
Copyright

by

Noah Manus Daniels

2013

ar
X

iv
:1

30
4.

64
76

v1
 [

cs
.C

E
]

 2
4

A
pr

 2
01

3

The Dissertation Committee for Noah Manus Daniels

certifies that this is the approved version of the following dissertation:

Remote Homology Detection in Proteins Using

Graphical Models

Committee:

Prof. Lenore Cowen, Supervisor

Prof. Donna Slonim

Prof. Benjamin Hescott

Prof. Bonnie Berger

Prof. Yu-Shan Lin

Remote Homology Detection in Proteins Using

Graphical Models

A dissertation

submitted by

Noah Manus Daniels, B.S., M.S.

In partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

in

Computer Science

TUFTS UNIVERSITY

April 2013

Advisor: Prof. Lenore Cowen

For my grandmother

Acknowledgments

The work described in this dissertation is the result of the advice, contributions,

and collaborations of many friends and colleagues.

First, I would like to thank my advisor, Professor Lenore Cowen, for many

years of mentorship. Her encouragement, patience, and motivation have been es-

sential to this work. I thank my dissertation committee members, Professor Donna

Slonim, Professor Benjamin Hescott, Professor Yu-Shan Lin, and Professor Bonnie

Berger.

My collaborators during the course of my doctoral work have also been inspir-

ing. I thank Anoop Kumar, Matt Menke, Raghavendra Hosur, Shilpa Nadimpalli,

Andrew Gallant, Po-Ru Loh, Michael Baym, Jian Peng, Jisoo Park, and Mengfei

Cao for their contributions, be they in code, conversation, or collegiality.

I thank Professor Norman Ramsey, Professor Sinaia Nathanson, and Dean

Lynne Pepall, along with my GIFT colleagues, for teaching me how to teach. I also

thank my teaching assistants, Sarah Nolet, Joel Greenberg, Andrew Pellegrini, and

Michael Pietras, for helping me teach, Nathan Ricci for the constant feedback and

guest lectures, and Professors Carla Brodley and Diane Souvaine for the opportuni-

ties.

I thank the Tufts University Computer Science Department, especially Gail

Fitzgerald, Jeannine Vangelist, and Donna Cirelli, for so much support over so many

years.

I owe a debt of gratitude to Michael Bauer, Erik Patton, Jon Frederick,

George Preble, and Eric Berg for keeping our systems running despite my best

efforts to the contrary.

Much of the material in Chapter 2 of this dissertation has been published as

iii

“Touring Protein Space with Matt”, with Anoop Kumar, Matt Menke, and Lenore

Cowen, in the journal ACM Transactions on Computational Biology and Bioinfor-

matics. Much of the material in Chapter 3 of this dissertation has appeared as

“SMURFLite: combining simplified Markov random fields with simulated evolution

improves remote homology detection for beta-structural proteins into the twilight

zone”, with Raghavendra Hosur, Bonnie Berger, and Lenore Cowen, in the journal

Bioinformatics. Some of the material in Chapter 4 of this dissertation has appeared

as an experience report, “Experience Report: Haskell in Computational Biology”,

with Andrew Gallant and Norman Ramsey, in the Proceedings of the International

Conference on Functional Programming.

Finally, I would not have reached this point without the love and support of

my parents, Anne and Norman Daniels, and my wife, Rachel Daniels.

Noah Manus Daniels

TUFTS UNIVERSITY

April 2013

iv

Remote Homology Detection in Proteins Using

Graphical Models

Noah Manus Daniels

Advisor: Prof. Lenore Cowen

Given the amino acid sequence of a protein, researchers often infer its struc-

ture and function by finding homologous, or evolutionarily-related, proteins of known

structure and function. Since structure is typically more conserved than sequence

over long evolutionary distances, recognizing remote protein homologs from their

sequence poses a challenge.

We first consider all proteins of known three-dimensional structure, and ex-

plore how they cluster according to different levels of homology. An automatic

computational method reasonably approximates a human-curated hierarchical or-

ganization of proteins according to their degree of homology.

Next, we return to homology prediction, based only on the one-dimensional

amino acid sequence of a protein. Menke, Berger, and Cowen proposed a Markov

random field model to predict remote homology for beta-structural proteins, but

their formulation was computationally intractable on many beta-strand topologies.

We show two different approaches to approximate this random field, both

of which make it computationally tractable, for the first time, on all protein folds.

One method simplifies the random field itself, while the other retains the full ran-

dom field, but approximates the solution through stochastic search. Both methods

achieve improvements over the state of the art in remote homology detection for

beta-structural protein folds.

v

Contents

Acknowledgments iii

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Proteins . 1

1.1.1 Primary Structure . 1

1.1.2 Secondary Structure . 3

1.1.3 Supersecondary and Tertiary Structure 5

1.1.4 Protein Data Sets . 7

1.1.5 Protein Folding . 8

1.2 Protein Homology . 10

1.2.1 Structural Alignment . 12

1.3 Hidden Markov Models . 14

1.3.1 Profile Hidden Markov Models 16

1.4 Other Homology Detection Methods 20

1.4.1 Threading Methods . 20

1.4.2 Profile-Profile Hidden Markov Models 21

1.4.3 Markov random fields . 22

1.5 Remote Homology Detection . 22

vi

1.6 Outline of This Work . 23

Chapter 2 Touring Protein Space with Matt 25

2.1 Introduction . 25

2.2 Methods . 29

2.2.1 Representative Proteins . 29

2.2.2 Distance Values . 30

2.2.3 Distance Threshold . 30

2.2.4 Clustering and Tree-cutting 31

2.2.5 Jaccard Similarity Metric . 32

2.2.6 Benchmark Set . 33

2.3 Results . 35

2.3.1 Pairwise Distance Comparisons 35

2.3.2 Clustering Performance . 35

2.3.3 Specific Example . 37

2.4 Discussion . 39

Chapter 3 Simplified Markov Random Fields and Simulated Evo-

lution Improve Remote Homology Detection for Beta-structural

Proteins 44

3.1 Introduction . 44

3.2 Methods . 46

3.2.1 Summary of SMURF Markov random field framework 46

3.2.2 Datasets . 49

3.2.3 Training and testing process 50

3.2.4 p-values . 51

3.2.5 SMURFLite augmented training data 52

3.2.6 SMURFLite simplified random field 55

3.2.7 HMMER implementation . 55

3.2.8 RAPTOR implementation . 57

3.2.9 HHPred implementation . 57

vii

3.2.10 Whole-genome search . 57

3.3 Results . 58

3.3.1 SMURFLite Validation . 58

3.3.2 SMURFLite on Whole Genomes 61

3.4 Discussion . 64

Chapter 4 Protein Remote Homology Detection Using Markov Ran-

dom Fields and Stochastic Search 67

4.1 Introduction . 67

4.2 Methods . 68

4.2.1 Markov random field model 68

4.2.2 Proof that the model is exponential in complexity 72

4.2.3 Stochastic search . 74

4.2.4 Evaluating search strategies 82

4.2.5 Simulated Evolution . 83

4.2.6 Datasets . 84

4.2.7 Training and testing process 84

4.3 Results . 85

4.3.1 Search strategies . 85

4.3.2 Remote homology detection accuracy 89

4.4 Discussion . 90

Chapter 5 Conclusion and Future Work 93

5.1 Contrasting Markov random field approaches 93

5.2 Structurally consistent superfamilies 94

5.3 MRFy with sequence profiles . 95

5.4 Extension to Other Protein Classes 96

5.5 More Generalized Contact Maps . 96

Bibliography 98

viii

Appendices 115

ix

List of Tables

2.1 ROC Area for pairwise performance vs. SCOP 35

2.2 Number of clusters at each level for each method 36

2.3 Descriptive statistics for the family, superfamily, and fold levels . . 37

3.1 AUC on β-Propeller folds . 61

3.2 AUC on β-Barrel superfamilies . 62

4.1 Stochastic search performance on 8-bladed β-propeller 86

4.2 Stochastic search performance on “Barwin-like” β-barrel 87

4.3 Stochastic search performance on β-sandwich 88

4.4 AUC on Beta-Barrel superfamilies 91

1 Pairwise scores (negative log of probability) for buried β-strands . . 117

2 Pairwise scores (negative log of probability) for exposed β-strands . 118

x

List of Figures

1.1 The general structure of an amino acid showing the hydrogen(H),

nitrogen(N), oxygen(O) and carbon(C,Cα) atoms. 2

1.2 Peptide bonds and the protein backbone 3

1.3 α-helix secondary structure. 4

1.4 β-sheet secondary structure. 5

1.5 Super-secondary structure “cartoon” of Barwin (PDB ID 1BW3) . . 6

1.6 Backbone angles . 7

1.7 The SCOP hierarchy of protein structure. 9

1.8 The “Plan7” architecture for hidden Markov models, as implemented

in HMMER. 18

2.1 Number of Matt vs. DaliLite families into which each SCOP family

is shattered. 38

2.2 Number of SCOP families into which each Matt or DaliLite family is

shattered. 39

2.3 Number of Matt vs. DaliLite superfamilies into which each SCOP

superfamily is shattered. 40

2.4 Number of SCOP superfamilies into which each Matt or DaliLite

superfamily is shattered. 41

2.5 Number of Matt vs. DaliLite folds into which each SCOP fold is

shattered. Note the tail of the distribution, in which DaliLite breaks

SCOP folds into many small pieces. 42

xi

2.6 Number of SCOP folds into which each Matt or DaliLite fold is shat-

tered. 43

2.7 Example of a SCOP superfamily split by Matt 43

3.1 The SMURFLite pipeline, including simulated evolution and simpli-

fication of the β-strand topology . 52

3.2 A closed β-barrel (PDB ID 1bw3, a Barwin domain) from the su-

perfamily “Barwin-like endoglucanases” to illustrate interleaving of

strand pairs. 53

3.3 Interleave number explained . 54

3.4 SMURFLite simplified Markov random fields 56

3.5 β-propeller detail . 59

3.6 Performance of SMURFLite compared to other methods on the “Barwin-

like endoglucanases” β-barrel superfamily according to the AUC (Area

Under Curve) measure. 63

4.1 A Markov random field with two β-strand pairs 69

4.2 The crossover and mutation process in MRFy’s genetic algorithm

implementation. 80

4.3 The diversification step in local search. 82

4.4 MRFy’s parallel speedup . 89

xii

Chapter 1

Introduction

1.1 Proteins

Proteins are the molecular machines that are essential to the process of life. For

example, transmembrane proteins allow molecules to move into and out of the cell.

Hemoglobin ferries iron through the blood, while immunoglobulin provides for de-

fense against pathogens. Actin contracts our muscles, and myelin insulates our

nerves.

It is well known that DNA encodes the genetic information that determines

how we develop and function. Portions of this DNA are transcribed into RNA,

and then a complex piece of cellular machinery called the ribosome translates this

RNA into amino acids, the building blocks of proteins. Proteins are the machines

for which the DNA is the blueprint. Chains of amino acids fold into intricate,

low-energy forms, and these structures do things.

It is the structure of a protein that allows it to perform its function, and

while this structure is determined by the amino acid sequence that derives from

DNA, the relationship between sequence and structure is not simple.

1.1.1 Primary Structure

Proteins are composed of linear chains of molecules called amino acids. An amino

acid is a molecule comprising an amine group, a carboxyl group, and one of twenty

1

possible sidechains (see Figure 1.1). Each of these components is attached to a

carbon atom, known as the α-carbon.

H

Cα

Carboxyl Group

O

O

H

C

Amine Group

N

H

H

R
(side chain)

Figure 1.1: The general structure of an amino acid showing the hydrogen(H), ni-
trogen(N), oxygen(O) and carbon(C,Cα) atoms. The sidechain is one of twenty
possible “decorations;” amino acids differ only in their sidechains.

Amino acids bind to one another via a peptide bond, which forms when the

carboxyl group of one amino acid gives up an oxygen and hydrogen to bind with

the amine group of another amino acid, which gives up a hydrogen. This results

in a free water molecule. In addition, as multiple amino acids form polypeptide

chains, the unbound amine group at one end is known as the N-terminal end of the

resulting protein, while the unbound carboxyl group at the other end is known as

the C-terminal end (Figure 1.2).

The peptide linkages, along with the α-carbon atoms, form the backbone of

the protein. Ultimately, the protein folds into a globular form, generally representing

a lowest-energy conformation. It is useful to describe the structure of proteins at

several levels of organization.

The primary structure of a protein is simply its sequence of amino acids. In

2

H

Cα

O

CN

H

H

R1

H

Cα

O

O

H

CN

H

R2

Free
H2O

Peptide
Bond

Cα

N

R3

H

Peptide
Bond

H

Free
H2O

N-terminal end

C-terminal end

O

H

H

H

Figure 1.2: Amino acids join by peptide bond to form the backbone. Individual
amino acids are highlighted with ovals. The sidechain connected to the Cα is differ-
ent for each amino acid. When a peptide bond forms, a water molecule forms from
the hydrogen given up by the nitrogen end of one amino acid, and the oxygen and
hydrogen given up by the carbon end of the other.

principal, any of the 20 standard amino acids can occur in any position of an amino

acid chain; for a protein of length n, there are 20n possible protein sequences. Of

course, the subset of those sequences that will fold into a compact, three-dimensional

structure is much smaller; the subset of those that would fold into a compact, three-

dimensional structure that exists in nature is smaller still. However, determining

which protein sequences nature allows is not trivial.

1.1.2 Secondary Structure

Local interactions among amine and carbonyl groups result in hydrogen bonds be-

tween amino acids that are not immediately adjacent in sequence. A hydrogen bond

is the electrostatic attraction between a hydrogen atom in one amino acid and an

oxygen or nitrogen atom in another. In particular, we can describe the secondary

structure of a protein according to the shape of the angles of the backbone. The

most common type of secondary structure is the α-helix, in which the protein back-

3

bone coils into a twisted shape, stabilized by hydrogen bonds (Figure 1.3). The

most common α-helices have hydrogen bonds between residues four positions apart

in sequence. Other, less common helical structures include the 310 helix, in which

residues three apart in sequence form hydrogen bonds, and the π helix, in which

residues five apart in sequence form hydrogen bonds.

Another secondary structure is the β-strand, which in combination form

β-sheets. β-strands occur when the backbone is stretched out; typically, this con-

formation is stabilized by hydrogen bonds between adjacent strands (Figure 1.4),

resulting in β-sheets. The hydrogen bonds in β-sheets may occur between residues

that are very far apart from each other in the amino acid sequence. β-strands in a

sheet may be parallel or anti-parallel to one another with respect to the direction

of the amino acid sequence.

The remainder of local backbone conformations, consisting of turns, bulges,

loops, bridges, etc., have been classified into several different subcategories, but

is often grouped together into a third category of secondary structure, commonly

referred to as a coil.

Figure 1.3: α-helix secondary structure. Hydrogen bonds between residues 4 posi-
tions apart in sequence cause the helical shape. Other, less common helix structures
include the 310 helix, in which residues 3 apart in sequence form hydrogen bonds,
and the π helix, in which residues 5 apart in sequence form hydrogen bonds.

4

Figure 1.4: β-sheet secondary structure. Hydrogen bonds between residues that
may be quite far apart in sequence cause this pleated, sheet-like shape. Antiparallel
β-strands are shown here; parallel β-strands also exist.

1.1.3 Supersecondary and Tertiary Structure

We can mark secondary structural elements of the complete structure of a protein

backbone as it is folded in three-dimensional space, and consider the pattern of

where the α-helices and β-strands lie. For example, β-strands can be organized into

β-barrels (Figure 1.5), sandwiches, or propellers; α-helices can be organized into 2-

or 4-helix bundles, and there are other patterns of strand topologies that involve

mixed collections of α-helices and β-strands. The topologies of the various strand

positions are known as super-secondary structure.

The tertiary structure of a protein is the fully-specified three-dimensional

position of every atom. The orientation of the backbone atoms in three-dimensional

space forms three distinguishing dihedral angles: φ between the carbon-1-nitrogen

and α-carbon-carbon-1 atoms in an amino acid, ψ between the nitrogen-α-carbon

and carbon-1-nitrogen atoms, and ω between the α-carbon-carbon-1 and the nitro-

gen and α-carbon of the next amino acid (see Figure 1.6). The angle ω is usually

0◦, and occasionally 180◦. The side chain of each amino acid must then pack into

a low-energy state in such a way that it does not interfere with the other amino

5

Figure 1.5: Super-secondary structure “cartoon” of Barwin (PDB ID 1BW3). Bar-
win, an endoglucanase, has eight β-strands forming a closed “barrel” shape, as well
as four α-helices.

acids in the protein. The tertiary structure represents, in most cases, a global min-

imum energy state, also known as the native state. Many proteins have now had

their tertiary structure determined by X-ray crystallography, or by nuclear magnetic

resonance (NMR) spectroscopy. A protein whose structure has been determined

experimentally is said to have a solved structure. However, the difficulty of experi-

mentally solving the structure of any particular protein of interest can vary. X-ray

crystallography’s limiting factor is that not all proteins can be put into solution

and crystallized, while NMR’s limiting factor is primarily computational. The Pro-

tein Data Bank (PDB) [BKW+77, BBB+00] is a publicly available database that

contains the atomic coordinates of all proteins whose tertiary structure has been

6

solved.

H

Cα

O

CN

H

R1

H

Cα

O

CN

H

R2

ψ

ω

ϕ

O

C

Figure 1.6: The orientation of the backbone atoms in three-dimensional space
forms three dihedral angles: φ between the carbon-1-nitrogen and α-carbon-carbon-
1 atoms, ψ between the nitrogen-α-carbon and carbon-1-nitrogen atoms, and ω
between the α-carbon-carbon-1 and the nitrogen and α-carbon of the next amino
acid.

Finally, quaternary structure describes how multiple tertiary structures in-

teract; these may be multiple duplicate protein chains (for example, a homodimer

is a complex of two identical protein chains, while a heterodimer is a complex com-

prising two different protein chains). In this work, we focus on individual chains,

rather than quaternary structures.

1.1.4 Protein Data Sets

In order to make sense of the evolutionary, structural, and functional relationships

among proteins, biologists have created several organizational schemes. Structural

Classification Of Proteins (SCOP) [MBH95, AHB+04] and CATH (which stands for

Class, Architecture, Topology, and Homologous superfamily) [OMJ+97, PBB+03,

GLA+07] are hierarchical schemes that place proteins in a tree based primarily on

structural, but also on evolutionary and functional similarities. In this work, we

will primarily rely on SCOP, since it has been used in many homology detection

studies [ES99, WS04, Söd05].

7

SCOP organizes all protein sequences of known structure (with some time

delay) into a four-level hierarchy. The top level of the SCOP hierarchy is class, which

distinguishes the primary secondary-structural composition of proteins: mainly-α,

mainly-β, mixed α and β, cellular-membrane proteins, among others. The second

level of the SCOP hierarchy is fold, which organizes proteins by overall structural

motif, or supersecondary structure. Proteins in the same fold are not necessarily

evolutionarily related. Below fold is superfamily, which organizes proteins that share

evolutionary relationships, as well as similar structure and function. Below the

superfamily level is the family level of SCOP. Proteins in the same family have clear

evolutionary relationships, and a significant level of sequence similarity. Figure 1.7

illustrates the SCOP hierarchy.

1.1.5 Protein Folding

The process by which a protein, as its amino acid sequence is emitted by the ri-

bosome, forms its stable tertiary structure is called folding. In 1969, molecular

biologist Cyrus Levinthal noted [Lev69] that even given a coarse (tripartite) dis-

cretization of bond angles, a protein of merely 100 amino acids (a short chain by

most standards) could take 3300 distinct three-dimensional conformations (tertiary

structures). Given the accepted view that proteins typically fold to globally min-

imum energy states, Levinthal noted that a protein would take the lifetime of the

universe to find a minimum energy state by sampling the entire fold space. However,

in practice, proteins fold in microseconds or milliseconds. This apparent paradox

became known as Levinthal’s Paradox; the solution to the paradox must be that

nature does not explore the entire fold space.

The rapidity of protein folding is thought to be because proteins fold along

folding funnels, which prune much of the possible fold space very quickly [DC97,

MCBR98, TKMN99, DSSD00]. It is even conjectured [Ros02, CSL+09] that only

those proteins that exhibit fold funnels that allow them to fold quickly have evolved;

protein sequences that would not quickly find stable native states would be selected

against during the course of evolution.

8

Mainly-Alpha Mainly-Beta Alpha and
Beta

Class

Fold

Superfamily

Family

Beta Barrels

Barwin-like
Endoglucanases

Barwin

Figure 1.7: The SCOP hierarchy of protein structure. Class organizes proteins in
large part according to supersecondary structural content. Fold organizes proteins
by supersecondary structural motifs. Superfamily organizes proteins by structural,
functional, and evolutionary similarity, while Family organizes them by sequence
similarity as well.

Physics-based approaches to computationally solving the protein folding prob-

lem try to solve the various force field equations (including hydrophobic, electro-

static, and van der Waals forces) to find a minimum-energy state [BBC99, Heu99].

9

However, even the most simplified models can prove computationally intractable. In

1998, Berger and Leighton [BL98] proved that the seemingly simple HP (hydrophobic-

hydrophilic) lattice model of protein folding is NP-hard.

For some purposes, such as understanding the molecular motion of proteins

such as ion channels (which control the flow of ions through a cellular membrane)

or flagellin (which forms the moving filament in bacterial flagella), just knowing the

native state is not enough, and molecular dynamics simulations are necessary.

The current state of the art in full tertiary structure prediction via molecular

dynamics modeling relies on huge computational infrastructures; we describe two of

them. The first, Anton, is a supercomputer purpose-built for protein simulations

by the D.E. Shaw Research [SDD+07]. The second, Folding@home, is a worldwide

distributed-computing system developed at Stanford [JVP06]; it uses spare CPU

and GPU cycles on desktop, laptop, and video game systems around the world.

Both of these systems can compute a few milliseconds of simulation time per day.

Fortunately, however, it is not always necessary to determine tertiary struc-

ture to the level of precision achieved by experimental methods. Computational bi-

ology methods that use statistical energy functions and secondary or supersecondary

structure prediction have made significant progress in the last ten years [Mou06].

In particular, approximately predicting the tertiary structure–or predicting the su-

persecondary structure–may be adequate when the end goal is function prediction

or homology detection.

1.2 Protein Homology

An alternative to experimentally predicting the structure of a protein is to try to

determine, based on sequence similarity, that a protein of interest is sufficiently

closely related, in evolutionary terms, to some other protein of solved structure

that it is likely to fold into a similar shape. However, while the task gets easier

the closer it becomes to that of determining sequence, the quality of the results

worsens; protein sequence is less well conserved than structure; that is, fairly sig-

10

nificantly different protein sequences may nonetheless share quite similar structures

and functions [Dun06].

Biologists say that two proteins are homologous when they are derived from

a common ancestor. Often, homologous proteins share common structure. When

two protein sequences are similar, it is relatively easy to determine that they are

homologous. However, homologous proteins may differ significantly in terms of

sequence identity. Sequence analysis methods have long allowed for the detection of

homologous proteins, provided sequence divergence is not too great. The problem of

detecting homologous proteins when sequence similarity is low is known as remote

homolog detection. The purpose of this thesis is to develop novel methods for remote

homology detection. Now, we will survey existing methods for homology detection.

1.2.0.1 BLAST

Altschul, et al. developed the Basic Local Alignment Search Tool (BLAST) [AGM+90]

algorithm as a faster alternative to dynamic programming-based methods such as

the Smith-Waterman [SW81] algorithm. BLAST uses a number of heuristics to re-

duce the time required to perform an alignment, at the possible expense of some

accuracy. BLAST also relies on an indexed database of sequences to be searched.

BLAST allows for fast search through databases to find potential homologs.

The protein-specific version of BLAST is called BLASTP. BLASTP uses a substi-

tution matrix to score alignments; the most commonly used substitution matrix is

BLOcks of amino acid SUbstitution Matrix (BLOSUM) [HH92]. A BLOSUM score

s(i, j) for two residues i and j is given by:

s(i, j) =
log

Pi,j

fifj

λ
(1.1)

where Pi,j is the probability of observing residues i and j aligned in homologous

sequences, and fi is the observed background frequency of residue i, and λ is a

scaling factor chosen to produce integer values for the scores [HH92].

Different variants of the BLOSUM matrices exist; for a chosen threshold

11

L, only sequences within a sequence identity threshold of L% are clustered into a

single representative sequence; those sequences are then aligned and the alignment

used to compute the BLOSUML matrix. Thus, BLOSUM80 is intended for use in

less divergent sequence alignments, while BLOSUM50 is intended for use in more

divergent sequence alignments. BLOSUM62 is a commonly used default scoring

matrix for protein sequence alignment tools such as BLAST [AMS+97].

There are newer BLASTP variants, such as PSI-BLAST [AMS+97] and

DELTA-BLAST [BSA+12] that improve sensitivity by replacing BLOSUM with a

Position-specific scoring matrix (PSSM) that scores mismatches differently depend-

ing on where they occur in the alignment. PSI-BLAST determines its PSSM by

iterative search: First, it performs a standard BLASTP search, and computes a

PSSM from the resulting alignment. It then repeats this process, searching with the

PSSM created by the previous iteration, and computing a new PSSM. In contrast,

DELTA-BLAST uses pre-determined PSSMs derived from the Conserved Domains

Database (CDD) [MBA05], essentially groups of proteins already determined to be

homologous.

BLAST and its derivatives, such as PSI-BLAST and DELTA-BLAST, are

effective at identifying homologous protein sequences for a query sequence when

those homologous sequences share a reasonable amount of sequence identity with

the query sequence [Ros99]. However, we wish to be able to identify homologous

proteins–those that share structural, functional, and evolutionary relationships–even

when they do not share a great deal of sequence similarity. Since protein structure

is more highly conserved than sequence [DBR97], we would like to incorporate in-

formation that is not simply derived from sequence alignments.

1.2.1 Structural Alignment

Just as we can align the sequences of two or more proteins in order to compare

them, we can also align the structures of two or more proteins. Clearly, protein

structure alignment requires knowing the tertiary structure–the three dimensional

coordinates of all the atoms, or at very least the backbone atoms–of the proteins to

12

be aligned.

Structural alignment can be used to measure structural similarity, and from

there infer functional and evolutionary relationships. Structural alignment can also

be used to measure the quality of a computational protein structure prediction ver-

sus a known, solved structure. In general, protein structural alignment relies on

some form of geometric superposition, though a wide variety of algorithms exist for

efficiently computing this superposition. In fact, computing the optimal geometric

superposition is known to be NP-hard [WJ94]. Several heuristic approaches have

been developed for practical protein structural alignment. DALI [SB98], for ex-

ample, breaks the structures into hexapeptide fragments and calculates a distance

matrix by evaluating the contact patterns between fragments. DALI then com-

pares these distance matrices and applies a score-maximization search to compute

an alignment. This approach is called “aligned fragment pair” alignment, and is

also used by MAMMOTH [OSO09], which instead applies dynamic programming to

compute the alignment. Matt [MBC08] also uses aligned fragment pairs, but allows

“impossible” translations and twists in order to better capture structural similarities

at the superfamily or even fold levels. Hybrid aligners, which use both sequence and

structure information, also exist. DeepAlign [Wan12] incorporates not just atomic

coordinates but also secondary structural annotation and sequence information. Our

own Formatt [DNC12] also combines sequence and structure information, to try to

avoid “register errors” that trade significant sequence alignment errors for small

structural gains. Most of these methods are fundamentally solving a bi-criterion

optimization problem: we wish to align as much of the input proteins’ structure as

possible, while at the same time minimizing the root mean square distance (RMSD)

of the resulting alignment, where RMSD is defined as the square root of the aver-

age distance between corresponding α-carbon atoms between the backbones of the

proteins in alignment [Kab76].

When aligning more distantly-related proteins, structural alignment methods

often outperform purely sequence-based methods [CL86]. For this reason, protein

structural alignment is routinely used to produce alignments of homologous proteins

13

to form training sets for remote homology detection techniques.

1.3 Hidden Markov Models

A Markov model represents a series of observations via a probabilistic finite-state

automaton. A Markov model on an alphabet A is a triplet

M = (Q, π, α), (1.2)

where Q is a finite set of states, each state generates a character from A, π is the set

of initial state probabilities, and α is the set of state transition probabilities. Markov

models are so named because they uphold the Markov property, which states that

future states depend only on the current state of the system. In other words, first-

order Markov models are “memoryless.” A Markov model may take into account

a fixed number of past states (a kth-order Markov model make take into account k

past states).

A hidden Markov model (HMM) represents a series (sometimes a time series)

of observations by a “hidden” stochastic process. HMMs were originally developed

for speech recognition [Vit67, Rab89]. A HMM is on an alphabet A is a 5-tuple

M = (Q,V, π, α, β), (1.3)

where Q is again a finite set of states, V is a finite set of observations per state, π is

the set of initial state probabilities, α is again the set of state transition probabilities,

and β is the finite set of emission probabilities over the alphabet A. Hidden Markov

models differ from ordinary Markov models in that, while the emissions are observ-

able, the states occupied by the finite state machine are not themselves observable.

There are three problems to be solved regarding HMMs, and correspondingly, three

algorithms to solve them.

The first problem is: Given an HMM M and an observed sequence S, compute

the most probable path through M that generates S.

14

This problem is solved by the Viterbi algorithm [Vit67], which is typically

implemented using dynamic programming. The Viterbi algorithm solves the recur-

rence relation:

V1,k = P
(
s1 | k

)
· πk

Vt,k = P
(
st | k

)
·maxx∈Q (ax,k · Vt−1,x)

(1.4)

where Vt,k is the probability of the most probable state sequence emitting the

first t observations with k as its final state, and si ∈ S is the ith observation in S.

The corresponding path through the model can be retrieved by remembering what

series of transitions among states x ∈ Q were chosen when solving the recurrence

relation.

The second problem is: Given an HMM M and a sequence of observations S,

compute P (S|M), the probability of observing the sequence S emitted by the model

M .

This problem is solved by the forward algorithm, which relies on dynamic

programming as well. In essence, the forward algorithm sums the probabilities over

all possible state paths that can emit S. The recurrence relation for the forward

algorithm is nearly identical to that for the Viterbi algorithm, except that it sums,

rather than choosing the maximum from, the probabilities at each step:

V1,k = P
(
s1 | k

)
· πk

Vt,k = P
(
st | k

)
·
∑
x∈Q

(ax,k · Vt−1,x)
(1.5)

The third problem is: Given a set of sequences of observations, O, and a

model M , determine the transition probabilities α and emission probabilities β that

maximize the P (O|M), the likelihood of observing the set of sequences given the

model.

Typically, a solution to this problem is estimated by the Baum-Welch algo-

rithm [BPSW70], which is an expectation-maximization algorithm. A more com-

putationally efficient but less accurate alternative is the Viterbi Training algo-

rithm (not to be confused with the Viterbi algorithm), also known as segmental

15

k-means [Rab89]. A simulated annealing search approach to Baum-Welch can also

be used to avoid local optima [BCHM94].

A further explanation of the above algorithms can be found in [Rab89].

Despite their origins in the field of speech recognition, hidden Markov models

have been used in a variety of areas within the realm of computational biology. In

the context of DNA sequence analysis, HMMs have been used [DLC02] to detect

“CpG islands,” regions of the genome where cytosine and guanine are predominant

and adjacent in sequence. CpG islands are useful for determining the start of tran-

scription sequences–the markers that indicate the regions of the genome that code

for protein sequences. Hidden Markov models were first used to search for DNA se-

quences in genome databases by Churchill [Chu89] in the late 1980s. Later, Krogh

et al. [KBM+94] used HMMs to model protein evolution.

1.3.1 Profile Hidden Markov Models

With respect to homology detection, profile hidden Markov models have been pop-

ular. In particular, profile HMMs have been used to model families of protein

sequences, in order to predict whether newly-discovered sequences belong to those

families. Profile hidden Markov models attempt to represent the evolutionary pro-

cesses underlying the differences among closely-related proteins. In addition, HMM-

derived clusterings of proteins have been published, such as Pfam [FMSB+06],

PROSITE [HBB+06], and SUPERFAMILY [WMV+07].

HMMER [Edd98] and SAM [HK96] are two popular software tools for homol-

ogy detection in proteins (though both are also widely used in nucleotide sequence

analysis, as well). Much of the work in this dissertation is based on HMMER; we

chose it as it is open-source and more actively maintained.

HMMER models three types of events that may occur during the evolution

of a protein: insertion, deletion, and substitution of an amino acid at a particular

position. These three possible events become the three hidden states of the HMM.

Substitution events are modeled using a match state, which also represents amino

acids that are conserved, or have not changed, between proteins. In essence, mu-

16

tated amino acids can be represented as substitutions using a substitution matrix,

and since the most probable substitution in such a matrix is the identity function,

conserved amino acids can also be represented using the same matrix. Insertion

and match states are both considered emission states, as each corresponds to the

presence of an amino acid at a particular position in a protein. Each emission state

comprises a table of emission probabilities: the likelihood that any particular amino

acid will be present (emitted) at that position. Intuitively, for each match state, the

most common amino acid seen in the training data will be the most probable amino

acid in the emission table for that column of the alignment.

HMMER uses the “Plan7” hidden Markov model architecture, which forbids

direct transitions between insertion states and deletion states [Edd98]. “Plan7” is

a pun on “Plan9,” the architecture by Krogh, et al. [KBM+94] that allowed all 9

possible transitions among match, insert, and delete states; “Plan7” gets its name

because there are exactly 7 possible transitions into the states of any column of

the alignment used for training. See Figure 1.8 for an illustration of the Plan7

architecture.

HMMER trains a profile HMM (using a simulated annealing variant of the

Baum-Welch algorithm) [MSE96] on a sequence profile, which is an alignment of the

protein sequences comprising some group–such as a SCOP superfamily or family–of

putatively homologous proteins. This alignment may be a sequence alignment or a

structural alignment; in this work we will focus on profiles derived from structural

alignments.

An alignment used for training may of course contain gaps. A gap in row 2,

column j indicates that as proteins evolved, either protein 2 lost its amino acid

in position j, or other proteins gained an amino acid in position j. If column j

contains few gaps, it is considered a consensus column, and the few proteins with

gaps may have lost amino acids via deletions. Note that this model is directionless

with respect to evolutionary change; it does not distinguish between a residue being

gained or lost over time. If column j contains mostly gaps, it is considered a non-

consensus column, and the few proteins without gaps may have gained amino acids

17

MB

D

M

D

I I

M

I

D

M

D

II

E

A: 0.12
C: 0.001
D: 0.349

.

.
Y: 0.001

A: 0.057
C: 0.011
D: 0.092

.

.
Y: 0.461

Figure 1.8: The “Plan7” architecture for hidden Markov models, as implemented
in HMMER. Dashed circles indicate nodes of the model. A node groups a match,
insertion, and deletion state, along with the emission probabilities for the match and
insertion states. Note: this diagram simplifies the “Plan7” architecture; in reality,
begin and end nodes are more complex, allowing for entire models to repeat.

via insertions.

We refer to the amino acid sequence of a protein whose structure we do

not know, and wish to determine using homology detection, as a query sequence.

Homology detection using a hidden Markov model involves aligning a query sequence

to a hidden Markov model, or computing a path through the model that maximizes

the likelihood of the model emitting the query sequence. This alignment involves

assigning successive amino acids in the query sequence to successive nodes of the

model. For a given node of the model, the match and deletion states are mutually

exclusive, as are the insertion and deletion states. However, it is permissible for a

path to assign amino acids to both the match and insert states of a node. In addition,

the match state consumes exactly one amino acid from the query sequence, while

the insert state may consume many. The delete state consumes no amino acids from

the query sequence.

Given a hidden Markov model, a protein whose query sequence has a higher

18

probability is considered to be more likely to be homologous to the proteins in the

alignment. We write a query sequence as x1, . . . , xN , where each xi is an amino

acid. The number of amino acids, N , can differ from the number of columns in the

alignment, C.

A hidden Markov model carries emission probabilities on some states, and

transition probabilities on all edges between states. Both the probabilities and the

states are determined by the alignment:

• For each column j of the alignment, the hidden Markov model has a match

state Mj . The match state contains a table eMj (x) which gives the probability

that a homologous protein has amino acid x in column j.

• For each column j of the alignment, the hidden Markov model has an insertion

state Ij . The insertion state contains a table eIj (x) which represents the

probability that a homologous protein has gained amino acid x by insertion

at column j.

• For each column j of the alignment, the hidden Markov model has a deletion

state Dj . The deletion state represents the probability that a homologous

protein has lost an amino acid by deletion from column j.

The probabilities eMj (x) and eIj (x) are emission probabilities. Each tuple of match,

insertion, and deletion states is called a node of the hidden Markov model.

Each transition has its own probability:

• A transition into a match state is more likely when column j is a consensus col-

umn. Depending on the predecessor state, the probability of such a transition

is aMj−1Mj , aIj−1Mj , or aDj−1Mj .

• A transition into a deletion state is more likely when column j is a non-

consensus column. The probability of such a transition is aMj−1Dj or aDj−1Dj .

• A transition into an insertion state is more likely when column j is a non-

consensus column. The probability of such a transition is aMj−1Ij or aIj−1Ij .

19

Due to the specific topology of the state-transition graph in the “Plan7”

architecture, a reformulation of the Viterbi recurrence relations are warranted. In

particular, we need not consider all state transitions that would be possible given a

general topology, and instead, need consider only three possible transitions at each

node, which reduces the search space. The variant of the Viterbi algorithm adapted

for the “Plan7” architecture is given by the recurrence relations:

VM
j (i) =

eMj
(xi)

qxi
×max

VM
j−1(i− 1)× aMj−1Mj

V I
j−1(i− 1)× aIj−1Mj

V D
j−1(i− 1)× aDj−1Mj

V I
j (i) = log

eIj (xi)

qxi
×max

 VM
j (i− 1)× aMjIj

V I
j (i− 1)× aIjIj

V D
j (i) = max

 VM
j−1(i)× aMj−1Dj

V D
j−1(i)× aDj−1Dj

(1.6)

1.4 Other Homology Detection Methods

1.4.1 Threading Methods

Threading is a methodology by which a query sequence is threaded onto a structural

template, and the quality of the threading is evaluated by means of an energy

function or a statistical likelihood. The idea of threading is based on the observation

that the number of unique protein folds found in nature is small with respect to the

number of distinct protein sequences, and that relatively few novel protein folds

have been found recently [PBB+03].

THREADER [JTT92], the original threading approach, aligns a protein se-

quence to a full tertiary structure model of a protein, and computes a score based

upon a Boltzmann energy function and solvent potentials. THREADER thus eval-

20

uates the propensity a sequence has for forming a particular tertiary structure, but

it cannot distinguish homologs (evolutionarily related proteins that share structure

and possibly function) from analogs (proteins that happen to share similar structure

but have no evolutionary relationship) [OJT94, Jon97].

GenTHREADER [Jon99] improves upon THREADER, using an artificial

neural network to compute a score based upon multiple inputs: solvent and Boltz-

mann potentials like THREADER, but also a sequence alignment score and length,

and the lengths of the query sequence and template.

Another popular and successful threading method is RAPTOR [XLKX03],

which relies on a template based on a contact map to indicate which residues in a

protein are in close geometric proximity to one another, as well as the statistical

propensities for individual residues to be in such proximity. RAPTOR then relies

on linear programming to compute the optimal alignment of a query sequence to

this template, in order to minimize the statistical energy. In Chapter 3, we compare

our results for remote homology detection to those of RAPTOR.

Other threading methods include SPARKS X [YFZZ11] and the recently-

developed RaptorX [PX11b].

1.4.2 Profile-Profile Hidden Markov Models

Several recent efforts have improved upon profile hidden Markov models, by align-

ing a profile HMM built from a training profile (much like HMMER) with another

profile HMM built from the query sequence. HHPred [Söd05], MUSTER [WZ08],

and HHblits [RBHS12] are three such approaches. Given a query sequence, HHPred

relies on PSI-BLAST [AMS+97] to build a sequence profile. HHPred then builds a

profile HMM on this profile, and uses a variant of the Viterbi algorithm to align the

query HMM to candidate target HMMs. HHPred, along with other profile-profile

hidden Markov model methods, relies on the query profile to more faithfully rep-

resent the evolutionary variation in the protein sequences that may be homologous

to the query sequence. In Chapter 3, we compare our results for remote homology

detection to those of HHPred.

21

1.4.3 Markov random fields

Some researchers have suggested generalizing HMMs to the more powerful Markov

random fields (MRFs). Unlike HMMs, which model only local dependencies among

neighboring residues, MRFs can capture nonlocal interactions, such as the conser-

vation of hydrogen-bonded residues in paired β-strands. SMURF (Structural Motifs

Using Random Fields) [Men09, MBC10] used this β-strand information to recog-

nize remote homologs in the β-propeller folds better than HMM methods. However,

SMURF is limited by computational complexity, because it uses multidimensional

dynamic programming to compute an optimal parse of a query sequence onto the

MRF, and its computational complexity is exponential in something called the in-

terleave number of a structure. This interleave number is simply the number of

intervening β-strands (in sequence) between a pair of hydrogen-bonded, paired β-

strands. β-propellers have a maximum interleave number of three, and thus they

are tractable for SMURF. In contrast, some β-barrels and sandwiches have an inter-

leave number as high as 12, and thus, SMURF’s computational complexity becomes

intractable on available computer systems. Chapters 3 and 4 explore two alternative

approaches to mitigate this computational hindrance.

1.5 Remote Homology Detection

While computing tertiary structure is computationally challenging, we can take

comfort in the fact that we do not always need tertiary structure to make useful

predictions as to function or evolutionary similarity. In particular, supersecondary

structure is often enough. Since structure determines function, if we can classify a

new protein of unknown structure as sharing similar supersecondary structure to a

group of known proteins, we have evidence that the new protein shares a similar

function to those known proteins.

Protein sequence is much typically less conserved than structure [KPH06,

WKG00], so proteins of similar structure and function, as seen at the SCOP super-

family level, may lack any meaningful sequence similarity. Simple sequence compar-

22

isons such as BLAST fail to correctly identify these remote homologs. However, if

biologists sequence the genome of an organism, they will wish to functionally an-

notate the proteins coded for by its genes. Anton or Folding@Home would require

weeks or months of computational time per gene to compute tertiary structure,

and even a bacterium has thousands of genes. Supersecondary structure provides

enough information to make reasonable functional annotations, and we can compute

it quickly enough to scale to entire genomes. Even threading approaches such as

RAPTOR[XLKX03] may require hours per gene. The methods we have developed

are faster and more accurate than standard threading approaches.

Threading methods such as RAPTOR [XLKX03] attempt to map a new

protein sequence onto templates built from individual solved proteins. While a

high-quality threading hit may produce an accurate tertiary structure, this approach

loses the ability to take a larger evolutionary view of protein space. Profile-based

methods–including SMURF–build knowledge about evolutionarily conserved parts

of the protein structure and sequence into their templates. Rather than matching

a new protein sequence to a single best-fitting structure, we wish to say that a new

sequence belongs to a group of proteins that share evolutionary, structural, and

possibly functional similarities.

In order to predict that a new protein sequence shares structure and function

with a group of known proteins, we must be sure that these groups of proteins are

consistent. In particular, since we use structure to infer function, we wish to ensure

that protein space is organized in a structurally consistent way.

1.6 Outline of This Work

In this dissertation, we present several approaches to remedying the complexity of

MRFs for remote homology detection, as well as an approach to improving the

quality of training data for remote homology detection. Below is the outline of

individual chapters in this dissertation.

We begin with a tour of protein fold space (Chapter 2), examining the struc-

23

tural consistency of the SCOP protein structural hierarchy. We also introduce a

method for clustering protein structures such that manually-curated hierarchies such

as SCOP [MBH95] can be recreated with reasonable accuracy, based purely on auto-

mated structural alignments. We also introduce a benchmark set, called MattBench,

that we propose for use by the developers of protein sequence or structural aligners.

In Chapter 3, we discuss an approach to generalizing Markov random fields

to the problem of remote homology detection in β-structural proteins. We simplify

the SMURF [Men09, MBC10] Markov random field model by limiting the complex-

ity of the dependency graph, in order to bound the computational complexity of

finding an optimal parse of a query sequence to a model. We combine these simpli-

fied Markov random fields with a model of “simulated evolution” to improve upon

existing methods.

In Chapter 4, we introduce an approach for remote homology detection using

the SMURF Markov random fields that does not require simplifying the dependency

graph. Instead, we introduce a stochastic search approach that quickly computes

approximate alignments to the Markov random field, and which should be general-

izable to all protein folds.

Finally, in Chapter 5, we discuss the results and summarize the key findings

of this dissertation followed by possible directions for future work.

24

Chapter 2

Touring Protein Space with

Matt

2.1 Introduction

Biologists have long relied on manual classification methods to organize the ac-

cepted gold-standard hierarchical classification systems for protein structural do-

mains, SCOP [MBH95, AHB+04] and CATH. [OMJ+97, PBB+03, GLA+07] Even

now, when both SCOP and CATH have switched to hybrid manual/semi-automated

methods [GLA+07], these methods are still attempting to fit new protein domain

folds into an initial classification scheme that was derived manually. Expert biolo-

gists continue to modify the clustering structure based on sequence, evolutionary,

and functional information, not solely based on geometric similarity of the placement

of atoms in the protein backbone.

On the other hand, pairwise protein structural alignment programs super-

impose protein domains to minimize a distance value based solely on geometric cri-

teria [GL98]. When computational biologists combine such a structural alignment

with hierarchical clustering, they obtain a fully automatic, unsupervised partition-

ing of protein structural domains into hierarchical classification systems [TGG+08].

Such “bottom up” protein structure classifications, as they are called in Valas et

25

al. [VYB09], have been previously designed based on VAST [MBB95, GMB96],

Dali [HS96, HS98, HP00], and others [ZGS+07], and have both practical and theo-

retical appeal. Practically, researchers can assign new protein structures to clusters

more quickly without a human expert. Theoretically, a mathematical characteriza-

tion of protein similarity and dissimiliarity, if it proves biologically useful or mean-

ingful, is objective, uniformly applied, and gives a human-expert-independent map

of the known protein universe.

Unfortunately, multiple researchers have found that SCOP and CATH hi-

erarchical classifications of protein structure both differ substantially from each

other [HJ99, GVSD02, BAD03], and also from the classification schemata that re-

sult from automatic bottom-up unsupervised clusterings of protein space [GL98,

HJ99, SB00, BAD03, STG+06], even when protein chains are broken up into the

more modular units of “protein domains,” as SCOP, CATH, and most automated

schemes now do [HS98, VYB09].

Previous papers have characterized those protein domain clusters on which

SCOP and CATH agree [HJ99, GVSD02, BAD03]. Previous automatic methods

seem to be able to match the closest-homology family level of the SCOP hier-

archy, but were found to diverge considerably at the more distantly homologous

superfamily and at the quite remotely homologous fold levels of the SCOP hierar-

chy [GL98, HJ99, SB00, BAD03, KKL05, STG+06, SWS07], with similar divergence

from CATH [HJ99, HPM+02, BAD03]. This is unfortunate, because, for example,

the superfamily level of the SCOP hierarchy clusters proteins that share similar

topologies and are believed to have evolved from a common ancestor [MBH95], al-

lowing important inferences to be made about function [STG+06, VYB09]. We

focus on SCOP rather than CATH for the remainder of this chapter, though much

of what we say about SCOP could be applied to CATH. Thus, the superfamily level

of the SCOP hierarchy has strong biological utility: if a fully automated, “bottom-

up”, distance-based clustering method cannot approximately replicate a particular

SCOP superfamily, then such a method is not clearly meaningful or useful.

This ties into a spirited debate among the computational proteins community,

26

about the central question of whether “protein fold space” is discrete or continu-

ous [Ros02]. A continuous view comes from the theory that modern proteins evolved

by aggregating fragments of ancient proteins [Ros02, HPM+02, VYB09, SKG09]. A

discrete view comes from evolutionary process constrained by thermodynamic stabil-

ity of the structure [SKG09]. In particular, if most mutations move the conformation

of a stable folded chain away from an “island” of thermodynamic structural stability,

then stabilizing selection will promote fold conservation, and movements between

folds will be uncommon [CK06]. If geometric distance and evolutionary relation ap-

proximately coincide, then an automatic method that approximately matches SCOP

at the superfamily level is conceivable.

We present a bottom-up automatic hierarchical classification scheme for

protein structural domains based on the multiple structure alignment program

Matt [MBC08]. Matt, which stands for “multiple alignment with translations and

twists”, was specifically developed by our group to geometrically align more dis-

tantly homologous protein domains. It accomplishes this by allowing flexibility in

the form of small, geometrically impossible bends and breaks in a protein structure,

in order to distort that structure into alignment with another protein. Matt was

shown to perform particularly well compared to competing multiple and pairwise

structure alignment programs on proteins whose homology was similar to the SCOP

superfamily level [MBC08, RSWD09, BSL09]. Surprisingly, we find that our auto-

matic classification scheme based on a pairwise distance value derived from Matt,

coupled with a straightforward neighbor-joining algorithm to construct the hierar-

chical clusters [SMP08] matches SCOP better than previous automatic methods,

at the superfamily, and even, to some extent, at the fold level. In comparison,

the same hierarchical clustering method using a pairwise distance value based on

DaliLite [HP00], a recent implementation of the Dali structural alignment algorithm,

replicates previous findings and cannot mimic SCOP on the superfamily level of the

SCOP hierarchy. We thus conclude that perhaps the threshold at which protein

domain space is naturally discrete extends at least through the superfamily level,

and that perhaps the manually curated SCOP hierarchy has geometric coherence

27

at the superfamily level (and in some parts of the fold hierarchy, see Section 2.4)

so these clusters are intrinsic properties of the geometry of fold space, not just

human-generated categories.

A practical implication of our results may be that automatic methods with a

Matt-based distance value may ultimately help speed the assignment of new protein

structural domains to the appropriate place in the SCOP hierarchy. We note, how-

ever, that determining where to place a new structure into an existing hierarchy is

a much simpler problem (analogous to “supervised learning”) than creating an en-

tire cluster hierarchy from an automatic pairwise distances from scratch (analogous

to “unsupervised learning”), and fairly successful methods already exist to cor-

rectly place a new structure into the existing SCOP hierarchy [GVSD02, CQKK04,

CSX06]. Thus the primary interest in this result may be that if a Matt distance value

can “recover” SCOP superfamilies to a great extent, this validates both automatic

and hand-curated methods of classification, and the entire concept of “superfamily”

at the same time. Namely, at this level of structural similarity, it appears we may

not often have to choose between evolutionary and geometric criteria for structural

domain similarity.

A byproduct of our organization of protein space is that by looking at where

agreement of our Matt clusters with SCOP is exact, we can construct a new set of

gold-standard protein multiple structure alignments of distantly homologous pro-

teins (and associated decoy sets) for which we can have confidence that the Matt

structural alignment is meaningful. Thus, we introduce “Mattbench,” a set of struc-

tural alignments at two levels: superfamilies (consisting of 225 alignments with be-

tween 3 and 15 proteins in each alignment set), and folds (consisting of 34 alignments

with between 3 and 15 proteins in each alignment set). Mattbench is meant as an al-

ternative to the SABmark [VWLW05] benchmark set, which also attempts to mimic

SCOP, but Mattbench’s alignment sets only cover those subsets of SCOP superfam-

ilies and folds where Matt finds geometric consistency. Thus while Mattbench is

slightly less complete than SABmark in coverage, its alignments are likely to be

more consistent, making it a better benchmark on which to test sequence alignment

28

methods. Complete details on how Mattbench is constructed appear in Section 2.2.6;

Mattbench itself can be downloaded from http://www.bcb.tufts.edu/mattbench.

Finally, we remark that this work, like most recent work that compares differ-

ent hierarchical classification systems, already presumes the “structural domain” as

the basic structural unit (as do SCOP and CATH), where many protein structures

contain multiple structural domains [HS98]. The problem of partitioning a protein

into its structural domains is far from trivial [VBAS04, HVS06] but there has been

much recent progress in computational methods that split a protein structure auto-

matically into domains and find the domain boundaries [HVS06, RHD07]. In any

case, that is not the focus of our work, and we assume the protein has already been

correctly split into domains as a preprocessing step.

2.2 Methods

2.2.1 Representative Proteins

From the 110,776 protein domains of known structure from ASTRAL version 1.75,

we construct a set of representative protein domains filtered to 80% identity (accord-

ing to BLASTP [AMS+97]) and a minimum sequence length of 40 residues. This

provides a reasonable first pass for identifying groups of similar protein domains,

and allows us to shrink the search space significantly. The set of clusters is con-

structed by running a greedy, agglomerative, minimum-linkage clustering algorithm

based on this threshold of 80% sequence identity. This produces 10,418 groups of

proteins that share significant sequence identity.

From each cluster, we identify a representative. First, we discard engineered

or mutant proteins, and any proteins whose X-ray crystallography resolution is

> 5.0Å, from any cluster that has alternative representatives that meet our criteria.

Next, treating each cluster as a (potentially, but not necessarily, complete) graph

whose nodes are the constituent proteins and whose edge weights are the sequence

identity values from the BLASTP alignments with at least 80% identity, we consider

the weighted degree (sum of edge weights) of each protein, and we favor the proteins

29

http://www.bcb.tufts.edu/mattbench

with greatest weighted degree. We break ties first by the date the structure was

determined (preferring more recent structures), then by the quality of the solved

structure. The remaining ties typically come from sequences with ≥ 99% identity,

and we break them arbitrarily. The resulting set has 10,418 representative protein

domains.

2.2.2 Distance Values

For these 10,418 representatives, we performed an all-pairs structural alignment

using both DaliLite [HP00], the structural aligner used in the FSSP classification

scheme [HS98] and Matt [MBC08]. In each case, a distance (or dissimilarity) mea-

sure is derived for each pair. For DaliLite, the Z-score proved to be a good measure,

so we used it without further modification.

For Matt, we used a new distance value that is a modification of the p-value

score computed in Menke, et al. [MBC08]. Let c be the length of the aligned core

shared between the two proteins (in residues), r be the RMSD (root mean square

deviation) of the alignment, l1 and l2 be the lengths of the two protein domains being

aligned (in residues), and k1, k2, and k3 be the constants from the Matt p-value.

We compute the distance between two Matt-aligned proteins as follows:

d =
1

k1 × (r − k2 × c2
l1+l2

2

+ k3)

This value differs from the formula that Matt uses to compute a p-value only

in that it squares the core-length term to place more weight on longer aligned cores

(c2 instead of c). We found this improved performance.

2.2.3 Distance Threshold

Based on each of the Dali Z-score and Matt distances, we next learned the distance

cutoffs that most closely mimicked the family, superfamily, and fold levels of the

SCOP hierarchy as follows:

In other words, we set dp,q to be the value corresponding to the point on

the Receiver Operating Characteristic (ROC) curve that intersects the tangent iso-

30

Initialize a training set T and a set of already-chosen pairs A;
for i = 1→ 10000 do

Choose proteins p, q such that p 6= q and p and q are in the same
SCOP grouping, and the pair p, q 6∈ A;
Choose proteins r, s such that r 6= s and r and s are in different
SCOP groupings, and the pair r, s 6∈ A;
A← {p, q};
A← {r, s};
T ← dist(p, q) with label true;
T ← dist(r, s) with label false;
Compute true positive rate Rtp, true negative rate Rtn, positive rate
Rp, and negative rate Rn for T based on the class labels true and
false;

Determine the value of dp,q that maximizes
Rtp+Rtn

Rp+Rn
;

end

performance line [VC06], maximizing the sum Rtp +Rtn. The area under the ROC

curve measure (AUC) is a summary statistic that captures how well the pairwise

distance score can discriminate between structures that share or do not share SCOP

cluster membership.

We note that setting the pairwise distance cutoffs (determining the value

of dp,q in step 4) is the only “supervision” our algorithm uses in constructing its

clustering (see discussion below). We emphasize that once the three single scalar

pairwise distance cutoff (corresponding to SCOP ‘family‘, ‘superfamily‘, and ‘fold‘

levels of dissimilarity) are set, no further information from SCOP is utilized to

produce the clustering.

2.2.4 Clustering and Tree-cutting

Based on the distance functions, we computed values for all pairwise alignments

based on the Matt or DaliLite output, and represented this as a distance matrix.

We ran the ClearCut program [SMP08] in strict neighbor-joining mode (-N option)

to produce a dendrogram based on these Matt or DaliLite distance values. We

then recursively descended this tree to produce family, superfamily, and fold-level

groupings as follows. For a given subtree, if all leaves (protein domains) in that

subtree are within a threshold t of one another (where t is the family, superfamily,

31

or fold threshold), then those leaves are all merged into a new grouping of that

level. Otherwise, we recursively descend into the two subtrees of that subtree’s root

until we reach a subtree all of whose leaves fall within a given threshold (family,

superfamily, or fold; based on Matt distance or DaliLite Z-score as appropriate)

of one another. Thus, we are performing a total-linkage clustering, but using the

topology of the dendrogram to determine which protein domains get left out of a

given cluster.

We remark that Sam et al. [STG+06] did an extensive study of clustering and

tree-cutting methods, and looked at their effect on performance for several distance

values. They tested 3 “SCOP-dependent” and 7 “SCOP-independent” tree-cutting

strategies. However, their “SCOP-independent” strategies all required as input the

target number of SCOP clusters to produce at each level. In contrast, our method

discovers the number of clusters as an organic function of the protein domain space,

based only on a globally learned dissimilarity cutoff; it is thus of independent interest

that we nearly replicate the number of SCOP clusters at each level (see Table 2.2).

2.2.5 Jaccard Similarity Metric

The Jaccard index, or Jaccard similarity coefficient, of two sets A and B is defined as

J(A,B) = |A∩B|
|A∪B| . Based on the Jaccard index of a cluster (e.g. family or superfamily

or fold) produced by our algorithm (a “Matt family” or “DaliLite family”) and a

SCOP grouping of the same level, and looking at the identity of protein domains in

the two groupings, we can compare how alike they are. We can thus easily find the

most similar SCOP family to each Matt family, S →M and vice versa, M → S. This

directional mapping is neither one-to-one nor onto, but each cluster on the ‘source’

side will be mapped to some most-similar cluster on the ‘sink’ side. The resulting

directed graph allows us to explore the distribution of Jaccard indices as well as

the distribution of degrees of each cluster. A perfect matching would correspond to

every Jaccard index being 1.0, and every cluster having degree 1. Clearly, we do

not expect to achieve a perfect matching, but this metric allows us to compare the

quality of clustering, relative to SCOP, of our algorithm using the Matt distance

32

and the DaliLite Z-score distance.

Each direction of the metric is produced as follows, using as an example the

comparison of Matt families to SCOP families. Consider the set of Matt families

and SCOP families as a bipartite graph, with the Matt families on one side of the

bipartition and the SCOP families on the other. Initially, the graph has no edges.

For each Matt family, find the most similar (by Jaccard index) SCOP family. A

weighted, directed edge is drawn from each Matt family to its most similar SCOP

family; the edge weight is equal to the Jaccard index, which ranges from 0 to 1.

This is performed until each Matt family has been matched to a SCOP family.

This process is repeated in the other direction, matching each SCOP family to its

most similar Matt family, and the same thing is done for Matt and DaliLite at the

superfamily and fold levels of the SCOP hierarchy.

Recall that in this analysis, as is standard [HJ99], we are considering only

the protein domains that were identified as cluster representatives within each group

of protein domains that share 80% sequence identity.

2.2.6 Benchmark Set

Developers of protein sequence aligners–and structural aligners–typically test their

alignment quality on gold-standard benchmark sets such as HOMSTRAD [MDBO98]

and SABmark [VWLW05]. With the hierarchy of Matt-derived folds, superfamilies,

and families constructed, we produced a benchmark set of protein alignments at

two levels: superfamilies (consisting of 225 alignments), and folds (also referred to

as the “twilight zone” of protein homology, consisting of 34 alignments). The “twi-

light zone” [Ros99] is the region of low sequence identity (between 20% and 35%) at

which homology recognition based upon sequence alignment becomes difficult. At

the superfamily level, we generated the benchmark set as follows:

1. Choose Matt superfamilies that contain at least three representative proteins.

2. For each Matt superfamily:

(a) Identify the most similar SCOP superfamily (by Jaccard index) and take the

33

intersection of it and the Matt superfamily. Call this set S.

(b) run BLAST on all pairs of proteins in S, storing the maximum e-value as E.

(c) For any pair of proteins p, q ∈ S that share greater than 50% sequence identity,

remove the shorter one (breaking ties arbitrarily by alphabetic order of protein

name). Call this set S′. Proceed if and only if S′ still has at least three proteins.

(d) Run a Matt multiple alignment on S′, and store this alignment as the Mattbench

alignment for S′

3. For each Mattbench superfamily S, produce a decoy set D as follows:

(a) Consider every Matt representative protein p 6∈ S. For each p:

i. discard p if it is in the most similar (by Jaccard index) SCOP superfamily

to p’s Matt superfamily

ii. run BLAST on p against every protein s ∈ S, storing the e-value es,p and

sequence identity is,p

iii. run Matt on p against every protein s ∈ S, storing the Matt distance ms,p

iv. discard p if ∃s such that is,p ≥ 50%

v. discard p unless ∃s such that es,p < E (this is the E stored as the maximum

e-value above)

vi. discard p unless ∀s,ms,p > Tsuperfamily (the superfamily threshold used in

Matt clustering)

vii. if p has not been discarded, add it to the benchmark decoy set D.

The “twilight zone” benchmark set is generated in an identical manner, ex-

cept that the Matt and SCOP fold levels are used, and the sequence identity cutoff

is 20% rather than 50%. The BLAST E-value criterion is the same used by SAB-

mark [VWLW05] and ensures that each decoy is a useful decoy rather than an

obvious negative match. The Matt distance criterion is present because, if the de-

coy protein is within the threshold of some protein in that superfamily, the decoy

is only not in that superfamily because of the overall topology of the cluster–that

is, because while the decoy may be similar to some protein in that cluster, it is

not similar enough to all of the proteins of that cluster to warrant inclusion. The

purpose of the decoy set is to act as a set of likely false positives, that a sequence

34

aligner will find challenging to distinguish from the true positives. Both benchmarks

can be found at http://www.bcb.tufts.edu/mattbench.

2.3 Results

2.3.1 Pairwise Distance Comparisons

Table 2.1: ROC Area for pairwise performance vs. SCOP

Matt DaliLite

Families 0.922 0.958
Superfamilies 0.842 0.615
Folds 0.840 0.871

Note: While DaliLite slightly outperforms Matt at family and fold levels, Matt
significantly outperforms DaliLite at the superfamily level.

We first asked if a pairwise Matt or DaliLite distance cutoff could correctly

distinguish among pairs of proteins that were in the same SCOP cluster from those

that were not. Table 2.1 shows the ROC area at the SCOP family, superfamily, and

fold level, for the Matt and DaliLite distance scores. Note that at the family and fold

levels, these values are very close (DaliLite outperforms Matt by a small margin), but

at the superfamily level, Matt significantly outperforms DaliLite, achieving 0.842

ROC area vs. DaliLite’s 0.615. Matt was developed to better align structures

at the superfamily level of homology, but the size of the gap in ROC area is still

surprising. We further remark that at the fold level, DaliLite’s seemingly competitive

performance is somewhat illusory, since it is shattering many SCOP folds, each into

many tiny pieces (see below).

2.3.2 Clustering Performance

While the pairwise performance of Matt compared to DaliLite at the su-

perfamily level is impressive, pairwise similarity does not necessarily translate into

better clustering performance. Thus, we next explore Matt’s clustering performance.

35

http://www.bcb.tufts.edu/mattbench

Table 2.2: Number of clusters at each level for each method

SCOP Matt DaliLite

Families 3471 3498 3081
Superfamilies 1656 1716 2455
Folds 981 891 2277

Note: Matt more closely matches the number of families, superfamilies, and folds
in SCOP than DaliLite does. DaliLite clustering results in too few families, but too
many superfamilies and folds with respect to SCOP.

First we give the simplest possible comparison: raw numbers of clusters produced

by Matt and DaliLite compared to SCOP at the three levels. Recall that unlike

the clustering algorithm explored by Tai, et al. [TGG+08], the number of clusters

produced by our dendrogram and tree-cutting method is a direct consequence of

the pairwise distance threshold, and is not artificially set to match SCOP (see Sec-

tion 2.2.4). Table 2.2 shows that the Matt clustering produces approximately the

same number of clusters as SCOP at all three levels. While DaliLite also produces

approximately the same number of clusters at the family level, at the superfamily

and fold levels it produces many more clusters than SCOP. We next explore exactly

how both methods split and merge SCOP clusters in more detail.

The Jaccard index serves as a good indicator of how well Matt and DaliLite

match SCOP. As the raw numbers of clusters in Table 2.2 suggest, DaliLite often

shatters SCOP superfamilies into multiple clusters. DaliLite also shatters SCOP

folds into many more shards on average than Matt. How can this be given the very

similar pairwise classification performance at the fold level? We defer this question

until Section 2.4. We note that even at the family level, Matt performs slightly

better than DaliLite at both the average degree and average Jaccard similarity

metrics. The average number of Matt or DaliLite families that match to a single

SCOP family is between 3.5 and 4; however, notice that a large majority of Matt

or DaliLite families map to a single SCOP family and the average is pulled up by

a few outliers (see histograms in Figures 2.1 and 2.2). Average degree values at the

superfamily and fold levels stay nearly constant for Matt, whereas DaliLite’s average

36

Table 2.3: Descriptive statistics for the family, superfamily, and fold levels

Family Max Deg. µ Deg. σ Deg. Min Sim. µ Sim. σ Sim.

Matt →SCOP 30 3.63 5.470 0.005 0.611 0.373
DaliLite → SCOP 45 3.902 6.919 0.001 0.598 0.380
SCOP → Matt 15 1.873 2.160 0.127 0.712 0.336
SCOP → DaliLite 12 1.983 1.823 0.001 0.655 0.347

Superfamily Max Deg. µ Deg. σ Deg. Min Sim. µ Sim. σ Sim.

Matt → SCOP 28 3.633 5.094 0.003 0.587 0.389
DaliLite → SCOP 153 16.61 36.54 0.001 0.428 0.406
SCOP → Matt 15 1.704 1.913 0.020 0.714 0.326
SCOP → DaliLite 10 1.470 1.229 0.001 0.713 0.324

Fold Max Deg. µ Deg. σ Deg. Min Sim. µ Sim. σ Sim.

Matt → SCOP 18 3.719 4.258 0.004 0.467 0.354
DaliLite → SCOP 149 26.57 40.87 0.001 0.321 0.389
SCOP → Matt 6 1.958 1.122 0.022 0.512 0.326
SCOP → DaliLite 3 1.117 0.353 0.001 0.758 0.299

Note: µ Degree is the average number of clusters from the first scheme that map to
a single cluster in the second, and σ Degree gives the standard deviation. Similarly,
we give min, µ, and σ of the Jaccard similarity.

degree values rise to 16.61 for the superfamily level and 26.57 at the fold level. In

the other direction, considering how many Matt or DaliLite clusters span multiple

SCOP clusters, at the family level the average degree for Matt and DaliLite are

nearly identical (between 1.8 and 2). At the superfamily and fold levels, we would

expect DaliLite to outperform Matt by virtue of the fact that it creates many smaller

clusters (see Table 2.2), and DaliLite does, but by a fairly small margin (1.4 to 1.7 at

the superfamily level and 1.1 to 2 at the fold level). The distributions are displayed

in more detail in the histograms in Figures 2.1,2.2, 2.3, 2.4, 2.5, and 2.6.

2.3.3 Specific Example

We thought it would be illuminating to provide a pictorial example of a single

SCOP superfamily that Matt splits into two superfamilies. Consider the SCOP

superfamily “DHS-like NAD/FAD-binding domain” (SCOP ID 52467). There are

24 proteins from this superfamily in our representative set. Matt places 17 of them

in one superfamily, but the remaining 7 in a different superfamily. Figure 2.7a gives

37

Figure 2.1: Number of Matt vs. DaliLite families into which each SCOP family is
shattered.

an example protein from the Matt superfamily of size 17, while Figure 2.7b gives

an example protein from the Matt superfamily of size 7. Both Matt superfamilies

contain the same single flat β-sheet of 6 or 7 strands, surrounded by α-helices. In

addition, the proteins in the Matt superfamily of size 7 have a second short 3-4

strand β-sheet. The second short β-sheet is physically on one end of the first β-

sheet in 3-dimensional space, but sometimes occurs between the second-to-last and

last β-strands in the first β-sheet in terms of linear (sequence) ordering, or else at

the very end. The second β-strand is also partially surrounded by α-helices.

Because of the common central motif, it is very possible that these proteins

are evolutionarily related and thus belong in the same SCOP superfamily. However,

geometrically, the additional short β-sheet is significant enough for Matt to place

them in different superfamilies. Matt does, however, place them in the same fold.

38

Figure 2.2: Number of SCOP families into which each Matt or DaliLite family is
shattered.

2.4 Discussion

We have shown that using more modern structure alignment programs, we can

approximately match SCOP at the superfamily level. Of course, any mapping be-

tween one set of clusters based on geometric equivalence, and another set of clusters

based on geometric as well as evolutionary equivalence, will be imperfect–yet the

Matt clusters at the superfamily level seem sufficiently interesting that differences

between Matt and SCOP could be illuminating.

As noted earlier, DaliLite tends to shatter SCOP folds into many more shards

than Matt. How can this be, given the very similar pairwise classification perfor-

mance at this level? One possibility is that the Matt-based distance value is more

stable in regions far beyond the specific thresholds we learned, and that this leads to

39

Figure 2.3: Number of Matt vs. DaliLite superfamilies into which each SCOP
superfamily is shattered. Note the tail of the distribution, in which DaliLite breaks
SCOP superfamilies into many small pieces.

the topology of the resulting dendrogram (before cutting) more faithfully represent-

ing the relationships between more- and less-closely related folds. In other words,

DaliLite’s Z-scores may result in more ‘spoilers’–individual proteins with large dis-

tances to many other proteins in the same cluster–that break up clusters (due to

our total-linkage requirement) than Matt’s distance value. While we have only

compared Matt to DaliLite, comparisons to other aligners such as TM-Align [ZS05]

would undoubtedly be interesting. We focused on the comparison to DaliLite due

to it being the aligner underlying the FSSP database [HS98].

What do Matt’s clustering results mean for protein fold space at the “fold”

level of structural homology? Here, while the Matt clustering clearly seems more

informative than that produced by DaliLite, performance is still uneven. There seem

40

Figure 2.4: Number of SCOP superfamilies into which each Matt or DaliLite super-
family is shattered.

to be some SCOP folds where the Matt split appears meaningful, and others where

it is more arbitrary. For example, a notoriously difficult SCOP fold for multiple

automatic methods is the enormous β/α TIM barrel fold. SCOP places 33 separate

superfamilies into this one fold, but both of our clustering approaches seem to split

it into multiple folds. For example, DaliLite splits the TIM barrel SCOP fold into

106 separate folds. Matt splits the TIM barrel SCOP fold into ‘only’ 17 separate

folds, which is better than 106, but inspection of the boundaries between these Matt

fold classes shows more continuity of shape, and the cuts appear to be somewhat

arbitrary.

Thus, while touring protein space with Matt seems to lend support to a

more discrete view of protein space through the superfamily level, further study of

individual clusters may be warranted to determine the breakpoint distance at which

41

Figure 2.5: Number of Matt vs. DaliLite folds into which each SCOP fold is shat-
tered. Note the tail of the distribution, in which DaliLite breaks SCOP folds into
many small pieces.

continuity takes over. Perhaps the degree of similarity of different individual SCOP

folds can be characterized, similarly to what Suhrer, et al. [SWS07] did at the family

level.

We have made the Mattbench benchmark set available at http://www.

bcb.tufts.edu/mattbench. We hope that developers of protein sequence align-

ment tools will consider testing their performance on Mattbench, as well as SAB-

mark [VWLW05] and HOMSTRAD [MDBO98].

42

http://www.bcb.tufts.edu/mattbench
http://www.bcb.tufts.edu/mattbench

Figure 2.6: Number of SCOP folds into which each Matt or DaliLite fold is shattered.

(a) Example from Matt superfamily 252
Pyruvate oxidase from Lactobacillus plan-
tarum, PDB ID 2ez9:a

(b) Example from Matt superfamily
212 AF1676, Sir2 homolog (Sir2-AF1) from
Archaeon Archaeoglobus fulgidus , PDB ID
1m2k:a

Figure 2.7: Example of a SCOP superfamily split by Matt

43

Chapter 3

Simplified Markov Random

Fields and Simulated Evolution

Improve Remote Homology

Detection for Beta-structural

Proteins

3.1 Introduction

Many researchers use hidden Markov models (HMMs) to annotate proteins accord-

ing to homology, with popular systems such as Pfam ([FTM+08]) and Superfam-

ily ([WMV+07]) based on HMM methods integrated into UniProt. However, HMMs

are limited in their power to recognize remote homologs because of their inability to

model statistical dependencies between amino-acid residues that are close in space

but far apart in sequence ([LS80, ZB99, ORV99, CBM+02, ST02]).

For this reason, many have suggested ([WMS94, LS96, TRBK08, GW09,

MBC10, PX11a]) that more powerful Markov random fields (MRFs) be used. MRFs

employ an auxiliary dependency graph which allows them to model more com-

44

plex statistical dependencies, including statistical dependencies that occur between

amino-acid residues that are hydrogen-bonded in β-sheets.

However, as the dependency graph becomes more complex, major design dif-

ficulties emerge. First, the MRF becomes more difficult to train. Second, finding the

optimal-scoring parse of the target to the model quickly becomes computationally

intractable.

We have built a fully automated system, SMURFLite, that combines the

power of Markov random fields with Kumar and Cowen’s Simulated Evolution

([KC10]) (which offloads information about pairwise dependencies in β-sheets into

new, artificial training data), in order to build the first MRF models that are com-

putationally tractable for all β-structural proteins, even those with limited training

data. The SMURFLite system builds in part on the SMURF MRF ([MBC10]),

which uses multidimensional dynamic programming to simultaneously capture both

standard HMM models and the pairwise interactions between amino acid residues

bonded together in β-sheets.

Unlike the full SMURF MRF, where the computational requirements of the

random field become prohibitive on folds with deeply interleaved β-strand pairs, such

as barrels, SMURFLite is tractable on all β-structural proteins (see Figure 3.3).

SMURFLite enables researchers to trade modeling power for computational cost

by tuning an interleave threshold . The interleave threshold represents the maxi-

mum number of unrelated β-strands that can occur in linear sequence between the

β-strands hydrogen-bonded in a β-sheet while still being retained as pairwise de-

pendencies in the MRF. As the interleave threshold increases, computation time

increases, but so does the power of the MRF (see Figure 3.2).

We first test SMURFLite on all propeller and barrel folds in the mainly-β

class of the SCOP hierarchy in stringent cross-validation experiments. We show a

mean 26% (median 16%) improvement in Area Under Curve (AUC) for β-structural

motif recognition as compared to HMMER ([Edd98]) (a popular HMM method) and

a mean 33% (median 19%) improvement as compared to RAPTOR ([XLKX03]) (a

well-known threading method), and even a mean 18% (median 10%) improvement in

45

AUC over HHPred ([Söd05, SBL05]) (a profile-profile HMM method), despite HH-

pred’s use of extensive additional training data. We demonstrate SMURFLite’s abil-

ity to scale to whole genomes by running a SMURFLite library of 207 β-structural

SCOP superfamilies against the entire genome of Thermotoga maritima, and make

over a hundred new fold predictions (available at http://smurf.cs.tufts.edu/

smurflite). The majority of these predictions are for genes that display very little

sequence similarity with any proteins of known structure, demonstrating the power

of SMURFlite to recognize remote homologs.

We offer an online server (http://smurf.cs.tufts.edu/smurflite) for pre-

dicting remote homologs from our library of 207 mainly-β superfamilies using SMUR-

FLite. The online server sets the interleave threshold (the parameter that determines

the complexity of the MRF) to 2; we have also shown that increasing the interleave

number for SMURFLite can dramatically improve accuracy, but at a great compu-

tational cost. While the primary intent of using simulated evolution in conjunction

with simplified MRFs is to compensate for the removal of highly-interleaved β-strand

pairs required for computational feasibility, we surprisingly find that simulated evo-

lution can still improve full-fledged SMURF in cases of sparse training data. For

instance, the 5-bladed β-propellers have only three superfamilies in SCOP, two of

which contain only one family. We find that for the 5-bladed β-propeller fold, com-

bining SMURF and simulated evolution improves AUC from 0.73 for full SMURF

alone to 0.89.

3.2 Methods

3.2.1 Summary of SMURF Markov random field framework

SMURF and SMURFLite rely on training data in the form of a multiple structure

alignment with β-strand annotation. This alignment is created using the Matt pro-

gram ([MBC08]). β-strand annotation is done on a structure-by-structure basis,

where the β-strand residue pairing is determined using the same algorithm imple-

mented by the Rasmol ([SMW95]) visualization program. Essentially, β-strands are

46

http://smurf.cs.tufts.edu/smurflite
http://smurf.cs.tufts.edu/smurflite
http://smurf.cs.tufts.edu/smurflite

detected by analyzing the ψ, φ, and ω angles, as well as the distance between a hy-

drogen from the amine group and an oxygen from the carboxyl group of the amino

acid at which that hydrogen is pointing, if any. If this hydrogen and oxygen point

at each other and are within 3Å, they are considered to be hydrogen-bonded. If

successive hydrogen bonds are to amino acids near (3-5 residues) in sequence, an

α-helix is inferred; if those bonds are to distant amino acids in sequence, a β-strand

is inferred. A postprocessing step annotates those β-strand residues that appear in

more than half the structures in the alignment as β-conserved. As gaps in β-strands

would complicate training, this post-processing step makes β-conserved template

strands contiguous in the alignment exactly as in [MBC10]. Specifically, any gaps

in a column, that otherwise comprises at least half β-structural amino acids, are

removed from the alignment. Recall that up to half the sequences are allowed to not

participate in β-strands at any given position of the alignment, the non-β-strand

amino acids in those positions are still treated as if they participate in β-strands.

The result at this stage is a sequence alignment (resulting from the Matt

structural alignment) with conserved β-strand pairs annotated according to the

residue positions and conformation (buried or exposed to solvent).

The pairwise probability portion of the MRF is based on the β probability

tables that were computed by collecting a set of amphipathic β-sheets from the

Protein Data Bank (PDB) ([BBB+00]) and tabulating the frequencies of pairs of

hydrogen-bonded residues in two tables, one for buried residues and one for residues

exposed to solvent ([BCM+01], [MBC10]). The β-structural proteins chosen were

filtered to 25% sequence identity to prevent over-representation of highly-sampled

sequences. Amphipathic β-sheets are those β-sheets that are “confused” as to their

hydrophobicity, and thus have residues whose sidechains may alternate as to the

direction in which they pack. For each residue position, the most likely conformation

(buried or exposed) is chosen based on whether that residue pairing is most probable

from the buried or exposed β-pairing tables.

Given a trained MRF, SMURF and SMURFLite align a query sequence to

the MRF. The query phase of SMURF and SMURFLite computes the alignment of

47

the sequence to the states of the MRF that maximizes the combined score:

log (HMM score) + log (pairwise score)

In this combined score, the HMM score is the conditional probability of

observing the sequence given the HMM portion of the model, and the pairwise score

is the conditional probability of observing the paired β-strand components of the

sequence given the β-pair portion of the model. Let the sequence have residues

r1..rn, and the MRF have match states m1..ml, deletion states d1..dl, and insertion

states i1..il. Suppose that r1..rk and match states m1..ms have been assigned. Then,

the probability of assigning rk to the next match state mj = ms+1 is:

Pr [mj |rk, uj−1] = HMM [mj , rk] ·

transition [uj−1,mj] ·

βstrand [rj , rk,mj ,mk]

where uj−1 can be either dj−1, ij−1, or mj−1 depending on whether the current

state is a deletion, insertion, or match state. When the current state is a match

state, the SMURFLite template replaces the transition [uj−1,mj] term with a value

of 1. The βstrand component is set to be identically 1 unless the particular match

state mj participates in a β-strand that is matched with a state mk earlier in the

template. This component is the primary difference between our MRF and an

ordinary HMM ([MBC10]).

SMURFLite computes the maximum score of a sequence using multidimen-

sional dynamic programming on the MRF. This dynamic programming resembles

the classic Viterbi algorithm ([Vit67]) used on HMMER’s “Plan7” ([Edd98]) HMMs,

except that some states are β-strand states, which are required to be match states,

and which are paired with other β-strand nodes in the model. Because the pairwise

component of the score can only be calculated for a given MRF node once it is de-

termined what residue occupies the paired MRF node earlier in the sequence, each

48

time the dynamic programming reaches a state in the MRF that corresponds to the

first residue of the first β-strand in a set of paired β-strands, we need to keep track

of multiple cases, depending on what residue in sequence is mapped to that state.

SMURFLite uses a multidimensional array to memoize these possible subproblem

solutions. A maximum gap size is set to the longest gap seen in the training data

plus 20, for computational efficiency. When paired β-strands follow each other in

sequence with no interleaving β-strands between them, the number of dimensions

in the table for the dynamic programming is directly proportional to the maximum

gap length. Let us call the last MRF state for the first of every pair of β-strands

a “split” state and the first MRF state for the second of that pair a “join” state.

Then, at every split state, the number of dimensions of the dynamic program will

be multiplied by the maximum gap length, because the dynamic program must keep

track of scores for each possible sequence position (up to the maximum gap length)

that could be mapped to that state. At the corresponding join state, the number

of dimensions will be reduced by the maximum gap length, because the scoring

function can calculate all the pairwise probabilities of placing that residue into the

join state, and then simply take the maximum of all ways to have placed its paired

residue into the split state. However, when other β-strands are interleaved, the

dynamic program must open additional multidimensional tables before clearing the

previous ones from memory. An example of this interleaving is shown in Figure 3.3.

Thus, the number of elements in the multidimensional table is never more than the

sequence length times the maximum gap length raised to the power of the interleave

number.

3.2.2 Datasets

From SCOP ([MBH95]) version 1.75, we chose the folds “5-bladed Beta-Propellers”,

“6-bladed Beta-Propellers”, “7-bladed Beta-Propellers”, and “8-bladed Beta-Propellers”.

We also chose superfamilies from all of the mostly-β folds containing the word “bar-

rel” in their description, whether open or closed, restricted to those superfami-

lies comprising at least four families (in order to facilitate leave-family-out cross-

49

validation). These superfamilies were: “Nucleic acid-binding proteins” (50249),

“Translation proteins” (50447), “Trypsin-like serine proteases” (50494), “Barwin-

like endoglucanases” (50685), “Cyclophilin-like” (50891), “Sm-like ribonucleopro-

teins” (50182), “PDZ domain-like” (50156), “Prokaryotic SH3-related domain” (82057),

“Tudor/PWWP/MBT” (63748), “Electron Transport accessory proteins” (50090),

“Translation proteins SH3-like domain” (50104), “Lipocalins” (50814) and “FMN-

binding split barrel” (50475). Of these, we removed the superfamilies “Lipocalins”

and “Trypsin-like serine proteases,” which were not structurally consistent enough to

permit a multiple structure alignment for training HMMER or the SMURF variants,

and which were broken into distinct superfamilies by [DKCM11], with the result that

11 superfamilies containing barrels were selected. In addition, for the whole-genome

search on Thermotoga maritima, out of 354 total superfamilies within the SCOP

class “All beta proteins”, 288 (81%) of which contain at least two protein chains,

207 superfamilies (71%) were structurally consistent enough to be aligned using the

Matt ([MBC08]) structural alignment program. We built SMURFLite templates

for these 207 superfamilies, and obtained from UniProt the protein sequences for

Thermotoga maritima, comprising 1852 genes.

3.2.3 Training and testing process

For the β-propeller folds, strict leave-superfamily-out cross-validation was performed.

The propeller folds are structurally highly consistent ([MBC10]), and thus high-

quality multiple structure alignments were possible using Matt ([MBC08]) without

descending to the superfamily level. For each propeller fold, its constituent su-

perfamilies were identified. For each superfamily, one pass of cross-validation was

performed. Given a superfamily to be left out, a training set was established from

the protein chains in the remaining superfamilies, with duplicate sequences removed.

An HMM (in the case of HMMER and HHPred) or MRF (in the case of SMURF

and SMURFLite) was trained on the training set (HMMER parameter settings are

discussed below). Protein chains from the left-out superfamily were used as positive

test examples. Negative test examples were protein chains from all other folds in

50

SCOP classes 1, 2, 3 and 4 (including propeller folds with differing blade counts),

indicated as representatives from the non-redundant Protein Data Bank repository

(nr-PDB) ([BBB+00]) database with non-redundancy set to a BLAST E-value of

10−7.

The β-propellers are atypical of most β-structural SCOP folds, in that they

structurally align well at the fold level of the SCOP hierarchy. For the β-barrel

superfamilies, strict leave-family-out cross-validation was performed. The barrel

superfamilies are distinguished by strand number and shear as well as other struc-

tural features ([MBH95]), and so like most β-structural motifs they do not align

well structurally at the fold level. For this reason, the superfamily level was chosen

for training. This cross-validation was similar to that chosen for the β-propellers,

except that it was done at the superfamily level, and thus each pass of the cross-

validation involved leaving out a family and training on a structural alignment of

representatives from the remaining families in that superfamily.

Each test example was aligned to the trained HMM (from HMMER and HH-

Pred) and MRF, and was also threaded, using RAPTOR, against each individual

chain in the training set (RAPTOR parameters are discussed below). The score

reported for HMMER and HHPred was the output HMM score, and the score re-

ported for SMURF and SMURFLite was the combined HMM and pairwise score

from the MRF. For RAPTOR, the score reported for a test example was the highest

score from all the scores resulting from threading that test example onto each chain

in the training set. For each training set, the scores for each method were collected

and a ROC curve (a plot of true positive rate versus false positive rate) computed.

We report the area under the curve (AUC statistic) from this ROC curve ([SKP08]).

3.2.4 p-values

SMURFLite computes the p-value for an alignment in a similar manner to HMMER,

using an extreme value distribution (EVD) ([Edd98]). An EVD is fitted to the

distribution of raw scores over a random sampling of 5000 protein chains from across

the SCOP hierarchy. The p-value is then simply computed as 1 − cdf (x) for any

51

raw SMURFLite score x, where cdf is the cumulative distribution function for the

EVD.

PDB Entries
(SCOP)

EQANDVRATY
EQ-NDVRTTY
ERINDVRATY
EQAN-VR-TY

EQANDVRATY
EQ-NDVRTTY
ERINDVRATY
EQLNGVRATY
EQARGVRATY
EQLLDIRATY
EQAN-VR-TY

...

Matt
Structural
Alignment

Simulated
Evolution SMURFLite ß-strand

interleave threshold

AQINDVRALY

EQANDVRATY
||BBB||BB|

p-value: 0.01

Query

Trained MRF

Sequences in alignment
ß-strands annotated

Augmented training data

EQANDVRATY
EQ-NDVRTTY
ERINDVRATY
EQLNGVRATY
EQARGVRATY
EQLLDIRATY
EQAN-VR-TY

...

Real & simulated sequences in
alignment; simplified ß-strand

topology

Training

Query sequence

Markov Random Field

Figure 3.1: The SMURFLite pipeline, including simulated evolution and simplifica-
tion of the β-strand topology

3.2.5 SMURFLite augmented training data

Kumar and Cowen [KC09, KC10] showed that “simulated evolution,” augmenting

limited training data with additional sequences produced by mutating the orig-

inal sequences, improved the performance of HMMER at recognizing the same-

superfamily level of homology. Kumar and Cowen [KC10] used two types of simu-

lated evolution: point-wise and pairwise. Here we add only pairwise mutations based

on β-strand pairings, as we expect long-range interactions between β-strands to be

highly conserved across similar structures. We postulated that the elimination of

the β-strand pairs SMURFLite must disregard because of computational complexity

might be compensated for by augmenting the training data with artificial sequences

based on likely mutations in those paired β-strands. This training-data augmen-

tation comes at insignificant runtime cost and is done before β-strand pairs are

52

False-positive rate

Tr
ue

-p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Barwin-like endoglucanases
HMMER AUC: 0.56
RAPTOR AUC: 0.47
HHPred AUC: 0.75
SMURF Lite (1) AUC: 0.46
SMURF Lite (1) (SEv) AUC: 0.77
SMURF Lite (2) AUC: 0.56
SMURF Lite (2) (SEv) AUC: 0.63
SMURF Lite (4) AUC: 0.81
SMURF Lite (4) (SEv) AUC: 0.94

A

B

Figure 3.2: A closed β-barrel (PDB ID 1bw3, a Barwin domain) from the superfam-
ily “Barwin-like endoglucanases” to illustrate interleaving of strand pairs. β-strands
a and b, which close the barrel, have interleave 4, while strands c and d, which are
adjacent in sequence, have interleave 1. Strands b and c have interleave 2. This is
because, if we begin at the N-terminal end, the order of the β-strands is a, c, d, b.

removed from the template (but after their interleave number has been identified,

where we define interleave number next below). The mutation frequencies are given

by the Betawrap and SMURF ([BCM+01, MBC10]) pairwise probability tables. Us-

ing the same algorithm as [KC10], we generate 150 new artificial training sequences

from each original training sequence. For each artificial sequence, we mutate at a

50% mutation rate per length of the β-strands. The parameters 150 and 50% were

recommended by [KC10]; we also evaluated a 10% mutation rate (a secondary peak

according to their work) and performance was slightly worse (data available from

the authors).

53

1 1 1 1 1 1 1

(a)

11 113 33

(b)

7 111 5 33

(c)

Figure 3.3: (a) An “up-and-down” β-sheet. Unless the C-terminal and N-terminal
ends are hydrogen-bonded together, the interleave is 1 for each pair of strands.
(b) A “greek key” β-sheet. The numbers between each pair of β-strands indicate
the interleave. The maximum interleave in this instance is 3.
(c) A “jelly roll” β-sheet. The numbers between each pair of β-strands indicate the
interleave. The maximum interleave in this instance is 7, between the C-terminal
and N-terminal strands.

54

3.2.6 SMURFLite simplified random field

SMURFLite trains a MRF on a template built from a multiple structure alignment.

β-strands in the aligned set of structures are found by the program SmurfPreparse

which is part of the SMURF package ([Men09, MBC10]). The program not only

outputs the positions of the consensus β-strands in the alignment, it also declares

a position buried or exposed based on which of the two tables is the best fit to the

amino acids that appear in that position in the training data. SMURFLite then

assigns an interleave value to each β-strand pair, as follows: Any pairwise interac-

tion between β-strands whose interleave value equals or exceeds the SMURFLite

threshold is removed from the training data.

Consider three β-strands: A, B, and C. Suppose strand A interacts with

strand B and the (A,B) pair has an interleave value of 4, while strand B also inter-

acts with strand C and that (B,C) pair has an interleave value of just 1. With a

SMURFLite threshold of 2, the (A,B) pair would be discarded, but the (B,C) pair

would remain in the training data. Thus, interleave numbers are properties of pairs

of β-strands; a β-strand may be involved in multiple pairings, each of which may

have a distinct interleave value. Discarding β-strand pairs whose interleave value

equals or exceeds the threshold guarantees that the MRF will have no β-strand

pairs greater than or equal to that threshold, and thus bounds the computational

complexity, which is exponential in the maximum interleave value found in a train-

ing template. Figure 3.4 illustrates which β-strand pairs would be removed for two

different topologies.

Note that SMURFLite with an interleave threshold of 0, which will discard

all β-strand pair information, is simply an HMM.

3.2.7 HMMER implementation

SMURFLite was tested against HMMER version 3.0a2 with the “–seqZ 1” and

“–seqE 10000” options applied to hmmsearch, and the “–symfrac 0.2” and “–ere

0.7” options applied to hmmbuild. The –seqZ 1 option ensures that E-values are

55

(a)

(b)

Figure 3.4: (a) A “greek key” β-sheet, indicating which β-strand pairs would be
removed by SMURFLite with an interleave threshold of 2. (b) A “jelly roll” β-
sheet, indicating which β-strand pairs would be removed by SMURFLite with an
interleave threshold of 2.

comparable regardless of the size of the sequence database, while the –seqE 10000

option forces HMMER to return results for all query sequences. The –symfrac 0.2

option requires that only 20% of sequences need to be in agreement to cause a match

state in a given column (the default is 50%). Given the remote homology at which

we were performing experiments, 50% was an unreasonably high threshold that led

to few match states being found. This option was also used by [KC09]. The –ere

option sets the minimum relative entropy per position target to 0.7 bits (the default

is 0.59). Note that HMMER versions 3.0a2 and 3.0 both use SAM sequence entropy

([KBH98]) by default. This entropy weighting scheme has been shown to be superior

for remote homology detection tasks ([KC09, Joh06]).

HMMER 3.0a2 was used despite having been superseded by version 3.0, be-

56

cause it uniformly performs better on this task. This is because version 3.0 contains

computational optimizations that cause it to reject a sequence (with no score pro-

vided) quickly if it does not appear to align well. These optimizations, however,

cause nearly all query sequences outside the family level of homology to fail and

return no score, with the result that HMMER version 3.0 never surpasses an AUC

of 0.5.

3.2.8 RAPTOR implementation

SMURFLite was tested against RAPTOR, which was run with the options “-a

nc” indicating that the default threading algorithm described in the RAPTOR

paper ([XLKX03]) was used. In addition, RAPTOR used the weighting parame-

ters “weightMutation = 1.4009760151,” “weightSingleton = 1,” “weightLoopGap

= 16.841836238,” “weightPair = 0,” “weightGapPenalty = 1,” “weightSStruct =

3.0137849223.” RAPTOR uses both sequence and structural features, and these

options represent the recommended balance of these features ([XLKX03]).

3.2.9 HHPred implementation

SMURFLite was tested against HHPred version 1.5.1. HHPred HMMs for each

SCOP family were downloaded from the HHPred web site, and queried using hh-

search. The score of the best-scoring family HMM within each superfamily was used

in computing ROC curves.

3.2.10 Whole-genome search

All 1852 protein sequences from Thermotoga maritima were queried against β-

structural templates constructed from the nr-PDB ([BBB+00]) with non-redundancy

determined by an E-value of 10−7, organized according to those 207 β-structural

superfamilies from SCOP that were able to be aligned using the Matt structural

alignment program, using SMURFLite with an interleave threshold of 2 and simu-

lated evolution mutation rate of 50% on the residues that participate in β-strands.

We computed p-values and alignments for all 1852× 207 possible hits.

57

3.3 Results

3.3.1 SMURFLite Validation

SMURFLite’s ability to recognize β-propellers and barrels was compared to HM-

MER ([Edd98]), RAPTOR ([XLKX03]), and HHPred ([SBL05]) in a stringent cross-

validation experiment, as explained in Section 3.2.2.

SMURFLite was tested on these 5 propeller folds and 11 barrel superfamilies,

with interleave thresholds of 1, 2, and 3, and with and without simulated evolution

on the β-strands ([KC10]). Here the interleave threshold is a parameter of SMUR-

FLite that trades off the computational complexity with the ability of the MRF to

capture complicated long-range dependencies.

The balance between accuracy and computational efficiency is determined by

the interleave threshold at which SMURFLite is run. In particular, we found that

SMURFLite set to an interleave threshold of 3 or less was always fast. Thus, our

first question is how SMURFLite with and without simulated evolution performs

on our test set when the interleave threshold is set to 3 or less. We found that

SMURFLite became slow at an interleave threshold of 4, and essentially intractable

at an interleave threshold of 5 or above. While SMURFLite with an interleave

threshold of 1 or 2 requires roughly 1 second of wall-clock time on a 12-core 2.4GHz

AMD Opteron server, an interleave threshold of 4 raises this run-time requirement to

7-10 minutes. Restricting the interleave threshold to 3 or less has different impacts

on the different folds in our test set. In particular, the β-strands in the propeller folds

never have an interleave greater than 3, which means that full SMURF, as we know,

is tractable on these folds. However, we were still interested in how simplifying the

random field to an interleave of 2 or 1 would impact performance, and also whether

simulated evolution would help. In contrast, the barrel superfamilies in our test set

contain a maximum β-strand interleave of between 4 and 8. Interestingly, none of

these barrels contained any β-strands with an interleave of 3 in the consensus Matt

([MBC08]) alignment, so our restriction of running SMURFLite with an interleave

threshold of 3 or less is equivalent, on the barrels, to running SMURFLite with an

58

interleave threshold of 2. In other words, running the interleave-threshold filter at

a threshold of 3 produced identical training data to running it at a threshold of 2.

(a) Full structure of a 7-bladed β-propeller

(b) The most complicated propeller blades have an inter-
leave of 2. Detail of one blade from the structure above,
with individual β-strands labeled a through g in sequential
order. The interleave values are as follows: (a,c): 2; (b,c):
1; (d,e): 1; (f,c): 3; (f,g): 1.

Figure 3.5: A 7-bladed β-propeller, “Quinohemoprotein amine dehydrogenase” B
chain from Paracoccus denitrificans.

SMURFLite with interleave threshold 2 and simulated evolution performs

well on all propeller folds, with AUCs between 0.89 and 0.99. It always performs

better than HMMER, and better than RAPTOR and HHPred except on the 7-

59

bladed propellers (of which there are 39 non-redundant solved structures in 19 SCOP

families), where HHPred achieves an AUC of 0.99 and RAPTOR achieves an AUC

of 0.95 versus an AUC of 0.93 for SMURFLite with interleave threshold 2 and

no simulated evolution (see Table 3.1). Interestingly, on the 5-bladed propellers

(of which there are only 14 non-redundant solved structures in 7 SCOP families),

adding simulated evolution seems to greatly improve performance; even SMURFLite

with an interleave threshold of 2 with simulated evolution outperforms full-fledged

SMURF. While these results focus on the accuracy of the MRF score for the remote

homolog decision problem, as opposed to the question of alignment quality, we note

that SMURFLite with an interleave threshold of 1 or 2 produces highly similar

alignments to full SMURF, particularly with respect to placing the “blades” of the

6-, 7-, and 8-bladed propellers.

For all 11 β-barrel superfamilies, there is a maximum interleave number that

ranges from 4 (as in the “Sm-like ribonucleoproteins”) to 8 (as in the “Cyclophilin-

like” superfamily). We find that for 6 of the 11 β-barrel superfamilies, SMURFLite

with an interleave threshold of 2 and simulated evolution outperforms HMMER,

RAPTOR, and HHPred. For two of the remaining superfamilies, HMMER performs

best, for two of the remaining superfamilies, RAPTOR performs best, and for one

superfamily, HHPred performs best (see Table 3.2).

As discussed above, SMURFLite begins to test the limits of computational

tractability when interleave numbers of 4 are allowed. Since many barrel structures

had β-strand pairs with interleaves of 4, we wished to test if incorporating these

more long-range pairwise dependencies into our MRF would improve performance.

Some barrel superfamilies on which we tested have only strand pairs of interleave 1

or 2, excepting a pair of β-strands that close the barrel and thus have an interleave

equivalent to the number of strands in the barrel. Certainly, including that last

strand is beyond the computational power of SMURFLite. Other barrels, whether

open or closed, have more complex strand topology and interleaves of 3 or 4 are

common even in the middle of the barrels. We chose to run SMURFLite with an

interleave of 4 on one of the barrel superfamilies of moderately complex topology,

60

Table 3.1: AUC on β-Propeller folds
HMMER RAPTOR HHPred SL1 SL1E SL2 SL2E SL3 SL3E

5-bladed - - - 0.75 0.89 0.73 0.89 0.73 0.89
6-bladed 0.82 0.82 0.88 0.92 0.93 0.96 0.95 0.96 0.96
7-bladed 0.89 0.95 0.99 0.92 0.91 0.93 0.91 0.93 0.91
8-bladed - 0.64 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Note: for SMURFLite, the number (1,2,3) indicates the interleave threshold, and
SEv is simulated evolution. A dash (’-’) in a result entry indicates the method failed
on these structures, i.e. an AUC of less than 0.6. For issues of space, we abbreviate
the SMURFLite entries. For example, SL1 indicates SMURFLite with an interleave
threshold of 1, while SL3E indicates SMURFLite with an interleave threshold of 3,
augmented by simulated evolution.

the “Barwin-like endoglucanase” superfamily, of which an example appears in Fig-

ure 3.2. The “Barwin-like endoglucanase” superfamily contains “Barwin,” a protein

that may be involved in a common defense mechanism in plants ([SSH+92]).

On the “Barwin-like endoglucanase” superfamily, we find an enormous im-

provement in performance from capturing that last strand pair, with AUC improving

from 0.63 for SMURFLite with an interleave threshold of 2 and simulated evolution,

to 0.94 for SMURFLite with an interleave threshold of 4 and simulated evolution

(see Figure 3.6). Note that both HMMER and RAPTOR fail entirely on this su-

perfamily, achieving an AUC of less than 0.5.

3.3.2 SMURFLite on Whole Genomes

We considered all 1852 genes from the bacterium Thermotoga maritima, a ther-

mophilic organism that bears some similarity to Archaea and whose cell is wrapped

in an outer membrane, or “toga” ([HLKT86]). Out of 354 total superfamilies within

the SCOP class “All beta proteins”, 288 (81%) of which contain at least two protein

chains, 207 superfamilies (71%) were structurally consistent enough to be aligned

using the Matt ([MBC08]) structural alignment program. We built SMURFLite

61

Table 3.2: AUC on β-Barrel superfamilies
HMMER RAPTOR HHPred SMURF-

Lite 1
SMURF-
Lite 1,
SimEv

SMURF-
Lite 2

SMURF-
Lite 2,
SimEv

SMURFLite
performs best

Translation proteins - - 0.66 0.93 0.92 0.93 0.93
Barwin-like
endoglucanases

- - 0.75 - 0.77 - 0.63

Cyclophilin-like 0.67 0.61 0.7 0.82 0.85 0.82 0.83
Sm-like
ribonucleoproteins

0.73 0.71 0.77 0.76 0.71 0.76 0.85

Prokaryotic
SH3-related domain

0.81 - - 0.83 0.82 0.83 0.83

Tudor/PWWP/MBT 0.78 0.74 0.67 0.83 0.77 0.83 0.79
Nucleic acid-binding
proteins

0.75 - 0.67 0.76 0.89 0.76 0.92

HHPred performs
best

Translation proteins
SH3-like

0.83 0.81 0.86 0.62 - 0.62 -

RAPTOR
performs best

PDZ domain-like 0.96 1.0 0.99 0.97 0.97 0.97 0.97
FMN-binding split
barrel

0.62 0.82 0.61 - - - -

HMMER performs
best

Electron Transport
accessory proteins

0.84 - 0.77 0.63 - 0.63 0.66

Note: for SMURFLite, the number (1,2) indicates the interleave threshold, and SimEv is simulated
evolution. A dash (’-’) in a result entry indicates the method failed on these structures, i.e. an
AUC of less than 0.6

templates for these 207 superfamilies, and obtained from UniProt the protein se-

quences for each of 1852 genes. We predict 139 of the 1852 genes from Thermotoga

maritima to belong to one of the 207 β-structural SCOP superfamilies we consider,

with a p-value of less than 0.005. Of the 139 genes about which we make pre-

dictions, 28 already have solved structures in the PDB, however, since there is a

substantial time lag before new PDB structures are assigned to SCOP, only one

of those structures was already given a SCOP assignment (and thus only one of

these 28 structures potentially informed SMURFLite training). Thus, determining

the correct SCOP assignments of the remaining 27 (an easy computational problem

given full structural information) allows us to estimate the accuracy of SMURFLite

predictions on these structures. Using the Matt ([MBC08]) structural alignment

program and the methodology of ([DKCM11]), we computed SCOP superfamilies

62

False-positive rate

Tr
ue

-p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Barwin-like endoglucanases
HMMER AUC: 0.56
RAPTOR AUC: 0.47
HHPred AUC: 0.75
SMURF Lite (1) AUC: 0.46
SMURF Lite (1) (SEv) AUC: 0.77
SMURF Lite (2) AUC: 0.56
SMURF Lite (2) (SEv) AUC: 0.63
SMURF Lite (4) AUC: 0.81
SMURF Lite (4) (SEv) AUC: 0.94

A

B

Figure 3.6: Performance of SMURFLite compared to other methods on the “Barwin-
like endoglucanases” β-barrel superfamily according to the AUC (Area Under Curve)
measure. For SMURFLite, the number (1,2,4) indicates the interleave threshold (in-
dicating which strand pairs in the barrel participate in the MRF; note that interleave
3 is omitted since it is identical to interleave 2 for this fold), and SimEv indicates
that simulated evolution was also performed on the β-strands in the training data.
As the interleave threshold increases and the MRF becomes more powerful, perfor-
mance tends to improve. Including simulated evolution also improves performance.

for all 27, and in 100% of the cases, SMURFLite’s predictions matched the struc-

tural alignments and hence SCOP superfamily assignments. We now survey the

remaining 111 structures on which SMURFLite makes predictions, for which struc-

tural information is not yet available. 8 of these 111 structures also had their SCOP

superfamilies predicted in the study of [ZTW+09] and in all 8 cases, our predictions

are in agreement with the other study. We note that for most of these 111 struc-

tures, not only is there no solved structure, but there is also no close homology to

proteins of solved structure. In particular, none have BLAST hits in UniProt with

solved structure and greater than 80% sequence identity, 18 have BLAST hits in

UniProt with solved structure and between 30% and 80% sequence identity, and

4 have BLAST hits in UniProt with solved structure and less than 20% sequence

identity. As an example, the gene Q9X087 shares only 20% sequence identity with

its closest structurally-solved BLAST hit (Rhoptry protein from Plasmodium yoelii

yoelii, which forms an α-helical structure) but we predict it to belong in the “beta-

63

Galactosidase/glucuronidase domain” SCOP superfamily with a p-value of 0.0006.

All models predicted can be found at http://smurf.cs.tufts.edu/smurflite/

3.4 Discussion

We have presented SMURFLite, a method that combines long-range pairwise β-

strand interactions via a simplified Markov random field with simulated evolution,

a method that augments training data to capture pairwise β-strand interactions

as well. SMURFLite in most cases performs considerably better than HMMER

and RAPTOR; however, we examine those structures for which this is not so. We

postulate that RAPTOR performs best in the case when there is significant struc-

tural conservation across families, whereas HMMER excels when there is a small

but highly conserved sequence signature in members of a superfamily. In all four

β-barrel superfamilies on which RAPTOR achieves an AUC of less than 0.5, we see

considerable structural variation in the protein backbones within each superfamily,

according to the metric discussed in Chapter 2, as compared to the other barrel

superfamilies. In contrast, the barrels on which RAPTOR performed best exhibited

little structural variation.

The cases in which SMURFLite performs poorly exhibit an interesting prop-

erty: the structural alignment of the protein chains used in the training set preserves

few, or sometimes none, of the β-strands as “consensus” β-strands. When a signifi-

cant number of β-strands are missing in this manner from the training data, SMUR-

FLite exhibits poor specificity, scoring some non-homologous sequences comparably

to homologous ones. The “Translation Proteins SH3-Like Domain,” a superfamily in

which HMMER significantly outperforms SMURFLite, is one in which the consensus

alignment obtained from Matt retains zero β-strands, even though each individual

structure has four strands. Thus, SMURFLite behaves like HMMER, except with-

out HMMER’s heuristic for quickly failing bad alignments, leading SMURFLite to

report more false positives.

The very premise of SMURFLite rests on the conservation of β-strands, and

64

http://smurf.cs.tufts.edu/smurflite/

this finding emphasizes the importance of evolutionarily faithful structural align-

ments. In future work, we will also consider alternative structural aligners, such

as TMalign ([ZS05]), in cases where they produce alignments that better conserve

secondary structure.

We also compared SMURFLite to HHPred, though in a sense this is not

an entirely fair comparison, because HHPred uses all of protein sequence space

to build profiles for training; thus it can leverage a much larger training set than

HMMER, RAPTOR, or SMURF or SMURFLite. Thus it is somewhat surprising

that SMURFLite outperforms HHPred in median AUC on the propellers and barrels.

We expect HHPred to excel in particular on superfamilies and folds with a high

HHPred NEFF ([Söd05]), where NEFF is the “number of effective families” available

for training the HHPred HMM. NEFF is a measure of the information-theoretic

entropy among a set of sequences; the greater the sequence diversity of such a set,

the greater the NEFF.

In contrast, simulated evolution seems to help SMURFLite most on those

structural motifs where the HHPred NEFF is lowest; i.e. it can generate diverse

training data when diverse training data is lacking. A profile version of SMURFLite

would be close in spirit to HHPred, and based on the previous discussions we would

expect profiles might improve performance; this will be a subject for future inves-

tigation. We observed that simulated evolution either improves or does not affect

AUC for β-barrel superfamilies and β-propeller folds with a HHPred NEFF of 20

or lower. The only cases in which we observed simulated evolution decreasing AUC

were those cases where the NEFF was greater than 20.

While the intent of using simulated evolution in conjunction with simplified

MRFs is to compensate for the removal of highly-interleaved β-strand pairs required

for computational feasibility, we find that simulated evolution can still improve full-

fledged SMURF in cases of sparse training data. For instance, the 5-bladed β-

propellers have only three superfamilies in SCOP, two of which contain only one

family. We find that for the 5-bladed β-propeller fold, combining SMURF and

simulated evolution improves AUC from 0.73 for full SMURF alone to 0.89.

65

It is worth noting that simulated evolution on a simple pointwise basis, as

implemented by Kumar and Cowen [KC09], could likely be incorporated into the

hidden Markov itself as a set of Dirichlet mixture priors. However, it is not clear how

the pairwise model could be incorporated. In addition, we determine β-strand paired

residues on the full Markov random field, before removing any pairing information.

Thus, in this case, simulated evolution may be mitigating the loss of this β-strand

pairing information.

We have demonstrated that SMURFLite is a powerful MRF methodology

for β-structural motif recognition that is computationally tractable enough to scale

to whole genomes, requiring approximately three hours to scan the Thermotoga

maritima genome on a small compute cluster. We have also shown that increasing

the interleave number for SMURFLite can have dramatic effects on performance, but

at a great computational cost. Methods that allow us to retain all β-strand pairs,

such as loopy belief propagation[Pea88] or stochastic search, merit investigation. As

our dependency graph is not a tree, loopy belief propagation may present difficulties

with convergence and inexact inference. Nonetheless, looking at heuristic methods

([SHJ97, WJ99]) that approximately compute the SMURF score more efficiently

may add even more power to our approach in practice.

66

Chapter 4

Protein Remote Homology

Detection Using Markov

Random Fields and Stochastic

Search

4.1 Introduction

In Chapter 3, we explored a method for simplifying the computational complexity

of the Markov random field, as well as an approach, called “simulated evolution,”

for mitigating the loss in accuracy resulting from this simplification. We showed

that this approach, called SMURFLite, outperformed several existing methods at

remote homology detection in β-barrels and propellers.

In this work, we demonstrate another approach for computing the SMURF

energy function for remote homology detection. Building upon the β-structural

Markov random field templates from SMURF and SMURFLite, we demonstrate

a method for remote homology detection that does not discard any β-structural

information, and yet remains computationally tractable on any protein structure.

We have developed MRFy, an algorithm that relies on stochastic search to

67

find a near-optimal parse of a query sequence onto the SMURF Markov random

field. We also provide an implementation of MRFy, written in the Haskell functional

programming language; this implementation is discussed in our “experience report”

on computational biology software in Haskell [DGR12], which is not part of this

dissertation.

We test MRFy on the same set of barrel folds in the mainly-β class of the

SCOP hierarchy as was used to test SMURFLite in Chapter 3, in stringent cross-

validation experiments. We show a mean 0.4% (median 1.7%) improvement in

Area Under Curve (AUC) for β-structural motif recognition as compared to the

SMURFLite results in Chapter 3 and [DHBC12]. By these same benchmarks, we

show a mean 5.5% (median 16%) improvement over HMMER ([Edd98]) (a popular

HMM method), a mean 29% (median 16%) improvement as compared to RAPTOR

([XLKX03]) (a well-known threading method), and a mean 13% (median 14%) im-

provement in AUC over HHPred ([Söd05]) (a profile-profile HMM method).

4.2 Methods

4.2.1 Markov random field model

MRFy builds on the SMURF and SMURFLite Markov random field model, as dis-

cussed in Chapter 3, which uses multidimensional dynamic programming to simulta-

neously capture both standard HMM models and the pairwise interactions between

amino acid residues bonded together in β-sheets.

In particular, the “Plan7” hidden Markov model is modified to represent

hydrogen-bonded β-strands with additional, non-local edges. Because the β-strands

in a SMURF or MRFy template represent consensus β-strands, those present in at

least some fraction (in our experiments, at least half) of the sequences participating

in the training alignment, we prohibit insertions and deletions in those strands.

Thus, we collapse those nodes of the “Plan7” model to be just match states; the

transitions to insertion and deletion states are removed. Figure 4.1 illustrates this

architecture.

68

MB

D

M

D

M M

I I

M

I

M

I

D

M

D

E

I I

... M

D

M

II

MM

M

D

M M M

II

M

D

I

... M

D

M

II

MM

M

D

I

Hydrogen Bonds Hydrogen Bonds

Figure 4.1: A Markov random field with two β-strand pairs

Recall from 1 that the standard form of the Viterbi recurrence relations for

computing the most likely path of a sequence through a hidden Markov model is:

VM
j (i) =

eMj
(xi)

qxi
×max

VM
j−1(i− 1)× aMj−1Mj

V I
j−1(i− 1)× aIj−1Mj

V D
j−1(i− 1)× aDj−1Mj

V I
j (i) =

eIj (xi)

qxi
×max

 VM
j (i− 1)× aMjIj

V I
j (i− 1)× aIjIj

V D
j (i) = max

 VM
j−1(i)× aMj−1Dj

V D
j−1(i)× aDj−1Dj

(4.1)

In the SMURF or MRFy Markov random field model, we add non-local inter-

actions to these probabilities, resulting in conditional probabilities. When column j

of an alignment is part of a β-strand and is paired with another column π(j), the

probability of finding amino acid xi in column j depends on whatever amino acid x′

is in column π(i). If x′ is in position i′ in the query sequence, Viterbi’s equations are

69

altered; for example, V ′Mj (i) depends not only on V ′Mj−1(i − 1) but also on V ′Mπ(j)(i
′).

The distance between j and π(j) can be as small as a few columns or as large as a

few hundreds of columns. Because V ′Mj (i) depends not only on nearby values but

also on V ′Mπ(j)(i
′), we must modify the Viterbi recurrence relations.

Note that hydrogen-bonded β-strand residues may only occupy match states

in the Markov random field, so only the corresponding terms of the recurrence

relation need be modified. The revised Viterbi recurrence relation for the Markov

random field is:

VM
j (i) =

eMj
(xi)

qxi
×max

VM
j−1(i− 1)× aMj−1Mj × P (xi|xπj)

V I
j−1(i− 1)× aIj−1Mj × P (xi|xπj)

V D
j−1(i− 1)× aDj−1Mj × P (xi|xπj)

(4.2)

where xπj represents the amino acid in column πj, which is hydrogen-bonded

to the amino acid xi in column j.

For reasons of convenience, as well as avoiding floating-point underflow due

to exceedingly small numbers, we typically work in negative log space. Since a

probability can range from 0 to 1, the log of a probability must be a negative

number, and thus the negative log of that probability is a (small) positive number.

Each probability is transformed into its negative log, resulting in the final form:

70

V ′Mj (i)=e′Mj
(xi) + min

a′Mj−1Mj

+ V ′Mj−1(i− 1) + P ′(xi|xπj)

a′Ij−1Mj
+ V ′Ij−1(i− 1) + P ′(xi|xπj)

a′Dj−1Mj
+ V ′Dj−1(i− 1) + P ′(xi|xπj)

V ′Ij (i) =e′Ij (xi) + min

 a′MjIj
+ V ′Mj (i− 1)

a′IjIj + V ′Ij (i− 1)

V ′Dj (i) =min

 a′Mj−1Dj
+ V ′Mj−1(i)

a′Dj−1Dj
+ V ′Dj−1(i)

(4.3)

given the transformations:

a′sŝ = − log asŝ

e′s(x) = − log es(x)
qx

V ′Mj (i) = − log VM
j (i)

P ′(xi|xπj) = − logP (xi|xπj)

(4.4)

This is exactly the recurrence relation that SMURF [MBC10] and SMUR-

FLite [DHBC12] solve using multidimensional dynamic programming. As demon-

strated in Chapter 3, as the interleave of the β-strands increases, the computational

complexity grows exponentially.

As an alternative to solving these more complex recurrence relations, we

might consider a divide-and-conquer approach. Each β-strand can be thought of as

breaking the larger model into two smaller models; collectively, all the β-strands di-

vide the Markov random field into many small, independent hidden Markov models.

Thus, for any particular path through the Markov random field, corresponding to

a particular placement of query sequence residues onto the nodes of the model, we

could compute the augmented Viterbi score by summing the Viterbi scores of each

smaller hidden Markov model, along with the contribution to the Viterbi score from

71

the β-strands.

Since only match states are allowed for β-strand residues, the contribution

of each such residue is only:

V ′Mj (i) = e′Mj
(xi) + a′Mj−1Mj

+ V ′Mj−1(i− 1) + P (xi|xπj) (4.5)

The asymptotic complexity of the Viterbi algorithm is O(mn), where m is

the length of the model and n is the length of the query sequence. Furthermore,

the asymptotic complexity of the beta-strand contribution to the Viterbi score for a

particular placement of residues is just O(b), where b is the combined length of the

β-strands.

Thus, a new algorithm for computing the optimal path through a Markov

random field for a given query sequence presents itself. Since we require that every

β-strand position be occupied by a residue (as we force those positions into match

states), we could simply consider every possible assignment of a residue to a β-

strand, computing the score for each one, and choose the best-scoring placement.

Metaphorically, we can picture the residues of the query sequence as beads,

and the Markov random field as the string of a necklace. The β-strands can be

thought of as particular substrings of the string that must be covered by beads, while

non-β regions may be exposed (resulting in delete states in the model). To continue

the metaphor, we may force extra beads onto non-β regions of the string, resulting

in insert states in the model. Given that the beads already have a specified order,

we must consider all the ways to slide the beads up and down the string such that

all of the β-regions are covered. Since the regions between β-strands can have their

contribution to the score computed according to the Viterbi recurrence relations,

we need only consider all the unique ways to assign residues to the β-strand nodes.

4.2.2 Proof that the model is exponential in complexity

Here, we prove that there are an exponential number of possible β-strand placements

that must be considered.

72

Definition Let a Markov random field model (N,B) be defined as a sequence N

of nodes ni, i ∈ (1..m), and a sequence B of β-strands bi, i ∈ (1..k). Each β-

strand has length li, and contains a subsequence of the nodes N . This subsequence

is determined by the specifics of the model, which can be referred to as bij , i ∈

(1..m), j ∈ (1..li). Let a query sequence be defined as a sequence R of residues

ri, i ∈ (1..n).

Definition Let L =
∑
i,i<=k

li.

Lemma 4.2.1 Given a model (N,B) and a query sequence R, L residues are placed

in β-strands.

Proof Because each β-strand bi must be populated by exactly li residues, ∀j, j > 1,

bij is uniquely determined by the sequence R. For each β-strand position bij , one

residue is placed. Thus,
∑
i,i<=k

li residues are placed in β-strands.

Theorem 4.2.2 For a Markov random field (N,B) with k β-strands bi, each of

length li, and thus containing positions for residues bij and a query sequence ri of

length n, there are O(nk) ways to assign residues to the β-strands.

Proof From the n residues in the query sequence R, we need to place L residues

across all B β-strands. We represent this as choosing an index i ∈ (1..n) for the

first position bi1 of each β-strand. Since each β-strand bi consumes li residues, this

choice for the first β-strand, b11, leaves n − L − li possible placements for b21. In

practice, β-strands range from two to twelve residues, so to simplify counting, we

assume each li is simply a maximum length lmax. This only decreases the number

of possible assignments, yielding a lower bound on the number of placements. Then

choosing an index to place on bi1, in general, leaves n − L − (i × lmax) choices for

b(i+1)1. Thus, there are:

∏
i∈(1..k)

n− L− (i× lmax) = (n− 2L− k × (lmax))d
k
2
e (4.6)

73

possible placements of R onto (N,B). Asymptotically, as n grows, this is dominated

by nk, leading to an asymptotic complexity of O(nk).

A typical Markov random field might have 10 or 20 β-strands, and a typical

protein query sequence might have between 300 and 600 residues. Thus, if we wish

to consider all possible paths through a Markov random field for a protein sequence,

we must consider as many as 60010 ≈ 6 × 1027 possible paths through the model.

Clearly, this computation can be broken into many parallel parts, but this still poses

an intractable problem in many cases.

4.2.3 Stochastic search

Since an exhaustive search for an optimal alignment of a protein sequence to a

Markov random field is exponential in complexity, we turn to stochastic search to

mitigate this complexity.

Stochastic search encompasses a family of approaches for finding optimal or

near-optimal solutions to optimization problems. Stochastic search approaches are

promising when a search space is large, so that exhaustive search is prohibitive,

and when an optimization problem does not lend itself to analytic solutions. The

generic form of stochastic search is that a solution is guessed at and evaluated,

and then subsequent guesses are made as refinements to this initial guess, until

some termination condition is met. The function used for evaluation is called the

objective function.

Framed as an optimization problem, MRFy, like SMURF, seeks to minimize

the augmented Viterbi score (see Equation 4.3), which equates to maximizing prob-

ability (recall that this score is the negative log of a probability). SMURF finds this

minimum exactly, using multi-dimensional dynamic programming, which is expo-

nential in the interleave number of beta strands (see Chapter 3). MRFy, in contrast,

uses stochastic search, as described next.

Given a placement of query-sequence residues into β-strand nodes of the

Markov random field, the score can be computed exactly. Thus, the search space

74

is the set of all possible ways to place residues on these nodes, as discussed in Sec-

tion 4.2.2. Many stochastic search techniques rely on a gradient ascent (or descent)

approach, which makes moves (or refines guesses) along the steepest gradient, lead-

ing quickly to local optima; various heuristics such as simulated annealing [KV83]

can then help avoid getting stuck in poor local optima.

However, we know of no way to compute a gradient on the search space of β-

strand placements, and so we must take approaches that do not rely on this gradient.

Instead, we must rely on a random-mutation model of search, which generates one

or more candidate solutions (guesses) from a previous solution, and then evaluates

the cost function (in our case, the augmented Viterbi score) to determine whether

those guesses are better or worse than the previous step. This can be likened to

climbing a hill in the dark, feeling one’s way with one foot before committing to a

step. This approach is referred to as random-mutation hill climbing [Dav91].

In our representation, a particular solution is represented by an ordered list

of integers, one integer per β-strand in the Markov random field. The value of each

integer indicates the index, in the query sequence, of the residue assigned to the

first position of that β-strand. Since the alignments to the regions of the Markov

random field are solved exactly by the Viterbi algorithm, this ordered list of integers

uniquely represents a solution to a Markov random field.

While the picture we have presented for our Markov random field model is

most precisely explained by assigning residue indices to the positions of β-strands, it

may be more intuitive to consider the equivalent problem of “sliding” these β-strands

along the query sequence. We will use this analogy in the following description of

initial guesses.

We explored three models for generating initial guesses for our search tech-

niques:

• Random-placement model. First, we implemented a model that uniformly

positions the β-strands along the query sequence, under the constraint that

only legal placements may be generated, and thus the placement of any β-

75

strand must leave room for all the other β-strands in the model.

• Placement based on secondary structure prediction. Next, we implemented a

model that uses the PSIPRED [MBJ00] secondary-structure prediction pro-

gram to determine the positions of β-strands. Given a PSIPRED prediction for

the secondary structure of a query sequence, we place β-strands at the most

likely locations according to this prediction profile, randomized by a small

amount of noise. The difficulty with this approach is that, while PSIPRED

is reasonably accurate when it is allowed to perform PSI-BLAST[AMS+97]

queries to build a sequence profile, this comes at a run-time cost that com-

pletely dominates the running time of MRFy. However, while non-profile-

based PSIPRED predictions are computationally cheap, they provide poor

accuracy.

• Placement based on scaling the template. Finally, we implemented a model

based on the observation that true homologs to a structurally-derived template

should have their β-strands in very roughly similar places, in sequence, to the

proteins that made up that template. This will not always hold, but appears

to provide for reasonable initial guesses. Given the position of each β-strand

within a template Markov random field, we scale the query sequence linearly

(as it may be shorter or longer than the model) and place the β-strands in

scaled positions. Note that we do not scale the β-strands themselves; their

lengths are preserved. We scale only the distances between β-strands. We

inject a small amount of noise into the placements, so that population-based

models, such as multi-start simulated annealing and genetic algorithms, start

with heterogenous solutions.

Since we do not know how to determine when a stochastic search process

has found a global optimum (as opposed to a good local optimum), we must also

have some termination criterion for the search. We implemented three alternative

termination criteria:

76

• A simple generation-counting approach, where the search terminates after a

user-specified number of generations

• A time-based approach, where the search terminates after a user-specified

amount of time has elapsed

• A convergence model, where the search terminates after the search has failed

to improve after a user-specified number of generations

In practice, these criteria are easily combined, with a convergence approach

often halting searches early with good results, while the generation- or time-based

limit ensuring that the search does not take longer than a user is willing to wait.

We next describe the alternative heuristics that MRFy implements for stochastic

search: simulated annealing, a genetic algorithm, and a local search strategy.

4.2.3.1 Simulated Annealing

Simulated annealing [KV83] is a heuristic for stochastic search, inspired by the

physical process of annealing in metals. Whereas a simple hill-climbing approach

will always move downhill (if the task is minimization) or uphill (if the task is

maximization), if the search begins near to a poor local optimum, the search will

terminate at that local optimum. Simulated annealing introduces an acceptance

probability function:

P (e, e′, T) =

1, if e′ < e

exp(−(e′ − e)/T), otherwise

where e = E(s)

e′ = E(s′)

(4.7)

which relies on some energy function E(s) of the current state s and a candidate state

s′, and a temperature function T that tends towards zero as the search progresses.

77

In our implementation, we used an exponentially-decaying temperature function:

T (t) = kt × T0 (4.8)

given time t, initial temperature T0, and a constant k. The motivation for this

decaying temperature function is that, as time progresses, the likelihood of being in

a poor local optimum lessens, and thus, the closer to random hill-climbing we would

like the search to behave.

Our energy function E(s) is, naturally, the augmented Viterbi score of a

placement:

E(s) = V ′Mm (n) (4.9)

where m is the final residue in the query sequence and n is the final node in the

Markov random field, and the β-strand placements are determined by s.

We implemented simulated annealing in MRFy according to this model. We

also implemented a multi-start version of simulated annealing in MRFy, where a

set of independently-generated guesses is subject to simulated-annealing random

descent, in parallel. At the termination of the search, the best solution from among

all the candidates is chosen.

4.2.3.2 Genetic Algorithm

A genetic algorithm [HR77] is a search heuristic inspired by biological evolution.

A genetic algorithm relies on the idea of selection among a population of varied

solutions to an optimization problem. At each of many generations, the fitter in-

dividuals in the population–those solutions which exhibit more optimal scores–are

allowed to continue into the next generation. Not only do they continue into the

next generation, but they are allowed to “reproduce,” or recombine, to produce

new solutions. A particular solution to a problem, within the context of a genetic

algorithm, is called a chromosome. At each generation, some fraction of the fittest

solutions are selected and randomly paired with one another. Each pair of solutions

78

produces one or more offspring; each offspring is the result of two steps: crossover of

the two chromosomes, followed by random mutation of the offspring. The mutation

is nondeterministic; the crossover may be deterministic or nondeterministic. The

resulting offspring, along with their parents, are then evaluated according to the

objective function, and this process iterates until some termination condition.

MRFy’s genetic algorithm implementation uses the same representation for

a placement as simulated annealing: an ordered list of integers.

Let a placement p on a model with k β-strands be an ordered set of integers

pi, i ∈ (1..k). Given two placements, p and q, MRFy implements crossover of two

chromosomes using the following algorithm:

1. Set the new placement, p′, to the empty set.

2. Repeat until all placements have been chosen:

(a) Let p′0 = p0

(b) Let p′k = qk

(c) Remove p0 and pk from p

(d) Remove q0 and qk from q

(e) p =< p1, ..., pk−1 >

(f) q =< q1, ..., qk−1 >

Our actual implementation is purely functional, and simply consumes ele-

ments from lists. In effect, though, this algorithm simply chooses the ‘left-most’ ele-

ments from one parent and the ‘right-most’ elements from another. After crossover,

the mutation step simply moves each element pi of the placement p by a small,

random amount, within the constraints imposed by the neighboring β-strands. The

motivation behind this approach is to take two solutions that are of high fitness (re-

call that the worst solutions at every generation are not allowed to contribute to the

next generation), and produce a new solution that combines one “half” (roughly) of

one solution with one “half” of the other. See Figure 4.2 for an illustration of this

procedure.

79

Parent p

Parent q

Offspring
before

mutation

Offspring
after

mutation

Figure 4.2: The crossover and mutation process in MRFy’s genetic algorithm im-
plementation. Given parent p (black) and parent q (gray), alternate left and right
placements from p and q. Then, apply small random mutations to the resulting
placement p′.

Given these operations for crossover and mutation, MRFy’s genetic algo-

rithm implementation initializes a population of a user-specified size P (typically

one thousand placements, though we experimented with as many as ten thousand).

In parallel, each placement is scored according to the objective function. Since scor-

ing is far more computationally expensive than crossover and mutation, we allow

them all to reproduce, paired at random. We then score them, and choose the P

best-scoring placements for the next generation. This process repeats until a ter-

mination condition is met, at which point the single best placement is returned.

We note that a future enhancement to MRFy could return the k best placements

for some user-specified threshold k, if multiple high-scoring alignments were to be

considered.

4.2.3.3 Local Search

Constraint-based local search [HM05] is a family of approaches for exploring “neigh-

borhoods” in feature space in a randomized manner, subject to the constraints of

that solution space. In the context of MRFy, the constraints are the previously-

discussed restrictions that β-strands cannot overlap, and every residue must be

80

placed in a β-strand. The motivation for local search is, in a particularly uneven

fitness landscape, hill climbing will often reach nearby local optima. Thus, given a

single candidate solution, local search explores the immediate neighborhood in great

detail (perhaps, but not necessarily exhaustively). When the local search cannot

escape a local optimum, then some sort of non-local move may be attempted.

This non-local move may rely on a population-based diversification approach,

in which parts of the solution may change dramatically. In a sense, local search bears

some resemblance to a genetic algorithm, except that a population of solutions is

created only when the search is stuck in a local optima, and the best solution in

that population is chosen for a new search.

In MRFy’s implementation, each step in the search consists of two phases:

diversification (See Figure 4.3) and intensification. The diversification algorithm is

as follows:

• Begin with a candidate solution s (a placement), which is just an ordered list

of integers.

• Given s, break the list into three sub-lists s0, s1, s2, at randomly-chosen bound-

aries.

• Choose one of the sub-lists si at random, and mutate it into k copies si1

through sik at random, for some user-defined value of k (we used k = 10),

within the constraints imposed by the other sub-lists and the lengths of the

β-strands.

• Re-combine each set of lists, (s1j , s2j , s3j) into a new placement s′j , j ∈ (1..k).

• Score each placement s′j , return the best-scoring of the k new placements as a

new solution.

Once diversification produces a new candidate solution, intensification brings

it toward a local minimum. The intensification algorithm is as follows:

• Begin with a candidate solution s.

81

• Repeat until no better-scoring placements are generated.

– For each element e ∈ s, generate four new placements s′i1 through s′i4

by moving e up and down by 1 and two, as long as those moves do not

violate the constraints.

– Score each candidate placement s′ij .

– Set s to the best-scoring candidate placement s′ij

• Return s as a new solution.

1,17,24,31,47,56

1,17 24,31,47 56

23,32,48 25,30,43 24,36,44...

1,17,23,32,48,56 1,17,24,36,44,56...

Figure 4.3: The diversification step in local search.

4.2.4 Evaluating search strategies

As MRFy supports three significantly different stochastic search strategies, and a

number of tunable parameters such as termination conditions and (for simulated

annealing) the cooling schedule, we conducted a search over parameter space using

82

a small data set. We built Markov random field templates from the fold “8-bladed

Beta-Propellers”, and the superfamilies “Barwin-like endoglucanases” (a β-barrel

superfamily) and “Concanavalin A-like lectins/glucanases” (a β-sandwich super-

family). We were interested in the speed of convergence for a true-positive test case,

so we tested each template with a protein sequence chosen from that fold or su-

perfamily: for the 8-bladed propeller, we chose ASTRAL chain d1lrwa (Methanol

dehydrogenase, heavy chain from Paracoccus denitrificans). For the barwin-like

endoglucanases, we chose ASTRAL chain d2pica1 (Membrane-bound lytic murein

transglycosylase A, MLTA from E. coli). For the lectins/glucanases, we chose AS-

TRAL chain d2sbaa (Legume lectin from soy bean (Glycine max)).

We tested simulated annealing with a population size of 10, a maximum num-

ber of generations of 10000, convergence periods of 200, 500, and 1000 generations,

and a cooling factor of 0.99 (preliminary tests showed little impact from varying the

cooling factor among 0.9, 0.99, and 0.999).

We tested the genetic algorithm implementation with a population size of

1000 and 10000, a maximum number of generations of 500, and convergence periods

of 10, 50, and 100.

Since the local search distinguishes between diversification and intensifica-

tion, counting the number of generations is ambiguous; we used a time limit of 10

seconds, 30 seconds and 5 minutes. All tests were conducted on a 12-core AMD

Opteron 2427 with 32GB RAM, devoting all 12 cores to MRFy. For each test, we

report statistics based on ten runs for each set of parameters.

4.2.5 Simulated Evolution

In MRFy, we incorporated precisely the same “simulated evolution” implementation,

as first proposed by Kumar and Cowen [KC09, KC10], as we did for SMURFLite

in Chapter 3. We added pairwise mutations based on β-strand pairings. Unlike in

Chapter 3, here we were not attempting to mitigate the loss of information due to

simplifying the Markov random field, but rather attempting to compensate for sparse

training data. This was motivated in part by the observation that SMURFLite

83

benefited most from simulated evolution when the “number of effective families”

was low. We use the same mutation frequencies as in Chapter 3. For each artificial

sequence, we mutate at a 50% mutation rate per length of the β-strands.

4.2.6 Datasets

From SCOP ([MBH95]) version 1.75, we chose the same β-structural superfamiles

as for SMURFLite (Chapter 3). These superfamilies were: “Nucleic acid-binding

proteins” (50249), “Translation proteins” (50447), “Barwin-like endoglucanases”

(50685), “Cyclophilin-like” (50891), “Sm-like ribonucleoproteins” (50182), “PDZ

domain-like” (50156), “Prokaryotic SH3-related domain” (82057), “Tudor/PWW-

P/MBT” (63748), “Electron Transport accessory proteins” (50090), “Translation

proteins SH3-like domain” (50104), and “FMN-binding split barrel” (50475).

4.2.7 Training and testing process

For the β-barrel superfamilies, we performed strict leave-family-out cross-validation.

We built training templates at the superfamily level. For each superfamily, its con-

stituent families were identified. Each family was left out, and a training set was

established from the protein chains in the remaining families, with duplicate se-

quences removed. We built an MRF on the training set, both with and without

training-data augmentation using the same “simulated evolution” implementation

as in Chapter 3: we generate 150 new artificial training sequences from each orig-

inal training sequence. For each artificial sequence, we mutate at a 50% mutation

rate per length of the β-strands. We chose protein chains from the left-out fam-

ily as positive test examples. Negative test examples were protein chains from all

other superfamilies in SCOP classes 1, 2, 3 and 4 (including other barrel super-

families), indicated as representatives from the nr-PDB ([BBB+00]) database with

non-redundancy set to a BLAST E-value of 10−7.

We used MRFy’s local search mode (see Section 4.2.3.3) to align each test

example to the trained MRF. The score reported for MRFy was the combined

HMM and pairwise score from the MRF, which is identical to the SMURF energy

84

function. For each training set, the scores for both methods (MRFy with and

without simulated evolution) were collected and a ROC curve (a plot of true positive

rate versus false positive rate) computed. We report the area under the curve (AUC

statistic) from this ROC curve ([SKP08]).

4.3 Results

4.3.1 Search strategies

For the three stochastic search approaches, we compared the raw score achieved by

each approach under a variety of conditions, as discussed in Section 4.2.4. The raw

score is simply the negative log of the probability of the best path found through

the model. Thus, raw scores are not comparable between models, but they are

comparable between query sequences for a given model.

Table 4.1 indicates the performance of different stochastic search techniques

on the 8-bladed β-propeller fold. While the simulated annealing and genetic algo-

rithm approaches exhibit less variance (a smaller standard deviation) from run to

run, they do not approach the minimum score of the local search approaches. Multi-

start simulated annealing with a population of 10 and a convergence threshold of 200

generations averages 29.3 seconds per search, but only achieves a minimum score of

2112, though it converged in all cases.

In contrast, local search, given 30 seconds, achieves a minimum score of 1982,

and even in only 10 seconds achieves a minimum score of 1992. However, the global

minimum score of 1781, which is achieved by SMURF on the 8-bladed β-propeller

template, is only reached by MRFy with local search two out of ten times, and

this result required local search be allowed to run for twenty minutes. Thus, for

this problem domain, local search seems to outperform our simulated annealing and

genetic algorithm implementations.

Table 4.2 indicates the performance of the stochastic search techniques on

the “Barwin-like endoglucanases” β-barrel superfamily. These structures are less

complex than the propellers, even though they are more computationally complex

85

for SMURFLite (Chapter 3) if an interleave threshold greater than 2 is used. We

see less variance than with the propellers, but once again, the local search technique

achieves a lower minimum score than simulated annealing or the genetic algorithm.

Notably, local search achieves a minimum score of 978, which an exhaustive

search indicates to be a global minimum for this sequence on this template. With a

time limit of 10 seconds, local search found this global minimum in one out of ten

runs. With a time limit of 30 seconds, local search found it in two out of ten runs,

and with a time limit of 5 minutes, in four out of ten runs.

Table 4.1: Stochastic search performance on 8-bladed β-propeller
Min Score Mean Score Std Score Mean Time (s)

SA 200 2112 2139 12.2 29.3

SA 500 2129 2146 9.3 1020

SA 1000 2112 2130 7.8 3314

GA 1000/10 2105 2126 6.6 285

GA 1000/50 2094 2118 7.7 1239

GA 1000/100 2107 2120 3.8 548

GA 10000/10 2087 2111 7.2 5809

GA 10000/50 2094 2112 7.1 5174

GA 10000/100 2079 2114 9.0 10226

LS 10s 1992 2015 19.4 10

LS 30s 1982 1991 10.9 30

LS 5m 1818 1876 37.2 300
Performance of stochastic search techniques on an 8-bladed β-propeller template.
SA is Simulated Annealing, GA is Genetic Algorithm, and LS is Local Search.
For Simulated Annealing, we show results for convergence thresholds of 200, 500,
and 1000 generations. For the Genetic Algorithm, we show results for convergence
thresholds of 10, 50, and 100 generations, and for population sizes of 1000 and 10000.
For Local Search, we show results for time limits of 10 seconds, 30 seconds and five
minutes, on a 12-core AMD Opteron. MRFy never achieved the global optimum
score of 1781, achieved by SMURF, on this template, except when local search was
given 20 minutes of compute time, in which case it found the global optimum two
out of ten times.

Table 4.3 indicates the performance of the stochastic search techniques on the

“Concanavalin A-like lectins/glucanases” β-sandwich superfamily. These structures

86

Table 4.2: Stochastic search performance on “Barwin-like” β-barrel
Min Score Mean Score Std Score Mean Time (s) Optimal

SA 200 1064 1071 3.8 79.5 0

SA 500 1047 1063 7.6 104 0

SA 1000 1024 1047 14.0 523 0

GA 1000/10 1061 1069 3.6 232 0

GA 1000/50 1059 1066 3.1 442 0

GA 1000/100 1058 1069 4.0 1382 0

GA 10000/10 1058 1063 2.5 8205 0

GA 10000/50 1059 1061 2.2 10306 0

GA 10000/100 1057 1061 2.2 16395 0

LS 10s 978 995 16.2 10 0.1

LS 30s 978 987 6.9 30 0.2

LS 5m 978 981 2.9 300 0.4
Performance of stochastic search techniques on the “Barwin-like endoglucanases”
β-barrel template. SA is Simulated Annealing, GA is Genetic Algorithm, and LS is
Local Search. For Simulated Annealing, we show results for convergence thresholds
of 200, 500, and 1000 generations. For the Genetic Algorithm, we show results for
convergence thresholds of 10, 50, and 100 generations, and for population sizes of
1000 and 10000. For Local Search, we show results for time limits of 10 seconds,
30 seconds and five minutes, on a 12-core AMD Opteron. The “Optimal” column
indicates the fraction of runs for each search method that achieved the global
optimum.

are also more complex than the propellers, even though they are also more compu-

tationally complex for SMURFLite with an interleave threshold greater than 2. On

this superfamily, there is a closer overlap between the minimum score achieved by

simulated annealing, at 790, and the range seen by local search; local search with

a time limit of 30 seconds achieves a mean minimum score of 791, though its best

was 740.

Notably, when given a time limit of 5 minutes, local search achieved the

global minimum of 554 (as determined by exhaustive search) ten out of ten times.

Local search never found this score when given only 10 seconds or 30 seconds as a

time limit.

Our Haskell implementation made it exceedingly easy to parallelize MRFy

across multiple processing cores. By default, MRFy will take advantage of all pro-

cessing cores on a system; we tested the parallel speedup on a system with 48 pro-

87

Table 4.3: Stochastic search performance on β-sandwich
Min Score Mean Score Std Score Mean Time (s) Optimal

SA 200 795 834 18.6 84.7 0

SA 500 790 820 17.3 192 0

SA 1000 791 811 14.7 493 0

GA 1000/10 874 888 4.1 1869 0

GA 1000/50 878 883 2.5 1305 0

GA 1000/100 865 878 5.6 4309 0

GA 10000/10 872 877 2.5 6999 0

GA 10000/50 875 879 3.1 5317 0

GA 10000/100 869 875 4.5 10733 0

LS 10s 771 826 31.7 10 0

LS 30s 740 791 47.0 30 0

LS 5m 554 554 0.0 300 1.0

Performance of stochastic search techniques on a “Concanavalin A-like lectins/glu-
canases”, a 12-stranded β-sandwich template. SA is Simulated Annealing, GA is
Genetic Algorithm, and LS is Local Search. For Simulated Annealing, we show
results for convergence thresholds of 200, 500, and 1000 generations. For the
Genetic Algorithm, we show results for convergence thresholds of 10, 50, and 100
generations, and for population sizes of 1000 and 10000. For Local Search, we show
results for time limits of 10 seconds, 30 seconds and five minutes, on a 12-core AMD
Opteron. The “Optimal” column indicates the fraction of runs for each search
method that achieved the global optimum.

cessing cores. We measured the run-time performance of MRFy’s genetic algorithm

implementation (with a fixed random seed) on the “8-bladed β-propeller” template.

The model has 343 nodes, of which 178 appear in 40 β-strands. The segments be-

tween β-strands typically have at most 10 nodes. We used a query sequence of 592

amino acids, but each placement breaks the sequence into 41 pieces, each of which

typically has at most 20 amino acids. Because MRFy can solve the models between

the β-strands independently, this benchmark has a lot of parallelism.

Figure 4.4 shows speedups when using from 1 to 48 of the cores on a 48-core,

2.3GHz AMD Opteron 6176 system. Errors are estimated from 5 runs. After about

12 cores, where MRFy runs 6 times as fast as sequential code, speedup rolls off.

We note that by running 4 instances of MRFy in parallel on different searches, we

would expect to be able to use all 48 cores with about 50% efficiency.

88

10 20 30 40 50

Cores used

0

1

2

3

4

5

6

7

S
p

ee
d

u
p

Figure 4.4: MRFy’s parallel speedup on an 8-bladed β-propeller, using a 48-core
system. After about 12 cores, speedup falls off.

4.3.2 Remote homology detection accuracy

We performed cross-validation testing on 11 β-barrel superfamilies, both with and

without simulated evolution. For MRFy, the balance between accuracy and compu-

tational efficiency is determined by the termination conditions, as well as the search

technique chosen. Because local search so dramatically outperformed simulated an-

nealing and the genetic algorithm, we conducted these cross-validation tests only

on local search. We chose 30 seconds as a balance between speed and accuracy;

a 5 minute time limit might result in better accuracy, but for high-throughput,

whole-genome scans, 5 minutes per alignment is excessive.

We compared MRFy’s performance, both with and without simulated evo-

lution, to the results from Chapter 3. Table 4.4 shows the area (AUC) under the

Receiver Operator Characteristic (ROC) curve for MRFy, the very best result from

SMURFLite, and HMMER, RAPTOR, and HHPred. Importantly, we are choosing

the best SMURFLite parameters for each superfamily, which could not be known

in advance; thus, we demonstrate improvements over the very best SMURFLite can

perform, rather than just an average case.

89

We first note the “Barwin-like endoglucanases” superfamily highlighted in

Chapter 3. SMURFLite performed better as the interleave threshold was increased

on this superfamily, and also when simulated evolution was added. Since MRFy dis-

cards no β-strands, we were curious how it would perform on this superfamily. No-

tably, this superfamily has exceedingly little training data; during cross-validation,

there are at most 4 training sequences and as few as 3 when filtered at a BLAST

E-value of 10−7 and the family under test is left out. Without simulated evolution,

MRFy achieves an AUC of 0.86, outperforming SMURFLite without simulated evo-

lution (SMURFLite achieved an AUC of 0.77 with an interleave threshold of 2, and

0.81 with an interleave threshold of 4). When simulated evolution is added, MRFy

achieves an AUC of 0.92, outperforming SMURFLite with an interleave threshold

of 2, but falling just short of the 0.94 AUC SMURFLite demonstrates with an

interleave threshold of 4 and simulated evolution.

MRFy outperforms SMURFLite in terms of AUC on four of the β-barrel su-

perfamilies, while SMURFLite outperforms MRFy on three. There was only one su-

perfamily, the “Prokaryotic SH3-related domain,” where SMURFLite outperformed

HMMER, RAPTOR, and HHPred while MRFy did not (MRFy, with an AUC of

0.73, fell behind HMMER’s 0.81 AUC). Unfortunately, MRFy never produced the

best performance on a superfamily that SMURFLite had not performed best on in

our previous work. Thus, with the exception of the “Barwin-like endoglucanase” su-

perfamily, the added β-strand information does not seem to help MRFy significantly

in the cases where HMMER, RAPTOR, or HHPred performed best.

4.4 Discussion

We have presented MRFy, a method that uses stochastic search to find alignments of

protein sequences to Markov random field models. MRFy in most cases outperforms

SMURFLite, but we should consider several possible enhancements to MRFy that

might improve its performance. As demonstrated on the β-sandwich superfamily,

90

Table 4.4: AUC on Beta-Barrel superfamilies
HMMER RAPTOR HHPred SMURFLite (best) MRFy MRFy, SE

MRFy performs
best

Translation proteins - - 0.66 0.93 0.95 0.91
Barwin-like
endoglucanases

- - 0.75 0.77 0.86 0.92

Tudor/PWWP/MBT 0.78 0.74 0.67 0.83 0.86 0.86
Nucleic acid-binding
proteins

0.75 - 0.67 0.89 0.75 0.95

SMURFLite
performs best

Cyclophilin-like 0.67 0.61 0.7 0.85 0.82 0.80
Sm-like
ribonucleoproteins

0.73 0.71 0.77 0.85 0.77 0.77

Prokaryotic
SH3-related domain

0.81 - - 0.83 0.73 0.72

HHPred performs
best

Translation proteins
SH3-like

0.83 0.81 0.86 0.62 - 0.63

RAPTOR performs
best

PDZ domain-like 0.96 1.0 0.99 0.97 0.95 0.95
FMN-binding split
barrel

0.62 0.82 0.61 - - -

HMMER performs
best

Electron Transport
accessory proteins

0.84 - 0.77 0.66 - 0.68

Note: for SMURFLite, value indicated is the best of all values in Table 3.2. For
MRFy, SimEv is simulated evolution. A dash (’-’) in a result entry indicates the
method failed on these structures, i.e. an AUC of less than 0.6

MRFy with local search achieves a globally optimal alignment when given 5 minutes

of run-time, but fails to find a score close to this when given only 30 seconds. It was

not immediately clear how to bring convergence testing into the local search model,

but doing so might achieve results comparable to the 5 minute results in less time.

We hope that MRFy will be useful for whole-genome annotation of newly-

sequenced organisms. The tradeoff of time versus accuracy suggests a two-phase ap-

proach to this task: a scan with relatively strict run-time performance requirements

(perhaps no more than ten seconds per alignment) coupled with a relatively loose p-

value threshold would produce a number of candidates, many of which would likely

be false positives. Then, MRFy could be re-run on these candidates with more com-

putationally demanding settings, and with a more strict p-value threshold. MRFy

91

computes p-values identically to SMURFLite: an extreme value distribution [Edd98]

is fitted to a distribution of raw scores, and then a p-value is computed as 1−cdf (x)

for any raw MRFy score x. Computing the p-value accurately in the face of differ-

ent search intensities might require fitting multiple distributions, each for a different

level of search intensity. Otherwise, if the distribution is obtained with an intensive

search, then at less-intensive search parameters, true positives may result in poor

p-values; similarly, if the distribution is obtained with a quick search, then more-

intensive search parameters might result in false positives scoring comparatively

well, and appearing to have good p-values.

As in Chapter 3, we compared MRFy to HHPred [Söd05]. As discussed,

HHPred has an advantage in that it builds profiles based on all of protein sequence

space. As a future enhancement to MRFy, we plan to introduce query profiles, so

that the MRFy alignment is to a sequence profile built from the query sequence,

rather than just the query sequence. However, this will introduce a run-time per-

formance hit in two ways. First, the time to run a sequence homology search us-

ing the BLAST [AMS+97] family of tools can be significant, though the work on

compressively-accelerated algorithms by Loh, et al.[LBB12] may reduce this impact.

Second, computing the Viterbi and β-pairing scores näıvely will require time directly

proportional to the number of sequences in the query profile. Representing these

query sequences as sets of residue frequency vectors should help, and there may be

other approaches to consider.

We have demonstrated that MRFy is an improvement to SMURFLite, one

that brings the full power of a Markov random field to bear. Thus far, only β-strand

interactions lead to non-local interactions in the MRFy Markov random field. In

the future, we will investigate fitting other secondary structural elements (the α-

helices) into this model. In addition, disulfide bonds, which can occur between

cysteine residues and have been shown to be highly conserved [NAL09, TMC+12],

would appear to fit easily into this model.

92

Chapter 5

Conclusion and Future Work

5.1 Contrasting Markov random field approaches

We have explored two approaches to making the SMURF [Men09, MBC10] Markov

random field model computationally tractable on all protein folds. SMURF used

multidimensional dynamic programming to exactly compute the optimal energy

function on a β-structural Markov random field, which was computationally in-

tractable when β-strands were highly interleaved. In Chapter 3, we demonstrated a

method, SMURFLite, for simplifying the Markov random field itself, by removing

only those nonlocal interactions that caused the computational complexity to grow

beyond reasonable bounds. In addition, SMURFLite uses “simulated evolution” to

mitigate, at least in part, the information loss that this simplification poses.

In Chapter 4, we demonstrated an alternative method, MRFy, for approx-

imating a solution to the full SMURF Markov random field, without discarding

any β-strand information. This method, too, benefits from simulated evolution,

though this benefit seems primarily confined to the protein superfamilies that have

barely-adequate training data.

In essence, SMURFLite exactly computes the solution to an approximation of

the SMURF Markov random field, while MRFy approximately computes a solution

to the exact SMURF Markov random field.

A natural extension of this work would be to combine the methodologies

93

from Chapters 3 and 4. One approach to this would be to use SMURFLite at a

low interleave threshold, such as 2, to produce an alignment that could serve as

an initial guess for MRFy’s placement of β-strand residues. Such an alignment

would, at times, need to be modified to fit the β-strands that had been ignored by

SMURFLite.

We also propose to evaluate this combined approach in comparison to the

newer threading approach, RaptorX [PX11b], which incorporates multiple-template

alignments and solvent-accessibility information.

5.2 Structurally consistent superfamilies

The results from Chapters 2 and 3 suggest that a purely structural basis for re-

mote homology detection may result in, in some sense, an unfair test. Some SCOP

superfamilies exhibit structural inconsistency; this, as well as historical artifacts

such as “dustbin families” as suggested by [PLG12], pose a considerable challenge.

In addition, the structural consistency of the β-propeller folds appears to be rel-

atively unusual at the fold level. Given that the methods explored in this work

rely upon high-quality structural alignments that, ideally, preserve highly-conserved

secondary-structural regions, efforts to improve these alignments would be beneficial.

Recent work in the field of structural alignment, including our work [DNC12] and

that of Wang, et al. [Wan12] may preserve more sequence and secondary-structural

similarity, occasionally at the expense of small amounts of structural alignment

quality.

We may also consider the task of remote homology detection when freed

from the occasional inconsistencies of SCOP; evaluating SMURFLite and MRFy on

a purely structurally-derived hierarchy, as described in Chapter 2, may be worth

exploring.

94

5.3 MRFy with sequence profiles

MRFy, along with SMURFLite, relies on computing an alignment of a single pro-

tein sequence to a Markov random field. As has been demonstrated by approaches

such as PSI-BLAST [AMS+97] and BetaWrapPro [MMP+05], incorporating homol-

ogous profile data can improve both close and remote homology detection. Given

MRFy’s stochastic search approach, we expect that the less-discretized residue com-

position of each column of a query profile, as compared with a single query sequence,

would smooth out the fitness landscape of MRFy’s objective function (namely, the

SMURF energy function) and thus enable the local-improvement feature of MRFy’s

local search to be more efficient. As discussed in Chapter 4, two computational

challenges arise: how to quickly find close sequence homologs to build a profile, and

how to quickly score a profile against a Markov random field. The work of Loh, et

al. [LBB12], as well as our recent but as-yet unpublished work on compressively-

accelerated genomic and protein sequence search algorithms, provides a partial so-

lution to the first performance concern.

Regarding the second performance concern, how to quickly score a profile

against a Markov random field, we note that HHPred [Söd05] and its relative, HH-

Blits [RBHS12] perform HMM-HMM alignment. They solve the slightly simpler

problem of aligning a hidden Markov model built from a query profile with a hid-

den Markov model built from training data. This raises the question: could we

perform MRF-MRF alignment, or at least HMM-MRF alignment? Our current

model of Markov random fields requires a structural alignment in order to annotate

β-strands, but a hidden Markov model can be built from a sequence alignment.

Could we build a hidden Markov model from a query sequence (and resulting pro-

file), and align it to our Markov random field model? This appears to bear further

consideration.

95

5.4 Extension to Other Protein Classes

Both SMURFLite and MRFy differ from hidden Markov models, such as those em-

ployed by HMMER [Edd98], only in that they incorporate non-local interactions

between residues participating in hydrogen bonds between β-strands. This means

that SMURFLite and MRFy are most at home in the SCOP class of “all beta pro-

teins,” and while we may also be able to show benefits in the classes of “alpha/beta”

and “alpha+beta” proteins, we would expect to contribute little to, and in fact over-

train on, the “all alpha proteins,” given that there are occasional β-strands in the

α-helical proteins, just as there are the converse (for example, the “Barwin” protein

discussed in Chapters 3 and 4 has four α-helices in addition to its eight β-strands).

We intend to extend MRFy to incorporate α-helix conditional probabilities,

as explored by Cao, et al. [CC12] within the context of HMMER. At the sim-

plest level, highly-conserved α-helices in between β-strands should prevent those

β-strands from occluding the helices; incorporating the α-helical residue propensi-

ties is an obvious extension of the model.

5.5 More Generalized Contact Maps

Beyond specific secondary-structural elements, evolution conserves other non-local

interactions. Disulfide bonds, which occur between cysteine residues in proteins,

anchor certain protein structures, and are thus highly conserved. MRFy’s model of

non-local interactions could easily incorporate these pairwise bonds; the probability

of a disulfide bond between two cysteine residues would be close to 1, while the

probability for any other pairing would be zero, or close to zero. Other, less common

interactions such as peroxide and diselenide bonds may also lend themselves to this

model.

Beyond specific chemical bonds, we may consider any structural core that

appears to be highly conserved within a homologous group of proteins to be a candi-

date for our model of a Markov random field, encompassing non-local interactions.

The main prerequisite for such an extension would be the availability of adequate

96

training data to build a model of conditional probabilities for the non-local interac-

tions in question.

97

Bibliography

[AGM+90] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic

local alignment search tool. Journal of Molecular Biology, 215(3):403–

410, October 1990.

[AHB+04] Antonina Andreeva, Dave Howorth, Steven E Brenner, Tim J P Hub-

bard, Cyrus Chothia, and Alexey G Murzin. SCOP database in 2004:

refinements integrate structure and sequence family data. Nucleic Acids

Research, 32(Database issue):D226–9, January 2004.

[AMS+97] S F Altschul, T L Madden, A A Schäffer, J Zhang, Z Zhang, W Miller,

and D J Lipman. Gapped BLAST and PSI-BLAST: a new gener-

ation of protein database search programs. Nucleic Acids Research,

25(17):3389–3402, September 1997.

[BAD03] D Beck, R Armen, and V Daggett. A consensus view of fold space:

Combining SCOP, CATH, and the Dali Domain Dictionary. Protein

Science, 2003.

[BBB+00] H M Berman, T N Bhat, P E Bourne, Z Feng, G Gilliland, H Weissig,

and J Westbrook. The Protein Data Bank and the challenge of struc-

tural genomics. Nature structural biology, 7 Suppl:957–959, November

2000.

[BBC99] E Bornberg-Bauer and H S Chan. Modeling evolutionary landscapes:

mutational stability, topology, and superfunnels in sequence space. In

Proceedings of the National . . . , 1999.

98

[BCHM94] P Baldi, Y Chauvin, T Hunkapiller, and M A McClure. Hidden Markov

models of biological primary sequence information. Proceedings of the

National Academy of Science, 91(3):1059–1063, February 1994.

[BCM+01] P Bradley, L Cowen, M Menke, J King, and B Berger. BETAWRAP:

successful prediction of parallel -helices from primary sequence reveals

an association with many microbial pathogens. Proceedings of the Na-

tional Academy of Science, 98(26):14819–14824, 2001.

[BKW+77] F C Bernstein, T F Koetzle, G J Williams, EE Meyer, M D Brice, J R

Rodgers, O Kennard, T Shimanouchi, and M Tasumi. The Protein Data

Bank: a computer-based archival file for macromolecular structures.

Journal of Molecular Biology, 112:535, 1977.

[BL98] B Berger and T Leighton. Protein folding in the hydrophobic-

hydrophilic (HP) model is NP-complete. Journal of Computational

Biology, 1998.

[BPSW70] L E Baum, T Petrie, G Soules, and N Weiss. A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov

chains. The annals of mathematical statistics, 1970.

[BSA+12] Grzegorz M Boratyn, Alejandro A Schäffer, Richa Agarwala, Stephen F

Altschul, David J Lipman, and Thomas L Madden. Domain enhanced

lookup time accelerated BLAST. Biology direct, 7:12, 2012.

[BSL09] C Berbalk, C S Schwaiger, and P Lackner. Accuracy analysis of multiple

structure alignments. Protein Science, 2009.

[CBM+02] L Cowen, P Bradley, M Menke, J King, and B Berger. Predicting the

beta-helix fold from protein sequence data. Journal of Computational

Biology, 9(2):261–276, 2002.

[CC12] Mengfei Cao and Lenore J Cowen. Remote homology detection on

alpha-structural proteins using simulated evolution. In BCB ’12: Pro-

99

ceedings of the ACM Conference on Bioinformatics, Computational Bi-

ology and Biomedicine. ACM Request Permissions, October 2012.

[Chu89] G A Churchill. Stochastic models for heterogeneous DNA sequences.

Bulletin of mathematical biology, 1989.

[CK06] In-Geol Choi and Sung-Hou Kim. Evolution of protein structural classes

and protein sequence families. Proceedings of the National Academy of

Science, 103(38):14056–14061, September 2006.

[CL86] C Chothia and A M Lesk. The relation between the divergence of

sequence and structure in proteins. The EMBO journal, 5(4):823–826,

April 1986.

[CQKK04] S Cheek, Y Qi, S S Krishna, and L N Kinch. SCOPmap: automated

assignment of protein structures to evolutionary superfamilies. BMC

Bioinformatics, 2004.

[CSL+09] A L Cuff, I Sillitoe, T Lewis, O C Redfern, R Garratt, J Thornton, and

C A Orengo. The CATH classification revisited–architectures reviewed

and new ways to characterize structural divergence in superfamilies.

Nucleic Acids Research, 37(Database):D310–D314, January 2009.

[CSX06] Pin-Hao Chi, Chi-Ren Shyu, and Dong Xu. A fast SCOP fold classi-

fication system using content-based E-Predict algorithm. BMC Bioin-

formatics, 7:362, 2006.

[Dav91] L Davis. Bit-climbing, representational bias, and test suite design. In

R K Belew and L B Booker, editors, Proceedings of the Fourth Inter-

national Conference on Genetic Algorithms, pages 18–23, San Mateo,

CA, 1991.

[DBR97] S Dalal, S Balasubramanian, and L Regan. Protein alchemy: changing

beta-sheet into alpha-helix. Nature structural biology, 4(7):548–552,

July 1997.

100

[DC97] K A Dill and H S Chan. From Levinthal to pathways to funnels. Nature

structural biology, 4(1):10–19, January 1997.

[DGR12] Noah M Daniels, Andrew Gallant, and Norman Ramsey. Experience

report: Haskell in computational biology. In Proceedings of the 17th

ACM ACM Request Permissions, September 2012.

[DHBC12] Noah M Daniels, Raghavendra Hosur, Bonnie Berger, and Lenore J

Cowen. SMURFLite: combining simplified Markov random fields

with simulated evolution improves remote homology detection for beta-

structural proteins into the twilight zone. Bioinformatics, 28(9):1216–

1222, May 2012.

[DKCM11] Noah Daniels, Anoop Kumar, Lenore Cowen, and Matt Menke. Touring

Protein Space with Matt. IEEE/ACM transactions on computational

biology and bioinformatics / IEEE, ACM, April 2011.

[DLC02] N Dasgupta, S Lin, and L Carin. Sequential modeling for identifying

CpG island locations in human genome. Signal Processing Letters, 2002.

[DNC12] Noah M Daniels, Shilpa Nadimpalli, and Lenore J Cowen. Formatt:

Correcting protein multiple structural alignments by incorporating se-

quence alignment. BMC Bioinformatics, 13(1):259, 2012.

[DSSD00] A R Dinner, A Sali, L J Smith, and C M Dobson. Understanding

protein folding via free-energy surfaces from theory and experiment.

Trends in Biochemical Sciences, 2000.

[Dun06] Roland L Dunbrack, Jr. Sequence comparison and protein structure

prediction. Current Opinion in Structural Biology, 16(3):374–384, June

2006.

[Edd98] S R Eddy. Profile hidden Markov models. Bioinformatics, 14(9):755–

763, October 1998.

101

[ES99] A Elofsson and E L Sonnhammer. A comparison of sequence and struc-

ture protein domain families as a basis for structural genomics. Bioin-

formatics, 15(6):480–500, June 1999.

[FMSB+06] Robert D Finn, Jaina Mistry, Benjamin Schuster-Böckler, Sam

Griffiths-Jones, Volker Hollich, Timo Lassmann, Simon Moxon, Mhairi

Marshall, Ajay Khanna, Richard Durbin, Sean R Eddy, Erik L L

Sonnhammer, and Alex Bateman. Pfam: clans, web tools and ser-

vices. Nucleic Acids Research, 34(Database issue):D247–51, January

2006.

[FTM+08] Robert D Finn, John Tate, Jaina Mistry, Penny C Coggill,

Stephen John Sammut, Hans-Rudolf Hotz, Goran Ceric, Kristoffer

Forslund, Sean R Eddy, Erik L L Sonnhammer, and Alex Bateman. The

Pfam protein families database. Nucleic Acids Research, 36(Database

issue):D281–8, January 2008.

[GL98] M Gerstein and M Levitt. Comprehensive assessment of automatic

structural alignment against a manual standard, the Scop Classification

of Proteins. Protein Science, 1998.

[GLA+07] Lesley H Greene, Tony E Lewis, Sarah Addou, Alison Cuff, Tim Dall-

man, Mark Dibley, Oliver Redfern, Frances Pearl, Rekha Nambudiry,

Adam Reid, Ian Sillitoe, Corin Yeats, Janet M Thornton, and Chris-

tine A Orengo. The CATH domain structure database: new protocols

and classification levels give a more comprehensive resource for ex-

ploring evolution. Nucleic Acids Research, 35(Database issue):D291–7,

January 2007.

[GMB96] J F Gibrat, T Madej, and S H Bryant. Surprising similarities in struc-

ture comparison. Current Opinion in Structural Biology, 6(3):377–385,

June 1996.

102

[GVSD02] Gad Getz, Michele Vendruscolo, David Sachs, and Eytan Domany. Au-

tomated assignment of SCOP and CATH protein structure classifica-

tions from FSSP scores. Proteins: Structure, Function, and Bioinfor-

matics, 46(4):405–415, March 2002.

[GW09] V Gopalakrishnan and P Weigele. Conditional graphical models for

protein structural motif recognition. Journal of Computational Biology,

2009.

[HBB+06] Nicolas Hulo, Amos Bairoch, Virginie Bulliard, Lorenzo Cerutti,

Edouard De Castro, Petra S Langendijk-Genevaux, Marco Pagni, and

Christian J A Sigrist. The PROSITE database. Nucleic Acids Research,

34(Database issue):D227–30, January 2006.

[Heu99] V Heun. Approximate protein folding in the HP side chain model on

extended cubic lattices. Algorithms-ESA’99, 1999.

[HH92] S Henikoff and J G Henikoff. Amino acid substitution matrices

from protein blocks. Proceedings of the National Academy of Science,

89(22):10915–10919, November 1992.

[HJ99] C Hadley and D Jones. A systematic comparison of protein structure

classifications: SCOP, CATH and FSSP. Structure, 1999.

[HK96] R Hughey and A Krogh. Hidden Markov models for sequence analysis:

extension and analysis of the basic method. Computer applications in

the biosciences : CABIOS, 12(2):95–107, April 1996.

[HLKT86] R Huber, T A Langworthy, H König, and M Thomm. Thermotoga mar-

itima sp. nov. represents a new genus of unique extremely thermophilic

eubacteria growing up to 90 C. Archives of Microbiology, 144:324–333,

1986.

[HM05] P V Hentenryck and L Michel. Constraint-based local search. The MIT

Press, Cambridge, MA, 2005.

103

[HP00] L Holm and J Park. DaliLite workbench for protein structure compar-

ison. Bioinformatics, 16(6):566–567, June 2000.

[HPM+02] Andrew Harrison, Frances Pearl, Richard Mott, Janet Thornton, and

Christine Orengo. Quantifying the similarities within fold space. Jour-

nal of Molecular Biology, 323(5):909–926, November 2002.

[HR77] John H Holland and Judith S Reitman. Cognitive systems based on

adaptive algorithms. ACM SIGART Bulletin, (63):49, June 1977.

[HS96] L Holm and C Sander. The FSSP database: fold classification based

on structure-structure alignment of proteins. Nucleic Acids Research,

24(1):206–209, January 1996.

[HS98] L Holm and C Sander. Touring protein fold space with Dali/FSSP.

Nucleic Acids Research, 26(1):316–319, January 1998.

[HVS06] T A Holland, S Veretnik, and I N Shindyalov. Partitioning protein

structures into domains: why is it so difficult? Journal of Molecular

Biology, 2006.

[Joh06] Stephen Johnson. Remote Protein Homology Detection Using Hidden

Markov Models. PhD thesis, Washington University in St. Louis, pages

1–106, October 2006.

[Jon97] D T Jones. Progress in protein structure prediction. Current Opinion

in Structural Biology, 7(3):377–387, June 1997.

[Jon99] D T Jones. GenTHREADER: an efficient and reliable protein fold

recognition method for genomic sequences. Journal of Molecular Biol-

ogy, 287(4):797–815, April 1999.

[JTT92] D T Jones, W R Taylort, and J M Thornton. A new approach to

protein fold recognition. Nature, 1992.

104

[JVP06] G Jayachandran, V Vishal, and V S Pande. Using massively parallel

simulation and Markovian models to study protein folding: Examining

the dynamics of the villin headpiece. The Journal of chemical physics,

2006.

[Kab76] W Kabsch. A solution for the best rotation to relate two sets of vectors.

Acta Crystallographica Section A: Crystal Physics, 1976.

[KBH98] K Karplus, C Barrett, and Richard Hughey. Hidden Markov models

for detecting remote protein homologies. Bioinformatics, 14:846–856,

1998.

[KBM+94] Anders Krogh, Michael Brown, I Saira Mian, Kimmen Sjölander, and

David Haussler. Hidden Markov Models in Computational Biology.

Journal of Molecular Biology, 235(5):1501–1531, February 1994.

[KC09] Anoop Kumar and Lenore Cowen. Augmented training of hidden

Markov models to recognize remote homologs via simulated evolution.

Bioinformatics, 25(13):1602–1608, 2009.

[KC10] Anoop Kumar and Lenore Cowen. Recognition of beta-structural motifs

using hidden Markov models trained with simulated evolution. Bioin-

formatics, 26(ISMB 2010):i287–i293, 2010.

[KKL05] R Kolodny, P Koehl, and M Levitt. Comprehensive evaluation of

protein structure alignment methods: scoring by geometric measures.

Journal of Molecular Biology, 2005.

[KPH06] Rachel Kolodny, Donald Petrey, and Barry Honig. Protein structure

comparison: implications for the nature of ’fold space’, and struc-

ture and function prediction. Current Opinion in Structural Biology,

16(3):393–398, June 2006.

[KV83] S Kirkpatrick and M P Vecchi. Optimization by simmulated annealing.

Science (New York, N.Y.), 1983.

105

[LBB12] Po-Ru Loh, Michael Baym, and Bonnie Berger. Compressive genomics.

Nature biotechnology, 30(7):627–630, July 2012.

[Lev69] C Levinthal. How to Fold Gracefully. Mossbauer Spectroscopy in Bio-

logical Systems: Proceedings of a meeting held at Allerton House, Mon-

ticello, Illinois, pages 22–24, 1969.

[LS80] S Lifson and C Sander. Specific recognition in the tertiary structure

of [beta]-sheets of proteins. Journal of Molecular Biology, 139:627–629,

1980.

[LS96] R H Lathrop and T F Smith. Global optimum protein threading with

gapped alignment and empirical pair score functions. Journal of Molec-

ular Biology, 255(4):641–665, February 1996.

[MBA05] A Marchler-Bauer and J B Anderson. CDD: a Conserved Domain

Database for protein classification. Nucleic Acids Research, 2005.

[MBB95] T Madej, M S Boguski, and S H Bryant. Threading analysis suggests

that the obese gene product may be a helical cytokine. FEBS letters,

373(1):13–18, October 1995.

[MBC08] M Menke, B Berger, and L Cowen. Matt: local flexibility aids protein

multiple structure alignment. PLoS Computational Biology, 2008.

[MBC10] M Menke, B Berger, and L Cowen. Markov random fields reveal an

N-terminal double beta-propeller motif as part of a bacterial hybrid

two-component sensor system. Proceedings of the National Academy of

Science, 2010.

[MBH95] A Murzin, S Brenner, and T Hubbard. SCOP: a structural classification

of proteins database for the investigation of sequences and structures.

Journal of Molecular Biology, 247(4):536–540, 1995.

[MBJ00] L J McGuffin, K Bryson, and D T Jones. The PSIPRED protein struc-

ture prediction server. Bioinformatics, 2000.

106

[MCBR98] A Matagne, E W Chung, L J Ball, and S E Radford. The origin of

the -domain intermediate in the folding of hen lysozyme. Journal of

Molecular Biology, 1998.

[MDBO98] K Mizuguchi, C M Deane, T L Blundell, and J P Overington. HOM-

STRAD: a database of protein structure alignments for homologous

families. Protein Science, 7(11):2469–2471, November 1998.

[Men09] M Menke. Computational approaches to modeling the conserved struc-

tural core among distantly homolgous proteins. Massachusetts. PhD

Thesis, MIT, 2009.

[MMP+05] A McDonnell, M Menke, N Palmer, J King, and L Cowen. Comparative

modeling of mainly-beta proteins by profile wrapping. broad.mit.edu,

2005.

[Mou06] J Moult. Rigorous performance evaluation in protein structure mod-

elling and implications for computational biology. Transactions of the

Royal Society: Biological Sciences, 2006.

[MSE96] M A McClure, C Smith, and P Elton. Parameterization studies for

the SAM and HMMER methods of hidden Markov model generation.,

1996.

[NAL09] Guy Naamati, Manor Askenazi, and Michal Linial. ClanTox: a clas-

sifier of short animal toxins. Nucleic Acids Research, 37(Web Server

issue):W363–8, July 2009.

[OJT94] C A Orengo, D T Jones, and J M Thornton. Protein superfamilies and

domain superfolds. Nature, 372(6507):631–634, December 1994.

[OMJ+97] C A Orengo, A D Michie, S Jones, D T Jones, M B Swindells, and

J M Thornton. CATH–a hierarchic classification of protein domain

structures. Structure, 5(8):1093–1108, August 1997.

107

[ORV99] O Olmea, Burkhard Rost, and Alfonso Valencia. Effective use of se-

quence correlation and conservation in fold recognition. Journal of

Molecular Biology, 293(5):1221–1239, 1999.

[OSO09] A R Ortiz, CEM Strauss, and O Olmea. MAMMOTH (matching molec-

ular models obtained from theory): an automated method for model

comparison. Protein Science, 2009.

[PBB+03] F M G Pearl, C F Bennett, J E Bray, A P Harrison, N Martin, A Shep-

herd, I Sillitoe, J Thornton, and C A Orengo. The CATH database:

an extended protein family resource for structural and functional ge-

nomics. Nucleic Acids Research, 31(1):452–455, January 2003.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Networks

of Plausble Inference. Morgan Kaufmann Pub, 1988.

[PLG12] Ralph B Pethica, Michael Levitt, and Julian Gough. Evolutionarily

consistent families in SCOP: sequence, structure and function. BMC

Structural Biology, 12(1):27, 2012.

[PX11a] J Peng and J Xu. A multipletemplate approach to protein threading.

Proteins: Structure, Function, and Bioinformatics, 2011.

[PX11b] J Peng and J Xu. RaptorX: exploiting structure information for protein

alignment by statistical inference. Proteins: Structure, Function, and

Bioinformatics, 2011.

[Rab89] L R Rabiner. A tutorial on hidden Markov models and selected appli-

cations in speech recognition. In Proceedings of the IEEE, 1989.

[RBHS12] Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes

Söding. HHblits: lightning-fast iterative protein sequence searching by

HMM-HMM alignment. Nature methods, 9(2):173–175, February 2012.

108

[RHD07] O Redfern, A Harrison, and T Dallman. CATHEDRAL: a fast and

effective algorithm to predict folds and domain boundaries from mul-

tidomain protein structures. PLoS Computational Biology, 2007.

[Ros99] B Rost. Twilight zone of protein sequence alignments. Protein Engi-

neering, 12(2):85–94, February 1999.

[Ros02] B Rost. Did evolution leap to create the protein universe? Current

Opinion in Structural Biology, 2002.

[RSWD09] Jairo Rocha, Joan Segura, Richard C Wilson, and Swagata Dasgupta.

Flexible structural protein alignment by a sequence of local transfor-

mations. Bioinformatics, 25(13):1625–1631, July 2009.

[SB98] I N Shindyalov and P E Bourne. Protein structure alignment by in-

cremental combinatorial extension (CE) of the optimal path. Protein

Engineering, 1998.

[SB00] I N Shindyalov and P E Bourne. An alternative view of protein fold

space. Proteins: Structure, Function, and Bioinformatics, 2000.

[SBL05] Johannes Söding, Andreas Biegert, and Andrei N Lupas. The HHpred

interactive server for protein homology detection and structure predic-

tion. Nucleic Acids Research, 33(Web Server issue):W244–8, July 2005.

[SDD+07] David E Shaw, Martin M Deneroff, Ron O Dror, Jeffrey S Kuskin,

Richard H Larson, John K Salmon, Cliff Young, Brannon Batson,

Kevin J Bowers, Jack C Chao, Michael P Eastwood, Joseph Gagliardo,

J P Grossman, C Richard Ho, Douglas J Ierardi, István Kolossváry,

John L Klepeis, Timothy Layman, Christine McLeavey, Mark A

Moraes, Rolf Mueller, Edward C Priest, Yibing Shan, Jochen Spen-

gler, Michael Theobald, Brian Towles, and Stanley C Wang. Anton, a

special-purpose machine for molecular dynamics simulation. In ISCA

109

’07: Proceedings of the 34th annual international symposium on Com-

puter architecture. ACM Request Permissions, June 2007.

[SHJ97] P Smyth, D Heckerman, and M I Jordan. Probabilistic independence

networks for hidden Markov probability models. Neural computation,

9(2):227–269, February 1997.

[SKG09] Ruslan I Sadreyev, Bong-Hyun Kim, and Nick V Grishin. Discrete-

continuous duality of protein structure space. Current Opinion in

Structural Biology, 19(3):321–328, June 2009.

[SKP08] Paolo Sonego, András Kocsor, and Sándor Pongor. ROC analysis: ap-

plications to the classification of biological sequences and 3D structures.

Briefings in bioinformatics, 9(3):198–209, May 2008.

[SMP08] M Simonsen, T Mailund, and CNS Pedersen. Rapid Neighbour-Joining.

Lect Notes Comput Sci, 5251:113:122, 2008.

[SMW95] RA Sayle and EJ Milner-White. RASMOL: biomolecular graphics for

all. Trends in Biochemical Sciences, 20(9):374, 1995.

[Söd05] Johannes Söding. Protein homology detection by HMM-HMM compar-

ison. Bioinformatics, 21(7):951–960, March 2005.

[SSH+92] Birte Svensson, Ib Svendsen, Peter Hoejrup, Peter Roepstorff, Svend

Ludvigsen, and Flemming M Poulsen. Primary structure of barwin: a

barley seed protein closely related to the C-terminal domain of proteins

encoded by wound-induced plant genes. Biochemistry, 1992.

[ST02] R E Steward and J M Thorton. Prediction of strand pairing in antipar-

allel and parallel -sheets using information theory. Proteins: Structure,

Function, and Bioinformatics, 48:178–191, 2002.

[STG+06] V Sam, C H Tai, J Garnier, J F Gibrat, and B Lee. ROC and confusion

analysis of structure comparison methods identify the main causes of

110

divergence from manual protein classification. BMC Bioinformatics,

2006.

[SW81] T F Smith and M S Waterman. Identification of common molecular

subsequences. Journal of Molecular Biology, 147(1):195–197, March

1981.

[SWS07] Stefan J Suhrer, Markus Wiederstein, and Manfred J Sippl.

QSCOP–SCOP quantified by structural relationships. Bioinformatics,

23(4):513–514, February 2007.

[TGG+08] C Tai, J Garnier, J Gibrat, B Lee, and P Munson. Towards an auto-

matic classification of protein structural domains based on BMC

Bioinformatics, 2008.

[TKMN99] C J Tsai, S Kumar, B Ma, and R Nussinov. Folding funnels, binding

funnels, and protein function. Protein Science, 1999.

[TMC+12] Y Tirosh, N Morpurgo, M Cohen, M Linial, and G Bloch. Raalin, a

transcript enriched in the honey bee brain, is a remnant of genomic

rearrangement in Hymenoptera. Insect molecular biology, 21(3):305–

318, June 2012.

[TRBK08] J Thomas, N Ramakrishnan, and C Bailey-Kellogg. Graphical models

of residue coupling in protein families. IEEE/ACM transactions on

computational biology and bioinformatics / IEEE, ACM, 2008.

[VBAS04] Stella Veretnik, Philip E Bourne, Nickolai N Alexandrov, and Ilya N

Shindyalov. Toward consistent assignment of structural domains in

proteins. Journal of Molecular Biology, 339(3):647–678, June 2004.

[VC06] M Vuk and T Curk. ROC curve, lift chart and calibration plot.

Metodoloski zvezki, 2006.

111

[Vit67] A Viterbi. Error bounds for convolutional codes and an asymptoti-

cally optimum decoding algorithm. IEEE Transactions on Information

Theory, 13(2):260–269, April 1967.

[VWLW05] I Van Walle, I Lasters, and L Wyns. SABmark—a benchmark for

sequence alignment that covers the entire known fold space. Bioinfor-

matics, 2005.

[VYB09] R Valas, S Yang, and P Bourne. Nothing about protein structure

classification makes sense except in the light of evolution. Current

Opinion in Structural Biology, 2009.

[Wan12] Shen Wang. Protein structure alignment beyond spatial proximity . In

Protein structure alignment beyond spatial proximity, Long Beach, CA,

July 2012.

[WJ94] LUSHENG WANG and TAO JIANG. On the Complexity of Multiple

Sequence Alignment. Journal of Computational Biology, 1(4):337–348,

January 1994.

[WJ99] Y Weiss and MI Jordan. Loopy belief propagation for approximate

inference: An empirical study. In Proceedings of Uncertainty in AI,

1999.

[WKG00] C A Wilson, J Kreychman, and M Gerstein. Assessing annotation

transfer for genomics: quantifying the relations between protein se-

quence, structure and function through traditional and probabilistic

scores. Journal of Molecular Biology, 297(1):233–249, March 2000.

[WMS94] J V White, I Muchnik, and T F Smith. Modeling protein cores with

Markov random fields. Mathematical biosciences, 124(2):149–179, De-

cember 1994.

[WMV+07] Derek Wilson, Martin Madera, Christine Vogel, Cyrus Chothia, and

Julian Gough. The SUPERFAMILY database in 2007: families and

112

functions. Nucleic Acids Research, 35(Database issue):D308–13, Jan-

uary 2007.

[WS04] Markus Wistrand and Erik L L Sonnhammer. Improving profile HMM

discrimination by adapting transition probabilities. Journal of Molec-

ular Biology, 338(4):847–854, May 2004.

[WZ08] S Wu and Y Zhang. MUSTER: improving protein sequence profile–

profile alignments by using multiple sources of structure information.

Proteins: Structure, Function, and Bioinformatics, 2008.

[XLKX03] Jinbo Xu, Ming Li, Dongsup Kim, and Ying Xu. Raptor: Optimal

Protein Threading By Linear Programming. Journal of Bioinformatics

and Computational Biology, 1(1):95–117, 2003.

[YFZZ11] Yuedong Yang, Eshel Faraggi, Huiying Zhao, and Yaoqi Zhou. Improv-

ing protein fold recognition and template-based modeling by employing

probabilistic-based matching between predicted one-dimensional struc-

tural properties of query and corresponding native properties of tem-

plates. Bioinformatics, 27(15):2076–2082, August 2011.

[ZB99] H Zhu and W Braun. Sequence specificity, statistical potentials, and

three-dimensional structure prediction with self-correcting distance ge-

ometry calculations of beta-sheet formation in proteins. Protein Sci-

ence, 8(2):326–342, 1999.

[ZGS+07] Adam Zemla, Brian Geisbrecht, Jason Smith, Marisa Lam, Bon-

nie Kirkpatrick, Mark Wagner, Tom Slezak, and Carol Ecale Zhou.

STRALCP–structure alignment-based clustering of proteins. Nucleic

Acids Research, 35(22):e150, 2007.

[ZS05] Yang Zhang and Jeffrey Skolnick. TM-align: a protein structure

alignment algorithm based on the TM-score. Nucleic Acids Research,

33(7):2302–2309, 2005.

113

[ZTW+09] Ying Zhang, Ines Thiele, Dana Weekes, Zhanwen Li, Lukasz

Jaroszewski, Krzysztof Ginalski, Ashley M Deacon, John Wooley,

Scott A Lesley, Ian A Wilson, Bernhard Palsson, Andrei Osterman,

and Adam Godzik. Three-dimensional structural view of the central

metabolic network of Thermotoga maritima. Science (New York, N.Y.),

325(5947):1544–1549, September 2009.

114

Appendices

115

Pairwise scores for β-structural

proteins

116

T
ab

le
1
:

P
ai

rw
is

e
sc

or
es

(n
eg

at
iv

e
lo

g
of

p
ro

b
ab

il
it

y
)

fo
r

b
u

ri
ed

β
-s

tr
a
n

d
s

A
C

D
E

F
G

H
I

K
L

M
N

P
Q

R
S

T
V

W
Y

X
A

2
.8
4

2
.8
9

2
.4
1

1
.6
3

2
.5
8

3
.3
1

2
.0
6

2
.5
4

2
.8
9

2
.4
2

2
.9
1

2
.3
0

2
.6
6

3
.0
6

3
.5
2

2
.6
8

2
.4
7

2
.5
4

2
.5
3

2
.6
0

9
.2
1

C
3
.7
7

2
.1
9

3
.3
3

3
.7
1

3
.5
6

3
.1
3

3
.4
4

3
.6
5

2
.8
9

3
.5
7

4
.2
0

3
.4
0

1
.9
6

3
.7
6

3
.5
2

3
.1
4

3
.1
6

3
.8
1

2
.7
8

3
.4
7

9
.2
1

D
4
.5
6

4
.5
9

4
.7
3

4
.7
3

5
.0
6

3
.8
2

4
.1
4

4
.7
8

4
.7
3

5
.5
5

4
.6
1

2
.9
9

3
.0
6

4
.7
3

2
.8
3

3
.4
7

5
.1
1

4
.7
3

4
.7
3

5
.7
8

9
.2
1

E
4
.0
9

5
.2
8

5
.0
4

3
.0
2

4
.6
6

5
.6
1

3
.4
4

5
.0
3

2
.1
9

5
.3
2

4
.2
0

5
.0
4

5
.0
4

5
.0
4

5
.0
4

4
.3
9

5
.1
1

6
.5
2

5
.0
4

5
.0
8

9
.2
1

F
2
.3
0

2
.3
9

2
.6
3

1
.9
2

2
.1
2

1
.9
7

2
.1
9

2
.4
7

2
.1
9

2
.3
9

2
.1
3

2
.9
9

2
.1
5

1
.9
6

2
.4
2

1
.9
5

2
.1
6

2
.4
0

2
.4
2

2
.1
9

9
.2
1

G
3
.8
7

2
.8
0

2
.2
3

3
.7
1

2
.8
1

2
.7
2

2
.5
3

3
.3
2

3
.1
4

3
.2
9

3
.5
1

4
.0
9

1
.9
6

3
.7
6

3
.5
2

3
.4
7

2
.8
0

3
.1
0

3
.6
2

2
.9
4

9
.2
1

H
4
.0
9

4
.5
9

4
.0
2

3
.0
2

4
.5
0

4
.0
0

2
.7
5

5
.0
3

4
.6
1

4
.9
9

4
.6
1

4
.0
9

4
.6
1

3
.7
6

4
.6
1

3
.2
9

4
.4
1

5
.8
2

4
.7
2

4
.6
8

9
.2
1

I
1
.7
3

1
.9
5

1
.8
2

1
.7
6

1
.9
4

1
.9
5

2
.1
9

1
.5
8

1
.7
9

1
.7
2

1
.6
7

2
.1
4

2
.3
7

1
.9
6

2
.8
3

1
.8
6

2
.4
7

1
.7
3

1
.8
3

1
.8
4

9
.2
1

K
6
.1
7

5
.2
8

5
.8
7

3
.0
2

5
.7
6

5
.8
7

5
.8
7

5
.8
8

5
.8
7

5
.3
2

5
.8
7

5
.8
7

5
.8
7

3
.7
6

3
.5
2

5
.0
8

5
.8
7

6
.1
1

5
.8
7

5
.8
7

9
.2
1

L
1
.6
6

1
.9
2

2
.6
3

2
.1
0

1
.9
1

1
.9
7

2
.1
9

1
.7
7

1
.2
8

1
.7
1

1
.7
8

2
.0
1

2
.3
7

2
.1
5

2
.8
3

1
.9
9

1
.8
9

1
.8
3

2
.0
1

1
.7
9

9
.2
1

M
3
.7
7

4
.1
8

3
.3
3

2
.6
1

3
.2
7

3
.8
2

3
.4
4

3
.3
4

3
.4
5

3
.4
1

2
.8
2

4
.0
9

3
.7
6

2
.3
7

3
.5
2

5
.0
8

3
.1
6

3
.5
2

3
.6
2

3
.3
8

9
.2
1

N
4
.3
8

4
.5
9

2
.9
2

4
.6
6

5
.3
5

5
.6
1

4
.1
4

5
.0
3

4
.6
6

4
.8
5

5
.3
0

4
.6
6

3
.7
6

3
.0
6

3
.5
2

4
.3
9

3
.3
2

4
.9
1

3
.1
1

5
.7
8

9
.2
1

P
5
.0
7

3
.4
9

3
.3
3

5
.0
0

4
.8
4

3
.8
2

5
.0
0

5
.5
9

5
.0
0

5
.5
5

5
.3
0

4
.0
9

5
.0
0

3
.7
6

5
.0
0

4
.3
9

5
.1
1

6
.1
1

3
.3
4

5
.0
8

9
.2
1

Q
5
.4
8

5
.2
8

5
.0
0

5
.0
0

4
.6
6

5
.6
1

4
.1
4

5
.1
9

2
.8
9

5
.3
2

3
.9
2

3
.4
0

3
.7
6

5
.0
0

3
.5
2

3
.9
8

5
.1
1

5
.0
1

4
.0
3

5
.7
8

9
.2
1

R
6
.1
7

5
.2
8

3
.3
3

5
.2
3

5
.3
5

5
.6
1

5
.2
3

6
.2
9

2
.8
9

6
.2
4

5
.3
0

4
.0
9

5
.2
3

3
.7
6

5
.2
3

5
.0
8

3
.7
2

5
.0
1

4
.0
3

4
.1
7

9
.2
1

S
3
.7
7

3
.3
4

2
.4
1

3
.0
2

3
.3
1

4
.0
0

2
.3
5

3
.7
6

2
.8
9

3
.8
4

5
.3
0

3
.4
0

3
.0
6

2
.6
6

3
.5
2

2
.4
4

5
.1
1

4
.1
2

3
.1
1

3
.8
3

9
.2
1

T
3
.5
3

3
.3
4

4
.0
2

3
.7
1

3
.5
1

3
.3
1

3
.4
4

4
.3
4

3
.6
4

3
.7
1

3
.3
6

2
.3
0

3
.7
6

3
.7
6

2
.1
4

5
.0
8

3
.7
2

3
.4
7

4
.0
3

3
.3
8

9
.2
1

V
1
.5
0

1
.8
8

1
.5
4

3
.0
2

1
.6
4

1
.5
0

2
.7
5

1
.5
0

1
.7
9

1
.5
5

1
.6
1

1
.7
9

2
.6
6

1
.5
6

1
.3
2

1
.9
9

1
.3
7

1
.3
6

2
.0
8

1
.6
2

9
.2
1

W
3
.9
7

3
.3
4

4
.0
3

4
.0
3

4
.1
5

4
.5
1

4
.1
4

4
.0
9

4
.0
3

4
.2
2

4
.2
0

2
.4
8

2
.3
7

3
.0
6

2
.8
3

3
.4
7

4
.4
1

4
.5
7

3
.3
4

3
.5
8

9
.2
1

Y
2
.9
9

2
.9
8

4
.0
2

3
.0
2

2
.8
7

2
.7
8

3
.0
4

3
.0
5

2
.9
8

2
.9
4

2
.9
1

4
.0
9

3
.0
6

3
.7
6

1
.9
1

3
.1
4

2
.7
1

3
.0
5

2
.5
3

3
.0
0

9
.2
1

X
9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

117

T
ab

le
2
:

P
ai

rw
is

e
sc

or
es

(n
eg

at
iv

e
lo

g
of

p
ro

b
ab

il
it

y
)

fo
r

ex
p

os
ed

β
-s

tr
a
n

d
s

A
C

D
E

F
G

H
I

K
L

M
N

P
Q

R
S

T
V

W
Y

X
A

2
.9
1

2
.5
6

3
.1
9

3
.5
0

2
.9
7

3
.1
9

3
.0
4

2
.9
8

3
.5
6

2
.8
8

3
.1
1

3
.3
1

3
.4
4

3
.8
6

3
.1
8

3
.3
7

3
.6
0

2
.9
0

3
.8
1

2
.8
3

9
.2
1

C
3
.7
6

2
.2
7

5
.4
9

6
.1
4

3
.6
7

5
.1
4

4
.6
5

4
.7
3

4
.6
6

4
.3
5

4
.7
2

4
.5
6

4
.1
4

5
.6
5

4
.1
3

4
.2
2

4
.4
1

4
.5
1

3
.8
1

3
.9
8

9
.2
1

D
3
.2
5

4
.3
5

3
.7
0

3
.8
4

3
.6
7

3
.1
9

2
.9
5

3
.3
4

2
.6
8

3
.4
3

3
.3
4

3
.3
1

4
.1
4

3
.0
1

2
.7
4

2
.9
2

3
.2
7

3
.8
2

3
.1
2

3
.5
7

9
.2
1

E
2
.9
1

4
.3
5

3
.1
9

2
.9
6

2
.5
7

3
.1
9

2
.8
6

2
.8
6

1
.8
4

2
.7
4

2
.2
4

2
.3
7

2
.5
3

2
.6
1

2
.0
3

2
.9
7

2
.5
2

2
.8
0

2
.5
6

3
.0
6

9
.2
1

F
3
.0
6

2
.5
6

3
.7
0

3
.2
5

2
.6
9

2
.5
7

2
.6
4

3
.7
2

3
.6
3

3
.1
9

2
.6
4

3
.6
5

3
.4
4

3
.5
7

4
.4
6

2
.9
2

3
.3
1

3
.5
3

3
.1
2

3
.2
8

9
.2
1

G
3
.6
0

4
.3
5

3
.5
5

4
.2
0

2
.8
9

3
.3
4

3
.1
5

3
.4
8

4
.8
8

3
.1
9

2
.7
8

3
.1
8

4
.1
4

4
.0
4

3
.5
1

3
.5
3

4
.0
0

3
.9
0

3
.4
1

3
.2
8

9
.2
1

H
3
.2
5

3
.6
6

3
.0
9

3
.6
6

2
.7
5

2
.9
4

3
.5
6

3
.5
5

3
.5
0

3
.5
0

3
.1
1

3
.8
7

3
.0
4

3
.5
7

3
.7
7

3
.3
7

3
.4
0

3
.3
6

3
.8
1

3
.0
0

9
.2
1

I
2
.4
1

2
.9
7

2
.7
2

2
.8
8

3
.0
6

2
.5
0

2
.7
8

2
.0
2

2
.6
6

2
.3
5

2
.3
2

2
.9
6

2
.7
5

2
.7
1

2
.6
7

2
.6
4

2
.9
0

2
.5
6

2
.5
6

2
.8
3

9
.2
1

K
2
.8
4

2
.7
4

1
.9
1

1
.7
1

2
.8
2

3
.7
5

2
.5
7

2
.5
0

2
.4
4

2
.5
6

2
.2
4

2
.4
2

3
.4
4

2
.3
6

2
.8
1

2
.9
2

2
.6
2

2
.7
2

2
.3
1

2
.1
3

9
.2
1

L
2
.2
9

2
.5
6

2
.7
8

2
.7
4

2
.5
1

2
.1
9

2
.7
1

2
.3
3

2
.6
8

2
.2
7

2
.9
3

3
.4
7

1
.9
4

2
.7
6

2
.9
4

2
.7
2

3
.0
2

2
.2
1

2
.5
6

2
.7
3

9
.2
1

M
3
.9
4

4
.3
5

4
.1
1

3
.6
6

3
.3
8

3
.1
9

3
.7
4

3
.7
2

3
.7
8

4
.3
5

3
.3
4

4
.1
6

4
.1
4

4
.2
6

3
.8
8

4
.2
2

4
.5
4

4
.2
2

4
.5
1

5
.0
8

9
.2
1

N
3
.6
0

3
.6
6

3
.5
5

3
.2
5

3
.8
5

3
.0
6

3
.9
6

3
.8
1

3
.4
3

4
.3
5

3
.6
2

3
.4
7

3
.4
4

3
.0
9

3
.0
8

3
.4
5

3
.2
7

4
.0
0

3
.1
2

3
.2
0

9
.2
1

P
4
.8
5

4
.3
5

5
.4
9

4
.5
3

4
.7
7

5
.1
4

4
.2
5

4
.7
3

5
.5
7

3
.9
4

4
.7
2

4
.5
6

4
.5
9

4
.9
6

4
.4
6

5
.3
2

4
.8
8

4
.3
6

3
.8
1

3
.6
9

9
.2
1

Q
3
.7
6

4
.3
5

2
.8
5

3
.1
0

3
.3
8

3
.5
3

3
.2
7

3
.1
7

2
.9
7

3
.2
5

3
.3
4

2
.6
9

3
.4
4

2
.4
7

3
.3
6

3
.2
4

2
.8
2

3
.0
8

2
.7
1

3
.0
6

9
.2
1

R
2
.6
6

2
.4
1

2
.1
6

2
.1
0

3
.8
5

2
.5
7

3
.0
4

2
.7
1

3
.0
1

3
.0
0

2
.5
3

2
.2
6

2
.5
3

2
.9
4

3
.5
9

2
.6
8

2
.4
6

2
.4
9

2
.2
0

2
.8
3

9
.2
1

S
2
.9
1

2
.5
6

2
.4
0

3
.1
0

2
.3
7

2
.6
5

2
.7
1

2
.7
5

3
.1
8

2
.8
4

2
.9
3

2
.6
9

3
.4
4

2
.8
8

2
.7
4

2
.4
3

2
.2
7

3
.0
8

2
.9
0

2
.6
8

9
.2
1

T
2
.6
6

2
.2
7

2
.2
7

2
.1
7

2
.2
8

2
.6
5

2
.2
6

2
.5
3

2
.4
0

2
.6
7

2
.7
8

2
.0
4

2
.5
3

1
.9
9

2
.0
5

1
.7
9

1
.8
4

2
.1
7

3
.8
1

3
.1
3

9
.2
1

V
2
.1
5

2
.5
6

3
.0
1

2
.6
4

2
.6
9

2
.7
4

2
.4
0

2
.3
8

2
.6
8

2
.0
4

2
.6
4

2
.9
6

2
.1
9

2
.4
3

2
.2
7

2
.7
9

2
.3
6

2
.1
7

2
.3
1

2
.3
7

9
.2
1

W
4
.8
5

3
.6
6

4
.1
1

4
.2
0

4
.0
7

4
.0
4

4
.6
5

4
.1
7

4
.0
7

4
.1
9

4
.7
2

3
.8
7

3
.4
4

3
.8
6

3
.7
7

4
.4
0

5
.7
9

4
.1
0

3
.8
1

4
.3
8

9
.2
1

Y
2
.6
0

2
.5
6

3
.2
9

3
.4
3

2
.9
7

2
.6
5

2
.5
7

3
.1
7

2
.6
3

3
.0
9

4
.0
3

2
.6
9

2
.0
6

2
.9
4

3
.1
3

2
.9
2

3
.8
5

2
.9
0

3
.1
2

2
.4
4

9
.2
1

X
9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

9
.2
1

118

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Proteins
	1.1.1 Primary Structure
	1.1.2 Secondary Structure
	1.1.3 Supersecondary and Tertiary Structure
	1.1.4 Protein Data Sets
	1.1.5 Protein Folding

	1.2 Protein Homology
	1.2.1 Structural Alignment

	1.3 Hidden Markov Models
	1.3.1 Profile Hidden Markov Models

	1.4 Other Homology Detection Methods
	1.4.1 Threading Methods
	1.4.2 Profile-Profile Hidden Markov Models
	1.4.3 Markov random fields

	1.5 Remote Homology Detection
	1.6 Outline of This Work

	Chapter 2 Touring Protein Space with Matt
	2.1 Introduction
	2.2 Methods
	2.2.1 Representative Proteins
	2.2.2 Distance Values
	2.2.3 Distance Threshold
	2.2.4 Clustering and Tree-cutting
	2.2.5 Jaccard Similarity Metric
	2.2.6 Benchmark Set

	2.3 Results
	2.3.1 Pairwise Distance Comparisons
	2.3.2 Clustering Performance
	2.3.3 Specific Example

	2.4 Discussion

	Chapter 3 Simplified Markov Random Fields and Simulated Evolution Improve Remote Homology Detection for Beta-structural Proteins
	3.1 Introduction
	3.2 Methods
	3.2.1 Summary of SMURF Markov random field framework
	3.2.2 Datasets
	3.2.3 Training and testing process
	3.2.4 p-values
	3.2.5 SMURFLite augmented training data
	3.2.6 SMURFLite simplified random field
	3.2.7 HMMER implementation
	3.2.8 RAPTOR implementation
	3.2.9 HHPred implementation
	3.2.10 Whole-genome search

	3.3 Results
	3.3.1 SMURFLite Validation
	3.3.2 SMURFLite on Whole Genomes

	3.4 Discussion

	Chapter 4 Protein Remote Homology Detection Using Markov Random Fields and Stochastic Search
	4.1 Introduction
	4.2 Methods
	4.2.1 Markov random field model
	4.2.2 Proof that the model is exponential in complexity
	4.2.3 Stochastic search
	4.2.4 Evaluating search strategies
	4.2.5 Simulated Evolution
	4.2.6 Datasets
	4.2.7 Training and testing process

	4.3 Results
	4.3.1 Search strategies
	4.3.2 Remote homology detection accuracy

	4.4 Discussion

	Chapter 5 Conclusion and Future Work
	5.1 Contrasting Markov random field approaches
	5.2 Structurally consistent superfamilies
	5.3 MRFy with sequence profiles
	5.4 Extension to Other Protein Classes
	5.5 More Generalized Contact Maps

	Bibliography
	Appendices

