 1) = 2λ∗(n+ 2).

We already know that this corresponds to the cases = 1, and
since we are considering the cases 6= 1, α∗ 6= 0, then

e∗n = β∗/α∗.

Using the fact thatb = w1λ
∗

c + w2λ
∗ completes the proof of

Theorem 2.�
Proof of Proposition 2. Recall that in the infinite-

dimensional HRFM the steady-state translation rateR̃ is given
by (14). We know that the optimal values satisfyw1λc+w2λ =
b, so λ = (b − w1λc)/w2. Substituting this in (14) and
simplifying yields

R̃(λc) =

{

(b−w1λc)((w1+w2)λc−b)
w2

2
λc

, λc > 2b/(2w1 + w2),

λc/4, λc ≤ 2b/(2w1 + w2).

This is a concave function ofλc and its unique maximum can
be obtained by differentiating with respect toλc and equating
the derivative to zero. This yields̃λ∗

c in (20). Usingw1λc +
w2λ = b yields λ̃∗, and substituting̃λ∗, λ̃∗

c in (14) completes
the proof.�
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