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Abstract—Analysis of probability distributions conditional on species trees has demonstrated the existence of anomalous ranked gene

trees (ARGTs), ranked gene trees that are more probable than the ranked gene tree that accords with the ranked species tree. Here, to

improve the characterization of ARGTs, we study enumerative and probabilistic properties of two classes of ranked labeled species

trees, focusing on the presence or avoidance of certain subtree patterns associated with the production of ARGTs. We provide exact

enumerations and asymptotic estimates for cardinalities of these sets of trees, showing that as the number of species increases without

bound, the fraction of all ranked labeled species trees that are ARGT-producing approaches 1. This result extends beyond earlier

existence results to provide a probabilistic claim about the frequency of ARGTs.

Index Terms—Enumeration, gene trees, labeled histories, mathematical phylogenetics, species trees

Ç

1 INTRODUCTION

RECENT research in phylogenetics has conducted detailed
probabilistic explorations of the properties of different

gene tree structures using models of gene lineage evolution
conditional on species trees [1], [2], [5], [6], [11]. These phy-
logenetic modeling investigations uncover new phyloge-
netic phenomena, facilitate mathematical and simulation-
based analyses of complex data spaces for phylogenetic
studies, enable development and theoretical analysis of spe-
cies tree inference algorithms, and assist in identifying
strengths, limitations, and protocols for proposed methods
[8], [19], [23], [24], [30].

A ranked labeled gene tree, or gene tree labeled history,
consists of a rooted labeled gene tree topology together with
the temporally ordered sequence in which coalescences in
the gene tree take place [15], [25]. Ranked gene trees arise in
a model of random bifurcation in which each lineage is
equally likely to be the next to bifurcate, or, backward in
time, each pair of lineages is equally likely to be the next to
coalesce. This simple branching assumption, originating
from the classical Yule model [31] and providing the model
of tree topology in coalescent models for gene lineage evolu-
tion [16], [29], generates a convenient uniform distribution
on the set of ranked gene trees [13], [18].

Given a genealogical history of a set of gene lineages, the
ranked gene tree is an elemental tree structure, in the sense
that other structures—such as unranked rooted gene trees,
unranked unrooted gene trees, and the list of clades
included in a tree—are uniquely specified by a ranked gene
tree, whereas many ranked gene trees might be compatible
with a given choice for one of these other structures. Thus,
as properties of other structures can often be derived from
properties of ranked gene trees [3], [12], [22], [27], ranked

gene trees represent a natural class of objects for phyloge-
netic modeling.

Degnan et al. [10] initiated the probabilistic study of
ranked gene trees in species tree models, providing a for-
mula under the standard multispecies coalescent model [8],
[11], [17], [19], [21] for the probability conditional on a
labeled species tree that a particular ranked gene tree is pro-
duced (see also [26]). Under the model, [10] termed ranked
labeled gene trees that are more likely to be generated than
the ranked labeled gene tree that matches the ranked
labeled species tree anomalous ranked gene trees (ARGTs).
ARGTs represent a surprising outcome of genealogical
descent in which an unexpected ranked gene tree exceeds
the model ranked species tree in probability.

Degnan et al. [9] obtained a full characterization of the set
of unranked labeled species trees for which at least one
ranking produces ARGTs. That is, they identified all
unranked labeled species trees for which a ranking and a
set of branch lengths can be selected so that the most likely
ranked gene tree conditional on the ranked species tree
together with its branch lengths disagrees with the ranked
species tree. They found that the set of unranked labeled
species trees with at least one ARGT-producing ranking is
precisely the set of unranked labeled species trees that do
not have a caterpillar or pseudocaterpillar shape.

Though the constructive proof of [9] identifies specific
ARGT-producing rankings for a given unranked labeled
species tree, the set of ranked labeled species trees that are
ARGT-producing remains incompletely characterized. For
small trees, [9, Table 1] reported the numbers of ranked
labeled species trees that give rise to ARGTs, but general
results have not been presented to assess the fraction of
ranked labeled species trees that are ARGT-producing.

Here, we show that as the number of species increases
without bound, the fraction of all ranked labeled species
trees that are ARGT-producing—that is, the fraction for
which some set of species tree branch lengths gives rise to
ARGTs—approaches 1. In other words, we extend beyond
the proof of [9] to argue that not only does each unranked
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species tree have at least one ARGT-producing ranking,
nearly all ranked species trees are ARGT-producing. We
obtain the result through a combinatorial approach, count-
ing the number of ranked labeled species trees with n
internal nodes that are identified by the proof of [9] as
ARGT-producing, and we show that the ratio of the cardi-
nality of this set and the total number of ranked labeled
species trees on n nodes, or ðnþ 1Þ!n!=2n, approaches 1 as n
approaches infinity.

2 PRELIMINARIES

2.1 Ranked Trees, Ranked Species Trees,
and Ordered Ranked Trees

It is convenient here to index tree and subtree sizes by the
number of internal nodes, rather than by the usual index,
the number of leaves.

A ranked tree t of size n is a binary rooted tree with n
internal nodes (and nþ 1 leaves), each one bijectively associ-
ated with a number in f1; 2; . . . ; ng. The labeling of the inter-
nal nodes must be increasing, in the sense that each path
from the root of t to a leaf contains an increasing sequence
of numbers. The increasing labeling gives a time ordering of
the coalescence events occurring along the branches of the
tree. The most recent event is the one that carries the great-
est label. Ranked trees are considered in a graph-theoretic
sense. Therefore, unless specified otherwise, they do not
carry any left-right orientation.

A ranked species tree is a ranked tree equipped with a
labeling for its taxa. Thus, two ranked species trees can
be the same when treated as ranked trees but different
in their leaf labeling. The set of ranked species trees is
denoted by S, and Sn denotes the set of ranked species
trees of size n. It is well-known ([22, Corollary 3.2]) that
the cardinality of Sn is

jSnj ¼ ðnþ 1Þ!n!
2n

: (1)

An ordered ranked tree is a ranked tree provided with a
left-right orientation of its subtrees. The set of ordered
ranked trees is denoted byR, andRn is the subset of R con-
sisting of those trees of size n. The cardinality of Rn is ([14,
Example II.17])

jRnj ¼ n!: (2)

In Fig. 1, we depict the six ordered ranked trees of size 3.
Note that in each tree, the labeling of the internal nodes
increases from the root toward the leaves.

2.2 Maximally Probable (MP) and Non-Maximally
Probable (NMP) Subtrees

Following [9, Proposition 6], given a ranked tree t and an
internal node k, we say that k generates a maximally probable

subtree MP-subtree for short, if we can assign the name L to
one of the two subtrees appended to node k and the name R
to the other such subtree in such a way both (i) and (ii) hold
for that assignment:

(i) m � q � 0, wherem ¼ jLj and q ¼ jRj.
(ii) Looking back in time, the sequence of coalescences in

the subtree of node k has the form

‘m�qf‘r; r‘gq; (3)

where ‘ and r stand for coalescence events belonging
to subtrees L and R, respectively.

The notation fa; bgq in (3) indicates the set of words of length q
over the alphabet fa; bg, where a ¼ ‘r and b ¼ r‘. Thus, by

‘m�qf‘r; r‘gq, for m � q, it is meant that the first m� q entries
are in L, after which q pairs of entries appear. Each pair has

one event in L and the other in R, and the sequences of these

events within pairs are not necessarily the same. The suggestive

labels L and R can refer to the left and right subtrees of k, but
the definition of maximally probable does not require specifi-

cation of which subtree is denoted L and which is denoted R.
Given a ranked tree t and an internal node k, we say that

k generates a non-maximally probable subtree (NMP-subtree
for short) when it does not generate an MP-subtree. It is
equivalent for a ranked species tree t to avoid NMP-sub-
trees and to contain only MP-subtrees. The subset of trees in

S containing only MP-subtrees is denoted SðmpÞ. By SðmpÞ
n ,

we indicate trees in SðmpÞ of size n.
The tree in Fig. 2 contains exactly one NMP-subtree, that

is, the one generated at node 3. Indeed, observe that the
only possible assignment of L and R that satisfies (i) gives a
sequence of coalescences r‘‘ that does not match (3); none
of the other nodes generates an NMP-subtree. For instance,
at node 1, we can assign L to the subtree generated by node
3 and R to the subtree generated by node 2, and the result-
ing sequence of coalescence events is ‘‘‘‘r.

Note that for a node k to generate an NMP-subtree it is
necessary to satisfy the following 1-2 condition: one of the
two subtrees appended to k has size at least 1 and the other
has size at least 2. Trees for which the 1-2 condition is not
satisfied for any internal node are either caterpillar or pseudo-
caterpillar (Fig. 3), using the definition that a tree has a cater-
pillar shape when each internal node has at least one leaf
stemming from it, and a pseudocaterpillar shape when it is
not a caterpillar and, still, no node has the 1-2 condition.

We define SðcatÞ as the set of caterpillar and pseudocater-

pillar ranked species trees. The subset SðcatÞ
n contains such

Fig. 1. The six ordered ranked trees of size n ¼ 3 internal nodes. Left-
right orientation determines different trees.

Fig. 2. A ranked species tree that is non-maximally probable at internal
node 3. This tree is maximally probable at the root.
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trees of size n. Caterpillar and pseudocaterpillar trees are
not NMP, and they contain no NMP-subtrees.

2.3 Anomalous Ranked Gene Trees

We recall that an anomalous ranked gene tree is a ranked
gene tree that does not match the ranked species tree and
that has probability under the multispecies coalescent
model greater than that of the matching ranked gene tree
[9], [10]. We say that a ranked species tree produces ARGTs
if there exist values for the speciation times such that the
ranked species tree together with the speciation times has at
least one ARGT.

When we disregard the ranking of the coalescences in
the species tree, the set of unranked species trees that
produce ARGTs has a known complete characterization.
In particular, as shown in [9, Theorem 1], each unranked
species tree t that is neither a caterpillar nor a pseudoca-
terpillar can be ranked in such a way that it is NMP at a
particular subtree HðtÞ. Further, being NMP at a subtree
implies that speciation times can be chosen to produce an
ARGT at that subtree. Thus, each unranked species tree t
other than caterpillars and pseudocaterpillars produces
ARGTs.

Here, we focus on ranked species trees that produce
ARGTs. That is, the ranking of the species tree is given and
it cannot be carefully selected as in the unranked case
studied by [9] and [10]. Formally, from [9, Propositions 9, 2,
and 3], we borrow two facts:

(iii) If a ranked species tree t contains an NMP-subtree,

that is, t 2 S n SðmpÞ, then t produces ARGTs at the
NMP-subtree.

(iv) If a ranked species tree t is either a caterpillar or a

pseudocaterpillar, that is, t 2 SðcatÞ, then t does not
produce ARGTs.

As stated in [9], (iii) is only a sufficient condition for pro-
duction of ARGTs and not a complete characterization of
the set of ranked species trees that generate ARGTs. Because
(iii) connects NMP-subtrees to the problem of counting
ranked species trees that produce ARGTs, our interest is
in counting ranked species trees containing or avoiding
NMP-subtrees.

2.4 A Subtree Specified by the 1-2 Condition

Property (iii) states that being NMP at a given subtree
implies producing ARGTs at that particular subtree. It is of
interest to investigate not only the presence of ARGT-
producing subtrees but also their position in the species
tree. Here we introduce the set of ranked species trees t for

which (iii) ensures production of ARGTs at the largest sub-
tree HðtÞ that satisfies the 1-2 condition. In particular, for
any ranked species tree t, there is no NMP-subtree that
properly contains HðtÞ. It is by examining the ranking of
HðtÞ that [9] showed that with the exception of caterpillars
and pseudocaterpillars, each unranked species tree produ-
ces ARGTs.

The subtree HðtÞ can be defined by a recursive query
procedure: starting from the root of the tree t, if the current
node satisfies the 1-2 condition, then stop and setHðtÞ equal
to the subtree rooted at the current node. Otherwise, at the
current node, the tree splits into two subtrees that either
both have size smaller than 2, or exactly one of them has
size smaller than 1. In the first case, stop the procedure and
set HðtÞ empty. In the second case, query the node whose
subtree has size at least 2. Observe that HðtÞ is empty if and
only if t is either a caterpillar or a pseudocaterpillar. The

symbol SðHÞ denotes the set of ranked species trees t that are

MP at HðtÞ. The tree in Fig. 2 belongs to SðHÞ but not to

SðmpÞ; the subtree HðtÞ is, in this case, the subtree generated
by the root.

As was observed in [9],

SðcatÞ � SðmpÞ � SðHÞ: (4)

Thus, jSnj � jSðHÞ
n j bounds from below the cardinality of

Sn n SðmpÞ
n , also providing a lower bound for the ultimate

quantity of interest, the number of ranked species trees that
produce ARGTs.

3 RESULTS

We now present enumerative results for the classes of
ranked species trees that we have introduced. In Section 3.2,
we show that the probability that a randomly selected
ranked species tree of size n produces ARGTs approaches 1
as n becomes large. In Section 3.3, we obtain the enumera-

tion of the set SðHÞ
n . Section 3.4 provides a recursion to enu-

merate SðmpÞ
n . The recursion enables a closed formula that

bounds from below the number of ARGT-producing ranked
species trees of size n. First, in Section 3.1, we obtain a result
that allows us to switch our perspective between ranked
species trees and ordered ranked trees.

3.1 Equivalence between Ranked Species Trees
and Ordered Ranked Trees

Observe that the subtree patterns defining SðcatÞ, SðmpÞ, and
SðHÞ do not depend on the leaf labeling, and only consider
the ranking of the internal nodes. To simplify our computa-
tions, we focus on ordered ranked trees instead of ranked
species trees, using an equivalence to convert results about
ordered ranked trees into results about ranked species trees.
If P is a tree property that does not concern labeling of taxa
but only concerns the ranking of the coalescence events—
such as avoiding NMP-subtrees, for instance—then the two
sets of trees can be treated as equivalent. More precisely, we
have the following:

Proposition 1. If P is a tree property that depends only on the
ranking of the coalescence events, then

Fig. 3. Caterpillar and pseudocaterpillar trees. These trees do not con-
tain NMP-subtrees.
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jft 2 Rn : P ðtÞgj
n!

¼ jft 2 Sn : P ðtÞgj
ðnþ 1Þ!n!=2n : (5)

Proof. Define an equivalence relation �o on the set of
ordered ranked trees of the same size, so that ta �o tb
when tb can be obtained from ta by switching pairs of
subtrees appended to corresponding nodes—in other
words, if, ignoring left-right orientation, ta and tb repre-
sent the same ranked tree. Similarly, define the equiva-
lence relation �s on the set of ranked species trees of the
same size, so that tc �s td if tc and td represent the same
ranked tree once labels for the leaves have been removed.

On the set of ranked trees of size n, consider the prob-
ability distribution induced by the Yule model of random
branching. Under this model, the probability of a ranked
tree t depends on two parameters: the size n and the
number of subtrees of size 1 (i.e., cherries), denoted by

cðtÞ. We have PYuleðtÞ ¼ 2n�cðtÞ=n!, as in [22, Theorem 3.4]
(see also [18], [28]).

Observe that for a fixed ordered ranked tree t of size n,
the cardinality of the equivalence class ½t��o

is given by

2n�cðtÞ because switching left and right subtrees at the
root of a subtree of size greater than 1 is the only way to
produce a different ordered ranked tree. Similarly, if we
fix a ranked species tree t, then the cardinality of ½t��s

is

ðnþ 1Þ!=2cðtÞ. Indeed, each of the ðnþ 1Þ! possible permu-

tations of the leaf labels of t gives exactly 2cðtÞ equivalent
labelings of the taxa.

It follows that if we fix the size n, then the uniform dis-
tribution over the set of ordered ranked trees and the uni-
form distribution over the set of ranked species trees
induce the same probability distribution—the Yule
distribution—over the set of ranked trees. In particular,
the probability of a ranked tree under the Yule model is
given by the cardinality of the corresponding equiva-
lence class in �o divided by n!, or by the cardinality of
the equivalence class in �s divided by ðnþ 1Þ!n!=2n.

Finally, observe that the property P respects the
equivalence classes defined under �o and �s in the sense
that an ordered ranked tree (resp. ranked species tree) t
satisfies P if and only if all the ordered ranked trees
(resp. ranked species trees) in the equivalence class ½t��o

(resp. ½t��s
) satisfy P .

We can then write

jft 2 Rn : P ðtÞgj
n!

¼
X

½t��o
:P ðtÞ

j½t��o
j

n!

¼
X

½t��s
:P ðtÞ

j½t��s
j

ðnþ 1Þ!n!=2n

¼ jft 2 Sn : P ðtÞgj
ðnþ 1Þ!n!=2n :

tu
In the framework of ordered trees, we define RðmpÞ, RðHÞ,

and RðcatÞ as corresponding versions of the classes SðmpÞ,
SðHÞ, and SðcatÞ, respectively. Indeed, our definitions for sets
SðxÞ did not depend on the left-right orientation of subtrees.
Therefore, the same definitions apply to ordered ranked

trees to define the associated RðxÞ. To determine the cardi-

nality of a set SðxÞ
n � Sn, our approach consists of finding

the cardinality of the corresponding ordered set RðxÞ
n � Rn

and then applying (5) to obtain

jSðxÞ
n j ¼ ðnþ 1Þ!

2n
jRðxÞ

n j: (6)

3.2 Probability that a Ranked Species Tree
Produces ARGTs

We are now ready to show that the probability that a ran-
domly selected ranked species tree of size n produces
ARGTs approaches 1 as n becomes large. It is useful to
introduce the sequence an, defined as

an ¼
Xn�1

q¼1

2minðq;n�qÞ

n
q

� � : (7)

Considering q ¼ 1 and q ¼ n� 1 in the sum, we find

an � 4=n: (8)

We also have

an � 2
Xbn=2c
q¼1

2q

n
q

� � � 2
Xbn=2c
q¼1

2q

2bn=2c
q

� � ¼ 2sbn=2c:

The sequence

sn ¼
Xn
q¼1

2q

2n
q

� �
can be bounded by

sn � 1=n; (9)

considering only the q ¼ 1 term in the sum. Furthermore, sn
has the following property.

Lemma 1. The sequence sn satisfies the recursion

9ð2nþ 1Þsnþ1 � 4ð2nþ 3Þsn ¼ 10nþ 9

nþ 1
þ nð2nþ1Þ

2n
n

� � : (10)

Proof. Using the Wilf-Zeilberger summation approach [20],
define F ðq; nÞ ¼ 2q=ð2nq Þ and

Rðq; nÞ ¼ ð2nþ 1� qÞ½3qð2nþ 1Þ � 2ð2nþ 1Þð5nþ 6Þ�
2ðnþ 1Þð2nþ 1Þ :

It is easily verified that

9ð2nþ 1ÞF ðq; nþ 1Þ � 4ð2nþ 3ÞF ðq; nÞ
¼ F ðq þ 1; nÞRðq þ 1; nÞ � F ðq; nÞRðq; nÞ: (11)

Indeed, the identity follows by noting the ratios

F ðq; nþ 1Þ
F ðq; nÞ ¼ ð2nþ 2� qÞð2nþ 1� qÞ

2ðnþ 1Þð2nþ 1Þ
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and

F ðq þ 1; nÞ
F ðq; nÞ ¼ 2ðq þ 1Þ

2n� q
:

Summing both sides of (11) from q ¼ 1 to nþ 1, the
right-hand side telescopes, giving a final contribution of
F ðnþ 2; nÞRðnþ 2; nÞ � F ð1; nÞRð1; nÞ. Therefore,

9ð2nþ 1Þsnþ1 � 4ð2nþ 3Þ sn þ 2nþ1

2n
nþ1

� �
2
4

3
5

¼ 10nþ 9

nþ 1
� 22þnð2nþ 1Þð7nþ 6Þðn� 1Þ! ðnþ 2Þ!

ð2nþ 2Þ! ;

from which simple calculations lead to (10). tu

Starting from (10), it can be shown by induction on n that
for n large,

sn � nþ 10

nðn� 1Þ : (12)

Consider n � 23. We can easily verify (12) for n ¼ 23. For
the inductive step, we begin from a binomial inequality,
which holds for n � 1 [4]:

2n

n

� �
� 22n�1ffiffiffi

n
p : (13)

We then have

nð2nþ1Þ
2n
n

� � � 4n3=2

2n
� n4

2n
� 1

n
;

where the last inequality holds because n � 23. We can thus
write

9ð2nþ 1Þsnþ1 � 4ð2nþ 3Þ nþ 10

nðn� 1Þ
	 


� 9ð2nþ 1Þsnþ1 � 4ð2nþ 3Þsn � 10nþ 9

nþ 1
þ 1

n
;

from which

snþ1 � 18n3 þ 100n2 þ 203nþ 119

9nðn� 1Þðnþ 1Þð2nþ 1Þ :

Finally, note that

ðnþ 1Þ þ 10

ðnþ 1Þn � snþ1

� ðnþ 1Þ þ 10

ðnþ 1Þn � 18n3 þ 100n2 þ 203nþ 119

9nðn� 1Þðnþ 1Þð2nþ 1Þ

¼ 89n2 � 311n� 218

9nðn� 1Þðnþ 1Þð2nþ 1Þ :

This last quantity is positive for n � 5, completing the
inductive proof of (12).

Therefore, from (9) and (12), we have for n � 23,

1

n
� sn � nþ 10

nðn� 1Þ ; (14)

producing, for n large, the asymptotic equivalence

sn 	 1=n:

Thus, for n large, by (8),

4

n
� an � 2sbn=2c 	 2

bn=2c ; (15)

so that
an 	 4=n: (16)

Table 1 illustrates this asymptotic equivalence of an and 4=n
for a variety of values of n. It is from this asymptotic equiva-
lence in (16) that the main result of this section follows.

Proposition 2. The probability that a randomly selected ranked
species tree with n internal nodes produces ARGTs approaches
1 as n ! 1.

Proof. Consider the number c0n þ c00n of ordered ranked trees
of size n that are MP at their root. Here c0n is the number
of ordered ranked trees t of size n that are MP at their
root and that have HðtÞ ¼ t, and c00n is the number of
ordered ranked trees of size n that have HðtÞ 6¼ t (and
that are therefore MP at the root). The remaining
n!� c0n � c00n ordered ranked trees of size n are NMP at
the root. Observe that, if n � 3, then

c0nþ1 ¼
Xn�1

q¼1

q! ðn� qÞ! 2minðq;n�qÞ ¼ n!an: (17)

This result holds because each tree t counted in c0nþ1 is
built by appending two ordered ranked trees of sizes
1 � q � n� 1 and n� q to a shared root. Once these sub-

trees are chosen, we choose one of the 2minðq;n�qÞ order-
ings that create an MP-subtree at the root of t to merge
the rankings of the subtrees of sizes q and n� q. This
value is obtained by noting from the definition of MP-
subtrees that for t to be MP at the root, the coalescence
sequence for t must have the form (3) once names L and
R have been assigned to the two subtrees of the root in
such a way that jRj ¼ minðq; n� qÞ. The number of

sequences satisfying (3) is 2jRj ¼ 2minðq;n�qÞ.
Moreover, we have

c00nþ1 ¼ 2n!; (18)

because each tree counted in c00nþ1 has a leaf—a subtree of
size 0—appended to the root, and its other subtree of the

TABLE 1
Asymptotic Equivalence of an and 4=n, with an

Computed from (7)

n

50 100 250 500 1000

an 0.08753 0.04172 0.01626 0.00806 0.00402
4=n 0.08000 0.04000 0.01600 0.00800 0.00400
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root has size n. The factor of 2 arises because the leaf can
appear on either side of the root.

By (6), because ranked species trees that are NMP at
their root produce ARGTs, ðnþ 1Þ! ðn!� c0n � c00nÞ=2n
gives a lower bound for the number of ranked species
trees of size n producing ARGTs. Dividing by the num-
ber of ranked species trees of size n (1), by (17) and (18),
we obtain

1� c0n þ c00n
n!

¼ 1� ðn� 1Þ!an�1 þ 2ðn� 1Þ!
n!

¼ 1� an�1 þ 2

n
:

By (16), this value nears 1 as n becomes large. tu

3.3 Ranked Species Trees t that Are NMP at the
SubtreeHðtÞ

We have shown that the fraction of ranked species trees
t that are NMP at subtree HðtÞ approaches 1 as n ! 1.
In this section, we extend beyond this result to enumer-
ate the set of ranked species trees that are NMP at HðtÞ.
We achieve the result by counting ordered ranked trees t
that are MP at HðtÞ.

Let cn be the number of ordered ranked trees t of size
n that are neither caterpillar nor pseudocaterpillar and
that have the property that the subtree HðtÞ is MP at its
root. For n � 4, the smallest number of internal nodes
for which a tree can be neither a caterpillar nor a pseu-
docaterpillar, we have

cn ¼
Xn
i¼4

ðc0iÞ2n�i; (19)

where c0i is, as in the proof of Proposition 2, the number of
trees t of size i that are MP at their root and that have
HðtÞ ¼ t. The result is obtained by noting that each tree t
counted in cn is constructed from a tree in c0i, with
4 � i � n, which reaches the root of t through a branch to
which n� i leaves are appended (Fig. 4). The leaves can be
placed on either the right or the left of the branch, produc-

ing the factor 2n�i.

Observe that the number of caterpillar or pseudocaterpil-
lar ordered ranked trees is given by

jRðcatÞ
n j ¼ 3 
 2n�2: (20)

In particular, we have 2n�1 caterpillar ordered ranked trees
obtained by the possible left-right orientations of the leaves
stemming from n� 1 of the coalescences (all coalescences

except the root of the cherry). Similarly, we have 2n�2 pseu-
docaterpillar ordered ranked trees, considering the two
possible left-right orientations of all coalescences except the

roots of the two cherries. Therefore, jRðHÞ
n j ¼ cn þ jRðcatÞ

n j ¼
cn þ 3 
 2n�2.

The sequence c0n can be computed as in (17). Using (19),
we obtain

cn ¼
Xn
i¼4

ði� 1Þ!ai�1 2
n�i ¼ 2n

Xn
i¼4

ði� 1Þ!ai�1 2
�i

 !
: (21)

Using jRðHÞ
n j with (6), we can compute the number of

ranked species trees t that are MP at subtreeHðtÞ.
Proposition 3. The number of ranked species trees t with n inter-

nal nodes that are MP at the subtreeHðtÞ is

jSðHÞ
n j ¼ ðnþ 1Þ! jRðHÞ

n j
2n

¼ ðnþ 1Þ! ðcn þ 3 
 2n�2Þ
2n

¼ ðnþ 1Þ!
2n

� 2n
Xn
i¼4

ði� 1Þ!ai�1 2
�i

 !
þ 3 
 2n�2

" #
;

(22)

where an can be computed as in (7).
The number of ranked species trees t with n internal nodes

that are NMP at the subtreeHðtÞ is

jSnj � jSðHÞ
n j ¼ ðnþ 1Þ!

2n

� n!� 2n
Xn
i¼4

ði� 1Þ!ai�1 2
�i

 !
� 3 
 2n�2

" #
:

(23)

Bounds. By Proposition 3, the exact number of ranked
species trees t that are NMP at the subtree HðtÞ can be com-
puted. From Proposition 2, the probability that a randomly
selected ranked species tree t is NMP at HðtÞ approaches 1
as n grows large. Here we provide upper and lower bounds
for the speed of convergence.

Observe that (19) implies that cn � c0n. Using (17) and (8),
we can write

jRðHÞ
n j
n!

� c0n
n!

¼ ðn� 1Þ!an�1

n!

� ðn� 1Þ! 4=ðn� 1Þ
n!

¼ 4

nðn� 1Þ �
4

n2
:

(24)

Fig. 4. Decomposition of an ordered ranked tree t of size n that is in

RðHÞ
n , is neither a caterpillar nor a pseudocaterpillar, and has subtree

HðtÞ maximally probable. The highlighted subtree is used for c0i in com-
puting (19).
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On the other hand, given that jRðHÞ
n j � c0n counts a set of

trees for which HðtÞ 6¼ t, we must have jRðHÞ
n j � c0n � c00n

¼ 2ðn� 1Þ!, where c00n is as in (18) and corresponds to the
number of ordered ranked trees t with HðtÞ 6¼ t. Dividing
by n! and using inequalities (14) and (15) gives

jRðHÞ
n j
n!

� c00n þ c0n
n!

¼ 2ðn� 1Þ!þ an�1ðn� 1Þ!
n!

¼ 2þ an�1

n

� 1

n
2þ 2

bðn� 1Þ=2c þ 10

bðn� 1Þ=2cðbðn� 1Þ=2c � 1Þ
� �	 


� 1

n
2þ 2

ðn� 1Þ=2þ 10

ððn� 2Þ=2Þððn� 2Þ=2� 1Þ
� �	 


¼ 2ðn2 � 4nþ 46Þ
nðn� 2Þðn� 4Þ :

(25)

When n becomes large, the value

jSn n SðHÞ
n j

jSnj ¼ 1� jRðHÞ
n j
n!

;

that is, the probability that a randomly selected ranked spe-
cies tree t is NMP at HðtÞ, approaches 1 at most as fast as

1� 4=n2 (24) and at least as fast as 1� 2ðn2 � 4nþ 46Þ=
½nðn� 2Þðn� 4Þ� (25).

Fig. 5 plots the exact value of 1� jRðHÞ
n j=n! with its

bounds. The probability that a randomly selected ranked
species tree t is NMP at HðtÞ—and that it therefore produ-
ces ARGTs at HðtÞ—approaches 1 quickly. Moreover, the
upper bound appears to approximate the probability more
accurately than does the lower bound.

3.4 Ranked Species Trees that Are NMP for at Least
One Subtree

The set Sn n SðmpÞ
n —ranked species trees of size n containing

at least one NMP-subtree—is a superset of Sn n SðHÞ
n , and it

thus expands the class of ARGT-producing ranked gene

trees beyond the set Sn n SðHÞ
n . In this section we provide a

recursion to compute the cardinality of Sn n SðmpÞ
n . We also

determine a more accurate lower bound for the number of
ranked species trees that are ARGT-producing.

We first focus on the class RðmpÞ
n of ordered ranked trees

of size n avoiding NMP-subtrees. Next, using (6), we con-

vert the result to obtain jSn n SðmpÞ
n j. Let an ¼ jRðmpÞ

n j. Each
tree in RðmpÞ

nþ1 is obtained by appending to the same root two

trees belonging to RðmpÞ, one of size q and the other of size
n� q, with 0 � q � n. As was already noticed in the proof of
Proposition 2, when merging the rankings of the two sub-

trees of the root, exactly 2minðq;n�qÞ among the ðnqÞ possible

choices create an MP-subtree at the root. Recall that once we
have assigned the names L and R to the two subtrees of the
root in such a way that jRj ¼ minðq; n� qÞ, the number of
possible rankings to obtain a sequence of coalescences of

the form (3) is 2jRj. The decomposition is illustrated in Fig. 6.
The recursion to compute an is thus

anþ1 ¼
Xn
q¼0

ðaqan�qÞ2minðq;n�qÞ; (26)

where a0 ¼ 1. Taking an and using property (6), we can

obtain the cardinality of SðmpÞ
n .

Proposition 4. The number of ranked species trees with n inter-
nal nodes that contain only MP-subtrees is

jSðmpÞ
n j ¼ ðnþ 1Þ! jRðmpÞ

n j
2n

¼ ðnþ 1Þ! an
2n

: (27)

The number of ranked species trees with n internal nodes
that contain at least one NMP-subtree is

jSnj � jSðmpÞ
n j ¼ ðnþ 1Þ!

2n
n!� anð Þ: (28)

An explicit formula for jSn n SðmpÞ
n j requires a solution of

recursion (26). Although we have not obtained such a solu-
tion, we can use the recursion to find a closed-form upper
bound for an and therefore a lower bound for the number of
ranked species trees that produce ARGTs. For large n, this
bound is more accurate than the bound given by the num-
ber of ranked species trees t that are NMP at subtree HðtÞ
(Proposition 3).

Fig. 5. The probability that subtree HðtÞ is non-maximally probable in a

randomly selected ranked species tree t with n nodes, or 1�RðHÞ
n =n!.

The probability is confined by lower bound 1� 2ðn2 � 4nþ 46Þ= ½nðn�
2Þðn� 4Þ� and upper bound 1� 4=n2.

Fig. 6. Decomposition of an ordered ranked tree of size nþ 1 that is

in RðmpÞ
nþ1 and has no non-maximally probable subtrees. The two sub-

trees of the root are taken from RðmpÞ, with sizes q and n� q. Accord-
ing to the definition of maximally probable subtrees, once names L
and R are assigned to the two subtrees in such a way that
jRj ¼ minðq; n� qÞ, the number of possible rankings to obtain a

sequence of coalescences satisfying (3) is 2jRj.

DISANTO AND ROSENBERG: ON THE NUMBER OF RANKED SPECIES TREES PRODUCING ANOMALOUS RANKED GENE TREES 1235



Bounds. Fix a parameter b, 1=2 < b < 1. Observe that

X1
q¼0

q

2qð2b�1Þ ¼
X1
q¼1

q

2qð2b�1Þ

converges to a constant

kb ¼ 1

22b�1 1� 1=22b�1ð Þ2 : (29)

This result is obtained by noting that

X1
q¼0

zq

vq
¼ 1

1� z=v
;

differentiating both sides with respect to z, setting v ¼ 22b�1,
and choosing z ¼ 1. For instance, when b ¼ 6=11, we have
kb � 251:762.

When 0 < q � n=2, by (13), ðnqÞ � ð2qq Þ � 22q�1=
ffiffiffi
q

p
. For

every n, we then have a bound:

Xbn=2c
q¼0

2q

n
q

� �b ¼ 1þ
Xbn=2c
q¼1

2q

n
q

� �b � 1þ
Xbn=2c
q¼1

2q

2q
q

� �b
� 1þ

X1
q¼1

2q

2q
q

� �b � 1þ
X1
q¼1

2q

22q

2
ffiffi
q

p
� �b

¼ 1þ 2b
X1
q¼1

qb=2

2qð2b�1Þ � 1þ 2bkb:

(30)

Choose n to be a positive integer such that 2ð1þ 2bkbÞ
� ðnþ 1Þb. Let cb � 1 be a constant such that for all i,

0 � i � n, we have ai � cibði!Þb. Note that the existence of cb
is ensured because we could set, for instance, cb ¼
maxfai : 0 � i � ng. Thus, for such a constant we have both
of the following conditions:

ai � cibði!Þb for all i; 0 � i � n (31)

2ð1þ 2bkbÞ � cbðnþ 1Þb: (32)

We can now prove by induction that if conditions (31)
and (32) are both satisfied for a certain n, then they also
hold for nþ 1. For the second condition, the result is trivial.
For the first condition, we use (26):

anþ1 � 2
Xbn=2c
q¼0

aqan�q2
q � 2cnb

Xbn=2c
q¼0

ðq!Þbðn� qÞ!b2q

¼ 2cnþ1
b ðnþ 1Þ!b
cbðnþ 1Þb

Xbn=2c
q¼0

2q

n
q

� �b
� cnþ1

b ðnþ 1Þ!b 2ð1þ 2bkbÞ
cbðnþ 1Þb

� cnþ1
b ðnþ 1Þ!b:

(33)

We have therefore proven the following result.

Proposition 5. Choose b with 1=2 < b < 1. Take a positive con-
stant cb and define

X ¼ Xðb; cbÞ ¼
�
2ð1þ 2bkbÞ=cb

�1=b � 1:

Suppose it can be verified that for every integer n with
0 � n � X,

an � cnbðn!Þb: (34)

Then for every n � 0, an � cnbðn!Þb, and therefore, the
number of ranked species trees with n internal nodes that pro-
duce ARGTs is at least

jSnj � jSðmpÞ
n j � ðnþ 1Þ!

2n
½n!� ðcbÞnðn!Þb�: (35)

The upper bound for an contained in Proposition 5 shows
that for n large, the number of ranked species trees that con-
tain only MP-subtrees is much smaller than the number of
ranked species trees t that are MP at HðtÞ. Indeed, from (24)

we have that jRðHÞ
n j � 4n!=n2, and therefore, for any

1=2 < b < 1,

jSðHÞ
n j

jSðmpÞ
n j �

ð4n!Þ=n2

cnbðn!Þb
¼ 4ðn!Þ1�b

n2cnb
! 1:

The constants cb in Proposition 5 can be evaluated numeri-
cally. If we fix, for instance, b ¼ 6=11, then we have
kb � 251:762 as noted above. In this case, setting cb ¼
c6=11 ¼ 5, we have Xðb; cbÞ � 9449:7. We can then computa-

tionally verify that condition (34) is satisfied for every n,
0 � n � 9449. Thus, with b ¼ 6=11 and cb ¼ 5, (34) holds for
every n � 0. An efficient implementation of recursion (26)
can be achieved by saving each aj once computed, to mini-
mize the number of calls to the recursive steps.

4 CONCLUSIONS

We have examined three nested classes of ranked species
trees (4) characterized by the presence or absence of particu-
lar subtree patterns: Sn n SðHÞ

n , a class of ranked species trees

proven by Degnan et al. [9] to produce ARGTs; Sn n SðmpÞ
n , a

larger class that by extension of their proof was identified as

producing ARGTs; and the still larger class Sn n SðcatÞ
n that

excludes caterpillar and pseudocaterpillar ranked species
trees proven by [9] not to produce ARGTs.

Extending beyond the result of [9] that for each
unranked species tree—with the exception of caterpillars
and pseudocaterpillars—at least one ranking exists that
gives rise to ARGTs, we have demonstrated that as
n ! 1, almost all ranked species trees with n internal
nodes give rise to ARGTs (Proposition 2). We have addi-
tionally provided a closed-form for the cardinality

jSn n SðHÞ
n j (23) and a recursion as well as a closed-form

lower bound for jSn n SðmpÞ
n j (28, 35).
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For illustration, Table 2 shows the cardinalities for small
n, alongside the total number of ranked species trees jSnj,
the upper bound jSn n SðcatÞ

n j on the number of ranked spe-

cies trees with ARGTs, and the lower bound SðcatÞ
n on the

number of ranked species trees without ARGTs. The row

for Sn n SðHÞ
n extends a corresponding enumeration in

Table 1 of [9], correcting an error in the n ¼ 7 case (n ¼ 8 in
[9], which indexed cases by the number of leaves rather
than the number of internal nodes). It can be observed from
the table that the quantities in the central row increase quite
quickly with nwhen considered as a fraction of jSnj.

The problem of characterizing the set of ranked species
trees that produce ARGTs is analogous to the correspond-
ing problem of characterizing the set of unranked species
trees that produce anomalous unranked gene trees in the
unranked case [7], [23], [24]. In that context, every species
tree with four or more species, as well as the caterpillar spe-
cies tree with four species, produces anomalous unranked
gene trees [7]. Our work extends the analogy: for large n,
not only does almost every unranked species tree have a
ranking that produces ARGTs, almost every ranked species
trees produces ARGTs. The related characterization in the
unranked case has been useful in facilitating the develop-
ment of species tree inference methods and the design of
simulation-based tests relying on unranked gene trees [23],
and we expect our results to serve in a similar role in the
ranked case.

We note that we have not fully completed the charac-
terization of ranked species trees that produce ARGTs, a
problem that was left open by [9]. We have, however,
shown that the work of [9] implies that among all
ranked species trees with n internal nodes, the fraction
that produce ARGTs approaches 1—and approaches it

quickly. Our recursion for jSn n SðmpÞ
n j as well as (23) and

(35) provide lower bounds for the number of ranked spe-
cies trees with n internal nodes that are ARGT-produc-
ing. An upper bound is provided by the cardinality of
the set of ranked species trees excluding only the cater-
pillars and pseudocaterpillars, or

jSn n SðcatÞ
n j ¼ ½ðnþ 1Þ!=2n�ðn!� 3 
 2n�2Þ; (36)

where jSðcatÞ
n j ¼ ½ðnþ 1Þ!=2n�ð3 
 2n�2Þ. For the unsolved

complete characterization of ranked species trees that pro-
duce ARGTs, the exact value must lie in a narrow range

bounded between jSn n SðmpÞ
n j and jSn n SðcatÞ

n j.
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