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Abstract

Hutchinson Gilford progeria syndrome (HGPS) is a rare genetic disease with symptoms of aging 

at a very early age. Its molecular basis is not entirely clear, although profound gene expression 

changes have been reported, and there are some known and other presumed overlaps with normal 

aging process. Identification of genes with aging- or HGPS-associated expression changes is thus 

an important problem. However, standard regression approaches are currently unsuitable for this 

task due to limited sample sizes, thus motivating development of alternative approaches. Here, we 

report a novel iterative multiple regression approach that leverages co-expressed gene clusters to 

identify gene clusters whose expression co-varies with age and/or HGPS. We have applied our 

approach to novel RNA-seq profiles in fibroblast cell cultures at three different cellular ages, both 

from HGPS patients and normal samples. After establishing the robustness of our approach, we 

perform a comparative investigation of biological processes underlying normal aging and HGPS. 

Our results recapitulate previously known processes underlying aging as well as suggest numerous 

unique processes underlying aging and HGPS. The approach could also be useful in detecting 

phenotype-dependent co-expression gene clusters in other contexts with limited sample sizes.
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1 Introduction

HGPS is a genetic disorder that is identified in approximately one out of four million live 

births. Although rare, this autosomal dominant disease has severe effects-children with 

HGPS undergo accelerated aging and face average life expectancy of just 13.4 years. Visible 

symptoms can include a pronounced forehead, short stature, receding mandible, conspicuous 

veins in the scalp, hair loss, a “pinched” nose, and extreme lipodystrophy. Internally, patients 

with HGPS undergo accelerated organ degeneration, and death typically results from 

coronary artery disease or stroke [1]. Approximately 90 percent of the HGPS cases are 

caused by a de novo mutation at position 1,824 of the lamin A gene LMNA (C1824T, 

G608G) [2]. Lamin A is a major nuclear structural component and has several other 

important functions, including its support and regulation of protein complexes that 

participate in nuclear positioning, DNA replication, gene expression, transcription, and 

repair [3]. The HGPS G608G mutation activates a cryptic splicing site in exon 11 and 

produces a lamin A deletion mutant named progerin [4].

A number of hypotheses have been developed to explain the mechanisms leading to the 

clinical manifestations of HGPS. Among them, the “gene expression” model, which 

proposes that progerin alters the nuclear structure and subsequently affects gene expression, 

has been supported by various lines of evidence [5]. A general loss of heterochromatin and 

dislocation of epigenetic marks have been observed in HGPS cells [6], [7], [8]. In addition, it 

has been shown that lamin A interacts with transcription regulatory proteins (e.g., 

retinoblastoma protein pRb), signaling molecules (e.g., protein kinase C), and chromatin 

proteins (e.g., histones and barrier-to-autointegration factor (BAF)), implicating its direct 

involvement in gene expression and signaling [9], [10], [11].

Accordingly, changing expression levels of various genes have been observed in HGPS cells. 

To date, four independent HGPS microarray studies have been published. Park et al. 

examined 384 known genes and reported four genes with more than twofold changes [12]. 

Ly et al. monitored the expression of approximately 6,000 genes and found 61 altered in 

HGPS [13]. Csoka et al. analyzed approximately 33,000 genes and found 361 genes that 

showed statistically significant change [14], and more recently, Marji et al. compared 4 

HGPS fibroblast lines with four age-matched controls, and suggested that a lamin A-Rb 

signaling is a major defective signaling pathway in HGPS cells [15]. While these microarray 

studies are not in complete agreement with each other, transcription factors, extracellular 

proteins, and cell cycle regulators appear to be the largest affected functional category.

As the relationship between nuclear lamins and gene expression is continued to be explored, 

we are optimistic that the gene expression model may help to shed light on the causes of the 

premature aging phenotypes associated with HGPS. On the other hand, it is of great interests 

to determine how the gene expression pattern in this disease resembles and is distinct from 

the pattern observed in normal aging. A detailed comparative investigation of genome-wide 

gene expression patterns associated with HGPS and normal cellular aging has not yet been 

reported and may reveal common and distinctive biological pathways underlying these two 

conditions. Comparative exploration of gene expression changes in normal aging and HGPS 

has not been possible thus far due to unavailability of genome-wide expression profiles in 
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HGPS samples at different cellular ages. Thus, in this study, we have collected RNA samples 

from a HGPS primary fibroblast cell line and from a genetic background matched normal 

control at early, middle and late cellular passages, and conducted genome-wide RNA-seq.

Although, we have generated the first whole genome RNA-seq based transcriptomic profile 

in cell cultures at three different “ages” in both normal and HGPS samples, the number of 

samples (n = 6) is not sufficient to assess individual genes with respect to their co-variation 

with age or HGPS using standard regression approaches, such as those used for eQTL 

studies, with hundreds of samples [16]. At the same time genes are known to form co-

expression clusters reflecting common or interdependent regulatory mechanisms, and the 

traditional gene-centric regression approach does not leverage this fact. To address the 

limitations in the sample size, we have developed an iterative procedure that leverages co-

expressed gene clusters while iteratively refining the cluster based on a cluster-centric 

multivariate regression’s goodness of fit criteria. We have performed a number of tests to 

show the robustness and efficacy of the approach.

We have applied our approach to the RNA-seq profiles in six samples—three healthy and 

three HGPS samples at three different ages, as approximated by the number of passages. We 

then comparatively investigated the various clusters whose expression significantly co-varied 

with age, or disease, or both. Our results recapitulated previous findings on biological 

processes involved in the aging process, and while revealing some parallels between the 

aging process and HGPS revealed several important differences. Overall, we found that the 

HGPS gene expression profiles to be substantially different from those for normal fibroblast 

passaged into cellular senescence. Gene clusters showing decreasing expression with aging 

showed a significant enrichment of genes are related to cell cycle regulation, as noted 

previously, despite major differences in samples, methods, and data analysis [13]. Also, 

consistent with previous reports, gene clusters with age-associated increase in expression we 

enriched for genes involved in programmed cell death regulation and ECM organization. 

Similarly, gene clusters with age-associated decrease in expression were related to cell cycle 

regulation. For instance, Forkgead box protein M1 (FOXM1), a key transcriptional regulator 

of a large group G2-M specific genes was down-regulated in older samples. This gene has 

been shown to regulate a large group of G2-M specific genes [19], including a key mitotic 

cyclin, cyclin B1. In summary, based on a novel, broadly applicable approach, our work 

establishes a first benchmark study directly comparing the transcriptomic changes 

underlying two related phenotypes—normal aging and premature aging.

2 Material and Method

2.1 Cell Culture, RNA Preparation, and RNA-Seq Experiment

Normal (HGADFN168, Father) and HGPS (HGADFN167, son) primary fibroblasts were 

obtained from the Progeria research foundation. All fibroblast cell lines were cultured in 

MEM (Life Sciences) supplemented with 15 percent FBS (Gemini Bio-Products) and 2 mM 

L-glutamine (Life Sciences) at 37°C with 5 percent CO2. RNA samples were collected from 

these two cell lines at early (passage 11), middle (passage 16) and late stages (passage 20 for 

HGPS, and passage 23 for normal) during replicative senescence. Total RNA from different 

cell lines was extracted with Trizol (Life Sciences) and purified using the RNeasy Mini Kit 

Wang et al. Page 3

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2017 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Qiagen) according to the manufacturer’s instructions. The RNA yield was determined using 

the NanoDrop 2000 spectrophotometer. The RNA-seq sample preparation and sequencing 

were conducted according to the illumina Truseq RNA sample preparation V2 guide by the 

IBBR sequencing Core facility at the University of Maryland.

2.2 RNA-Seq Data Processing

We processed each of the six samples identically using the Cufflinks suite of tools following 

the recommended protocol [17] yielding RNA expression value (FPKM) for ~14,000 human 

genes in each of the six samples. In addition, to guide the iterative cluster refinement 

procedure (see below), we obtained the RNA-seq profiles for 15 independent tissue types 

from Gene Expression Omnibus (GEO) [18]. There were 9,453 genes in common between 

our samples and the GEO samples, which were ultimately used for all follow up analyses.

2.3 Joint Regression Clustering

Workflow—Fig. 1 shows the complete workflow of proposed joint regression clustering 

method. We start with initial clustering of genes (k-mean clustering) based on age-progeria 

data. We refine the clusters iteratively to minimize the average error of predicted (from 

cluster regression) gene expression till convergence. It is computationally expensive to 

calculate the average error for all possible refinements. Therefore, we approximated the 

average error by its maximum likelihood (ML) estimate. After every k rounds if actual 

average error increases, we randomly reverse some of the gene reassignments.

Linear regression model—Linear regression is widely used method to study the effect 

of covariates on expression variance between samples. The linear regression model for gene 

expression with aging and HGPS as covariates can be expressed as:

(1)

Where, gij is expression of jth gene in ith sample. μj is the basal expression of jth gene. βj is 

vector of the regression coefficients of jth gene for covariates age ai (1: young, 2: middle 

age, 3: old) and HGPS state di (0: normal, 1: HGPS), and interaction term aidi. A vector of 

coefficients must be estimated for each gene separately for model (1). This is clearly limiting 

as we have only six samples. Moreover, there are thousands of genes that will be 

differentially expressed in different sample. To learn regression coefficient separately for 

each gene is not an effective approach because small sample size will have low statistical 

power (see results) and many genes are expected to vary in a similar manner with respect to 

the covariates. Additionally, it will be hard to extract meaningful result and visualize the 

effect of covariates from separate regression coefficients for thousands of genes. We can 

cluster genes based on its expression variance w.r.t its covariates and estimate coefficients 

jointly for a cluster of co-varying genes.

RegressionClust model—To overcome above limitations and to leverage clusters of 

potentially co-varying genes we propose the following model, RegressionClust:
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(2)

Where, gijc is imputed expression of jth gene belonging to cth gene-cluster in ith sample. μic 

is the basal expression of genes in cth gene-cluster in ith sample. βc is cluster specific vector 

of the regression coefficients of the covariates. wjc is distance of jth gene from its cluster 

center and is computed as the difference between the mean expression value of the gene and 

that of all genes in the cluster that the gene is assigned to. wjc is updated after each 

reassignment.

This is a dual optimization problem—fit a regression model for each cluster and refine 

clusters to maximize overall explained variance. The objective functions are:

1. Regression: find optimal regression coefficients such that gene expression 

variance within cluster explained by covariates is maximized,

i.e. .

Where, 

This is equivalent to

(3)

ḡ is the mean gene expression value in cluster c.

2. Cluster refinement: find optimal set of clusters (or, clustering) such that each 

cluster is tight (maximize overall explained variance), i.e. minimize

(4)

Inference—Independent maximization of R2 is equivalent to linear regression, while 

independent minimization of F2 is clustering. We estimate the parameters of Regression-

Clust model by iteratively optimizing the two objective functions. It is important to note that 

wjc should be independent of the expression variance due to the covariates, therefore we 

estimate them from gene expression of 15 independent normal expression samples collected 

from GEO database. As a side note, this iterative inference is similar to expectation 

maximization (EM) algorithm [22]. In particular, if instead of hard assignment of gene 

cluster, fuzzy assignment to cluster is used, it can be proved that it is equivalent to EM 

algorithm. However, we chose to use hard assignment because we found that fuzzy 

clustering increases computational cost without significant gain in the overall performance. 

Maximization of R2 is explained next.
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Initializing the cluster set—We initialized the clusters using k-means clustering on the 

sample data, for different number of clusters (100, 200, 300, 400, 500, 600).

Greedy maximal matching cluster refinement—To greedily refine the clusters, a 

change in F2 should be calculated for each possible reassignment (move of gene from each 

cluster to another). Each possible reassignment changes βc and gi(βc). Running linear 

regression for each possible reassignment is clearly computationally limited. We therefore 

use maximum likelihood estimate of gi(βc) to estimate change of F2. The maximum 

likelihood estimate of gi(βc) can be determined by differentiating equation (3) w.r.t to gi(βc):

(5)

Where Jc is total number of genes in cluster c. Now, we can replace this in equation (4) to 

obtain its ML estimate:

(6)

giML(βc) as well as wjc, can be locally updated efficiently for each possible single gene 

moves.

To allow at most (a single gene) change to a cluster in an iteration, we construct a graph with 

all clusters of current clustering as nodes and each single gene move as a directed edge 

between originating and destination cluster and change in F̃2 due to the move as the edge 

weight. We then performed maximal matching on this graph to minimize F2 and allowed 

single change to a cluster. We then proceed with single gene moves corresponding to 

maximally matched edge as our cluster refinement. The maximal matching also ensures that 

same cluster will not be source of one gene and destination for some other gene as shown in 

Fig. 2. Box 1 shows pseudo code for this greedy cluster refinement. c_vector, 

real_gene_exp, geo_gene_exp, num_c respectively are cluster membership vector, age-

progeria data and GEO data. Although we use F̃2 for cluster refinement, but after every k 

iterations if F2 increases for the selected gene moves, we randomly reverse some of those 

moves. We chose k = 10 for all analysis.

Box. 1

The greedy maximum matching clusters refinement algorithm

Greedy maximal matching cluster refinement algorithm:

Greedy_Cluster_Refinement(c_vector,real_gene_exp,geo_gene_exp,num_c)

  G=Initialize_Graph(c_vector,real_gene_exp,geo_gene_exp,num_c);

  while |unmarked_E| > 0
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Greedy maximal matching cluster refinement algorithm:

   max(w(e(i, j, gene_id) ∈ unmarked_E));

   marked_E ← e(i, j, gene_id);

   marked_V ← i, j;

 for each e(m, n, gene_id’) ∈ unmarked_E

   if m or n ∈ marked_V || gene_id=gene_id’

    delete e(m,n,gene_id’);

 for each e(m, n, gene_id)

   c_vector[gene_id] = n;

 return c_vector;

Initialize_Graph(c_vector, real_gen_exp, geo_gene_exp, num_c)

 Graph G = (V, E);

 for each cluster c(i)

   V ← n(i);

 for each gene gene_id

   for t in {1···num_c - 1}

    update w_jc;

    calculate obj_diff;

    if var_diff < 0

     E ← e(c_vector[gene_id], t, gene_id)

     w(e(c_vector[gene_id], t, gene_id) = obj_diff;

 return Graph G;

Note that wjc is re-calculated after every cluster update and multiple changes to a cluster can 

in fact result in overall increase in . Our matching strategy involving at most one change 

to each cluster ensures overall reduction of square errors. In addition, by virtue to selecting a 

maximal matching we maximize the improvement in square errors. The steps of calculating 

wjc,  and maximal matching cluster refinement are repeated until convergence.

Adjusted R2—The quality of regression fit is generally estimated using the R2 statistic as 

defined above. However, to account for the varying number of clusters and the number of 

parameters, we instead use adjusted R2 (Adj-R2) for a cluster computed as:

Where n is the cluster size, and k is the number of coefficients in the multiple linear 

regressions.  is defined in equation (3).

2.4 GO Analysis

We assessed enrichment of GO biological processes and KEGG pathways in co-expressed 

gene clusters whose expression co-varied with age and/or HGPS using R’s GOstats package. 
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The significance was corrected for multiple testing using the Benjamini-Hochberg 

procedure. An FDR threshold of 0.05 was used.

3 Results

3.1 Method Performance and Efficacy

We first cluster the 9,453 genes into 200 clusters (see M&M) and applied the regression 

model within each cluster independently. Fig. 3 shows (“Initial FG” plot) the goodness of fit 

as represented by Adj-R2. We then iteratively refine the clustering with the explicit goal to 

improve the cluster “tightness” which interestingly has an indirect effect on the Adj-R2. As 

shown in “Final FG” plot in Fig. 3, the Adj-R2 distribution shifts to higher values. As a 

control when we randomly permuted the initial expression data and repeat the entire 

procedure, the final refined clusters show a much inferior distribution as shown in “Final 

BG” plot in Fig. 3. This supports the efficacy of the refinement step and indicates a 

substantial pattern in the expression data. The refinement step took 143 iterations until 

convergence.

3.2 Convergence

The maximal matching clustering refinement (see M&M) monotonically decreases the value 

of F̃2. Intuitively, the algorithm will converge because if F̃2 is minimized the cluster will 

contain co-expressing genes which will have similar regression coefficient vectors. Fig. 4 

shows changes in F̃2 and concomitant changes in total squared residuals due to regression 

through successive iterations.

3.3 Method Robustness

Next we assessed the extent to which the quality of final clustering depends on the initial 

clustering step. To do so, starting with initial clustering, we perturb the clustering to various 

extent (defined by parameter α) and quantify the quality of final clustering. For instance, we 

randomly select a fraction of genes and randomly assign to existing clusters. We first noticed 

that as we increase α, it takes longer for the clustering to converge—roughly an eight-fold 

increase in real run time when using a random clustering compared with co-expression 

cluster as described in M&M. We compared the Adj-R2 distributions for increasing values of 

α. As shown in Fig. 5, the overall Adj-R2 distribution shows modest reduction in quality 

(compare plots for α > 0 with α = 0), which nevertheless is better than initial clustering 

(compare plots for α > 0 with initial clustering). A direct comparison of Adj-R2 between 

each of the perturbed data and the unperturbed data using Wilcoxon test shows no significant 

difference, thus supporting robustness of the iterative procedure.

3.4 Effect of Cluster Size

We have arbitrarily assumed the number of clusters to be 200, corresponding to an average 

cluster size of 50 which seems reasonable. However, we tested the effect of number of 

clusters on the quality of clustering. Fig. 6 shows the distributions of Adj-R2 for different 

cluster size. The overall quality seems to saturate at around 300 clusters. However, with 

increasing number of clusters and thus decreasing cluster sizes, the power to detect 
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functional enrichment is compromised. We have therefore performed the follow up 

functional enrichment analysis with 200 clusters.

3.5 Performance

To illustrate the advantage of the proposed RegressionClust model in small sample size, we 

compared its p-values of regression coefficients with those of single gene regression model. 

Figs. 7 and 8 show the p-value distributions of regression coefficients of both models for six 

samples of age-progeria data. We observed coefficients estimated from single gene model 

are not significant. On the other hand most of coefficients generated from the 

RegressionClust model are significant.

3.6 Identification of Gene Clusters Whose Expression Co-Vary with Age and/or HGPS

We applied our approach to our in house RNA-seq gene expression data for six fibroblast 

samples—three normal at different cellular ages and three from HGPS at different ages. 

Using 200 initial co-expression clusters, we iteratively refined the clusters based on tightness 

of the cluster criterion (see M&M) while estimating cluster specific regression coefficients 

β1, β2, and β3 for each final cluster along with the p-value for the null hypothesis that the 

coefficient is zero. We corrected all p-values thus obtained using Benjamini-Hochberg 

procedure. Next we examined the normalized coefficient values (effect size). Also, we used 

normalized coefficients as follows: , where X is the input vector of the 

covariates (age, HGPS status, and interaction) and gjc is gene expression vector for the genes 

in a specific cluster.

In clusters where only the age and interaction coefficients were significant, the age alone 

tended to have larger effect on gene expression relative to interaction (Fig. 9). The gene 

expressions increased with age while the interaction terms in general had negative effect on 

gene expressions (Fig. 9). Likewise in clusters where only progeria and interaction 

coefficients were significant, the interaction terms had negative effect compared to progeria 

(Fig. 10). In addition we also specifically examined the clusters where there is only one 

significant term, it seems that a greater proportion of gene clusters which are only affected 

by age are biased toward up-regulation, however the effect on the clusters which 

significantly affected only by progeria is unbiased (Fig. 11).

3.7 Functional Analysis of Specific Gene Clusters Whose Expression Co-Vary with Age 
and/or HGPS

Considering three coefficients β1, β2, and β3, (normalized values) and their signs, there are 

eight possibilities for various combinations of these coefficients being significant (FDR ≤ 

0.05). For instance, 1+2− represents the clusters for which both β1 and β2 were significant 

and β3 was not. We further selected the significant coefficients whose absolute value was at 

least 0.5, to exclude extremely small effect sizes. Table 1 shows the number of clusters with 

different combinations of significant coefficients with relative large effect sizes.
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We performed functional enrichment analysis [20], [21] using GO Biological processes and 

KEGG pathways based on FDR threshold of 0.05. For ease of interpretation, we consider 

only the clusters in six categories: 1+: the expression increases with age (and no other 

effect), 1−: the expression decreases with age (and no other effect), 2+: the expression 

increases with HGPS (and no other effect), 2−: the expression decreases with HGPS (and no 

other effect), 1−2−: the expression decreases both with age and HGPS (no interaction), and 

finally 3+: the expression increases with age only in HGPS patients (there were no 

significant clusters in 3− category). To underscore the relative advantage of our specific 

approach that can potentially distinguish between mechanisms mediated by increase or 

decrease in gene expression, and also age-related and HGPS-related mechanisms, we 

directly compare the functions enriched in specific categories.

When we compared functions enriched in 1+ (43 terms enriched) and 1− (13 GO terms 

enriched) category, only one was common between the two—“growth”. Among 42 Terms 

unique to 1+ included “extracellular matrix organization” and several referred to “cell death” 

but others were admittedly harder to interpret. Interestingly, all 12 terms unique to 1− 

referred to “cell cycle”, “regulation of growth”, “cytoskeleton/spindle organization”, and 

“chromosome segregation”, which according to our analysis are suppressed with age.

The number of enriched terms in 2+ and 2− clusters were 157 and 215 respectively. To 

reduce this to a manageable list we only considered GO terms with at most 20 genes 

annotated, bringing the numbers down to 17 and 19 with 3 in common. The common 

referred to “Interferon response”. The 14 terms unique to 2+ referred to “cell aging”, 

“response to unfolded proteins”, “negative regulation of cell adhesion”, and “metabolism”. 

The 16 terms unique to 2− were clearly different and referred to “development”, “response 

to oxidative stress”, and “regulation of angiogenesis”. Notably only 2+ clusters were 

enriched for numerous KEGG pathways related to kinds of cancers.

Interesting we did not detect any gene cluster in “1+2+” category, but we did detect clusters 

in “1−2−” category and the main theme among the enriched terms in these clusters were 

“cell signaling” with additional KEGG pathways—“pancreatic cancer” and “gap junction” 

which again refers to cell signaling.

Finally, category 3+ which refers to clusters whose expression increases with age, 

particularly in HGPS population has several enriched terms in common with 1+ category, 

which include “signal transduction”, “wound healing” and several cancer related pathways. 

The 3+ category includes numerous enriched terms not detected for 1+ category. These 

include “ossification”, several infectious disease related pathways and “rheumatoid 

arthiritis”.

3.8 Functional Comparison of the Initial Clusters and Refined Clusters

To assess whether our joint regression clustering approach improves functional enrichment 

of the clusters, we compared the enrichment of functional GO terms in the initial and final 

clusters for a few selected genes previously known to be involved in aging or Progeria. For 

some genes, we found their initial cluster and final assigned cluster have different biological 

functions. As an illustrative example when we compared the clusters containing FOXM1 
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gene, a key transcriptional regulator of cell cycle progression, the final refines cluster 

containing FOXM1 was specifically enriched for Cell Cycle while the initial cluster 

containing FOXM1 was enriched in general terms such as transcription activity and DNA 

binding but not for Cell Cycle. However we acknowledge that it is difficult to quantify the 

functional enrichment difference between the initial clusters and the final reassigned clusters 

because the clusters compared may have different size that will influence the enrichment 

score.

4 Discussion

Our works make three main contributions which pertain to data, method, and application to 

make new biological discoveries. With regards to data we have generated the first RNA-seq 

data in a controlled fashion for aging HGPS primary cells and passage and genetic 

background matched normal control cells. Methodologically, here we have presented a 

regression based approach that leverages clusters of genes with covarying expression to 

robustly estimate regression coefficients representing dependence on age, HGPS and the 

interaction between the two. Our approach iteratively refines the clusters using a cluster 

“tightness” criterion which, as we show analytically, simultaneously improves the goodness 

of fit while increasing the computational efficiency substantially. The proposed method 

should be useful in several other contexts with limited number of samples. Finally, 

application of our method to the data recapitulates previous discovery of age-dependent gene 

expression changes as well as makes several important observations in a comparison 

between age and HGPS. In the following, we elaborate on these observations.

Previous microarray studies of HGPS and aged normal fibroblasts have revealed some 

insights into the gene expression changes during the normal and the premature aging. Ly et 

al. used fibroblast cells from young, middle and aged normal donors as well as from a HGPS 

patient, and identified 61 differentially expressed genes out of the 6,000 genes monitored, 

among which there are two major functional groups: (1) genes involved in cell cycle 

progression and (2) genes involved in maintenance and remodeling of the extracellular 

matrix (ECM) [13]. Interestingly, most of the cell cycle genes showed down-regulation in 

aged cells and HGPS cells, and the ECM genes are affected in both directions in aged and 

HGPS cells. Using genome-wide affymatrix microarrays, Csoka et al. defined 361 

differentially expressed genes in HGPS fibroblast cells (out of 33,000 genes on the array), 

and found that the two most prominent categories encoded transcriptional factors and ECM 

proteins [14].

Because of our specific methodology we were able to identify gene clusters whose 

expressions co-vary exclusively with age, or disease, or in specific combinations of age and 

disease. We identified several predominant gene clusters, whose expressions were altered 

either under the disease condition HGPS and/or during the normal cellular senescence. Of a 

particular note, our analysis indicated that the HGPS gene expression profiles show 

important differences from the profiles of normal fibroblast passaged into cellular 

senescence. In the “1−” clusters, we found that the majority of genes are related to cell cycle 

regulation, which is in highly significant agreement with the results from Ly et al. despite 

major differences in samples, methods, and data analysis. For example, Forkhead box 
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protein M1 (FOXM1), a key transcriptional regulator of cell cycle progression, was found to 

be down regulated in both studies. This gene has been shown to regulate a large group of 

G2-M specific genes [19], including a key mitotic cyclin, cyclin B1, which was also 

identified by both our analysis and Ly et al. In addition, consistent with previous reports on 

ECM proteins, we found that the “1+” clusters are enriched with functional categories of 

programmed cell death regulation and ECM organization.

However, the responses in HGPS cells differ: In the “2+” clusters that positively associate 

with HGPS disease condition, the prominent categories are related to metabolic functions, 

implying an activation (or at least an attempted activation) of the biological processes 

involved on various cellular metabolic activities in HGPS cells. To date, the metabolisms in 

HGPS cells have not been systematically examined, nor any metabolite profilings in HGPS 

cells have been conducted. Our study provides the first genome-wide evidence of the 

affected metabolisms in HGPS cells, and points to a potentially important direction for 

future HGPS research. Interestingly in the “2−” clusters whose expression is reduced in 

HGPS, we found gene clusters including protein transcription and translation and protein 

biosynthesis, reflecting an overall slow down in cellular growth in the prematurely aged 

HGPS cells. Fig. 12 shows the cluster of terms significantly enriched among these gene 

clusters computed by NIH DAVID tool [20], [21].

Because lamin A/progerin resides in the inner nuclear rim, and plays a role in organizing 

chromatin, it is not surprising to identify wide spreading changes in gene expression in 

HGPS cells. The challenge is to determine the specificity of progerin-related changes and of 

the age-related changes, and illuminate their potential interplays. In an attempt, we 

examined the functional groups in the genes whose expression increases with age 

specifically in HGPS cells (the “3+” clusters). Interestingly, a prominent functional gene 

group is related to signal transduction, including transmembrane receptors (e.g. insulin-like 

family peptide receptor 1 and stannin), protein kinases (e.g. membrane associated guanylate 

kinase and protein kinase C), and transcriptional regulators (e.g. ADP-ribosylarginine 

hydrolase and microphthalmia-associated transcription factor). Additional studies, especially 

those conducted in cell types other than fibroblasts, are required before we can understand 

the contributions of progerin/lamin A and cellular aging to gene expression in complex 

organisms. The study reported here provides a first genome-wide, multi-stage RNA-seq 

experiment with a novel iterative multiple regression approach to examine this important 

mechanism.

5 Conclusion

We have performed RNA-seq profiling in fibroblast cell cultures at three different cellular 

ages, both from HGPS patients and matched normal samples. We then performed gene 

expression analysis by using Cufflinks suite. To address the issue of small sample size we 

developed a novel joint regression clustering approach that leverages co-expressed gene 

clusters to identify gene clusters whose expression changes significantly with age and/or 

disease state. Finally we performed functional analysis on resulting clusters. Based on our 

approach applied to novel RNA-seq data in HGPS and aging the results recapitulate the 
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previously known processes underlying aging while at the same time suggests numerous 

unique processes underlying aging and HGPS.
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Fig. 1. 
Method workflow. See text for details.
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Fig. 2. 
The Graph constructed for greedy maximum matching cluster refinement. There are n 

clusters, we construct a node for each cluster, and the edge is added if the possible 

reassignment will decrease the objective function score. The Edge e(1, 2, gid) is the gene 

reassignment that moves gene geneid from cluster 1 to cluster 2. The bold edges are greedily 

selected edges, based on which we perform the final genes reassignment.
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Fig. 3. 
Goodness of fit (Adj-R2) distributions for gene clusters. Initial FG plot: initial clustering, 

Final FG plot: Final refined clustering, Final BG plot: Refined clustering for randomly 

permuted gene expression data.

Wang et al. Page 19

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2017 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Convergence of F̃2 and total squared residuals of linear regression.
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Fig. 5. 
Robustness of the iterative refinement. For varying degree (α) of perturbation of the initial 

clustering the plots show the Adj-R2 distribution of the refined clustering. IFG represents 

initial clustering.
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Fig. 6. 
Effect of cluster size on cluster quality. For varying number of clusters the plots show the 

Adj-R2 distribution of the refined clustering.
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Fig. 7. 
Distribution of p-values of the four parameters in the single gene fitting model.
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Fig. 8. 
Distribution of p-values of the four parameters in the gene cluster fitting model.
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Fig. 9. 
Distribution of normalized coefficients β1 and β3 specifically for the clusters for which only 

these two coefficients were significant.
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Fig. 10. 
Distribution of normalized coefficients β2 and β3 specifically for the clusters for which only 

these two coefficients were significant.
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Fig. 11. 
Distribution of normalized coefficients β1, β2, and β3 specifically for the clusters for which 

only one of the coefficients was significant.
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Fig. 12. 
Cluster of enriched terms relating to translations are enriched among gene clusters in two-

category.
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TABLE 1

Number of Clusters in Various Categories Based on Which Combination of Coefficients Were Significant and 

with Large Effect Size (Absolute Value ≥ 0.5)

Category Number of Clusters

1+ 3

1− 3

2+ 6

2− 6

3+ 11

1−2− 2

1+3− 9

2+3− 22

2−3+ 1

1+2+3− 4

The numbers in the first column represent significant coefficients where 1: β1, 2: β2, 3: β3, and the sign represents direction of influence. For 

instance category “1−2−” represents the clusters for which β1 and β2 were significant and ≤ −0.5 and β3 was not significant.
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