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Abstract—Gene set testing has become an indispensable tool for the analysis of high-dimensional genomic data. An important

motivation for testing gene sets, rather than individual genomic variables, is to improve statistical power by reducing the number of

tested hypotheses. Given the dramatic growth in common gene set collections, however, testing is often performed with nearly as

many gene sets as underlying genomic variables. To address the challenge to statistical power posed by large gene set collections, we

have developed spectral gene set filtering (SGSF), a novel technique for independent filtering of gene set collections prior to gene set

testing. The SGSF method uses as a filter statistic the p-value measuring the statistical significance of the association between each

gene set and the sample principal components (PCs), taking into account the significance of the associated eigenvalues. Because this

filter statistic is independent of standard gene set test statistics under the null hypothesis but dependent under the alternative, the

proportion of enriched gene sets is increased without impacting the type I error rate. As shown using simulated and real gene

expression data, the SGSF algorithm accurately filters gene sets unrelated to the experimental outcome resulting in significantly

increased gene set testing power.

Index Terms—Gene set testing, gene set enrichment, screening-testing, principal component analysis, random matrix theory, Tracy-Widom

Ç

1 INTRODUCTION

GENE set testing has become a critical component in the
pipeline used to analyze and interpret high-dimensional

genomic data [1], [2]. Gene set testing enables researchers to
step back from the single gene level and explore associations
between biologically meaningful groups of genes and clini-
cally relevant variables. A test based on the aggregate effect of
a set of functionally related genomic variables offers a number
of important benefits relative to individual gene tests inc-
luding improved statistical power, more intuitive biological
interpretation anddecreased variability across distinct experi-
mental datasets. The genomic variables of interest typically
represent the abundance or variation of nucleic acid mole-
cules associated with specific genes, e.g. expression levels of
mRNA molecules, and the variable sets are defined on the
basis of commonbiological function, e.g., all geneswhose pro-
tein products are active in a specific pathway. Over the past
decade, significant progress has been made building and
extending gene set collections [3], [4], [5] and developing, test-
ing and refining statistical gene set testingmethods [6], [7], [8].

One of the primary motivations for gene set testing is to
improve statistical power via a reduction in the number
of tested hypotheses relative to single gene analysis. The
significant growth in gene set collections, however, can

often result in gene set testing being performed with nearly
as many (and sometimes even more) gene sets than original
genomic variables. For example, a version of the gene ontol-
ogy (GO) [3] loaded on September 16, 2014 into the AmiGO
browser [9] has 39,908 non-obsolete terms in the biological
process, cellular component and molecular function ontolo-
gies with the biological process ontology alone containing
26,501 terms, numbers of gene sets that exceed the number
of genes in any relevant experimental organism. Even the
much more aggressively filtered molecular signatures data-
base (MSigDB) [5] has grown in size by an order of magni-
tude between 2005 to 2014 from approximately 1,000 gene
sets to over 10,000 with the 4.0 release. The growth in the
number of gene sets in these collections is also frequently at
the expense of gene set quality with an increasing level of
overlap between gene sets and a large proportion of new
annotations generated via fully automated methods without
any curatorial review or experimental validation. For exam-
ple, well over 90 percent of all GO annotations have the evi-
dence code IEA (inferred from electronic annotation),
meaning the annotation was generated by a computational
method such as sequence similarity and has not been
reviewed by a human curator [10]. Therefore, not only does
gene set testing with large collections fail to deliver an
improvement in statistical power, but the decline in annota-
tion quality and higher gene set interdependency can also
compromise the biological relevance and interpretability of
any associations that are discovered.

The typical approach for addressing the problem of gene
set collection size is either to use pre-existing collection sub-
sets, e.g., standard GO Slims [11] or the MSigDB C5 collec-
tion that filters out GO terms with IEA evidence codes [5],
or to create custom collection subsets that match a specific
use case, e.g., custom GO Slim generation [9]. Although
the use of data-independent subsets addresses the issue of
collection size and the subsets may closely align with the
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domain of investigation, the process of selecting a subset is
inherently subjective and thus susceptible to researcher
bias. Gene sets not believed to be relevant will not be tested
with the result that novel associations may never be found.
For hierarchical gene set collections such as GO, methods
have also been developed that reduce the number of tested
gene sets by using information theoretic measures [12], [13]
or by computing the association for gene sets higher in the
hierarchy conditional on the results for child gene sets [14],
[15], [16], [17]. Although such GO-specific methods are
effective at addressing the significant overlap between GO
term annotations, they are specific to hierarchical gene set
collections and, for those based on a specific data set, use a
criteria for filtering is not independent of the statistic used
to test gene set enrichment.

Ideally, the members of a gene set collection subset
should be selected based on characteristics of the empirical
data under investigation. Such data-driven filtering of
hypotheses has been successfully practiced in the context of
genomic data analysis at the single gene level [18], [19], [20].
In this type of application, a two-stage procedure is followed
where, in the first stage, a filter statistic is computed for each
genomic variable, e.g., overall variance, and then, in the sec-
ond stage, the desired statistical analysis is performed on
just the set of dependent variables whose filtering statistic
passes a given threshold. As detailed by Bourgon et al., such
filtering methods can only be successful at improving power
in the second stage if the filter statistic is both independent
of the second stage test statistic under the null hypothesis
(H0) and dependent under the alternative hypothesis (HA).
In other words, if the test statistics follow the null hypothesis
distribution, they must be statistically independent of the fil-
ter statistics and, if the test statistics follow the alternative
hypothesis distribution, the test and filter statistics must be
associated. Bourgon et al. refer to filtering methods that
meet these requirements as independent filters and the filter
statistics as marginally independent filter statistics.

Although data-driven filtering of individual genomic
variables has been advocated for gene set testing [21] and
empirical methods have been developed to filter out spe-
cific annotations [22], effective independent filters are not
currently available that operate on entire gene sets prior to
gene set testing. To address both this shortcoming and the
challenge posed by large, interdependent and low quality
gene set collections, we have developed spectral gene set
filtering (SGSF), a novel technique for independent filtering
of gene set collections prior to standard gene set testing.
The SGSF method uses as a filter statistic the p-value mea-
suring the statistical significance of the association between
each gene set and the principal components (PCs) of an
empirical data set, taking into account the significance of
the eigenvalue associated with each PC. Because this filter
statistic is independent of standard gene set enrichment
test statistics under H0, which we prove in the Appendix,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2015.2415815, but dependent under HA, the propor-
tion of significantly enriched gene sets is increased without
impacting the type I error rate. Using simulated gene sets
with simulated data and MSigDB collections with microar-
ray gene expression data from leukemia and heart failure

studies, we show that the SGSF algorithm can significantly
increase gene set enrichment power by accurately filtering
gene sets unrelated to the experimental outcome.

2 METHODS

2.1 SGSF Inputs

The SGSF method operates over the following three data
structures:

1) An n� p data matrix X quantifying p genomic vari-
ables under n experimental conditions. The genomic
data held in X, e.g., mRNA expression levels, will
be modeled as a sample of n independent observa-
tions from a p-dimensional random vector x. It is
assumed that any desired transformations on X
have been performed and that missing values have
been imputed or removed. For the purpose of prov-
ing the marginal independence of the spectral gene
set enrichment (SGSE) filter (see the Appendix
available in the online supplemental material), it
is assumed that the distribution of x can be app-
roximated by a multivariate normal distribution
(MVNðmm;SSÞ with correlation matrix P). This distri-
butional assumption is often well justified since
sources of genomic data, especially gene expression
data, typically follow a multivariate normal distri-
bution after appropriate transformations. A general-
ization to the exponential family of distributions is
planned for future work.

2) An n� 1 vector y of clinical phenotype values mea-
sured at each of the n experimental conditions. The
phenotype values held in y, e.g., binary case/con-
trol status, will be modeled as known constants.
The term “phenotype” should be interpreted quite
broadly in this context and simply refers to a exper-
imental variable that is treated as an independent
variable in statistical models (see Section 2.2.3). If
multiple phenotype variables exist, it is possible to
use a matrix Y along with the specification of
appropriate parameter contrasts (see, for example,
Wu and Smyth [8]).

3) An f � p binary annotation matrix A that specifies
the annotation of the p genomic variables to f func-
tional categories. The rows of A represent f biologi-
cal categories, e.g., Kyoto Encyclopedia of Genes and
Genomes (KEGG) [4] pathways or GO categories,
and the elements ai;j hold indicator variables whose
value depends on whether an annotation exists
between the function i and genomic variable j.

2.2 SGSF Algorithm

The SGSF method identifies a subset of the gene sets defined
by A using a non-specific and independent filter based on
the statistical significance of the association between each
gene set and the spectra of X. Application of the SGSF
method in the context of gene set enrichment relative to the
variable y involves the following steps, which are illustrated
schematically in Figure explained in greater detail in
Sections 2.2.1 through 2.2.3 below.
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1) Use the spectral gene set enrichment method [23] to
compute filter statistics, Fi; i ¼ 1; . . . f , for each of the
f gene sets defined by A.

2) Use the filter statistics to subset the f gene sets.
3) Test the association between the gene sets that pass

the filter and y.

2.2.1 Computation of Filter Statistics Using SGSE

The SGSE method [23] is used to compute the filter sta-
tistics, Fi, for the gene sets defined by A. Specifically, Fi is
set to the p-value generated by SGSE for gene set i accord-
ing to the statistical significance of the association between
gene set i and the PCs of X under a competitive null
hypothesis. Computation of spectral enrichment p-values
by the SGSE method is realized by the following steps as
illustrated in Fig. 1a (see Frost et al. [23] for complete details
on the SGSE method):

1) Perform PCA on a mean centered and standardized
version ofX, ~X.

2) Determine q, the number of PCs used to represent
the spectra of X. This can be all PCs with non-zero
variance, all PCs that are statistically significant
according to the Tracy-Widom test [25] at a specific a
level or a fixed number of PCs. For SGSF, the default
configuration uses all PCs with non-zero variance.
Although computational more expensive, this option

avoids dependence on a subjectively selected a level
or specific q value.

3) For all q PCs, use the principal component gene set
enrichment (PCGSE) method [26] to compute the
statistical significance of the association between
each PC and each of the f gene sets defined byA. The
PCGSE method computes a p-value for each gene set
via two-stage competitive gene set testing in which
the correlation between each gene and each PC is
used as a gene-level statistic with flexible choice of
both the gene set test statistic and the method used to
compute the null distribution of the gene set statistic.
For SGSF, the default configuration uses the Fisher-
transformed Pearson correlation coefficient between
each gene and each PC as the gene-level test statistic
and computes the statistical significance of the associ-
ation between a gene set and a PC using a correlation-
adjusted two-sided, two-sample t-test between the
gene-level test statistics for genes in the set and the
test statistics for genes not in the set. See Frost et al.
[26] for complete details on the PCGSEmethod.

4) Compute the statistical significance of the association
between each of the f gene sets and the spectra of X
using the weighted Z-method [27], [28] on the q
PCGSE p-values with weights based on the PC var-
iances scaled according to PC statistical significance
as quantified by the lower-tailed p-value from the

Fig. 1. SGSF workflow. (a) Screening portion of the SGSF workflow. Takes the data matrix X and gene set annotation matrix A as inputs, computes
filter statistics, Fi, using the SGSE method and then filters A to generateA�. (b) Testing portion of the SGSF workflow. Based on the gene set testing
workflow in Ackermann and Strimmer [24]. Takes the phenotype values y, data matrix X and filtered gene set annotation matrix A� as inputs and
computes the association between each gene set in the filtered collection and the phenotype using a competitive gene set testing method where the
gene set test statistics, Sk, have a t-distribution underH0.
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Tracy-Widom test [25]. An important result from
the field of random matrix theory (RMT), the Tracy-
Widom law of order 1 distribution describes the varia-
tion of a scaled and centered version of the largest
eigenvalue of the sample covariance matrix for multi-
variate normal data under the null model of an iden-
tity population covariance matrix (a so-called white
Wishart distribution). Using the lower-tailed p-value
from the Tracy-Widom test as a weight therefore in
the weighted Z-method thus discounts the contribu-
tion from all PCs whose eigenvalues are not signifi-
cantly different from what would be expected under
a null model of an identity population covariance
matrix. Please see Frost et al. [23] for a more detailed
background on the Tracy-Widom distribution and its
use in the SGSEmethod.

2.2.2 Gene Set Collection Filtering

Given filter statistics, Fi; i ¼ 1; . . . ; f , a subset of the gene
sets defined by the matrix A of size f� < f can be identified
using the following steps as illustrated in Fig. 1a:

1) Order the filter statistics from smallest to largest.
2) Select the f� gene sets corresponding to the first f�

filter statistics in the ordered list. The number f� can
be either a fixed number, e.g., f� ¼ :1f , or can be set
according to a specified filter statistic threshold a,

i.e., f� ¼ Pf
i¼1 1ðFi < aÞ.

3) Generate a matrix A� that contains just the rows of A
corresponding to the f� gene sets that pass the filter.

2.2.3 Gene Set Testing Using Filtered Gene Sets

It is assumed that testing of the association between each of
the f� gene sets and the phenotype variable y is performed
using a two-stage, competitive gene set testing method, e.g.,
CAMERA [8], using the following steps as illustrated in
Fig. 1b:

1) Model the relationship between the genomic varia-
bles in x and the phenotype y using a series of p uni-
variate linear models of the form xi � b0 þ b1yþ "".
If multiple phenotype variables exist, a contrast of
model coefficients must also be specified. Note:
if a non-Gaussian exponential family distribution is
assumed for x, then a set of generalized linear models
would be used instead, however, the current paper
considers only the Gaussian case and linearmodels.

2) Compute gene-level test statistics, zj; j ¼ 1; . . . ; p,
from each of the p univariate models. The t-statistic

associated with b̂1 is a typical choice. CAMERA uses
a normalized t-statistic.

3) Use the gene-level test statistics to generate gene set
test statistics, Si, for each of the f� gene sets. The
mean difference test statistic, which follows a t-dis-
tribution under H0, is a common choice: Si ¼ ð�zi �
�zicÞ=ðsp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mi

� 1
p�mi

q
Þ, wheremi is the number of geno-

mic variables in set i, �zi is the mean of the zj for
members of gene set i, �zic is the mean of the zj for
genes not in set i and sp is the pooled standard

deviation of the zj. CAMERA uses a correlation-
adjusted version of the mean difference statistic.

4) Determine the statistical significance of the gene-
level test statistics under null hypothesis that the
zj for genomic variables in the gene set are identi-
cally distributed to the zj for genomic variables not
in the gene set. CAMERA determines statistical
significance using a two-sample t-test on the corre-
lation-adjusted mean difference statistic. Many
other two-stage competitive gene set testing meth-
ods use permutation of y to calculate a p-value.

2.3 SGSF Evaluation

2.3.1 Alternative Gene Set Filtering Methods

To enable a comparative assessment of our SGSF method,
two alternative methods for computing the filter statistics,
Fi, were considered:

1) Set Fi to the p-values generated by the SGSE method
when executed with weights for the PCGSE p-values
in the weighted Z-method set to the PC variance.

2) Set Fi to the p-values generated according to a x2 test
of independence of gene set membership relative to
variable clusters. Specifically, this method generates
p-values by:
a) Clustering the p genomic variables in ~X using k-

means clustering with the Hartigan and Wong
algorithm [29], five restarts and k set according
to the global maximum of the gap statistic [30] as
computed using the clusGap() function in the
cluster R package [31] with the number of boot-
strap resamples defaulting to 100.

b) Computing the statistical significance of the
association between each of the f gene sets
defined in A and the k-means clustering using

Pearson’s x2 test of independence on a 2� k con-
tingency table whose first row holds the counts
of gene set members in each of the k clusters
and whose second row holds the total size of
each of the k clusters.

2.3.2 Evaluation Using Simulated Gene Sets

and Simulated Data

The standard SGSF method described in Section 2.2 and
both alternative filtering methods outlined in Section 2.3.1
were used to filter gene sets defined by a simulated annota-
tion matrix A using 1,000 simulated data sets each com-
prised by a matrix X and vector y generated according to
the latent component model outlined in Sections 4.1 and 4.2
of Paul et al. [32]. The primary simulation was performed
using the following parameter settings:

� A was generated as a 60� 2;400 matrix defining 60
disjoint gene sets, each of size 40.

� X was generated as a 30� 2;400 matrix via the

model X ¼ P4
i¼1

ffiffiffiffiffi
�i

p
viu

T
i þ s0E where ll ¼ ð3; 2:5;

2; 1:5ÞT , vi � N30ð0; IÞ, ui ¼
ffiffiffiffiffiffiffiffiffi
:025

p
ai (ai is the ith row

of A), s0 ¼ :1 and E is a 30� 300 matrix with i.i.d
Nð0; 1Þ entries.
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� y was generated as a 30� 1 vector via the model

y ¼ P4
i¼1

ffiffiffiffiffi
bi

p
vi þ s1z where bb ¼ ð0; 1; 0; 0ÞT , s1 ¼ 2

and z � N30ð0; IÞ.
To test the sensitivity of the SGSF method to changes in

gene set size, error variance (i.e., s0) and latent factor
weights (i.e., ll), simulations were also performed using
the following additional six parameter settings. For each of
these additional simulations, all parameters were held
constant at the values listed above except the indicated
parameter:

1) Awas generated as a 120� 2;400matrix defining 120
disjoint gene sets, each of size 20.

2) A was generated as a 40� 2;400 matrix defining 40
disjoint gene sets, each of size 60.

3) s0 ¼ 0:05
4) s0 ¼ 0:2
5) ll ¼ ð2; 1:75; 1:5; 1:25ÞT
6) ll ¼ ð5; 4; 3; 2ÞT :

According to all simulation models, the first four simulated
gene sets are associated with each of the four latent factors
and, consequently, the first four PCs. Only the second latent
factor, and, thus, only the second gene set, is associated with

y. For the filtering method based on the x2 test on variable
clusters, the number of clusters was fixed at k ¼ 4 rather
than estimated using the gap statistic, which should give
this method an advantage since k-means will be executed
for the exact number of latent factors used to simulated X.
The CAMERA method of Wu and Smyth [8] was used to
test the statistical association between X and y for the gene
sets inA before and after filtering according to a competitive
H0. The enrichment power for each of the three filtering
methods at a range of filter proportions was computed by
taking the ratio of the number of truly enriched gene sets to
the total number of gene sets with enrichment false discov-
ery rate (FDR) values (as computed using the method of
Benjamini and Hochberg [33]) below .2. The average enrich-
ment power for each filter proportion was computed by sim-
ply averaging across all 1,000 simulated data sets.

2.3.3 Evaluation Using Armstrong et al. Leukemia

Gene Expression Data and MSigDB C2 v4.0

Gene Sets

The standard SGSF method and both alternative filtering
methods were used to filter theMSigDB C2 v4.0 gene sets for
the Armstrong et al. [34] leukemia gene expression data used
in the 2005 GSEA paper [6]. The MSigDB C2 v4.0 gene sets
and collapsed leukemia gene expression data were both
downloaded from the MSigDB repository. With a minimum
gene set size of 15 and maximum gene set size of 200, 3,076
gene sets out of the original 4,722 were used in the analysis.
For SGSF filtering, the SGSE method [23] was executed on
the leukemia gene expression data using all PCs with non-
zero eigenvalues and default settings as specified in Section
2.2.1. By filtering all gene sets with SGSE-generated p-values
greater than .1, the standard SGSFmethod reduced the origi-
nal 3,076 gene sets to 83. The two alternative filtering meth-
ods were executed using the default settings as outlined in
Section 2.3.1 (k¼ 10was selected as optimal by the gap statis-
tic test). To enable comparison between the three techniques,

filtering via the alternative methods was configured to main-
tain the 83 gene sets with the best filter statistics. Enrichment
of the MSigDB C2 gene sets was computed using CAMERA
[8] with default settings and gene-wise test statistics calcu-
lated via the linear regression of the gene expression
value on the acute myeloid leukemia (AML) versus acute
lymphoblastic leukemia (ALL) phenotype. FDR values were
computed using for both unfiltered and filtered subsets of
p-values using themethod of Benjamini andHochberg [33].

2.3.4 Evaluation Using BiKE Carotid Plaque Gene

Expression Data and MSigDB C2 v4.0 Gene Sets

The MSigDB C2 v4.0 gene sets were also filtered for the
carotid plaque gene expression data used by Fokersen et al.
[35]. Folkersen et al. analyzed the microarray gene expres-
sion data from 126 carotid plaque samples gathered from
patients during the course of carotid endarterectomies and
obtained from the Biobank of Karolinska Endarterectomies
(BiKE). An ischemic event was experienced by 25 out of the
126 patients (seven myocardial infarctions and 18 ischemic
strokes) during a mean follow-up period of 1,333 days. For
SGSF filtering, the BiKE carotid plaque gene expression
data generated using the Affymetrix Human Genome U133
Plus 2.0 Array was retrieved from the gene expression
omnibus (GEO) [36] as GSE21545 using a GEO2R generated
script. This script created a single expression value for each
gene following the procedure outlined in Folkersen et al.
(i.e., the mean of the log2-transformed expression measure-
ments for all probes associated with the same gene symbo).
Using a minimum gene set size of 5 and a maximum gene
set size of 200, 4,185 MSigDB C2 v4.0 gene sets out of the
original 4,722 were used in the analysis. The SGSE method
[23] was executed on the plaque gene expression data using
all PCs with non-zero eigenvalues and default settings as
specified in Section 2.2.1. By filtering all MSigDB C2 gene
sets with SGSE-generated p-values greater than .1, the SGSF
method reduced the original collection of 4,185 gene sets to
just 14. Similar to the Armstrong et al. example, the two
alternative filtering methods were also executed using the
default settings as outlined in Section 2.3.1 (k ¼ 10 was
selected as optimal by the gap statistic test). To enable com-
parison between the three techniques, filtering via the alter-
native methods was again configured to maintain the same
number of gene sets retained by the SGSF method, i.e., the
14 gene sets with the best filter statistics. Enrichment of the
MSigDB C2 gene sets was computed using CAMERA [8]
with default settings and gene-wise test statistics calculated
via the linear regression of the gene expression value on the
binary ischemic event or no ischemic event phenotype.
Alternatively, univariate Cox proportional hazard models,
as employed in Folkersen et al., could be used to compute
gene-wise test statistics for gene set enrichment. Linear
regression against the binary ischemic event phenotype was
chosen for simplicity and compatibility with CAMERA.

3 RESULTS AND DISCUSSION

3.1 Simulation Example

Fig. 2 illustrates the comparative performance of SGSF filter-
ing and the two alternative filtering methods detailed in
Section 2.3.1 for the simulation example outlined in Section
2.3.2. As seen in Fig. 2a, when no gene sets are filtered (filter
proportion of 0), the behavior of all filtering methods is
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identical to no filtering and all techniques have an average
gene set enrichment power, computed as detailed in Section
2.3.2, of approximately 0:4 across the 1,000 simulated data
sets. As the proportion of filtered gene sets increases, average
enrichment power quickly drops to near 0 when filtering is

based on the Pearson x2 p-value computed between gene set
membership and k-means clusters of the variables. The poor
performance of cluster enrichment in this example is due to
the inability of k-means clustering to correctly recover the
structure of the latent factors. Filtering according to the SGSE
p-values computed using PC variance weighting also exhib-
its a rapid drop in average enrichment performance as the fil-
tering proportion increases. Poor performance in this case is
due to the significant impact of lower variance PCs (i.e., PCs
unassociated with the four latent factors and representing
only noise) on the SGSE computed p-value via the weighted
Z-method, as seen in Fig. 2b. In contrast, filtering according
to the standard SGSF method (i.e., filter statistics set to SGSE
p-values with weights based on the product of PC variance
and the lower-tailed Tracy-Widom p-value for the PC vari-
ance) is able to achieve average enrichment power that is
greater than or equal to that achieved without filtering at all
filtering proportions. This is due to the fact that the Tracy-
Widom p-values completely discount contributions from all
PCs not associated with the four latent factors, as seen in
Fig. 2b. In this simulation example, the best average enrich-
ment for the SGSFmethod is obtainedwhen 90 percent of the
simulated gene sets are filtered.

Results for the other six simulated parameter settings
are contained in the Supplemental Material file, available
online, and show a similar pattern of superior performance
for the SGSF method compared to the alternative methods.
These additional simulations demonstrate the robustness of
the SGSF method to the tested variations in gene set size,
error variance and latent factor weights.

3.2 Leukemia Gene Expression Example

Fig. 3 illustrates the significant improvement in gene set
enrichment power that is possible when using variance-
based filter statistics. Without any filtering, the distribution
of gene set enrichment p-values computed via CAMERA rel-
ative to the AML versus ALL phenotype is consistent with
the null hypothesis, i.e., the p-values are approximately
Uð0; 1Þ distributed. Although both alternative filtering meth-
ods improve enrichment power, as evidenced by the increase
in the relative number of small p-values, their performance is
dominated by the standard SGSF method. The specific
impact of filtering on enrichment power can be seen in
Table 1, which contains the gene set enrichment FDR q-val-
ues for the 25 MSigDB gene sets with the most significant
enrichment p-values. Although some of these gene sets, e.g.,
GOLUB_ALL_VS_AML_DN, are clearly related to the phe-
notype, without filtering all gene sets appear to have no asso-
ciation after multiple hypothesis correction. The alternative
filtering methods represent an improvement on the no filter-
ing case and deliver either one or two biologically plausible
gene set associations at an FDR cutoff of .2. For this example,
the SGSF method is clearly the most successful at improving
enrichment powerwith 10 out of the top 25 gene sets retained
at an FDR level below .2.

The SGSF method is effective in this example for two rea-
sons: first, the SGSF filter is independent of the CAMERA
gene set enrichment test statistic underH0, as proved in Sec-
tion A and, second, the SGSF filter is associated with the
AML versus ALL phenotypes under HA. Marginal indepen-
dence of the filter statistic enables filtering to increase the rel-
ative proportion of significant p-values without increasing
the type I error rate. The association between the SGSF filter
statistic and the AML versus ALL phenotype, which is nicely
illustrated in Fig. 4 of Frost et al. [26], enables filtering to
selectively retain significantly associated gene sets. The

Fig. 2. Enrichment power for simulation example. (a) Estimated enrichment power at different filtering proportions averaged over 1,000 simula-
tions of the model detailed in Section 2.3.2 filtering according to the chi-squared test against k-means computed variable clusters for k ¼ 4 (solid),
filtering of the gene sets according to the SGSE p-values computed using PC variance weighting (dashed line) and filtering of the according to the
SGSE p-value computed with the product of variance and the Tracy-Widom p-value as weighting (dotted line). Note that all methods have identical
enrichment power when no filtering is performed and that, for this simulation study, filtering according to both the chi-squared p-value and SGSE-
based p-value for PC variance weighting generated 0 empirical power for all other filter proportions (the lines for these two methods therefore
overlap). (b) Average weights used with the SGSE method to combine PCGSE-generated p-values for the first 10 PCs of the simulation example
via the weighted Z-method. Weights based on the PC variance are shown via a dashed line and weights based on the product of the PC variance
and the lower-tailed Tracy-Widom p-value for the PC variance are shown via a dotted line. Grey error bars in (a) and (b) represent �1 SE.
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Fig. 3. MSigDB C2 filtering for Armstrong et al. leukemia gene expression data. Quantile-quantile plot of Uð0; 1Þ versus the gene set enrichment p-val-
ues computed via CAMERA for the unfiltered and filtered MSigDB C2 v4.0 gene sets and the Armstrong et al. leukemia gene expression data using
AML versus ALL status as a binary phenotype as detailed in Section 2.3.3.

TABLE 1
The 25 MSigDB C2 v4.0 Gene Sets with the Most Statistically Significant Association with AML versus ALL Status

as Computed via CAMERA for the Armstrong et al. Leukemia Gene Expression Data

Gene set Direction GSE
p-value

Unfiltered
q-value

x2

q-value
SGSE var.

filtered q-value
SGSE TW-var.
filtered q-value

TONG_INTERACT_WITH_PTTG1 AML 0.00117 0.914 - 0.0971 0.0576
GOLUB_ALL_VS_AML_DN AML 0.00139 0.914 - - 0.0576
HADDAD_B_LYMPHOCYTE_PROGENITOR ALL 0.00141 0.914 0.117 - -
VERRECCHIA_EARLY_RESPONSE_TO_TGFB1 AML 0.00234 0.914 - - -
NAKAJIMA_MAST_CELL AML 0.00239 0.914 - - -
VERRECCHIA_RESPONSE_TO_TGFB1_C2 AML 0.00273 0.914 - - -
GUENTHER_GROWTH_SPHERICAL_VS_ADHERENT_DN AML 0.00299 0.914 - - -
CHEOK_RESPONSE_TO_HD_MTX_UP AML 0.00398 0.914 - 0.165 0.11
HUPER_BREAST_BASAL_VS_LUMINAL_UP AML 0.004 0.914 - - -
ALONSO_METASTASIS_NEURAL_UP AML 0.0042 0.914 - - -
GOLUB_ALL_VS_AML_UP ALL 0.00492 0.914 - - -
BIOCARTA_DC_PATHWAY AML 0.00687 0.914 - - -
LEE_LIVER_CANCER_E2F1_UP AML 0.00776 0.914 - - 0.116
KIM_ALL_DISORDERS_CALB1_CORR_DN AML 0.009 0.914 - - -
TONKS_TARGETS_OF_RUNX1_RUNX1T1_FUSION_HS... AML 0.00961 0.914 - - 0.116
SABATES_COLORECTAL_ADENOMA_UP AML 0.00965 0.914 - - -
REACTOME_CELL_SURFACE_INTERACTIONS_AT_TH... AML 0.0102 0.914 - - 0.116
WANG_BARRETTS_ESOPHAGUS_AND_ESOPHAGUS_CA... AML 0.0111 0.914 - - 0.116
HILLION_HMGA1B_TARGETS AML 0.0112 0.914 - 0.228 0.116
MADAN_DPPA4_TARGETS AML 0.012 0.914 - - -
KLEIN_PRIMARY_EFFUSION_LYMPHOMA_DN ALL 0.0125 0.914 - - -
REACTOME_REGULATION_OF_INSULIN_LIKE_GROW... AML 0.0138 0.914 - 0.228 0.116
PID_UPA_UPAR_PATHWAY AML 0.0139 0.914 - - -
VERHAAK_AML_WITH_NPM1_MUTATED_UP AML 0.014 0.914 0.422 - 0.116
YAO_HOXA10_TARGETS_VIA_PROGESTERONE_UP AML 0.0146 0.914 - - -

The table columns display the gene set enrichment direction, the phenotype enrichment p-value computed via CAMERA, the FDR q-value computed using all
tested MSigDB C2 v4.0 gene sets and the FDR q-value computed using each of the tested filtering methods as detailed in Section 2.3.3. If filtering according to a
specific method failed to include a specific gene set, the table includes a “-” in place of a q-value.
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broader relevance of this class of gene set filters for improv-
ing gene set enrichment power in cancer gene expression
studies is supported by the finding of Gorlov et al. [37] that
genes with large expression variance among cancer cases are
more likely to play an important role in tumor-genesis.

3.3 Carotid Plaque Gene Expression Example

Fig. 4 illustrates the impact of filtering on gene set enrich-
ment power for the MSigDB C2 v4.0 gene sets and BiKE
carotid plaque gene expression data. In this case, the

distribution of gene set enrichment p-values computed by
CAMERA relative to the ischemic event phenotype is
approximately Uð0; 1Þ distributed for no filtering and for
each of the alternative filtering methods. Only for SGSF fil-
tering is there a visible improvement in enrichment power.
In contrast to the leukemia gene expression results shown
in Table 1, it is was not feasible to show filtering results for
the gene sets with the most significant phenotype enrich-
ment p-values since none of the filtering methods retained
any within the top 25. Instead, Table 2 displays the 14

Fig. 4. MSigDB C2 filtering for BiKE carotid plaque gene expression data. Quantile-quantile plot of Uð0; 1Þ versus the gene set enrichment p-values
computed via CAMERA for the unfiltered and filtered MSigDB C2 v4.0 gene sets and the BiKE carotid plaque gene expression data using ischemic
event versus no ischemic event as a binary phenotype as detailed in Section 2.3.4.

TABLE 2
The 14 MSigDB C2 v4.0 Gene Sets Retained by SGSF Filtering for the BiKE Carotid Plaque Gene Expression Data

Gene set Direction GSE
p-value

Unfiltered
q-value

x2

q-value
SGSE var.

filtered q-value
SGSE TW-var.
filtered q-value

BHAT_ESR1_TARGETS_VIA_AKT1_DN no event 0.115 0.958 - - 0.488

HEDENFALK_BREAST_CANCER_BRACX_DN no event 0.124 0.958 - - 0.488

BHAT_ESR1_TARGETS_NOT_VIA_AKT1_DN no event 0.135 0.958 - - 0.488

KEGG_ADHERENS_JUNCTION no event 0.179 0.958 - - 0.488

ST_INTEGRIN_SIGNALING_PATHWAY no event 0.204 0.958 - - 0.488

STARK_PREFRONTAL_CORTEX_22Q11_DELETION_U... no event 0.224 0.958 - - 0.488

BIOCARTA_TGFB_PATHWAY no event 0.244 0.958 - - 0.488

PID_ALK2PATHWAY no event 0.324 0.958 - 0.785 0.5

CARD_MIR302A_TARGETS no event 0.369 0.958 - - 0.5

IVANOVA_HEMATOPOIESIS_STEM_CELL_SHORT_TE... no event 0.386 0.958 - 0.785 0.5

WATANABE_COLON_CANCER_MSI_VS_MSS_DN ischemic event 0.393 0.958 - 0.785 0.5

REACTOME_CREB_PHOSPHORYLATION_THROUGH_TH... ischemic event 0.459 0.958 - 0.788 0.535

DONATO_CELL_CYCLE_TRETINOIN no event 0.865 0.98 - 0.932 0.932

REACTOME_NCAM1_INTERACTIONS ischemic event 0.99 0.998 - - 0.99

The table columns display the gene set enrichment direction, the phenotype enrichment p-value computed via CAMERA, the FDR q-value computed using all
tested MSigDB C2 v4.0 gene sets and the FDR q-value computed using each of the tested filtering methods as detailed in Section 2.3.4. If filtering according to a
specific method failed to include a specific gene set, the table includes a “-” in place of a q-value.
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MSigDB gene sets retained by the SGSF method. Although
the most significant FDR q-values after SGSF filtering are
only slightly below .5, these q-values are supportive of fur-
ther investigation since they indicate that approximately
half of the reported associations at this level are likely true.
In fact, seven of the 10 most significant gene sets in Table 2
have reported associations with atherosclerosis. Specifically,
for the BHAT_ESR1_TARGETS_VIA_AKT1_DN and BHA-

T_ESR1_TARGETS_NOT_VIA_AKT1_DN gene sets, an asso-
ciation has been reported between ESR1 genetic variants
and the development of atherosclerotic lesions [38]; for
KEGG_ADHERENS_JUNCTION, there is evidence that junc-
tion adherens molecules are involved in atherosclerotic
lesion formation through control of endothelial permeabil-
ity, leukocyte recruitment and platelet deposition [39], [40];
for T_INTEGRIN_SIGNALING_PATHWAY, integrin signal-
ing pathways have been implicated in atherosclerotic lesion
development via endothelial cell activation [41]; for BIO-

CARTA_TGFB_PATHWAY, TGF-b plays a key role in the
development of atherosclerosis via control of the fibroproli-
ferative response to tissue damage [42]; for PID_ALK2-

PATHWAY, the Alk2 signaling pathway is involved
endothelial cell activation via interaction with bone mor-
phogenic proteins [43]; for CARD_MIR302A_TARGETS,
miR-302a has been implicated in lipoprotein metabolism
and atherosclerosis risk [44].

4 CONCLUSION

Gene set testing is a powerful analytical tool that can
improve statistical power, biological interpretation and
experimental replication. Because of the significant growth
in gene set collections, however, the potential gains in statis-
tical power are lost unless some form of gene set filtering is
employed. Although the use of predefined collection sub-
sets effectively reduces the number of tested hypotheses,
this approach is subjective and vulnerable to researcher
bias. Ideally, gene sets collections should be filtered accord-
ing to statistics of the data under investigation. For such a
data-driven filter to successfully improve power, the filter
statistic must be marginally independent, i.e., independent
of the test statistic under H0 and dependent under HA.
Although independent filters have been identified and suc-
cessfully utilized for univariate genomic analysis, effective
independent filters have not been available that operate on
gene sets in the context of gene set testing.

To address this gap, we developed spectral gene set fil-
tering, a novel technique for independent filtering of gene
set collections prior to gene set testing. The SGSF method
uses as a filter statistic p-values measuring the statistical sig-
nificance of the association between each gene set and the
principal components of an empirical data set, taking into
account the significance of the eigenvalue associated with
each PC. The SGSF method is effective in any experimental
context where the variance structure of genomic variables is
associated with the experimental outcome of interest under
the alternative hypothesis. Because this filter statistic is
independent of standard gene set enrichment test statistics
under H0, the proportion of significantly enriched gene
sets is increased without impacting the type I error rate. As
shown using simulated gene sets with simulated data and
MSigDB collections with microarray gene expression data,

the SGSF algorithm accurately filters gene sets unrelated
to the experimental outcome resulting in significantly incre-
ased gene set enrichment power.

Limitations of the SGSF method include the dependence
on a multivariate normal distribution for the genomic data
to prove the marginal independence of the filter statistic
and, importantly, the requirement for power improvement
that the gene sets enriched within the variance structure of
the data, as detected by the SGSE method, are also associ-
ated with the clinical outcome under the alternative hypoth-
esis. Although this later requirement has been found to
hold well for cancer gene expression data [37], further test-
ing with different clinical endpoints and different types of
genomic data will be essential to determine the generality of
the SGSF approach.

AVAILABILITY

The MSigDB C2 v4.0 gene sets can be downloaded from
http://www.broadinstitute.org/gsea/msigdb/collections.
jsp. The Armstrong et al. [34] leukemia gene expression data
can be downloaded from http://www.broadinstitute.org/
gsea/datasets.jsp. The BiKE carotid plaque gene expression
data [35] can be downloaded from GEO at http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21545. An
implementation of the SGSE algorithm used to compute the
SGSF filter statistic is available in the PCGSE R package (ver-
sion � 0:2, http://cran.r-project.org/web/packages/
PCGSE/index.html). Due to the dependency on the Biocon-
ductor package safe, it is recommended that PCGSE be
installed using the biocLite() function. At the R prompt, enter:

source(’’http://bioconductor.org/biocLite.

R’’)

biocLite(’’PCGSE’’)
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