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YamiPred: A novel evolutionary method 
for predicting pre-miRNAs and selecting 

relevant features 
Dimitrios Kleftogiannis, Konstantinos Theofilatos, Spiros Likothanassis, and Seferina Mavroudi 

Abstract—MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA 

genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it 

effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of 

Support Vector Machines (SVM) with Genetic Algorithms (GA) for feature selection and parameters optimization. YamiPred was 

tested in a new and realistic human dataset and was compared with state-of-the-art computational intelligence approaches and 

the prevalent SVM-based tools for miRNA prediction. Experimental results indicate that YamiPred outperforms existing 

approaches in terms of accuracy and of geometric mean of sensitivity and specificity. The embedded feature selection 

component selects a compact feature subset that contributes to the performance optimization. Further experimentation with this 

minimal feature subset has achieved very high classification performance and revealed the minimum number of samples 

required for developing a robust predictor. YamiPred also confirmed the important role of commonly used features such as 

entropy and enthalpy, and uncovered the significance of newly introduced features, such as %A-U aggregate nucleotide 

frequency and positional entropy. The best model trained on human data has successfully predicted pre-miRNAs to other 

organisms including the category of viruses.  

Index Terms—Classifier design and evaluation, Evolutionary computing and genetic algorithms, Feature evaluation and 

selection, SVM, GA, pre-miRNA prediction 

 

——————————————————— 

1 INTRODUCTION

he discovery of miRNA genes was  a breakthrough for 
conventional molecular biology and changed drasti-

cally the way we study and understand the underlying 
cellular processes [1]. Typically, miRNA genes are small 
in length (approximately 22 nucleotide long) and stable 
non-coding molecules, which play a significant role in 
gene regulation. By 2014, there have been identified more 
than 1880 human miRNAs, approximately 3500 in other 
mammals and many in flies, plants and viruses [2]. The 
active miRNA molecules (mature miRNAs) are produced 
by a number of biochemical reactions catalyzed by en-
zymes Drosha and Dicer via a procedure, which is called 
miRNA biogenesis [3], [4]. The biogenesis of miRNA 
starts in nucleus with the primary-RNA (pri-RNA) tran-

script that is further cleaved by Drosha to a shorter mole-
cule, which is called precursor miRNA (pre-miRNA). The 
pre-miRNA is then transported to cytoplasm and further 
cleaved by Dicer to a double stranded hairpin-like mole-
cule. One strand forms the mature miRNA, which is the 
active molecule that takes part in gene regulation pro-
cesses by targeting messenger RNA (mRNA) transcripts.  
Typically, miRNAs interact with the RNAi Induced Si-
lencing Complex (RISC), which has the ability to recog-
nize and repress mRNA target genes [5]. 
The mRNA binding positions (called seeds) usually are 
located to the 3’ un-translated regions (UTR) of mRNAs 
but recent studies indicate that 5’ UTR binding, gene cod-
ing sequence (CDS) binding or binding to promoters is 
also possible [6]. It is estimated that at least 30% of all 
transcripts are regulated by miRNAs [7] and miRNAs 
layer of gene regulation is present in many cellular pro-
cesses such as development, proliferation and apoptosis 
[8]. Gene expression studies indicate that abnormal miR-
NA homeostasis is linked to many diseases. Supplemen-
tary Table 1 illustrates important diseases related to ab-
normal miRNA machinery. Moreover, recent advances in 
biomedical research established new knowledge for the 
regulatory mechanisms of genes and genomes [9]. Conse-
quently, the effective identification of miRNA genes re-
mains an important bioinformatics problem and a crucial 
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step for developing more sophisticated therapeutic strat-
egies [10]. The very first miRNAs and their targets were 
discovered experimentally through classical genetic tech-
niques. However, experimental identification of miRNA 
genes has many drawbacks such as expensive laboratory 
reagents, time consuming experiments and low specifici-
ty. To overcome these hurdles computational techniques 
have been proposed. Computational approaches are clas-
sified into comparative and non-comparative [11], [12]. 
The former usually applies filtering criteria to identify 
miRNA gene candidates based on conservation among 
close species. The most representative comparative meth-
ods are MiRScan [13], MirAlign [14], MirCheck [15]. The 
latter category of non-comparative techniques is based on 
Computational Intelligence (CI) algorithms. Classification 
techniques such as Naïve Bayes Classifiers (NBC), Artifi-
cial Neural Networks (ANN), Support Vector Machines 
(SVM) and Random Forests (RF) have successfully been 
applied. Among them, TripletSVM [16], miPred [17] and 
microPred [18] achieve very high performance by apply-
ing the SVM classifier. Lately a method that uses the SVM 
classifier combined with a simple Genetic Algorithm 
(GA) that identifies optimal feature subsets under the 
wrapper setting was proposed [19]. Despite the promis-
ing results in terms of performance, in-depth study of all 
the aforementioned techniques revealed some limitations. 
Specifically, the class imbalance problem, fine-tuning of 
classification parameters, over-fitting issues, tradeoff be-
tween classification performance and interpretability of 
results and selection of meaningful features are open 
problems for further consideration and optimization.  
In this work, we propose YamiPred (Yet another miRNA 
predictor), an embedded classification method that com-
bines the efficiency and robustness of SVMs with GAs for 
feature selection and parameters optimization. YamiPred 
was trained using human pre-miRNA sequences. The 
feature vector includes state-of-the-art thermodynamical, 
structural and sequence features, plus 10 newly intro-
duced characteristics, which have been proposed in the 
literature.  Experimental results show that YamiPred out-
performs state-of-the-art CI approaches and the prevalent 
SVM-based predictors in terms of classification perfor-
mance and simplicity of the extracted classifiers. These 
advantages are attributed to the elegant way of dealing 
with the class imbalance problem, slow convergence and 
interpretability through a simple mechanism for selecting 
the ratio of positive and negative samples. A further con-
tribution of YamiPred is a newly introduced problem-
specific fitness function, which achieves more balanced 
classification performance between majority and minority 
class and simultaneously forces the algorithm to search 
for simpler classification models in terms of input fea-
tures and model characteristics (i.e., support vectors).  
Furthermore, the embedded feature selection component 
revealed characteristics such as minimum free energy, 
entropy and enthalpy that are fingerprints for different 
categories of non-coding RNAs (ncRNAs are categories of 
RNA that are not translated to proteins). Surprisingly, 
features not used by previous models such as %A-U ag-

gregate nucleotide frequency, positional entropy and se-
quence length found to be important for predicting pre-
miRNAs.  
The best prediction model obtained from human data 
predicted with satisfactory results miRNAs in ten other 
organisms. These results indicate that YamiPred achieves 
good generalization capabilities and captures relevant 
miRNA properties across different species. Finally, exper-
imentation with the most frequently selected features 
reported much higher classification performance and 
identified the minimum number of real pre-miRNAs re-
quired for developing a robust predictor. Thus, YamiPred 
is applicable to genomes where very few real pre-
miRNAs are known. All the above-mentioned contribu-
tions and experimental results convincingly demonstrate 
that YamiPred is substantially different compared to ex-
isting SVM-based miRNA predictors [16], [17], [18], [19] 
and that it can provide a useful complement to these ex-
isting models to aid performing the challenging task of 
predicting miRNAs. 

2 MATERIALS AND METHODS 

 
2.1 Datasets 

In order to distinguish between real pre-miRNAs and 
other pseudo hairpins, YamiPred was trained and evalu-
ated using datasets comprised of both positive and nega-
tive samples. For comparison reasons, the data construc-
tion step is analogous to the one described by miPred [17] 
and it is adopted by many other studies [18], [20]. All pre-
miRNA sequences were extracted from publicly available 
databases. During the learning phase YamiPred was 
trained using human pre-miRNAs. 1,600 miRNA precur-
sors of Homo sapiens published in miRBase (August 2013) 
[2] were extracted with average length 84 nucleotides (nt), 
minimum 43 nt and maximum 154 nt. Similarly to miPred 
and microPred we did not perform filtering steps to ex-
clude sequences with diverse folding structures or multi-
ple loops. 
We generated negative dataset following the methodolo-
gy proposed by Triplet-SVM [16] that uses known pro-
tein-coding regions for generating negative samples. The-
se protein-coding regions have verified functionality and 
consequently, it is a straightforward approach for labeling 
negative data. Protein-coding regions were downloaded 
from RefSeq genes (registry August 2013) [21] and by ap-
plying a non-overlapping sliding window we generated 
pseudo hairpins using the following filtering criteria: i) 
minimum free energy less than -15 kcal/mol; ii) lowest 
number of base pairs equals to 18; iii) no multiple loops. 
These filtering criteria mimic real pre-miRNA properties. 
We also added the state-of-the-art pool of pseudo-
hairpins that contains 8,494 sequences with average 
length 85 nt, minimum 63 nt and maximum 120 nt. More-
over, the negative dataset was enriched with 754 se-
quences coming from known ncRNAs originally pub-
lished in [22]. This dataset consists of annotated ncRNA 
molecules such as tRNAs, snoRNAs and snRNAs with 
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average length 84 nt, minimum length 48 nt and maxi-
mum 548 nt. These additional ncRNA sequences enriched 
the pool of negative samples and enhanced the ability to 
discriminate real pre-miRNAs from other categories of 
ncRNAs. The final negative set contains 21,248 pseudo-
miRNAs. During the learning phase, we chose the simple 
holdout approach to generate training and testing sets. 
Specifically, positive and negative samples were pooled 
together and we generated randomly two completely in-
dependent datasets of equal size, one for training and one 
for testing. The large number of samples ensures that 
holdout is as effective as cross-validation techniques and 
addresses effectively potentials to over-fitting [23].   
Then, to study YamiPred’s generality we conducted 
cross-species experiments with independent test sets from 
several organisms. We chose species relatively distant to 
human such as Aves and Rodentia and the most repre-
sentative mammalians starting from Carnivora and Laur-
asiatheria to other Primates and species very close to hu-
man such as gorillas and chimpanzees. Finally, to assess 
YamiPred’s performance to a special category of miRNAs 
we downloaded all known viral miRNAs from miRBase 
repository. Species-specific pseudo-hairpin datasets were 
also generated for all the studied organisms using the 
aforementioned methodology [16]. We extracted 341 pre-
miRNAs of Equus caballus and generated 517 pseudo 
hairpins, 323 pre-miRNAs of Canis familiaris and 520 
pseudo hairpins, 500 pre-miRNAs of Gallus gallus and 
2,000 pseudo hairpins, 85 of Gorilla gorilla miRNAs and 
1,000 pseudo hairpins, 720 pre-miRNAs of Mus musculus 
and 3,000 pseudo hairpins, 88 precursors of Pan paniscus 
and 166 pseudo hairpins, 581 pre-miRNAs of Pongo pyg-
maeus and 1,356 pseudo hairpins, 662 Bos Taurus pre-
miRNAs and 3,000 pseudo hairpins, 600 pre-miRNAs of 
Pan troglodytes and 176 pseudo hairpins and 237 known 
viral pre-miRNAs and 107 pseudo hairpins. All the da-
tasets used for training and performance evaluation are 
publicly available along with the trained models for re-
producing the results at the following repository 
(http://prlab.ceid.upatras.gr/microRNAdatasets/miRNA_da

tasets.rar). 
 

2.2 Feature Set Description 

Selecting an informative feature set is very important for 
the pre-miRNA prediction problem, as limited infor-
mation is known about features that are able to distin-
guish between real miRNA and pseudo hairpins.  Up to 
now various feature sets have been proposed, containing 
information about sequence, topology and structure. The 
earliest CI approaches such as Triplet-SVM proposed fea-
tures computed from the sequence itself without includ-
ing additional thermodynamical characteristics. miPred 
was the first method that proposes a representative fea-
ture set consisting of 29 attributes from various catego-
ries. MicroPred and its refined version [24] extended mi-
Pred’s feature set to 45 attributes. The features proposed 
by miPred and microPred have shown great discrimina-
tive power and they have been adopted by many other 

methods [25], [26]. Here, we included the above-
mentioned features and we added some new characteris-
tics that characterize efficiently the broad class of ncRNAs 
such as snRNAs and rRNAs. We did not incorporate the 
left-triplet coding scheme proposed by Triplet-SVM be-
cause we computed single (mono), di and aggregate nu-
cleotide frequencies that capture significant information 
deriving from the sequence itself. Furthermore, features 
that require phylogenetic filtering, alignment among spe-
cies and expression profiles characteristics were not in-
cluded due to the lack of sufficient data samples and the 
problem of missing values. The final feature set consists 
of 58 features. We adopted the same symbols used in mi-
Pred and microPred and the feature vector was computed 
using software written by the authors. Table 1 demon-
strates the attributes categories. A more detailed descrip-
tion about the features can be found in Supplementary 
Materials.  
 

2.3 YamiPred’s Framework 

2.3.1 Method Overview 
YamiPred is an embedded classification framework, 
which combines an adaptive GA with an SVM classifier. 
Figure 1 provides a schematic representation of the meth-
od. The SVM algorithm is the most popular kernel meth-
od, due to its theoretical underpinnings and strong em-
pirical performance on a wide variety of classification 
tasks [27]. It is a state-of-the-art classification technique 
that provides accurate models because it captures com-
plex non-linearities in data. Furthermore, its strong math-
ematical background reassures high generalization per-
formance [28]. When using SVMs with Radial Basis Func-
tion (RBF), it is necessary to select the best feature subset 
for the classifier and the optimal set of parameters (regu-
larization parameter C and the RBF’s bandwidth gamma). 
In order to optimize both, we use an embedded method 
for feature selection and parameter optimization based on 
an Adaptive Genetic Algorithm (AGA). Genetic Algo-
rithms are heuristic optimization algorithms inspired by 
the principle of natural selection [29]. GAs deal with large 
and complicated search spaces (since they are guided by a 
problem-specific fitness function) and maintain a more 
global search strategy meaning that they are less likely to 
get trapped in local optima solutions compared with oth-
er search algorithms. GAs perform informed search that 
exploits and explores simultaneously the search space. 
The search strategy of a GA starts with a population of 
candidate solutions, called chromosomes, which is evolved 
and optimized via a number of evolutionary cycles and 
genetic operations. Chromosomes consist of genes, which 
are the parameters for optimization. For every iteration 
(called generation), a problem-specific fitness function is 
used to evaluate each chromosome, measuring the quality 
of the corresponding solution, and those that achieve the 
highest score (i.e., fitness value) are selected to survive to 
the next generation. This evolutionary process is contin-
ued until some user-defined termination criteria are met.  
 

http://prlab.ceid.upatras.gr/microRNAdatasets/miRNA_datasets.rar
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2.3.2 Crossover and Mutation operators 
In YamiPred’s implementation chromosome comprises of 
genes that encode the best feature subset and parameter 
genes that encode the best choice of parameters. Since 
YamiPred’s optimization procedure is governed by the 
feature selection problem, which is binary (i.e., feature is 
present or not), for simplicity we used binary encoding 
for chromosome representation. The size of the initial 
population was set to 20 chromosomes. For the crossover 
operator, we used two-point crossover with rate of 0.9, 
which is considered, typical crossover rate for many GA 
applications. Note that, higher crossover rates are prefer-
able in GAs [30]. 
The mutation operator favours exploitation over explora-
tion. In the first generations of the algorithm it is prefera-
ble to explore a wider search space (exploration) while in 
the last generations it is preferable to search locally the 
most promising areas of the search space (exploitation). 
Many solutions have been proposed in the literature for 
adaptive mutation operators ranging from self-adaptive 
ones [31], deterministic approaches and gene based adap-
tive mutation operators [32]. Deterministic approaches as 
proposed in [33] are the most suitable solutions for diffi-
cult combinatorial problems where the search space is 
large and complex. In YamiPred we used an adaptive 
mutation rate approach that extends the ideas presented 
in [33] to simulate the above-mentioned exploration-
exploitation property. YamiPred’s mutation rate starts 
with a high mutation probability that gradually decreases 
to switch from global to local search. The mutation rate is 
computed using equation (1): 

𝑃𝑚(𝑛) = 0.2 − 𝑛 ∙
0.2 −

1

𝑃𝑆

MAXG

   (1) 

 
where n is the current generation, P_S is the size of the 
population and MAX_G is the maximum generation spec-
ified by the termination criteria. In order to avoid getting  
trapped into local optima the deterministic adaptive mu-
tation rate was extended to introduce instant increments 
in the mutation rate when the possibility of stagnation 
was increased. The mean similarity of every individual 
with the best individual of the population was measured 
at every generation. If the mean was larger than 90% then 
the mutation probability was increased by a factor given 
by relation (2) instead of being decreased.  
 
 
 
 
2.3.3 Selection scheme and Fitness Function 
In YamiPred’s selection scheme we applied rank based 
roulette wheel selection. In this scheme a fitness value, 
equal to the rank in the population, and not equal to the 
actual objective value, is assigned for each individual and 
thus the highest ranked individual has the highest proba-
bility to be selected in the next generation. This probabil-
ity was calculated based on the following equation: 

𝑃𝑖 =
2 ∗ 𝑅𝑎𝑛𝑘

𝑁 ∗ (𝑁 + 1)
      (3) 

where N is the number of individuals in the population. 
Selection based on objective value can promote prema-
ture convergence when there is a large difference between 
these values, and this is the main reason for utilizing Pi 
values instead of the actual objective values. Following 
this selection scheme, the proposed evolutionary algo-
rithm forces the population to areas of better solutions 
while reducing the possibilities of getting trapped into 
local optima [29].  
YamiPred’s selection scheme also utilized elitism that 
forces the best solutions of every population to be select-
ed at least one time in the next population. Extensive us-
age of elitism sometimes leads to premature convergence. 
However, YamiPred's implementation that keeps only the 
optimal solution in the next geneneration and utilises Pi 
values instead of the actual objective values aleviates the 
problem. In the examined optimization problem we have 
defined two important sub-objectives. The first and most 
important sub-objective is to maximize classification per-
formance.  
The second sub-objective is to develop a relatively simple 
classification model that uses compact feature subsets and 
few support vectors. Since our problem’s sub-objectives 
are grouped into two main contradictory goals, a single 
objective optimization method was used defining a prob-
lem-specific fitness function as in (4).  
 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑎 ∙ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑏 ∙ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑒𝑎𝑛 − 𝑐

∙ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 − 𝑑 ∙ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑠      (4) 
 
where Accuracy is SVM’s accuracy, GeometricMean is the 
geometric mean of sensitivity and specificity, features is 
the number of selected features and SupportVectors is the 
number of support vectors included in the trained SVM 
model. The proposed fitness function balances classifica-
tion performance, complexity of the feature set and classi-
fication model’s complexity. We chose Accuracy because 
it is a general performance metric that measures proximi-
ty of the observed values to the true values and it is effi-
cient with balanced data. We also chose Geometric Mean 
that captures the combined effect of the other two im-
portant performance metrics and it remains efficient with 
imbalanced datasets [34]. Furthermore, integrating the 
number of support vectors into the optimization process 
demonstrates novelty and differentiates YamiPred from 
other wrapper-based tools like the one presented in [19]. 
Overall, terms Features and SupportVectors have negative 
effects in the fitness value because YamiPred’s goal is to 
produce a simple classifier (without losing classification 
performance) that has higher generalization capabilities 
and produces interpretable results.   
Parameters a, b, c and d in equation (4) are user specified 
weights, which incorporate prior knowledge about the 
significance of a model’s sub-objectives. Specifically, clas-
sification Accuracy and Geometric mean are the most 
significant sub-objectives whereas the number of selected 

0.2 -
1

s
p

GMAX
(2)
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features is less significant and the number of support vec-
tors appears as the least significant sub-objective. Based 
on this ordering we selected the sum of weights for sub-
objectives related to classification performance to be two 
times bigger than the sum of weights for sub-objectives 
related to model’s simplicity. Finally, we assign the fol-
lowing values for the constants parameters: a=0.5, b=0.5, 
c=0.001 and d=0.0001. Note that we did not conduct ex-
periments to optimize these values as this may lead to 
over-fitting.  
 
2.3.4 Termination Criteria 
 YamiPred’s termination criterion is the maximum num-
ber of 150 generations to be reached combined with a 
termination “flag” that stops the process when the popu-
lation is deemed as converged. The population is deemed 
as converged when the average fitness across the current 
population is less than 5% away from the best fitness of 
the current population. During the experimentation pro-
cess we observed that the convergence criterion was satis-
fied between the 100th and the 150th generation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3.5 Software availability and time efficiency 
YamiPred’s implementation held in Matlab R2009b and 
source codes are available at 
(http://prlab.ceid.upatras.gr/microRNAdatasets/codes.rar) 
Concerning the time efficiency of the training phase, it is 
quite time consuming as it performs multiple SVM train-
ings and searches thoroughly the search space (requiring 
on average 16 hours and 15 minutes for every experiment 
using a conventional laptop equipped with an Intel Core 

i5 processor at 1.7 GHz). However, this is an offline pro-
cedure. More important in terms of time efficiency is the 
minimization of the time required to apply the trained 
model to new candidate sequences. To illustrate the time 
efficiency of YamiPred we measured the average classifi-
cation time for processing 100 human sequences. For this 
task, YamiPred needs 0.0013 seconds for prediction. 
 

 

Table 1 

Feature Set Description 
 

 

 

3 RESULTS AND DISCUSSION 

 
3.1 Dealing with the class imbalance problem 

 Pre-miRNA classification problems are imbalanced, 
meaning that there are far fewer data from the class of 
interest (pre-miRNAs) than from the negative class 
(pseudo-hairpins) [34]. The explanation is intuitively 
simple because in cells the quantity of molecules, which 
are not pre-miRNAs, and fold into a miRNA-like shape is 
larger than the real miRNA genes. The earliest approach-
es such as Triplet-SVM [16] and miPred [17] reported the 
problem and balanced datasets manually with respect to 
minority class. More recent methodologies applied a vari-
ety of different techniques for dealing with the problem. 
Striking examples are PlantMiRNAPred [26], which ap-
plied sampling according to the sample distribution in the 

Category Description Number 

Dinucleotide 
Frequencies 

%XY such that X,Y e Σ[A,C,G,U] 16 

Aggregate Dinucleotide 
Frequency 

%G+C ratio 1 

Folding Measures 

 

Various topological and sequential identifi-
ers normalized by length 

4 

Minimum Free Energy 
indices 

Adjusted Minimum Free Energy normal-
ized by various identifiers of the secondary 
structure 

4 

Topological Descriptor RAG  1 

RNA fold features Vienna RNA package [40] 4 

Una Fold features Una Fold package [41] 6 

Base pairs related 
features 

Number of significant base pairs normal-
ized by length and total number of stem 
loops 

8 

Statistical Features The statistical Z-score of the folding 
measures 

4 

Newly introduced 
attributes 

Additional features from various categories 
applicable to other ncRNA molecules  

10 

Fig. 1. YamiPred’s workfow 

http://prlab.ceid.upatras.gr/microRNAdatasets/codes.rar
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positive/negative groups and microPred [18], which test-
ed a variety of class-imbalance learning techniques in-
cluding random over/under sampling [35] and SMOTE 
[36]. Note that many state-of-the-art methods do not se-
lect the ratio between positive and negative samples so as 
to maximize certain performance criteria and to this ex-
tent they do not get feedback from classifiers. In the pre-
sent work, we used an internal approach, which deals 
with the problem as part of the learning phase of Yami-
Pred. To do so, the learning phase was repeated multiple 
times with various positive to negative sample rates [37]. 
Table 2 presents the results of the proposed method using 
5-fold cross validation applied on the testing set. These 
experimental results suggest the usage of four times more 
negative samples than positive achieves the highest fit-
ness value (using equation 4). Note that, this finding was 
not induced using the performance of the proposed mod-
el in the testing set, as this procedure would have lead to 
overfitting. The testing set was used only for the final 
evaluation of the proposed prediction model.   
 
3.2 Comparison with existing methods 

To estimate the effectiveness of YamiPred and quantify 
the contribution of GA in feature selection and the pa-
rameter optimization process we performed experiments 
using YamiPred and two YamiPred variants. The first one 
(denoted as SVM_GA_v1) utilized the GA to optimize 
only feature subsets using default SVM parameters C and 
gamma (1 and 1, respectively). The second variant (de-
noted as SVM_GA_v2) used all the available features and 
applied the GA optimizer for optimizing SVM parameters 
only. To provide better cross benchmarking results Yami-
Pred and its variants were further compared against clas-
sical CI approaches such as NBC, K- Nearest Neighbors 
(KNN) and RF. These CI algorithms along with SVM are 
the most commonly used classification techniques in bio-
informatics. 
 

Table 2 

YamiPred’s performance using various positive to nega-
tive samples rate 

Positive 
to 

Negative 
Samples 

Rate 

Accuracy 
Geometric 

Mean 
Selected 
Inputs 

Support 
Vectors 

Fitness 
Value 

(1:1) 
0.909 

0.004 

0.909 

0.003 
253 

828.41 

122.73 

1.7205 

0.002 

(1:2) 
0.923 

0.005 

0.918 

0.005 
242 

860.64 

135.18 

1.738 

0.001 

(1:3) 
0.932 

0.004 

0.916 

0.005 
232 

870.88 

153.27 

1.739 

0.014 

(1:4) 
0.931 

0.005 

0.924 

0.004 
202 

879.25 

101.39 

1.740 

0.006 

(1:5) 
0.929 

0.004 

0.915 

0.007 
181 

913.55 

170.71 

1.736 

0.002 

(1:6) 
0,936 

0,003 

0,900 

0,004 
232 

943,42 

201,52 

1,719 

0,001 

 
Tuning of their internal parameters was performed using 

trial and error experiments on the training set and using 
geometric mean as the performance indicator. Due to the 
stochastic nature of these approaches all experiments 
were executed twenty times and their mean performances 
in the testing set are demonstrated in Table 3. Comparing 
YamiPred with its variants (SVM_GA_v1 and 
SVM_GA_v2) we observe that SVM combined with GA 
for parameter optimization and feature selection achieves 
the best results and it is the most effective. Thus, the con-
tribution of the GA search strategy in the embedded set-
ting is valuable. We also observe that SVM-GA is superior 
to the prevalent CI classification models. Since some dif-
ferences in the performance are small, we applied a test 
that quantifies practically these differences [38]. Consider-
ing all the performance metrics in the comparison, Yami-
Pred always appears as the best method. The detailed 
results are presented in Supplementary Materials. These 
differences were also found to be statistically important 
when applying statistical t-test for independent samples 
with 95% level of significance (normality of the data was 
ensured using Shapiro Wilks test). We also observed that 
RF achieves slightly better accuracy than SVM-GA and 
much higher sensitivity. However, this improvement in 
the sensitivity metric was achieved with an important 
degradation in specificity leading to an imbalanced classi-
fier, which presented lower geometric mean than the 
proposed method.  
Except for the prevalent CI algorithms, YamiPred was 
also compared with the state-of-the-art SVM methods 
miPred and microPred. Table 4 presents the results. Yam-
iPred again is the best performing method. However, 
since, the differences in performance are small, we ap-
plied the previous test [38] to get practical insights about 
their relative performance. We found again that Yami-
Pred outperforms both competitors. In addition, Yami-
Pred’s fitness value was proved to be significantly supe-
rior to the other fitness values according to t-test (normal-
ity of the data was checked using Shapiro Wilks test). 
 
3.3 Selecting relevant features 

Performing closer examination of the developed classifi-
cation models we discovered that YamiPred resulted in 
different feature subsets for every execution. This result 
was expected since some of the features, which constitute 
the initial feature set, share mutual information. This im-
plies that there exists more than one combination of fea-
tures that maximize classification performance. In addi-
tion, a subset of features was in most cases consistent and 
fulfilled an important property, which is called stability 
[39]. The features which were selected by YamiPred in 
more than 80% of execution runs were the following 8 
attributes: Dinucleotide Frequencies AG and AU, Nor-
malized base pair distance (dD), Positional Entropy (Po-
sEntropy), Normalized Ensemble free energy (EAFE), 
Enthalpy normalized by the length of the sequence 
(dH/L), Melting temperature normalized by the length 
(Tm/L) and the length of the sequence itself. When these 
features were used as inputs to a SVM model they 
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achieved 90,32% accuracy and 88,54% geometric mean. 
Despite the fact that this classification performance was 
not as high as the performance reported in Table 4, it is 
interesting to study these features and understand the 
mechanisms that govern whether a hairpin is a pre-
miRNA or not. Based on the reported 8 features we found 
that sequence information and other thermodynamical 
characteristics such as minimum free energy, entropy, 
enthalpy and melting temperature act like a fingerprint 
for the different categories of ncRNAs. 
 

Table 3 

Comparison with state-of-the-art CI techniques 

Classification 

Method 

Accuracy Sensitivity Specificity Geometric 

Mean 

ΝBC 

 

0.9140.003 

 

0.9430.003 

 

0.7960.012 

 

0.8670.006 

KNN 

 

.9080.005 

 

0.9700.122 

 

0.6570.023 

 

0.7980.009 

RF 

 

0.9370.004 

 

0.9790.002 

 

0.7650.002 
0.8650.008 

YamiPred 

 

0.9320.005 

 

0.9370.008 

 

0.9120.012 

 

0.9240.004 

SVM-GA_v1 

(only feature 

selection) 

 

0,9310,003 

 

0,9450,004 

 

0,8750,002 

 

0,9090,001 

SVM-GA_v2 

(only parameter 

selection) 

 

0,9300,001 

 

0,9400,002 

 

0,8920,005 

 

0,9160,003 

 
 

Table 4 

Comparison with state-of-the-art SVM predictors 

 

  YamiPred miPred microPred 

Accuracy 0.932±0.005 0.927±0.007 0.926±0.003 

Sensitivity 0.9370.008   0.934±0.007 0.934± 0.001 

Specificity 0.9120.012  0,899±0.018   0.892±0.015 

Geometric Mean 0.924±0.04 0.916±0.011 0.913±0.009 

Selected Inputs 20±2 29±0 21±0 

Support Vectors 879.25±101.39 1129.333±267.95 1115.33±55.01 

Fitness Value 1.74±0.001 1.702±0.011 1.707±0.007 

 
 

The best run of YamiPred in terms of classification per-
formance identified a feature subset that contains 20 fea-

tures which are the following: aggregate nucleotide fre-
quency A+U, dinucleotide frequencies AG, AU, CU, GA, 
UU, Minimum Free Energy Index 4 (MFEI4), Positional 
Entropy (PosEntropy), Normalized Ensemble free energy 
(EAFE), Frequency of the MFE structure (Freq), Enthalpy 
normalized by the length of the sequence (dH/L), Melt-
ing temperature (Tm), Melting temperature normalized 
by length (Tm/L), Normalized base-pair count by length 
,|G-C|/L, Normalized average base pairs by number of 
stem loops (A-U)/stems, (G-U)/stems, the length of the 
sequence (Len), Centroid energy normalized by length 
(CE/L), Statistical Z-scores zG and zSP. 
With a more thorough analysis on this optimal set of fea-
tures we found that combination of features derived from 
different categories lead to better separation between real 
pre-miRNAs and other molecules. The final selected sub-
set contains features from all the available categories pre-
sented in Table 1. Sequence information is captured by 
various nucleotide frequencies. Thermodynamical charac-
teristics computed by Vienna RNA package [40] and Un-
aFold [41] provide a solid representation of the RNA 
structure. Second, our findings are in agreement with 
previous reports that linked different characteristics with 
biochemical properties and the secondary structure of 
molecules [42], [43]. Compared to miPred’s and micro-
Pred’s most relevant feature subsets we agree on the se-
lection of 8 features and we conclude that those intro-
duced by microPred are more suitable for describing the 
hairpin stem-loop while miPred’s features give a better 
representation of the secondary structure of miRNAs. 
Note that YamiPred’s most frequent set and best perform-
ing set do not agree with findings reported by the method 
presented in [19]. In contrast to those methods our model 
selected the %A-U aggregate nucleotide frequency in-
stead of %G+C and enthalpy instead of entropy. A possi-
ble explanation comes from recent evidence that link the 
A-U content with stability of mRNAs [44]. Also, as ex-
pected and illustrated in Supplementary Material there is 
a clear relation between enthalpy, entropy, minimum free 
energy and temperature. Regarding the newly introduced 
features, YamiPred chose 5 out of 10 attributes. Thus, our 
initial hypothesis that more general characteristics, appli-
cable to the broad class of ncRNAs, have higher discrimi-
natory power has been validated.  
In summary, YamiPred achieves higher classification per-
formance than the prevalent CI classifiers and SVM-based 
approaches while it finds a compact feature subset. Thus, 
it is capable of reducing the problem’s dimensionality 
and producing interpretable results without sacrificing 
the performance.  
 
 
3.4 Predicting miRNAs in other organisms 

In this section we study the generalization capabilities of 
YamiPred and we compare it to miPred and microPred. 
For this purpose we applied the best-trained models (us-
ing human datasets) of the competitors to ten datasets 
coming from several organisms. Figure 2 presents the 
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classification results. We found that YamiPred’s best-
trained model achieves very high performance in almost 
all of tested cases. Specifically, we found that YamiPred 
always achieves better generalization ability than miPred 
and in 8 out of 10 cases better generalization than micro-
Pred. The higher classification performance achieved by 
YamiPred provides strong evidence that pre-miRNAs 
among various eukaryotic species and viruses share simi-
lar sequence, thermodynamical and structural properties. 
However, in some cases, such as the Bos Taurus dataset, 
the classification performance was lower than in other 
organisms. To shed light on this artifact we trained a 
model with Bos Taurus data, we measured the classifica-
tion performance and studied the differences between the 
selected features subset and those selected from human. 
The specie-specific trained model further improved the 
performance of predicting Bos Taurus miRNAs by achiev-
ing geometric mean equal to 89.75% instead of 83.91% we 
previously achieved. Regarding the selected features, 
YamiPred selected 11 (%A+U, AU, CU, UU, MFEI4, 
EAFE, dH/L, Tm/L, |G-C|/L, (G-C)/stems, ZG) out of 
the best 20 features and 4  (AU, EAFE, dH/L, Tm/L) out 
of 8 of the most stable features. Moreover, it included ad-
ditional characteristics such as more dinucleotide fre-
quencies (AC, GA, GG, CA, UG), statistical score ZP, top-
ological factor dF and BP/AU, BP/GU which seem to 
differentiate Bos Taurus miRNAs properties. All the above 
illustrate a differentiation of the miRNA structural and 
sequential properties of this specific organism against all 
the others.  
 
 
3.5 Further improving Yamipred’s performance 

Finally, in order to improve further Yamipred’s classifica-
tion performance we experimented with the most fre-
quently selected features described in section 3.3. This 
subset consists of 8 attributes that were present in almost 
all runs of the GA feature selection process. Using this 
small feature subset, we transformed the original feature 
vector and we generated paired differences between in-
dividual features and all the other features coming from 
all the other data samples. In total, this transformation 
generates N*K features where N is the original number of 
features and K is the number of samples in the dataset. 
Then, in order to reduce dimensionality we applied a 
heuristic technique and we obtained the median of the 
differences plus two additional features generated by 
subtracting standard deviation to the median and by add-
ing standard deviation to the median. Note, that this is a 
heuristic technique (similar to the heuristics that all fea-
ture selection techniques use) that provides a good ap-
proximation of the initial feature vector [45]. In total the 
transformed feature vector consists of 24 attributes com-
ing from 8 original features. To test the classification per-
formance the SVM classifier was trained with various 
ratios between positive and negative samples and we re-
ported results using 2-fold cross validation. We used 50% 
of the data for training and the remaining 50% for testing. 

Note that for tuning the SVM parameters we applied a 
simple grid search technique on a portion of the training 
set equal to 30% [46]. Table 5 presents the classification 
results. It is apparent that extremely high classification 
performance was achieved by applying the proposed 
transformation to the most frequently selected features by 
the GA. Moreover, we did not observe any remarkable 
performance degradation using different ratios between 
positive and negative samples, meaning that the data 

transformation reduces the effects of the class imbalance 
problem. Surprisingly, in all of the cases perfect specifici-
ty was reported meaning that the YamiPred’s improved 
variant is able to identify accurately negative examples. 
Then in order to assess the robustness of this technique 
we aimed at identifying the minimal number of positive 
samples that is sufficient for achieving very high classifi-
cation performance. For this purpose we trained models 
initially with the total number of positive samples and 
progressively we removed positive samples from the 
training set. The performance was recorded using 5-fold 
cross validation and we present these results in Table 6. 
The overall performance decreases below 400 samples but 
in general remains high even when the number of posi-
tive samples is very small. In the extreme case using only 
10 positive samples improved YamiPred reported Accu-
racy=99.65%, Sensitivity=100%, Specificity=75.4%, and 
Geometric Mean=86.49%. From all the above we conclude 
that YamiPred improved variant is a robust predictor that 
can be trained with success even when the number of 
known positive samples is very limited. This is attributed 
to the sophisticated feature selection process that revealed 
a minimal number of attributes and to the normalization 
technique used.  

4 CONCLUSION 

In this work we have presented YamiPred, another 
SVM-based miRNA predictor deploying the evolutionary 
characteristics of GAs. The GA optimizer maximizes the 

Fig. 1. Performance of different methods in vari-
ous organisms 
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classification performance and integrates the feature se-
lection phase as well as the parameter optimization step 
into the learning components of the methodology. The 
adoption of an objective function that includes number of 
support vectors and size of the selected features leads to a 
more general model that achieves very high performance 
in terms of accuracy sensitivity and specificity. Our exper-
imental setup proved that we could handle effectively the 
obstacle of the class imbalance and moreover we can gen-
eralize the model to several organisms. Moreover, the 
properties of the selected features were studied and we 
reported a stable and relevant subset containing features 
with high discrimination power. Further experimentation 
with this subset of features has improved further the clas-
sification performance and revealed the minimum num-
ber of positive samples, which are required to implement 
a robust classifier. Indeed this fact makes YamiPred a ro-
bust miRNA predictor even for organisms for which a 
very small number of miRNA genes is known. Also, we 
have concluded that among different species the miRNA 
class shares common characteristics that act like finger-
prints for this particular class of regulatory molecules. All 
the aforementioned properties fulfill the basic require-
ment for the development of effective and robust models 
and there is space for many future improvements. An 
interesting future area to explore is the incorporation of 
YamiPred to an integrated analysis framework that com-
bines data from heterogeneous data sources into a cellular 
interaction network. In fact, recent projects based on 
ChIP-Seq data have performed a comprehensive analysis 
based on different functional arrays. For instance EN-
CODE project has established new knowledge regarding 
the distal regulatory element (enhancer and insulators) 
interactions and gene transcription. We plan to feed Yam-
iPred with new problem-specific features, and apply it to 
other classes of regulatory RNAs including the class of 
enhancer RNAs (eRNA), which at the moment has un-
known functionality. Furthermore, to deal with the class 
imbalance problem more effectively, our future plans 
involve the design of a new fitness function that uses a 
new evaluation metric called adjusted geometric mean 
(AGm) [47].  
 

Table 5 

Improved YamiPred performance using various posi-

tive to negative samples ratios 
 

 

Table 6 

Performance of improved YamiPred with progressive-

ly decreasing positive samples 

 

Number of 

positive 
Accuracy Sensitivity Specificity 

Geometric 

Mean 

1599 0.9951 0.9902 1 0.9951 

1300 0.9956 0.9916 1 0.9958 

1000 0.9942 0.9902 1 0.9950 

700 0.9915 0.9873 1 0.9936 

400 0.9984 0.9979 1 0.9989 

100 0.9954 0.9972 0.9706 0.9836 

50 0.9952 1 0.8627 0.9248 

10 0.9965 1 0.7540 0.8649 
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