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Abstract

We introduce a new method for normalization of data acquired by liquid chromatography coupled 

with mass spectrometry (LC-MS) in label-free differential expression analysis. Normalization of 

LC-MS data is desired prior to subsequent statistical analysis to adjust variabilities in ion 

intensities that are not caused by biological differences but experimental bias. There are different 

sources of bias including variabilities during sample collection and sample storage, poor 

experimental design, noise, etc. In addition, instrument variability in experiments involving a large 

number of LC-MS runs leads to a significant drift in intensity measurements. Although various 

methods have been proposed for normalization of LC-MS data, there is no universally applicable 

approach. In this paper, we propose a Bayesian normalization model (BNM) that utilizes scan-

level information from LC-MS data. Specifically, the proposed method uses peak shapes to model 

the scan-level data acquired from extracted ion chromatograms (EIC) with parameters considered 

as a linear mixed effects model. We extended the model into BNM with drift (BNMD) to 

compensate for the variability in intensity measurements due to long LC-MS runs. We evaluated 

the performance of our method using synthetic and experimental data. In comparison with several 

existing methods, the proposed BNM and BNMD yielded significant improvement.
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1 Introduction

Liquid chromatography-mass spectrometry is a promising technology that allows us to 

measure the abundance of thousands of biomolecules in a sample. Mainly, it is being used to 

detect differences in the level of abundances of biomolecule in samples from different 

phenotypes. However there are some computational challenges such as peak detection, 

alignment, and normalization that continue to be investigated. Specifically, for 

normalization, the challenge is that either the exact sources of bias are not known or are 

difficult to be modeled reliably.

Normalization is needed to compensate for differences in sample collection, biomolecule 

extraction, and instrument variability such as column separation nonlinearity, ionization 

variability, etc [1] that introduce undesired bias in differential expression analysis.

Analysis of a sample by LC-MS typically generates three pieces of information: a pair of 

mass-to-charge ratio (m/z) and retention time (RT) along with a related ion intensity. 

Following processing of data from a set of LC-MS runs, a data matrix is created with each 

row and column representing a feature (RT, m/z) and a sample, respectively.

LC-MS data processing involves multiple steps including peak detection, deisotoping, peak 

matching, peak alignment, and intensity normalization. Usually, normalization of the LC-

MS data is considered before statistical analysis to remove or decrease the undesired bias 

[2]. The importance of the sample preparation step to achieve consistent results in different 

runs of the same experiment was emphasized in recent studies [3] and [4].

Most of the existing normalization methods are applied to the processed data, i.e. the ion 

intensities obtained by integrating the extracted ion chromotograms. Therefore, the scan-

level information is not used for normalization. However, in this study we show that this 

information is useful for the purpose of modeling bias and performing normalization. On the 

other hand, one of the most significant sources of bias is analysis order of the runs due to the 

time it takes for sample preparation, the time samples wait to be analyzed (sample 

degradation), and the variability of the instrument along the time span of the experiment 

specifically for experiments involving long queues.

In [5] we proposed a new method for normalization where a stochastic regression approach 

was utilized to model the variation of intensities across the runs. We also used scan-level 

information to estimate the variation more accurately. However, by performing 

normalization for each peak separately, the method is not taking advantage of information 

from other peaks to adjust the estimates. Moreover, that method heavily relies on the 

accurate alignment of the scans which is not the case in real situations. In addition, the 

continuous chromatographic peak is scanned and sampled at discrete times, so that the shift 

in retention time leads to different points of sampling for peaks from different runs.
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Here, we expand the aforementioned work by taking information from other ions into 

consideration. Specifically, we propose a new Bayesian hierarchical model to quantify LC-

MS peak intensities. As our approach does not depend on the perfect alignment of the peaks 

at scan-level, it can handle peaks with different width in retention time. It can also handle 

missing peaks or scans by including a an indicator in the model. Finally, we include the 

variation of the instrument across the runs in the model to address the drift across the queue.

The model includes two main layers. The first layer models the observed intensities based on 

the original unknown ion abundance, a missing rate for scans, and a peak shape function 

with several parameters. It also includes the error terms to represent noise in instrument 

measurements. In the second layer, the parameters of the peak shape function are modeled as 

a linear combination of several fixed and random effects related to each ion. In addition, a 

noise term is considered to model the variation of the peak shape across different runs. To 

learn the parameters of the Bayesian model, Markov chain Monte Carlo (MCMC) is used.

Several studies used Bayesian methods for processing of LC-MS data. Per example, a 

Bayesian hierarchical method was used for peptide detection in LC-MS proteomics [6]. 

Other studies such as [7] proposed Bayesian peak detection methods for Matrix-Assisted 

Laser Desorption/Ionization-Time of Flight (MALDI-TOF) data using a wavelet-based 

mixed effects model and [8] for LC-MS data using a Gaussian function for peak detection. 

In a recent work, a Bayesian hierarchical model was used for alignment of LC-MS data [9]. 

However, to the best of our knowledge, none of these studies used such a model for 

quantification or modeling the instrument variation using scan-level information as 

suggested in this work.

2 Methods

We introduce a new hierarchical Bayesian model for normalization that utilizes the scan-

level LC-MS data. It can also handle missing scan or noisy intensities as well as 

misalignment at scan-level. Before introducing the model, we briefly mention several 

existing methods for LC-MS data normalization. Next, we explain current methods for 

calculation of peak intensities from LC-MS reads. The following section summarizes several 

popular peak shape functions used to model chromatographic peaks.

2.1 Existing Normalization Methods

Several methods have been proposed for normalization of LC-MS data. As normalization is 

a well-known concept in the area of genomics, most of the methods have been adapted from 

the techniques developed for gene expression microarray data [10], [11], [12], [13], [14]. 

Usually the underlying assumption of these approaches is that the average biomolecule 

concentrations should be equal for all samples in the same experiment.

In [15], using the same metabolomic data set employed in this study (Section 3), we 

reviewed and compared the performance of the following normalization methods: (i) 

normalization based on total ion count (TIC), (ii) median scale normalization [11], (iii) 

pretreatment methods [16] such as scaling, centering and transformation, (iv) normalization 

based on internal standards [17], (v) quantile normalization [14], (vi) MA transform linear 
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regression normalization [14], (vii) normalization based on quality control (QC) consistency 

[4], (viii) normalization based on stable features, and (ix) normalization based on analysis 

order [1]. As a result, we concluded that three methods, normalization based on TIC, median 

scale normalization, and quantile normalization were consistently outperformed others.

While implementing these methods, we modified or upgraded the algorithms in some cases. 

Specifically, we introduced a Gaussian process regression model for normalization based on 

analysis order called 2D-GPRM-EIC [5]. Here, we are expanding the aforementioned work 

by introducing a more complete model. Therefore, in this paper, we evaluated the 

performance of our approach with TIC, MedScale, quantile, and 2D-GPRM-EIC 

normalization methods.

2.2 Chromatographic Peaks

In LC-MS data, each ion or compound is presented by a chromatographic peak. The 

chromatographic peak is obtained from EIC which is defined by certain range of m/z and 

retention time specific for each ion. The properties of the chromatographic peak are used for 

different purposes. For example, the reliability of the measurement can be assessed based on 

the quality of the chromatographic peak shape. Also the abundance of the related ion is 

estimated based on the apex or the area under the chromatographic peak.

2.2.1 Intensity Calculation—Most tools such as XCMS [18] and OpenMS [19], 

calculate the peak intensity based on the peak shape estimate. After peak detection step, 

either the intensity is calculated as a sum of all scans constructing the peak, or a bell-shaped 

curve is fitted to the peak and the area under the curve (AUC) or its height is used to 

represent the peak intensity. However, these two approaches have several shortcomings 

including the following: (1) in many cases the boundary of the peak is not clearly or 

precisely defined, (2) ion counts for some scans are missing, and (3) all individual scan reads 

involve substantial amount of noise. Even for the same peak from the same compound 

across different replicates, the peak width and the noise level may change leading to a 

significant change in peak intensity.

2.2.2 Peak Shapes—We used three functions to model chromatographic peak shapes, i.e. 

Guassian, Gamma, and exponentially modified Gaussian (EMG) from Table 1. Because of 

the convenience and many interesting properties, Gaussian is a very common choice for 

many peak detection algorithms, while Gamma has been proposed by few studies [20]. The 

possible advantage of Gamma over Gaussian is the ability to model asymmetric peaks. 

Finally, EMG (Fig. 1) is the shape which is suggested by several studies on mass 

spectrometry because of its goodness of fit [21], [22], [23], [24].

2.3 Bayesian Normalizaiton Model

Here, we explain the data structure followed by a detailed description of the Bayesian 

hierarchical model, the parameter space, hyperparameters, and the inference procedure.

2.3.1 Data—We considered the model below for scan intensities from detected peaks in the 

data set:
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• i = 1, …, m peaks (ions)

• j = 1, …, n runs (samples)

• t = 1, …, Ti,j scans for peak i in run j

• observed intensities Y = {yi,j}

where the number of scans, Ti,j for peak i from run j, is not necessarily the same for all 

peaks. Also as scan time is discrete, this model allows different sampling points along each 

peak, even for the same ion from different runs. The vector of scan-level intensities from the 

EIC of peak i from run j is

(1)

2.3.2 Bayesian Hierarchical Model—We modeled the EIC of each peak as

(2)

where η is the ion abundance, γ(t) is an indicator random variable to model missing scans, 

ei,j(t) is random noise, and f(t) is the peak shape function with r parameters summarized in 

vector ϕr×1 and modeled as a combination of some fixed and random effects for each peak 

across different runs

(3)

In (3), it is assumed that the peak shape function parameters are linearly dependent on p 
fixed effects (such as m/z and RT) and q random effects (such as different clusters based on 

ion annotation). For nonnegative parameters such as variance or scale, we used a log-

transformed version. Also we consider an error term for each parameter to include individual 

variations for every peak in each run. In summary

• μi: vector of r mean values of the peak shape parameters

• xi: vector of p fixed effects

• zi: binary vector of q random effects

• B: Matrix of r fixed effects coefficients

(4)

• Ai: Matrix of r random effects coefficients
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(5)

which means

(6)

for i = 1, …, m, j = 1, …, n, and k = 1, …, r.

2.3.3 Priors—In this section, we provide the priors for model parameters introduced in the 

previous section. To make statistical inference easier through MCMC, whenever possible, 

we selected conjugate priors. Also to take advantage of the Gaussian priors, we sample some 

of the nonnegative parameters (such as covariance kernel parameters) in the log space [25].

We assume error terms in intensity measurements in (2) are independent random variables 

generated by a normal distribution

(7)

where the noise level for each ion is independent from other ions and its variance follows an 

inverse-Gamma distribution:

(8)

Also for ion abundances, ηi,j:

(9)

where:

(10)

for known hyperparameters aη and bη. Moreover, η0 ≈ η̂
0 = η̄ is estimated from observed 

data.

For the missing scan indicator variable, a Bernoulli distribution is considered

(11)

where the prior for the missing scan rate, 1 − λi, is a Beta distribution:

Nezami Ranjbar et al. Page 6

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(12)

therefore:

(13)

as ∀ i, j, t : yi,j(t) ≥ 0.

Similarly, for error terms in (3)

(14)

where  and  and for k = 1, …, r:

(15)

Here, we considered the noise terms to be independent. In Section 2.4 we explain how to 

include the model for variation based on analysis order into the error terms similar to the 

approach used in [5].

The peak shape parameters are considered as normally distributed

(16)

where for the mean values

(17)

where ϕ0 and  are known hyperparameters.

For the fixed effects coefficients (k = 1, …, r):

(18)

where based on the independence assumption of the coefficients βk:

(19)

For scale parameters of the fixed effects coefficient (ℓ = 1, …, p):
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(20)

Defining :

(21)

Likewise, for random effects coefficients (k = 1, …, r, ℓ = 1, …, q)

(22)

where dependencies were assumed between random effects:

and Σαk,ℓ1,ℓ2 = ρk,ℓ1,ℓ2σαk,ℓ1σαk,ℓ2 in which ρk,ℓ1,ℓ2 is the correlation coefficient between 

effects ℓ1 and ℓ2. For the corresponding covariance matrices (k = 1, …, r)

(23)

where ναk ∈ [q, m] and:

(24)

in which Σ̂
αk is a point estimate of Σαk and  is a scalar weight to avoid 

overestimation of random effects correlations [26]. Here  and  are Wishart and uniform 

probability distributions respectively. Also να is the degrees of freedom for the Wishart 

distribution which lies uniformly in [q, m]. If we select να = q, the prior borrows less 

information from the data, while choosing να = m puts the highest weight on the prior from 

observations. Here, we select  and να = q.

2.3.4 Parameter Space Summary—Summarizing all space parameters in Θ leads to

where B, Σβ, and Σε are defined in (4), (19), and (15) respectively, and

Nezami Ranjbar et al. Page 8

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The posterior probability is

(25)

with the joint distribution of

(26)

2.3.5 Likelihoods—The conditional probabilities can be calculated as P(Θι|Θ\ι) given all 

the other space parameters and hyperparameters. These conditionals will be used to derive 

the full conditionals.

For the observed data, Y, given Θ

(27)

The conditional for ion abundances has the following form:

(28)

also for the means, η̃ = [η̃
i]T

(29)

and

(30)

Given missing scan rate and based on the missing at random assumption, we have
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(31)

for the scan indicator variables, while by knowing hyperparameters

(32)

Similarly, for the second layer parameters

(33)

and for the related error terms:

(34)

Finally, for the fixed and random effects coefficients:

(35)

and

(36)

2.3.6 Full Conditionals—Bayes rule was used to find the posterior of each variable Θι 

given all other variables Θ\ι and observed data, Y

(37)

In Appendix A, which can be found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TCBB.2014.2377723, using (37), the final form for all 

full conditionals are provided in details. Here, we only include the general closed form of 

the full conditionals based on the hierarchical model.

We begin with the full conditionals for the first layer, starting with ion abundances
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(38)

also for mean abundances, η̃:

(39)

and the variance of the abundances, Ση:

(40)

For indicating variables modeling the missing scans

(41)

and similarly, for the missing rate of the scans:

(42)

The intensity error terms in layer one from (2) have a full conditional in the form of

(43)

Similarly, for the peak shape function parameters, i.e. the second layer

(44)

and the error terms:
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(45)

For the mean parameters the assumption is that they are independent for each ion and each 

peak shape parameter

(46)

Fixed effects coefficients were also assumed to be i.i.d. normally distributed

(47)

and their covariance matrices

(48)

Likewise, random effects coefficients were considered to be independent for each peak 

shape parameter, but correlated across different ions

(49)

so for related covariance matrices we have

(50)

2.4 Bayesian Normalization Model with Drift

So far we showed how to use a Bayesian model to quantify the abundances of the ions in an 

LC-MS experiment by borrowing information from other ions across all runs. Previously, we 

used Gaussian process regression to model the variation of the instrument based on analysis 

order which is reflected in the intensity of ions across runs [27]. Following that, we extended 

the idea to utilize scan-level information [5].
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Here, we expand the idea to include the instrument variability in the Bayesian hierarchical 

model. To do so, we assume the error terms in peak shape function parameters are generated 

by a Gaussian process. In other words, we assume for peak i across runs j = 1, …, n and for 

peak shape function parameter ϕk as in (3):

(51)

where Σεk is an n × n matrix and for runs j1 and j2 we have

(52)

Here h(j1, j2, c) is a valid covariance kernel function with parameters c, for example, a 

Matern kernel function [28] as used in [27]. Therefore:

(53)

where:

(54)

2.4.1 Full Conditionals with Drift—From (27) and (51), we can derive the full 

conditional for Φ as

(55)

where φi,k = [ϕi,1,k, …, ϕi,n,k]T and ϕi,j = [ϕi,j,1, …, ϕi,j,r]T.

Consequently, it is required to update the full conditionals for some the second layer 

parameters. While Appendix B, available in the online supplemental material, provides the 

details on how to update (45), (46), (47), and (49), the general form of the full conditionals 

are included here.

Beginning with peak shape function parameters error covariance, Σε = {Σεk}

(56)

For mean parameters, μ, we have
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(57)

For fixed effects coefficients

(58)

Likewise, for random effects coefficients

(59)

2.5 MCMC Sampling

MCMC was used to infer the model space parameters. As shown in Algorithm 1, for the 

parameters Θ1, …, ΘNG with a known posterior density function, we used Gibbs sampling. 

For the rest of parameters ΘNG+1 =ϒ1, …, ΘNG+NMH = ϒNMH′, we utilized Metropolis-

Hastings update by using a proposal distribution Qȷ(ϒȷ).

For the proposal distributions, Q, we used multivariate Gaussian centered at the value of the 

variable from previous iteration. Also the variance of the proposal distribution was 

considered to be a diagonal identity matrix.

As mentioned in Section 2.3, Appendices A and B provide all full conditionals. Based on 

that, we used Gibbs sampling for all space parameters except ϕ, φ, and c, where Metropolis-

Hastings was used. Thus, each MCMC iteration, includes one update for each space 

parameter. Although, for several space parameters, we need to include other loops for i = 1, 
…, m ions, j = 1, …, n, k = 1, …, r peak shape function parameters, and t = 1, …, Ti,j scans 

in case required.

Algorithm 1

Inference by MCMC

Require: hyperparameters

  # Initialization #

  for i = 1 to m do

   for j = 1 to n do

    find ϕ̂i,j by curve fitting

   end for

  end for

  Estimate μ̂, B̂, 𝒜̂, and Σ̂
ε by LME
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  Calculate point estimates of the related statistics

 Set 

 # MCMC sampling #

 for ℘ = 2 to N℘do

  # Gibbs sampling for Θ1 to ΘNG

Θ1
(℘ + 1) P Θ1 ∣ Y, Θ2

(℘), Θ3
(℘), …, ΘNG

(℘), ϒ(℘)

Θ2
(℘ + 1) P Θ2 ∣ Y, Θ1

(℘ + 1), Θ3
(℘), …, ΘNG

(℘), ϒ(℘)

⋮

ΘNG
(℘ + 1) P ΘNG

∣ Y, Θ1
(℘ + 1), …, ΘNG − 1

(℘ + 1), ϒ(℘)

  # Metropolis–Hastings for ϒ1 to ϒNMH

  for ȷ = 1 to NMH do

ϒ ȷ
★ Q ȷ ϒ ȷ ∣ Y, Θ1

(℘), …, ΘNG
(℘), ϒ\ ȷ

(℘)

r ȷ = min 1,
P(ϒ ȷ

★)Q ȷ(ϒ ȷ
(℘); ϒ ȷ

★)

P(ϒ ȷ
(℘))Q ȷ(ϒ ȷ

★; ϒ ȷ
(℘))

R 𝒰(0, 1)

ϒ ȷ
(℘ + 1) =

ϒ ȷ
(℘ + 1) R ≤ r ȷ

ϒ ȷ
(℘) R > r ȷ

  end for

 end for

2.5.1 Initialization Using Linear Mixed Effects (LME)—Before running MCMC, the 

initial values for some parameters including peak shape function parameters were found by 

using a curve fitting estimator. We selected the Levenberg-Marquardt algorithm [29] to find 

the parameter values for the curve fitting problem as a nonlinear least-squares optimization. 

Then, by using a LME model, the initial values for the parameters in the second layer of the 

Bayesian model were estimated.

Therefore, for each peak shape, first, we fit the curve to use the optimized parameters for 

every ion across the runs. Then, the required statistics such as means and variances are 

calculated based on these estimated parameters. This includes ϕ̂
i,j which can be used to 

derive μ̂, B̂, 𝒜 ̂, and Σ̂
ε using (3). Also kusing (2), we can estimate other parameters such as 

η̂
i,j, , and λ̂

i and their corresponding statistics required for initialization of the MCMC.
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3 Results and Discussion

To evaluate the performance of our approach, we used synthetic and experimental data sets. 

In the former case, as we have the ground truth, the performance assessment is more 

accurate. In the second case, we used QC runs and internal standards as a reference by 

assuming small technical variability in the sample preparation step.

3.1 Data

3.1.1 Synthetic Data Set—We used equations (2) and (3) to generate a simulated data set 

to test our approach before applying the method to real data sets. To do this, we considered 

different signal to noise levels for error terms in the first and second layers of our Bayesian 

model. We also considered different peak shapes. More details are provided in Appendix C, 

available in the online supplemental material.

To generate the data set, we assumed that peak shape parameters are linearly dependent on 

m/z and RT with small slopes, i.e. p = 2 in (4). Also m/z and RT values are randomly drawn 

in the mass-time space covering a range of 50–600Da and 60–480sec, respectively. Peak 

abundances were randomly selected based on a empirical distribution obtained from a 

typical experimental study.

Also, three random effects, i.e. q = 3 in (5), and four groups of ions with equal number of 

members were considered. The first three groups are affected only by the one random effect 

respectively, while the fourth group has dependencies on both the first and the second 

random effects.

Moreover, three different average scan rates per peak, 15, 20, and 30 are considered. The 

reason behind this consideration is that the effective signal to noise ratio is a descending 

function of the peak width (for more details, see Appendix C, available in the online 

supplemental material).

To simulate real conditions, we added random noise to the generated peaks at scan-level. 

Also we added noise to the peak shape function parameters to account for instrument 

variability. We used three levels of SNR for the second layer parameters, 20, 25, and 30 dB 

denoted as SNR2. For the first layer, 40, 45, and 50 dB denoted as SNR1 were considered 

regarding the effect of scan rate mentioned above. Therefore SNR1 is based on the ratio of η 

to σe in (2) and SNR2 is based on the ratio of μ to σε in (3).

Fig. 3 shows the effect of noisy parameters on the simulated QC runs. The EICs were 

generated assuming the EMG peak shape, while using the same abundance for each peak. 

However, by adding noise to the parameters, we can see a notable change in the observed 

intensity calculated based the area under the curve as illustrated in Fig. 3 the related 

coefficient of variation (CV).

3.1.2 Experimental Data Sets—We have two experimental data sets. The first data set is 

from a metabolomic experiment introduced in [30]. It includes 89 runs of experimental 

samples and 20 QC runs pooled from the those samples. The samples were run in a 

randomized order and in two ionization modes (positive and negative). Also five internal 
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standards have been spiked in all runs which can be utilized to evaluate the effect of 

normalization methods.

To use this data set, it was needed to retrieve the EICs from the raw data. For this purpose, 

we used XCMS with the Regions Of Interest (ROI) option [31] extract scan-level peak 

intensities as well as the mass, retention time, and ion annotation information. In total, using 

SNR of 30, there are 802 and 537 ions (peaks or features) detected for positive and negative 

modes respectively, leading to 87,418 and 58,533 EICs with an average of 13 scans per EIC. 

Following that, we performed alignment at peak level, to make sure that we retrieve the 

peaks of the same ion across different runs. We used our script in R to export EICs for all 

peaks using some XCMS functions.

In addition, we used CAMERA [32] to obtain the attributes of the ion groups as 

monoisotopes, isotopes, adducts, and adducts-isotopes. In addition, we log-transformed the 

data to make it amenable to equations (9) and (10). Finally, similar to the synthetic data set, 

we used m/z and RT as fixed effects and ion attributes as random effects for this data set. As 

mass and retention time ranges may vary in different experiments, here, normalized m/z and 

RT values were used, by applying a linear function to map all the values in [0, 1] interval.

The second experimental data set is from a proteomic experiment using the same set that 

includes 14 QC runs injected in between experimental samples that were run in one batch.

MaxQuant [33] was used to process the data providing a list of 2,123 peptides for all runs. 

We filtered the peptides based on their presence in all samples reducing the number to 1,014. 

Based on the estimated retention times from Max-Quant, EICs were obtained by our in-

house scripts from the raw data following conversion into mzMXL format was used for this 

purpose. The obtained data set thus includes 14,196 EICs with an average of 29 scans per 

EIC from the MS1 level. Similar to the metabolomic data set, m/z of and RT values were 

mapped in [0, 1] interval.

3.2 Evaluation Approach

While ground truth was used for the synthetic data, internal standards and QC runs 

employed to evaluate the performance of the methods on the experimental data set. Four 

measures were used for evaluation:

3.2.1—The most popular measure, coefficient of variation of internal standards or ion 

intensities of QC runs comparing before and after normalization:

(60)

where:

(61)
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3.2.2—Decrease in median standard deviation (MSD) of QC runs obtained from all ions [1].

3.2.3—Number of ions with statistically significant variation (NISV) for QC runs which is 

calculated by a one-way repeated-measures ANOVA model based on the experimental 

design (considering batch and group effects together with technical replicates) to estimate 

the variability of QCs across runs:

(62)

where  is the intensity of kth QC run for ith ion in batch j and ζ is the random effect with 

Ek[ζik] = 0. A normalization method is evaluated on the basis of the number of ions with 

reduced variance of ζik. We evaluate this by using the F test for the ratio of the sum of 

squares from ζ to the sum of the squares of 3 which is the unexplained variation or error.

3.2.4—Relative mean squared error (RMSE) for estimation of the abundances of each ion:

(63)

As mentioned in Section 2.1, we compared our method with existing normalization methods 

studied in [15] including TIC, MedScale, and quantile normalization, as well as the 2D 

Gaussian process regression normalization introduced in [5].

3.3 Performance Evaluation

3.3.1 Computational Performance—A workstation with 16 cores and 128 GB of 

memory was used for the analysis. The run times for simulated, metabolomic, and proteomic 

data sets were 12, 27, and 15 hrs, respectively. We used diagnostic tests to investigate the 

convergence of the MCMC procedure. We discarded the first 5,000 MCMC samples as burn-

in and estimated the parameters of interest based on the remaining 10,000 samples. We also 

checked the mixing of the MCMC chains to avoid very high or very low rejection rates.

3.3.2 Evaluation via Synthetic Data Set—As described in previous sections, we used 

the synthetic data generated with several different sets of parameters including SNR levels 

for both layers and scan rates. Table 2 shows the results for different levels of SNR1 and 

SNR2 when changing the scan rate. The RMSE is calculated based on (63).

It can be seen that by increasing the SNR in the first layer (measured intensities), the error 

was reduced for almost all scan rates at each SNR level for the second layer (measurement 

parameters). Also, in general, EMG peak shape performs better compared to Gaussian and 

Gamma while Gaussian provides less error compared to the Gamma. The reason is that 

EMG is more appropriate to model the asymmetric chromatographic peaks while it is also 

able to model the symmetric peaks with Gaussian peak shapes. On the other hand, although 

Gamma is able to model the asymmetric peaks better than Gaussian, but in noisy conditions, 
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it may not model the asymmetry good enough when using fewer parameters compared to 

EMG.

Another observation is that BNMD is more efficient for SNR2 of 25 dB compared to higher 

or lower levels. This is because for lower levels, the parameters are too noisy and the method 

loses efficiency to model the drift and correct for it. Also for higher levels, the effect of noise 

on parameters is less significant and as a consequence, there is less bias to be addressed.

In Table 3, using equation (60), the CV of QC samples is shown to compare different 

normalization methods with the proposed method in this study. As mentioned in Section 2.1, 

these methods were selected based on [5] and [15]. It can be seen that the CV is decreasing 

by increasing SNR at the intensity level as expected. Also by taking scan rates into 

consideration, it is observed that the average error is lower for 20 scans per peak for most of 

the cases. Finally, if we increase SNR at the parameter level, we see the same trend.

3.3.3 Evaluation via Experimental Data sets—Table 4 shows the RMSE for five 

internal standards spiked in all runs from the metabolomic data set. The average estimated 

abundance of the standards were used as the approximate true abundance. Similar to what is 

suggested by results from synthetic data, it can be seen that EMG provided a better 

performance compared to Gaussian and Gamma respectively. Fig. 5 depicts two examples of 

fitting EMG and Gaussian peaks to real EICs from experimental data. As these EICs are 

asymmetric, EMG provides a better fit. Also compared to raw data, BNM and BNMD were 

able to reduce the RMSE for all of the standards.

Based on (62), we found the number of ions showing statistically significant variation in 

their intensities from QC runs. Table 5 shows the percentage of such ions. As illustrated, we 

compared the proposed method with other existing methods, where BNM and BNMD were 

able to decrease the number of ions with significant variation in QC runs more than any 

other method. In the same table, we also included the decrease in MSD of QCs for different 

normalization methods, where BNM and BNMD were able to outperform others.

Table 6 shows the estimated parameters for the fixed and random effects in our Bayesian 

hierarchical model. In the table, the values for different parameters are provided, including 

the average and the standard deviation. As illustrated, there is a noticeable relationship 

between mass over charge and peak apex location, width, and skewness. However there is no 

strong evidence for dependency of first parameter on the retention times. Also, it can be seen 

that the peaks are wider in average for later elution times. Although, peak skewness slightly 

changes by increasing RT. In addition, correlation coefficients are provided based on 

covariance matrixes of random effects. Based on that, the random effects of first and the 

second groups show rather stronger correlation compared to others.

Fig. 6 shows the the intensity of two internal standards before and after normalization. It can 

be seen that BNM is able to reduce the variation across the runs, however BNMD is 

successful to capture the overall variation based on analysis order and correct for it to some 

extent.
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We can see a similar trend when evaluating the performance of the methods on the 

proteomic data. Table 7 shows the average in CV of ions for QC runs after applying different 

normalization for the proteomic data set. The numbers in parentheses shows the standard 

deviation. As illustrated, BNM and BNMD were able to reduce the variability in QC runs for 

this experimental data set more efficiently compared to other methods. Also, evaluation of 

different methods in terms of the decrease in MSD reveals a noticeable improvement when 

using the proposed methods.

Finally, Fig. 7 shows the distribution of the intensities before and after normalization 

comparing different methods for the proteomic data set. As the data set only includes QCs, 

we expect to see a consistent intensity across runs. As illustrated, BNM and BNMD were 

more successful to decrease the CV of detected ions in average.

4 CONCLUSION

We proposed a new normalization method for analysis of LC-MS data from label-free 

experiments. The method utilizes a Bayesian hierarchical model for accurate quantification 

of peak intensities by using scan-level information and measurements from all measured 

ions. Also by using Gaussian process regression, we expanded the model to include the drift 

based on analysis order. In addition, the model is able to handle noisy scan-level data and 

address missing ion counts when the measurements come from the background noise. 

Moreover, it does not rely on perfect alignment of the peaks at scan-level.

Using synthetic and experimental LC-MS data, we demonstrated that our model outperforms 

existing normalization methods. We also used internal standards and QC runs as a reference 

for comparisons. In addition, we showed that the proposed drift model can improve the 

estimation of the ion abundances.

We also showed that assuming an exponentially modified Gaussian peak shape function 

leads to a better performance in terms of RMSE of estimated abundances as well as decrease 

in intensity variations of QC runs.

Although many of the assumed parameters are learned through MCMC, the proposed model 

requires specification of several hyperparameters which rely on properties of the raw data. In 

addition, working with data sets involving either very small sample size or few number of 

ions can reduce the efficiency of the method.

One potential direction to extend the proposed approach is to integrate normalization with 

other steps in the data processing pipeline. For example if alignment is merged with 

normalization, it can improve the peak detection leading to a decrease in the intensity 

estimation error.

One can also consider different priors or likelihoods for the Bayesian hierarchical model. 

For example, instead of a normal distribution, a Pareto-log-normal density may be used for 

the mean values of ion abundances [34]. Also we may include correlations between peak 

shape function parameters by putting more constraints on their covariance matrix.
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Regarding the variables with the Metropolis-Hastings update, a better proposal distribution 

may be used. Several methods have been introduced to perform adaptive updates. For 

instance, a local multivariate normal distribution can be utilized for this purpose by using 

gradient and Hessian of the original posterior distribution function. Also nonrandom 

Hamiltonian updates can be considered.

Finally, as the algorithm is computationally intensive, it is possible to use parallel processing 

in the implementation to speed up the execution and reduce the run time. This can be done 

by updating independent variables in parallel loops.
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Fig. 1. 
Exponentially modified Gaussian.
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Fig. 2. 
The Bayesian hierarchical model network of space parameters and hyperparameters.

Nezami Ranjbar et al. Page 26

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
(left) Five peaks from the same ion in simulated QC runs assuming EMG peak shape with 

true abundance of 200. The numbers above each box are the estimated intensity based on 

sum of the ion counts. (right) The intensity for 20 peaks from the same ion where the CV is 

7%.
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Fig. 4. 
EICs of the same ion from the experimental data showing misalignment at scan-level.
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Fig. 5. 
Example of Gaussian (dark) and EMG (light) peak shapes fitted to two experimental EICs 

with the estimated abundance, η, for each case.
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Fig. 6. 
Intensities from two internal standards in metabolomic data set from raw data (green), 

normalized by BNM (red), and normalized by BNMD (blue).
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Fig. 7. 
CVs of ions comparing different normalization methods for the proteomic data set.
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TABLE 1

Chromatographic Peak Shape Functions and Their Parameters

Function f(t)

Gaussian

Gamma

Exponentially

Modified Gaussian
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TABLE 7

Mean CV and Percentage of Decrease in MSD for Proteomic Data for Different Normalization Methods

Method Mean CV % (± S.D.) ΔMSD (%)

Raw 47.9 (±14.9)

TIC 44.6 (±11.8) 5.71

MedScale 39.5 (±10.2) 16.4

Quantile 36.3 (±8.65) 22.7

2D-GPRM-EIC 33.1 (±7.07) 28.9

BNM 29.0 (±5.50) 37.4

BNMD 26.1 (±4.93) 44.2
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