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Abstract

Network has been a general tool for studying the complex interactions between different genes, 

proteins and other small molecules. Module as a fundamental property of many biological 

networks has been widely studied and many computational methods have been proposed to 

identify the modules in an individual network. However, in many cases a single network is 

insufficient for module analysis due to the noise in the data or the tuning of parameters when 

building the biological network. The availability of a large amount of biological networks makes 

network integration study possible. By integrating such networks, more informative modules for 

some specific disease can be derived from the networks constructed from different tissues, and 

consistent factors for different diseases can be inferred.

In this paper, we have developed an effective method for module identification from multiple 

networks under different conditions. The problem is formulated as an optimization model, which 

combines the module identification in each individual network and alignment of the modules from 

different networks together. An approximation algorithm based on eigenvector computation is 

proposed. Our method outperforms the existing methods, especially when the underlying modules 

in multiple networks are different in simulation studies. We also applied our method to two groups 

of gene coexpression networks for humans, which include one for three different cancers, and one 

for three tissues from the morbidly obese patients. We identified 13 modules with 3 complete 

subgraphs, and 11 modules with 2 complete subgraphs, respectively. The modules were validated 

through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed 

that the main functions of most modules for the corresponding disease have been addressed by 

other researchers, which may provide the theoretical basis for further studying the modules 

experimentally.
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I. INTRODUCTION

WITH the fast development of high-throughput technologies, a huge amount of different 

types of data are available, which include gene expression data, sequence data, genotype 

data, and some others. This makes it possible for researchers to study the complex relations 

between different genes/proteins such as coexpression, regulation, and interaction, and so 

on. A general tool for such studies is network, where the nodes correspond to the genes or 

proteins, and the edges represent the relations between them. By studying the properties of 

the networks, we can infer the useful information of the complex biological systems. Many 

works on this topic have been published in recent years [1], [2], [3], [4], [5], [6], [7], [8], [9], 

[10], [11], [12], [13], [14].

Module structure is a common property of many different types of networks. Intuitively, a 

module is a densely connected subnetwork within a broader network. In biological 

networks, the genes or proteins in the same module are more likely to share some common 

properties or play similar roles [2], [4], [10]. By dividing the networks into modules, a large 

system can be reduced, and we can further study the properties of the modules, or we can 

infer the functions of the unknown genes based on the other genes’ function in the same 

module. A lot of papers have been published to address the functional module identification 

for an individual biological network or one general network [15], [16], [17], [18], [19], [20], 

[21], [22], [23], [24].

Although many computational methods have been proposed to study the modules in an 

individual biological network, in many cases the modules in a single network may not be 

stable due to the noise in the data or the tuning of parameters when building the networks. 

The availability of a large amount of biological networks makes network integration study 

possible. By integrating networks for different species, we can study the conservation and 

evolvement relations of them. Integration of networks for the same species under multiple 

conditions may reveal their pattern differences. For example, by integrating the networks 

constructed from case and control data, we may find the main disease causal subnetworks. 

These facts lead to the great need of the development of related computational and statistical 

methods. A few methods have been proposed to find the densely connected subgraphs from 

multiple biological networks [25], [26], [27], [28]. These methods mainly used heuristic 

algorithms to do subgraph searching, where the search space is reduced step by step. They 

are more likely to find the small subgraphs compared to the general concept of modules. The 

module identification problem from multislice networks has not been addressed until 

recently [29]. There, the authors generalized the framework of network quality functions in 

[30], where the popular quantitative module measure ‘modularity’ is proposed, to study the 

module structure of multislice networks. Later on, Zhang [31] proposed an optimization 

algorithm to rapidly detect common module structure in time-varying networks. As the 

authors noted in the paper, this method does not perform stably for some networks. Almost 
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at the same time, several papers from machine learning field were also published to study 

clustering for integrated data [32], [33], [34], [35]. Since these methods mainly used spectral 

clustering or other graph-based methods, they can be applied to do module identification in 

integrated networks. However, most of these methods were proposed under the assumption 

that the underlying modules/clusters for all considered networks/data sets are the same. In 

reality, the module structures for the considered networks may vary greatly. For example, 

the gene coexpression networks constructed under different disease conditions may consist 

of different modules although there may exist consistent modules. These motivate us to 

study novel methods for module identification from multislice networks, where the modules 

may have different sizes.

In this article, we focus on the module analysis for multislice biological networks, in 

particular, the gene coexpression networks. By identifying the consistent modules in such 

networks constructed from patients having different diseases, we can obtain the common 

factors of them. Identification of consistent modules from the gene coexpression networks 

for the patients’ different tissues can discover the subtle signals that may not be clear in one 

specific tissue. In the following, we propose an optimization model to identify the consistent 

modules across multiple networks. This model combines the module identification in an 

individual network and module alignment from different networks together. We use spectral 

clustering to identify the modules from a single network, and the alignment of modules is 

done by defining the similarity between different modules with cosine. Putting these two 

terms together, the model is transformed to a trace minimization problem with linear 

constraints, which can be solved quickly with an approximation method. We demonstrate 

our method with the simulated networks and compare its performance with some popular 

existing methods. Our method outperforms other methods, especially when the underlying 

modules have different sizes. We note that our method can easily handle more than three 

networks although we only consider the case that there are at most three networks in the 

paper.

We apply the proposed method to two different types of real data settings. One is for 

networks constructed from different cancers, the other is for networks from different tissues 

in morbidly obese patients. Several consistent modules are identified for these two data sets. 

We validate the results with both Gene Ontology enrichment analysis and KEGG pathway 

enrichment analysis. More than ten modules enrich the GO terms and KEGG pathways 

significantly in both data settings. Many of the enriched terms have been addressed by other 

researchers through experimental study. These results may provide the theoretical basis for 

further studying the relations between the diseases and the modules experimentally. Further 

more, although we studied unweighted networks in this paper, our method can be easily 

extended to weighted networks.

II. METHODOLOGY

Suppose we have K different networks G1, G2, ⋯, GK, which are constructed from gene 

expression data sets under K different conditions. Each network consists of n nodes. The 

adjacency matrix for network Gk is Ak, where Ak(i, j) = 1, if there is an edge between node i 

and node j, otherwise Ak(i, j) = 0. We use Dk to denote the diagonal matrix with the diagonal 
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entries being the degree of the corresponding node. We let M be the putative number of the 

consistent modules across the K networks, and let Sk be the assignment of the n nodes into M 

modules for the network Gk, where

A. Module identification in an individual network Gk with spectral clustering

Spectral clustering has been one of the most popular modern clustering techniques in recent 

years. This method first constructs a similarity graph based on the pairwise distance of all 

the data points. Then the Laplacian matrix of the graph is computed. The clustering result is 

obtained by clustering the eigenvectors corresponding to the M smallest eigenvalues of the 

Laplacian matrix. It can be implemented easily and outperforms the traditional clustering 

algorithms in many cases. From the graph cut point of view, it is to find a partition of the 

similarity graph such that the edges between different groups have very low weights and the 

edges within groups have high weights. The unnormalized spectral clustering corresponds to 

the RatioCut, where the weight between two groups is the sum of the total number of edges 

between them normalized by the number of the nodes in each group [36].

Spectral clustering can be directly applied to do module identification for any one network if 

we take the considered network as the similarity graph. For a given network Gk, we define

(1)

where  denotes the m-th column of matrix Sk for the network Gk. Then the 

corresponding optimization problem is formulated as:

(2)

where 1 is a vector with all entries being 1.

By letting , the problem is relaxed to:

Let Lk = Dk − Ak, we can use the standard procedure of spectral clustering to get the module 

label for the network.
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B. Integration of multiple networks

To find the consistent modules across multislice networks, we need to align the modules 

obtained for different networks. If we align the identified modules in each network directly, 

the computation is complex. Thus we propose to do module identification for each network 

and alignment of the modules for multiple networks together. To identify the modules in 

each network, we use spectral clustering. For the alignment of modules in different 

networks, we expect the same node is clustered to the same module. Then we define the 

similarity between modules in different networks using cosine. The similarity between the 

m–th module in network Gk and Gl is defined as . We aim to maximize the 

similarities of the corresponding modules in all networks, and our objective becomes:

where β is the parameter to control the contributions from the intra- and inter- network 

connections. The optimization problem is formulated as:

(3)

We define

and Lk = Dk − Ak, 0 is an n × n matrix with all entries being zero.

With the same technique as spectral clustering, the above optimization problem is relaxed 

to:
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In this formulation, the constant coefficient K can be put into C, such that each column of 

has the norm 1. We take  as a data set composed of Kn nodes and do k–means clustering, 

we can get the assignment label for each node. Then we put the nodes back to each network 

and see the consistent elements in each module. The algorithm is summarized in the 

following.

Algorithm—Input: Adjacency matrix Ak, k = 1, 2 ⋯, K, and M, which is the putative 

number of consistent modules.

1. Compute the matrices Lk = Dk − Ak, k = 1, 2, ⋯, K;

2. Construct the matrix C;

3. Compute the M eigenvectors v1, v2, ⋯, vM corresponding to the M smallest 

eigenvalues of matrix C;

4. Construct a new matrix T ∈ RKn×M, with columns v1, v2, ⋯, vM;

5. Cluster the points constructed from each row of matrix T with k-means clustering 

into clusters C1, C2, ⋯, CM;

6. For each cluster, divide the points into K sets according to their original network 

label, find the consistent points of these sets.

Output: Index of nodes in each consistent module.

The algorithm is similar to spectral clustering procedure. The two main steps are 

computation of eigenvectors and k-means clustering. A direct eigen-decomposition takes 

O((Kn)3) time, and has a space complexity O(Kn2), where n is the size of the similarity 

matrix. By using sampling techniques [37], the time complexity can be reduced to O(KnpM) 

where M is the number of eigenvectors to be computed, p is the number of sampling points 

where can be chosen to be significantly less than Kn. The space complexity is also reduced 

to O(KMn). When we perform k-means clustering, we only need M eigenvectors. The 

running time of the algorithm is about O(KnM2I), where I is the number of iterations 

required for convergence [37].

With this algorithm, we can both identify the modules in each network (the sizes of modules 

can be different) and the consistent modules across multislice networks. The cosine 

similarity between the corresponding modules in different networks helps align the modules. 

Here, M is prespecified as the putative number of consistent modules across all the 

considered networks. In practice, the nodes of some module may not be connected densely. 

Thus we need to check the structure of these clustered nodes to make sure the consistent 

modules are all densely connected subnetworks in each network.

III. RESULTS

In this section, we first use simulated networks to demonstrate our method. We then apply it 

to two real data sets to identify the meaningful modules.
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A. Simulation Study

1) Demonstration of our method with synthetic data—To objectively evaluate the 

performance of our proposed method, we tested it on a synthetic gene expression data set. 

The data sets, available at http://tsenglab.biostat.pitt.edu/publication.htm, were used to 

evaluate many clustering algorithms in a previous study [38]. Each data set contains 

simulated expression data under 50 conditions. Each gene was pre-assigned to one of fifteen 

clusters, and the expression profiles for the genes in the same cluster were from a common 

log normal distribution. Gaussian noise was then added to the data set to simulate 

experimental noise. The different standard deviations of the noise may represent the 

different data collection conditions such as different labs, or different tissues. We choose 

five groups ‘data_i_Noise0._SD…txt’, where i is 0,1,2,3,4, and SD is 0.2, 0.4, and 0.8 in 

each group. We then find the largest cluster for the data with SD=0.2, and choose the other 

two clusters with the mean absolute value of the correlation coefficient being closest to the 

selected one. By choosing the clusters in this way, we try to make sure that the module 

structure of the network is clear. Finally, in each data set, there are three clusters, which 

correspond to the three modules in our constructed network.

To construct the gene coexpression network, we use hard thresholding, that is, if the 

absolute value of the correlation coefficient is greater than the threshold, we assign an edge 

between the corresponding nodes. Here, the networks are unweighted, that is when there is 

an edge, the corresponding value in the adjacency matrix is set to 1. To choose the threshold, 

we first compute the mean absolute value of the correlation coefficients for the three 

networks, and record the maximum value among them. We then divide the value from 0.5 to 

1 into 10 intervals with equal stepsize. The threshold is chosen to be the endpoint of the 10 

intervals that is closest to the recorded maximum value. With this strategy, the module 

structure is clear and the number of isolated nodes is not large.

We conducted numerical experiments for these networks with our proposed method. In this 

example, we directly set β = 1. To compare the results with that of module identification in 

each individual network, we applied the method proposed in [23] because this method has 

shown to outperform most methods and it pays more attention to the large modules instead 

of isolated nodes. In all these experiments, K is chosen to be 3. The results are shown in 

Table I. In the table, ‘Cluster’ is the three chosen clusters among the fifteen clusters in each 

data set, ‘α’ is the threshold for building the networks. ‘Noisolated’ is the number of isolated 

nodes in each network, ‘Accusep’ shows the identification accuracy when we did module 

identification in each network separately, and ‘Accuint’ shows the identification accuracy 

with our proposed method. Module identification with network integration achieves the 

highest identification accuracy in all the tests. Since the simulated data sets have very clear 

module structure, in some cases, module identification in an individual network also 

achieves good performance. However, when there are several isolated nodes, with network 

integration, we can combine all the information together and get better performance. Take as 

an example, we plotted the identification results for ‘data_0_Noise0._SD…txt’ in Fig. 1, 

where the three different colors, in the three networks represent our identified consistent 

modules. Fig. 1(a), 1(b), 1(c) show the network structure under the three different 

conditions. If we do module identification in the networks individually, the isolated genes 
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will not be assigned correctly. By network integration, we combined the information from 

the different networks, and all the modules are identified with a high accuracy. The network 

in Fig. 1(d) includes all the edges in the three networks. This example shows that module 

identification by network integration can give better results compared to that from an 

individual network.

2) Comparison with existing methods—In this subsection, we will compare our 

method with some existing methods through simulation studies. The comparison methods 

include: (1) Affinity Aggregation for Spectral Clustering (AASC) [32]; (2) Co-Regularized 

multi-view Spectral Clustering (CRSC) [33]; (3) Nonnegative Matrix Factorization based 

Clustering method (NMFC) [31]; and (4) Optimized data fusion for K-means Laplacian 

Clustering (OKLC) [34].

The networks are randomly generated following the stochastic block model [39]. We first 

assign a number of nodes to three modules such that each module has the given number of 

nodes. Then the connections within and between different modules are generated according 

to a given probability matrix, in which the diagonal entries specify the connection 

probabilities within the modules and the other entries specify the connection probabilities 

between the corresponding modules. We consider the following four connection 

probabilities with the probabilities between different modules increasing:

For each generation probability matrix, we consider the consistent modules for randomly 

generated network pairs. For the size of the modules, we consider two different settings. One 

is that the module size is the same for the randomly generated network pairs. We take the 

module size to be (50,50,50). The other is that the module size is different for the randomly 

generated network pairs. The module size is set to be (50, 50, 50) and (30, 90, 30). We 

generated 50 network pairs for each setting and computed the identification accuracy of the 

consistent modules. This identification accuracy is defined as: , where 

‘TP’, ‘TN’, ‘FP’, and ‘FN’ represent the number of the true positive, true negative, false 

positive, and false negative.

The results are shown in Table II and Table III. We listed the mean identification accuracy 

for 50 randomly generated network pairs and the standard deviation in the bracket for each 

setting. When the module sizes are the same for the network pairs, all the methods have 

comparable performance, with AASC and our method performing the best. However, as 

shown in Table III, when the module sizes are different for the network pairs, our method 

outperforms all the other methods. The main reason is that most of the other methods 

formulated the optimization problem under the assumption that the module sizes are the 
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same across different networks. Then they focus on finding the common features of the 

modules to do clustering. For example, in AASC, the M vectors that minimize the ratio cut 

of the weighted combination of all the networks are computed. By clustering these M 

vectors, the common modules for all the considered networks can be obtained. Similar 

techniques are applied in NMFC and OKLC. With such formulations, the module 

differences between each network pair cannot be identified. In NMFC, although a different 

method for determining the common modules is given, it is not stable as mentioned by the 

authors. Compared to these three methods, CRSC considers both the intra-network module 

structures and module similarities between different netwoks. The modules in each network 

are identified by normalized spectral clustering, and the consistent module structure is 

defined by a similarity function, which is similar to our method. However, since the 

formulated optimization problem is solved by an iterative method, which alternatively 

computes the eigenvectors of a regularized Laplacian matrix, it is more likely to get the local 

maximum solution, and thus it is not stable. We note that in CRSC and our method, we vary 

the regularization parameter between 0.2 to 3, and report the best identification accuracy. 

Also we need to mention that CRSC is slower than our method due to the iteration process 

for solving the optimization problem.

3) Selection of the parameter β—In our proposed model, different values of the 

parameter β may affect the module identification results. We use the same simulation 

settings as that in the previous subsection, and choose different values for β to see the 

identification accuracy. β is chosen to be values from 0.2 to 3 with a stepsize 0.2. For each 

value of β, we simulated 50 network pairs with the module size being (50, 50, 50) and (30, 

90, 30), and computed the average identification accuracy. The results are shown in Fig.2. 

For P1, the best identification accuracy is obtained when β = 0.2. Because there are no 

connections between different modules, a small value of β gave the best result. The increase 

of the connection probability between different modules in each network requires a larger β 

to make the identification better and stable. For both P2 and P3, the best results are obtained 

when β = 1. And when β becomes larger, the identification accuracy decreases. For P4, the 

best results are obtained when β = 2, and the identification accuracy for β = 1 ranks the third 

(0.76) for all the considered β. When β is larger than 2.4, the identification accuracy 

becomes smaller. If the generation probabilities between different modules is not very large, 

it can be seen that a β value of 1 should be a reasonable choice.

B. Consistent Module Analysis for Gene Coexpression Networks

1) Gene coexpression networks for different cancers

Network construction: We downloaded the gene expression data from The Cancer Genome 

Atlas (TCGA) for three cancers: ovarian cancer (OV), glioblastoma multiforme (GBM), and 

lung squamous cell carcinoma (LUSC) from TCGA website. These data are all generated 

with Affymetrix HT_HG-U133A by Broad Institute. There are 558 OV samples, 594 GBM 

samples, and 134 LUSC samples. For each cancer, we computed the variance of all the 

genes across the samples, and selected the 1500 genes with the largest variance. Then we 

took the union of the genes for further study. The total number of genes considered is 2756.
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To construct the gene coexpression networks, we first calculated the Pearson correlation 

coefficient between any two genes. Then we constructed the adjacency matrix by hard 

thresholding. If the absolute value of the Pearson correlation coefficient between two genes 

is greater than some given value, we assign an edge between them; otherwise, there is no 

edge. We tried different thresholds and compute the linear regression coefficient between 

the frequency of degree d (log 10(f(d))) and the log 10 transformed degree d (log 10(d)) to 

see whether these networks have approximately scale free property as described in [40]. We 

took the threshold for OV, GBM, and LUSC to be 0.65, 0.52, and 0.60, respectively, to do 

the hard thresholding, and the average degree for each network is about 18. We then 

removed the common genes that have no connections to any other genes. Finally, we have 

three networks with a total number of 2297 genes.

Consistent module analysis: We applied our proposed method to identify all the consistent 

modules. We directly set β = 1, which has shown to be a reasonable value if the connections 

between different modules are sparse. For a given M, after the basic steps of our algorithm, 

we set the size of each module to be greater than 5 and the mean of the average degree for 

each module in these three cancers to be at least 2 to make sure the identified modules are 

meaningful. Because with our proposed method, each node must belong to one module, 

there are some isolated nodes in the modules. We removed the common isolated nodes 

before we determined the modules, and the size of the modules may be smaller than 5.

In our experiments, after we got the eigenvalues of the matrix C, we computed 

with the eigenvalues λi satisfying λ1 ≥ λ2⋯ ≥λN. We then took the first big jump of all the 

ratio to be the reference for choosing M. We plot the largest 800 eigenvalues for the 

constructed matrix C as shown in Fig.3. The first big jump appears in the 223-th eigenvalue. 

To make the results more robust, we tried different M between 150 and 250 and determined 

the consistent modules that appeared for all these M as the final modules. We finally 

identified 13 modules. The basic information of these modules is shown in Table IV, where 

NA means this module belongs to one gene family. We did enrichment analysis for Gene 

Ontology (GO, biological process) and KEGG pathways for these modules with DAVID 

[41], [42]. Among these modules, there are three complete graphs in all three cancers 

including Module 2, Module 9, and Module 11. Module 2 and Module 11 correspond to the 

gene family GAGE, and CD24(CD24L4), respectively. For the rest modules, 9 among 10 

modules enriched GO terms, and 5 of them enriched KEGG pathways. We list all the 

enrichment results in our supplementary materials1. The structure of Module 1, 4, 5, 6, 10, 

and 12 is shown in Fig. 6, where the size of the nodes represents its total degree in the three 

networks, and the width of the edges represents the total connections between the 

corresponding nodes in the three networks. We put the same information of Module 3, 

Module 8, and Module 13 in the supplementary materials because these modules are large.

Among the three complete graph modules, Module 2 and Module 11 correspond to the gene 

family GAGE, and CD24(CD24L4), respectively. Module 2 is composed of the probes: 

206640_x_at, 207086_x_at, 207663_x_at, 207739_s_at, 208155_x_at, 208235_x_at, which 

1http://www.math.hkbu.edu.hk/∼mng/bioinformatics/supplementaryfinal.zip
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correspond to the genes GAGE3, GAGE4, GAGE5, GAGE6, GAGE7, and GAGE8. These 

genes all belong to the GAGE family. They are completely silent in normal adult tissues, 

except testis., but expressed in a variety of tumor tissues [43], [44], such as hepatocellular 

carcinoma [45], stomach cancer [46], ovarian carcinoma [47], and uterine cervical 

carcinoma [48]. Fig.4 shows the heatmap of this module for the first 100 samples. In both 

GBM and LUSC, the gene expressions show similar patterns to that of OV, and several 

samples have higher expressions. This shows that these genes are also expressed in the 

GBM and LUSC cancer.

Module 11 includes the probes: 208650_s_at, 208651_x_at, 209771_x_at, 209772_s_at, 

216379_x_at, and 266_s_at. The genes corresponding to them belong to Cd24 and CD24L4 

family. These genes appear to be highly expressed in a large variety of human cancers, such 

as ovarian cancer [49], nonsmall cell lung cancer [50], colorectal cancer [51], and they have 

a high correlation with invasiveness [49], [52]. We plotted the heatmap of the genes in this 

module for the fist 100 samples in Fig.5. The expressions in GBM and LUSC are more 

similar, and are more highly expressed than that in OV. This may indicate that this module 

is highly expressed in more human cancers.

Another complete graph module is Module 9, which consists of the control probes: AFFX-

BioB-3_at, AFFX-BioB-_at, FFX-BioB-M_at, AFFX-BioC-3_at, AFFX-BioC-5_at,AFFX-

BioDn-5_at, and AFFX-r2-Ec-bioB-M_at.

The enrichment results with pvalue less than 10−10 for GO categories are shown in Table V, 

where Module 1, 3, 8, and 13 significantly enrich the GO terms. Module 1 consists of a total 

of 12 genes, which belong to the histone cluster 1 or histone cluster 2. Ten of the twelve 

genes enrich twelve GO terms, which cover all the genes that belong to these GO terms in 

our considered gene list. These 10 GO terms are related to chromatin assembly or 

disassembly, nucleosome assembly, DNA packaging, macromolecular complex assembly 

and subunit organization, and protein-DNA complex assembly etc, with pvalue less than 

10−12. Such post-translational histone modifications are known to be altered in cancer cells 

[53]. Eight of 12 genes enrich the pathway: hsa05322: Systemic lupus erythematosus. 

Several studies have shown that this pathway is associated with some cancers such as liver 

cancers, lung cancers, and kidney cancers [54], [55]. Thus it may be worth studying their 

relations with our considered cancers.

Cancer is a disease of inappropriate cell proliferation, and cell cycle machinery controls cell 

proliferation. The regulation of cell cycle is central to the aberrant cell proliferation for all 

types of cancers because it lies downstream at the convergence point of complex oncogenic 

signalling networks. Moreover, because many components in cell cycle are evolutionarily 

conserved, clinical applications are likely to be suited to diverse tumor types. Many of the 

current most effective neoadjuvant and adjuvant therapeutic interventions in the clinic are 

cell cycle directed agents [56]. Module 3 mainly enriches terms related to cell cycle. It 

enriches 12 GO terms with pvalue less than 10−10, and all these 12 terms are related to cell 

cycle. The most enriched pathway is also cell cycle, with 10 of the 41 genes are involved in 

it. It may be used as the target gene groups for clinical design in future. More descriptions 

on the relations between cell cycle and cancer are referred to [57], [56], [58].
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When people have cancer, many responses from their body appear to prevent the 

deterioration. For example, the immune response is generated that results in the proliferation 

of antigen-specific lymphocytes, which can up-regulate antibodies such that they may better 

control carcinogenesis, and nowadays immunotherapy has been a new approach to the 

treatment of cancer [59]. Module 8 and Module 13 are mainly related to different types of 

responses, such as immune response, defense response, inflammatory response, etc. Some of 

these responses have been studied, for example, the immune response [59], the defense 

response [60], and the inflammatory response [61], [62]. The study in stomach cancer shows 

that besides the marker carbohydrate antigen 19-9(CA19-9), potential markers exist in 

defense response mechanism [61]. The inflammation as a key event in cancer development 

is the seventh hallmark of cancer [62]. Inflammatory cells may facilitate angiogenesis and 

promote the growth, invasion, and metastasis of tumor cells, which link to the genetic 

instability in cancer cells, which shows that the anti-inflammatory agents should have a 

potential in both prevention and treatment of cancer. Further study of this module is of great 

importance for understanding, preventing, and treating cancers.

Comparison with the known cancer-associated genes: We checked the associated genes 

with these three cancers in KEGG, and found that there is only one common gene tp53, 

which is translated to the protein p53. This protein regulates the cell cycle in humans, and 

functions as a tumor suppressor that is involved in preventing cancer. Although this gene is 

not in our final networks with our construction strategy, we still found its related pathway: 

hsa04115: p53 signaling pathway, with pvalue = 3.57 × 10−5. Five genes: CDK1, CCNB2, 

rrm2, CCNB1, and CCNE2 in Module 3 are included in this pathway. In [63], the authors 

have shown significant change in the DNA copy numbers for gene CCNE1 and CDK4 in 

GBM. These two genes also belong to this pathway, which validates further that Module 3 

should be an important pathway related to cancers. We then took all these cancer-associated 

genes to see their GO terms enrichment and KEGG pathway enrichment. These genes enrich 

166 GO terms, with 65 of them are consistent with those enriched by our identified modules. 

Among these 65 terms, 2, 25, 6, and 32 terms are from Module 1, Module 3, Module 6, and 

Module 8, respectively. The most significantly enriched 5 terms of the cancer-associated 

genes are related to cell cycle. These cancer-associated genes enrich a total of 18 KEGG 

pathways, with 5 of them may be related to all cancers. Two of them are the same as that 

enriched by Module 3, which are hsa04115: p53 signaling pathway, and hsa04110: Cell 

cycle. These suggest that Module 3 plays an important role in all cancers. The extension 

with more genes in our considered gene list for this module may provide more useful 

information for cancers. Another notable module is Module 6, which is composed of 7 

genes. Although the pvalue corresponding to the enriched terms is not very significant, 6 of 

15 enriched GO terms are the same as those enriched by the cancer-associated genes. These 

terms are related to the regulation of kinase activity, transferase activity, and phosphate 

related processes. Such information suggests that these biological processes may have close 

relations to cancers.

Comparison with other methods: In the simulation study section, AASC performs the best 

among the methods that assume the underlying module structures are the same, and CRSC is 

most similar to our proposed method. Thus we mainly conducted numerical experiments for 
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this data set with these two methods. For CRSC, in each iteration step, we need to compute 

the eigenvectors of three regularized Laplacian matrices, thus the computation is slow. We 

did k-means clustering for the obtained eigenvectors after 300 iterations, and used the same 

method as that in our proposed method to determine the modules. We finally got one 

module of size 214. This module enriched 108 GO terms and 11 KEGG pathways. There are 

27 common genes in this module and Module 8 of our proposed method. The enrichment 

results are shown in the supplementary materials2. For AASC, we also used the same 

method as that in our method to determine the modules. We obtained 14 modules finally. 

The module information is shown in Table VI. The enrichment results are shown in the 

supplementary materials. Table VII shows the modules that were identified with both AASC 

and our method. ‘Nintersect’ is the number of common genes in the corresponding modules. 

‘Similarity’ is defined as the number of common genes in both modules divided by the 

product of the square root of the number of genes in both modules. Except Module 2, 13 

identified by AASC, all the other modules are also identified by our method, with some of 

them are combined into one module with our method. For example, Module 1 and Module 6 

identified by AASC are all included in Module 8 identified by our method. For the genes in 

Module 2 and 13 identified by AASC, they are distributed in 4 modules when using our 

method, with some genes in these two modules having the same module label. We checked 

the subnetwork connections for all the genes in the 4 modules. There are totally 293 genes, 

of which only 24 genes connected together in all the three networks. And only 14 genes 

coincide with the genes in Module 2 and Module 13 identified by AASC. Because our 

method also considers the module structure in each network these 14 genes are assigned to 

different modules in different networks. Thus our method cannot find this module. By 

adding all the networks together, AASC identifies the modules directly without considering 

the information in each network. For Module 4 identified by our method, AASC cannot find 

it.

2) Gene coexpression networks for different tissues of morbidly obese 
patients

Network construction: This data set collects the gene expression profile of liver, omental 

and subcutaneous adipose tissues of a large sample of morbidly obese individuals (GEO 

Accession number: GSE24294). For simplicity, we focused on the 459 subjects with data 

available for all three tissue types. The original data were measured on 40,638 probes. We 

identified the genes covered by more than one probe and used the mean expression value as 

the expression level of that gene. We then excluded the genes with > 10% missing 

observations and used the mean of the available data to impute the missing values.

After the preprocessing, we got 17,282 common genes of these three tissues. We then 

selected the first 1,800 most differentially expressed genes of each tissue. We used the union 

of these genes to construct the gene coexpression network. The total number of genes is 

2637.

2http://www.math.hkbu.edu.hk/∼mng/bioinformatics/supplementaryfinal.zip
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We used the same method as the previous experiment to construct the gene coexpression 

network. Here, we took the threshold for obtaining the adjacency matrix to be 0.5. With our 

choice, all these three networks have the approximately scale-free property, with the 

greater than 0.9. The average degree of gene coexpression networks for liver, omental and 

subcutaneous adipose tissues is 13.2, 18.7, and 13.0, respectively. Similarly, we removed all 

the common genes with no connections. Finally, each network has a total number of 1873 

genes.

Consistent module analysis: We applied our proposed method to the constructed networks. 

We used the similar technique to process the obtained results, and finally we obtain 11 

modules. The basic information of the modules is shown in Table VIII. Two of the eleven 

modules are complete graphs, with the genes in module 5 belong to the same family. All the 

other modules enrich GO terms, and six of them enrich KEGG pathways. Table IX shows 

the enriched GO terms with pvalue less than 10−6. Fig. 7 shows the structure of modules 3, 4, 

6, 7, 8, and 11. The size of the nodes represents the total degree of the nodes and the width 

of the edges represents the total connections between the corresponding nodes in the three 

networks.

Two complete graph modules include Module 1 and Module 5. Module 1 is a complete 

graph composed of the genes: SAA1, SAA2, SAA3P, and SAA4 in all the three tissues. It 

enriches the GO terms: acute-phase response, acute inflammatory response, inflammatory 

response, response to wounding, and defense response, with the total number of genes 

belonging to these GO terms in our considered data set being 4. SAA is a known protein in 

inflammation-associated reactive amyloidosis (AA-type), whose level in the blood will 

increase in response to various insults. It was also a multifunctional protein probably 

participating in many physiologic and pathologic processes. These genes are expressed in 

the liver [64]. In our analysis, they have the same pattern in both omental and subcutaneous 

adipose tissues as liver. A detailed explanation of this module can be found in [64]. Module 

5 is composed of genes: GAGE3, GAGE4, GAGE5, GAGE6, GAGE7, GAGE7B, and 

GAGE8, which are from the same gene family. These genes are expressed in a variety of 

tumor tissues as shown in the previous section although they are completely silent in normal 

adult tissues, except testis [43], [44]. These genes action similarly to each other for the 

morbidly obese patients.

In the obese situation, oxygen consumption is increased in the obese as a result of the 

metabolic activity of the excess fat and the increased workload on supportive tissues, and in 

exercise, oxygen consumption rises more sharply than in non-obese subjects [65]. High 

inspired fractions of oxygen are required to maintain adequate arterial oxygen tensions. In 

addition, the gas exchange for morbidly obese individuals deteriorates markedly on 

induction of anaesthesia, although usually these people have only a modest defect in gas 

exchange preoperatively. Module 3 enriched the GO terms: oxygen transport, and gas 

transport. Half of the genes carrying out the function of oxygen transport and gas transport 

are in this module.

Circadian rhythmic processes coordinate the timing of the organismal functions at different 

levels such as the molecular, cellular, and behavioral level. It plays an important role in 
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obesity and diabetes [66]. Researchers have found that diet induced obesity may impair 

diurnal rhythms in liver and adipose tissues [67], [66]. In our analysis, Module 7 enriches 

the GO term: rhythmic process. Similar patterns exist in liver, omental, and adipose tissues, 

which implies diet induced obesity may impair diurnal rhythms in omental.

The enriched GO terms for Module 8 are mainly related to lipid, sterol, steroid, and 

cholesterol. In [68], the authors showed that the mice with absence of perilipin, which 

produced obesity-resistant mice, adapted to this altered metabolism through upregulation of 

oxidative catabolic pathways and downregulation of lipid/sterol synthetic pathways to 

dispose of the lipolytic products that contribute to obesity resistance. This, to some extent, 

shows the relations between this module and obesity. Although these experiments are 

conducted on mice, they may have the similar results for the humans.

Obesity is known to impair the immune function and cell-mediated responses. The immune 

cells may infiltrate or populate in adipose tissue and promote a low-grade chronic 

inflammation, which represents the body’s major initial defense mechanism responding to 

injury or infection. Studies suggested that perturbation of inflammation is critically linked to 

nutrient metabolic pathways and to other obesity-associated complications such as insulin 

resistance and type 2 diabetes [69], [70], [71]. Researchers also found that obesity impairs 

wound closure through a vasculogenic mechanism [72]. Module 10 is mainly related to such 

responses as immune response, defense response, inflammatory response, and response to 

wounding, etc. Further study of this module may provide some information on some 

complications with obesity.

Comparison with the known obesity-associated genes: We checked the obesity related 

genes in http://omim.org/entry/601665, and did GO terms and KEGG pathways enrichment 

for this gene list. They enrich 127 GO terms and one KEGG pathway. The enriched KEGG 

pathway is: hsa04080: Neuroactive ligand-receptor interaction, with three of the obesity-

associated genes involving in it. Our identified modules did not enrich this pathway. Among 

the 127 GO terms, 7, 3, 1, and 35 terms are the same as those in Modules 1, 7, 8, and 

Module 10, respectively. The 7 terms in Module 1 are mainly related to negative regulation 

of several responses, such as defense response, and inflammatory response. Along with that 

we have analyzed for this module, the level of the genes in this module may respond to 

obesity, most probably it will increase. The 3 consistent terms in Module 7 are regulation of 

transcription from RNA polymerase II promoter, DNA-dependent positive regulation of 

transcription, and positive regulation of RNA metabolic process. These biological processes 

show that obesity should be related to the start of transcription, and good measures may be 

taken at this step to avoid the obesity. The consistent term in Module 8 is: response to 

organic substance. This shows that the obese people and the normal people may respond 

differently to this biological process, which implies that organic food or not may not the 

cause for obesity. The 35 consistent terms in Module 10 are mainly related to the regulation 

of some processes. This module enriches a total of 447 GO terms. The complex processes 

this module involving in may have close relation with obesity, which should be worth 

further study. Although with our network construction strategy, the obesity related genes are 

not in our considered gene list, our identified modules that most significantly enriching GO 

terms have more common enrichment terms with that of the obesity related genes. This 

Zhang et al. Page 15

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://omim.org/entry/601665


shows that the identified modules with significant enrichment may contain the most useful 

information of obesity. We note that with more considered genes, the results should be more 

informative at the cost of more computational time.

Integration of networks helps informative module identification: Module structures are 

different in the networks for the three tissues. Some densely connected parts in one network 

may be loosely connected or separated in other networks. If we identify the modules 

individually, we will obtain different results. Table X shows the number of enriched GO 

terms for modules in each tissue separately and by network integration. For the modules in 

each tissue separately, we choose the largest connected subnetwork in the module and did 

enrichment analysis. In most cases, network integration gives more enriched GO terms. To 

see the module structure in each tissue clearly, we take Module 7 as an example. Fig. 8 

shows the module structure of Module 7 in the three different tissues, and Fig. 7(d) shows 

the integrated structure of this module. This module has three unconnected parts in liver, and 

two unconnected parts in subcutaneous adipose tissue, which will be considered as different 

modules if we handle them separately. However, the unconnected parts in liver have several 

interconnections in both omental and subcutaneous adipose tissue, and the unconnected 

parts in subcutaneous adipose tissue are densely connected in liver and omental, which leads 

to our identified modules by integration. This shows that integration of networks helps to 

find the densely connected modules appearing in most networks.

IV. CONCLUSIONS

More and more biological networks are available nowadays to study the complex 

interactions between genes, proteins, and other small molecules so as to study the 

mechanisms of diseases. Module describes the most connected elements in a network. It 

helps for system reduction, gene function prediction and annotation, disease related factor 

inference, and others. For example, the cause for some disease may not be isolated genes, 

instead the interactions of these genes lead to it. The previous research on module analysis is 

mainly based on one individual network, which may not be stable due to the noise of the 

data or the model selection in the network construction process. A large amount of data for 

different tissues or for the samples from different origins makes the integration study 

possible. By identifying the consistent modules for multislice networks, we may derive the 

common factors for different cancers, or we may obtain more stable results for some specific 

disease by studying the networks constructed from different tissues. However, this problem 

has not drawn the researchers’ attention until recently, and only few computational methods 

have been developed.

In this paper, we proposed an efficient method to do consistent module identification. Its 

main idea is to combine module identification for each network, and alignment of the 

modules from different networks together. This method is formulated as an optimization 

problem and an approximate computational method based on eigenvector computation is 

proposed. The algorithm shows its effectiveness in consistent module identification. We 

used simulation examples to illustrate the method and applied it to two real data sets. The 

comparisons with other proposed methods shows its good performance. In the networks 

constructed from different cancers, we identified the consistent modules for OV, GBM, and 
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LUSE, which may also exist in other cancers. These modules enrich many GO terms and 

KEGG pathways significantly. The functions of several modules have been addressed by 

other researchers through experimental study. The modules with unknown functions may be 

worth further study. In the networks for different tissues from morbidly obese patients, we 

obtained several modules that have close relation to obesity, some of which have been also 

studied by other researchers. The results of both settings not only show the efficiency of our 

proposed method, but also provide more useful information for cancers and obesity. Our 

method can be applied to more than three networks, and it can be easily extended to 

weighted networks. Its easy implementation and high efficiency may speed the study of 

complex biological networks.
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Fig. 1. 
Module identification from three synthetic gene coexpression networks. The different colors 

show the three modules. (a, b, c): The networks under three different conditions; (d): The 

network with edges including all the edges in the three networks.
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Fig. 2. 
The average identification accuracy for different values of β.
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Fig. 3. 
The 800 largest eigenvalues of the matrix C constructed from the cancer data set.
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Fig. 4. 
Heatmap for Module 2. (a) GBM, (b) OV, (c) LUSC.
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Fig. 5. 
Heatmap for Module 11. (a) GBM, (b) OV, (c) LUSC.
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Fig. 6. 
The identified modules 1, 4, 5, 6, 10, 12 for the networks constructed from humans having 

different cancers. The size of the nodes represents the degree of the node. The width of each 

edge represents its total number among the three cancers.
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Fig. 7. 
The identified modules 3, 4, 6, 7, 8, and 11 for the networks constructed from different 

tissues in morbidly obese patients. The size of the nodes represents the degree of the node. 

The width of each edge represents its total number among the three cancers.

Zhang et al. Page 28

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
The structure of Module 7 in the three different tissues of morbidly obese patients. (a) liver, 

(b) omental, (c) subcutaneous adipose tissue.
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TABLE II

COMPARISON OF THE IDENTIFICATION ACCURACY FOR THE NETWORKS WITH THE SAME 

MODULE SIZES ACROSS DIFFERENT NETWORKS.

Setting P1 P2 P3 P4

AASC 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.01)

CRSC 1.00(0.01) 0.99(0.01) 0.99(0.01) 0.96(0.08)

NMFC 0.96(0.08) 0.97(0.07) 0.97(0.06) 0.98(0.05)

OKLC 0.99(0.01) 0.99(0.01) 0.99(0.01) 0.98(0.03)

Our method 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.01)
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TABLE III

COMPARISON OF THE IDENTIFICATION ACCURACY FOR THE NETWORKS WITH DIFFERENT 

MODULE SIZES ACROSS DIFFERENT NETWORKS.

Setting P1 P2 P3 P4

AASC 0.72(0.01) 0.71(0.01) 0.72(0.01) 0.72(0.01)

CRSC 0.73(0.00) 0.73(0.01) 0.72(0.01) 0.72(0.01)

NMFC 0.69(0.08) 0.68(0.03) 0.66(0.04) 0.65(0.04)

OKLC 0.67(0.10) 0.68(0.08) 0.66(0.09) 0.65(0.10)

Our method 1.00(0.00) 0.98(0.01) 0.93(0.08) 0.80(0.13)
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TABLE IV

MODULE INFORMATION FOR MULTIPLE CANCERS

Module Size Density NGO NKEGG

Module 1 12 0.6566 15 1

Module 2 6 1.0000 NA NA

Module 3 41 0.6858 104 4

Module 4 14 0.4359 7 0

Module 5 11 0.8788 2 0

Module 6 7 0.6190 15 2

Module 7 8 0.6310 0 0

Module 8 217 0.2033 262 20

Module 9 7 1.0000 0 0

Module 10 11 0.7697 2 0

Module 11 6 1.0000 NA NA

Module 12 6 0.6858 9 0

Module 13 77 0.7412 16 3
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TABLE V

GENE ONTOLOGY ENRICHMENT OF THE MODULES FOR THE THREE CANCERS

Module Enriched GO terms % pvalue

Module 1 GO:0006334 nucleosome assembly 100 8.83E-21

GO:0031497 chromatin assembly 100 1.23E-20

GO:0065004 protein-DNA complex assembly 100 1.88E-20

GO:0034728 nucleosome organization 100 2.31E-20

GO:0006323 DNA packaging 100 1.98E-19

GO:0006333 chromatin assembly or disassembly 100 4.25E-19

GO:0034622 cellular macromolecular complex assembly 100 1.96E-15

GO:0034621 cellular macromolecular complex subunit organization 100 5.62E-15

GO:0006325 chromatin organization 100 9.46E-15

GO:0051276 chromosome organization 100 9.11E-14

GO:0065003 macromolecular complex assembly 100 1.59E-12

GO:0043933 macromolecular complex subunit organization 100 2.88E-12

Module 3 GO:0000278 mitotic cell cycle 57.14 1.31E-22

GO:0022403 cell cycle phase 57.14 1.12E-21

GO:0007049 cell cycle 65.71 4.43E-21

GO:0022402 cell cycle process 60.00 1.01E-20

GO:0000279 M phase 51.43 4.62E-20

GO:0000280 nuclear division 45.71 2.14E-19

GO:0007067 mitosis 45.71 2.14E-19

GO:0000087 M phase of mitotic cell cycle 45.71 2.82E-19

GO:0048285 organelle fission 45.71 3.94E-19

GO:0051301 cell division 40.00 2.81E-14

GO:0051726 regulation of cell cycle 40.00 1.24E-13

GO:0007346 regulation of mitotic cell cycle 28.57 3.67E-11

Module 8 GO:0006955 immune response 46.20 3.70E-62

GO:0006952 defense response 37.43 5.36E-46

GO:0006954 inflammatory response 23.98 1.89E-31

GO:0009611 response to wounding 26.90 1.94E-28

GO:0009615 response to virus 10.53 2.00E-15

GO:0006959 humoral immune response 9.36 4.56E-15

GO:0006935 chemotaxis 11.70 7.23E-15

GO:0042330 taxis 11.70 7.23E-15

GO:0002504 antigen processing and presentation of peptide or polysaccharide antigen via MHC class II 7.02 2.49E-14

GO:0002252 immune effector process 10.53 6.84E-14

GO:0019882 antigen processing and presentation 8.77 2.16E-13

GO:0002684 positive regulation of immune system process 12.28 1.04E-12

GO:0045087 innate immune response 9.94 1.60E-12

GO:0007626 locomotory behavior 12.87 1.61E-12
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Module Enriched GO terms % pvalue

GO:0050778 positive regulation of immune response 9.94 3.48E-12

GO:0002449 lymphocyte mediated immunity 7.60 9.84E-12

GO:0019724 B cell mediated immunity 7.02 1.55E-11

GO:0002250 adaptive immune response 7.60 3.19E-11

GO:0002460 adaptive immune response based on somatic recombination of immune receptors built from 
immunoglobulin superfamily domains

7.60 3.19E-11

GO:0002526 acute inflammatory response 8.19 3.85E-11

Module 13 GO:0006955 immune response 40 1.19E-14
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TABLE VI

MODULE INFORMATION FOR MULTIPLE CANCERS WITH AASC

Module Size Density NGO NKEGG

Module 1 26 0.6708 5 2

Module 2 6 0.8000 8 2

Module 3 68 0.7869 1 0

Module 4 11 0.8788 2 0

Module 5 41 0.6858 104 4

Module 6 7 1.0000 5 0

Module 7 6 0.7111 16 1

Module 8 7 1.0000 0 0

Module 9 9 1.0000 2 0

Module 10 6 1.0000 NA NA

Module 11 6 1.0000 NA NA

Module 12 12 0.6566 15 1

Module 13 25 0.5122 11 7

Module 14 332 0.1316 304 23
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TABLE VII

COMMON MODULES OBTAINED WITH OUR METHOD AND AASC

Our method AASC Nintersect Similarity

Module 1 Module 12 12 1.0000

Module 2 Module 10 6 1.0000

Module 3 Module 5 41 1.0000

Module 5 Module 4 11 1.0000

Module 8 Module 14 151 0.5625

Module 9 Module 8 7 1.0000

Module 10 Module 9 9 0.9045

Module 11 Module 11 6 1.0000

Module 12 Module 7 4 0.6667

Module 8 Module 1 26 0.3461

Module 8 Module 6 6 0.1663

Module 13 Module 3 61 0.8430
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TABLE VIII

MODULE INFORMATION FOR THE MORBIDLY OBESE PATIENTS

Module Size Density NGO NKEGG

Module 1 4 1.0000 65 0

Module 2 67 0.1728 12 1

Module 3 11 0.4545 2 0

Module 4 9 0.6111 1 0

Module 5 7 1.0000 NA NA

Module 6 6 0.5778 8 0

Module 7 13 0.2265 16 1

Module 8 12 0.2525 16 6

Module 9 73 0.1752 32 5

Module 10 385 0.1226 447 27

Module 11 6 0.8444 1 1
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TABLE IX

GENE ONTOLOGY ENRICHMENT OF THE MODULES FOR THE MORBIDLY OBESE PATIENTS’ 

EXPRESSION DATA

Module Enriched GO terms % pvalue

Module 1 GO:000695 acute-phase response 100 2.39E-08

GO:0002526 acute inflammatory response 100 3.69E-07

Module 3 GO:0015671 oxygen transport 50 3.58E-11

GO:0015669 gas transport 50 1.53E-10

Module 7 GO:0048511 rhythmic process 41.67 9.29E-07

Module 8 GO:0008610 lipid biosynthetic process 83.33 2.26E-15

GO:0016126 sterol biosynthetic process 50 1.08E-11

GO:0006694 steroid biosynthetic process 50 1.07E-09

GO:0006695 cholesterol biosynthetic process 41.67 1.34E-09

GO:0008203 cholesterol metabolic process 50 1.61E-09

GO:0016125 sterol metabolic process 50 2.58E-09

GO:0008202 steroid metabolic process 50 8.48E-08

GO:0055114 oxidation reduction 58.33 8.07E-07

Module 10 GO:0006955 immune response 31.94 2.49E-68

GO:0006952 defense response 23.89 2.70E-43

GO:0006954 inflammatory response 16.94 1.85E-37

GO:0009611 response to wounding 20.28 7.40E-36

GO:0042330 taxis 10.83 4.59E-28

GO:0006935 chemotaxis 10.83 4.59E-28

GO:0007626 locomotory behavior 11.39 4.14E-21

GO:0007610 behavior 13.89 2.60E-19

GO:0002684 positive regulation of immune system process 8.89 4.20E-15

GO:0001775 cell activation 8.61 4.10E-12

GO:0009617 response to bacterium 6.67 1.05E-10

GO:0050900 leukocyte migration 3.89 4.01E-10

GO:0050865 regulation of cell activation 6.11 6.16E-10

GO:0046649 lymphocyte activation 6.39 1.16E-09

GO:0006928 cell motion 10 1.18E-09

GO:0002252 immune effector process 5.28 1.71E-09

GO:0045321 leukocyte activation 6.94 1.84E-09

GO:0006959 humoral immune response 4.17 2.91E-09

GO:0042110 T cell activation 5 4.57E-09

GO:0030595 leukocyte chemotaxis 3.06 7.40E-09

GO:0002694 regulation of leukocyte activation 5.56 9.11E-09

GO:0006968 cellular defense response 3.61 1.16E-08

GO:0060326 cell chemotaxis 3.06 1.30E-08
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Module Enriched GO terms % pvalue

GO:0050867 positive regulation of cell activation 4.44 3.67E-08

GO:0051249 regulation of lymphocyte activation 5 5.30E-08

GO:0002443 leukocyte mediated immunity 3.89 7.82E-08

GO:0002237 response to molecule of bacterial origin 3.89 7.82E-08

GO:0042108 positive regulation of cytokine biosynthetic process 3.06 1.11E-07

GO:0042035 regulation of cytokine biosynthetic process 3.61 1.12E-07

GO:0042127 regulation of cell proliferation 12.22 1.12E-07

GO:0048584 positive regulation of response to stimulus 6.11 1.29E-07

GO:0002696 positive regulation of leukocyte activation 4.17 1.41E-07

GO:0001817 regulation of cytokine production 5.28 1.98E-07

GO:0051384 response to glucocorticoid stimulus 3.61 2.04E-07

GO:0019882 antigen processing and presentation 3.61 4.11E-07

GO:0031960 response to corticosteroid stimulus 3.61 5.35E-07

GO:0002697 regulation of immune effector process 3.89 5.38E-07
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TABLE X

THE NUMBER OF ENRICHED GO TERMS FOR MODULES IN EACH TISSUE SEPARATELY AND 

BY NETWORK INTEGRATION

Module liver omental tissue subcutaneous adipose integration

Module 2 6 12 14 12

Module 3 2 2 2 2

Module 4 1 1 0 1

Module 6 8 8 8 8

Module 7 0 16 5 16

Module 8 16 10 10 16

Module 9 22 36 35 32

Module 10 384 434 447 447

Module 11 1 1 1 1
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