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A Comparison Study for DNA Motif Modeling on
Protein Binding Microarray

Ka-Chun Wong, Yue Li, Chengbin Peng, Hau-San Wong

Abstract—Transcription Factor Binding Sites (TFBSs) are
relatively short (5-15 bp) and degenerate. Identifying them
is a computationally challenging task. In particular, Protein
Binding Microarray (PBM) is a high-throughput platform that
can measure the DNA binding preference of a protein in a
comprehensive and unbiased manner; for instance, a typical PBM
experiment can measure binding signal intensities of a protein
to all possible DNA k-mers (k=8~10). Since proteins can often
bind to DNA with different binding intensities, one of the major
challenges is to build motif models which can fully capture the
quantitative binding affinity data.

To learn DNA motif models from the non-convex objective
function landscape, several optimization methods are compared
and applied to the PBM motif model building problem. In
particular, representative methods from different optimization
paradigms have been chosen for modeling performance com-
parison on hundreds of PBM datasets. The results suggest
that the multimodal optimization methods are very effective for
capturing the binding preference information from PBM data.
In particular, we observe a general performance improvement
using di-nucleotide modeling over mono-nucleotide modeling. In
addition, the models learned by the best-performing method are
applied to two independent applications: PBM probe rotation
testing and ChIP-Seq peak sequence prediction, demonstrating
its biological applicability.

Index Terms—Transcription Factor Binding Site, Genetic Al-
gorithm, Crowding, Ranking, Protein Binding Microarray

I. INTRODUCTION

HE DNA binding of various modulatory transcription

factors (TF) onto cis-regulatory DNA elements near
genes in human and other eukaryotes is one of the gene
regulation mechanism. Binding of different combinations of
TFs may result in a gene being expressed in different tissues
or at different developmental stages. To fully understand
a gene’s function, it is essential to identify the TFs that
regulate the gene and the corresponding TF binding sites
(TFBS). Traditionally, these regulatory sites were determined
by labor-intensive experiments such as DNA footprinting or
gel-shift assays. Various computational approaches have been
developed to predict TF binding sites in silico. Detailed
comparisons can be found in the survey by Tompa et al.
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[1]. TFBS are relatively short (5-15 bp) and highly degen-
erate sequence motifs, which makes their effective identifi-
cation a computationally challenging task. A number of high-
throughput experimental technologies were developed recently
to determine protein-DNA binding such as protein binding
microarray (PBM) [2]], chromatin immunoprecipitation (ChIP)
followed by microarray or sequencing (ChIP-Chip or ChIP-
Seq) [3], [4], microfluidic affinity analysis [3]], and protein
microarray assays [6]], [7]]. In contrast, unfortunately, it is still
difficult and time-consuming to extract the high-resolution 3D
protein-DNA (e.g. TF-TFBS ) complex structures with X-Ray
Crystallography [8]] or Nuclear Magnetic Resonance (NMR)
spectroscopic analysis [9].

The technology of Chromatin immunoprecipitation (ChIP)
followed by microarray or sequencing (ChIP-Chip [3] and
ChIP-Seq [4]) measures the binding occupancy of a particular
TF to the nucleotide sequences of co-regulated genes on a
genome-wide basis in vivo, but at low resolution. Further
processing are needed to extract precise TFBSs [10]. On the
other hand, in vitro techniques such as protein binding microar-
ray (PBM) [2], microfluidic affinity analysis [3]], and protein
microarray assays [6], [7] enable us to measure the DNA
sequence binding of TFs in vitro completely. In particular, the
protein binding microarray (PBM) was developed to measure
the binding preference of a protein to a complete set of k-
mers in vitro [2]. The PBM data resolution is unprecedentedly
high, comparing with the other traditional techniques. It has
also been shown to be largely consistent with those generated
by in vivo genome-wide location analysis (ChIP-Chip and
ChIP-Seq) [2]. As a result, researchers have applied this
technique onto many transcription factors, and a large amount
of PBM data has been being accumulated and deposited to the
UniProbe database [11].

In recent years, the Encyclopedia of DNA Elements (EN-
CODE) project has revealed genome-wide TFBS locations
on human genomes in 2011 [12]]. The drastically decreasing
cost of sequencing enables the 1000 Genomes Project to be
completed, resulting in an integrated map of genetic variation
from 1,092 human genomes published in 2012 [13]. Those
massive genomic data call for accurate DNA motif modeling
techniques in TFBS sequence pattern recognition.

Traditional approaches that rely on cut-offs are no longer
adequate. Robust and probabilistic methods were developed
to take into account those quantitative affinity data. In light
of that, Seed and Wobble has been proposed as a seed-based
approach using rank statistics [2]. RankMotif++ was proposed
to maximize the log likelihood of their probabilistic model of
binding preferences [14]]. MatrixREDUCE was proposed to
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perform forward variable selections to minimize the sum of
squared deviations [[15]. MDScan was proposed to combine
two search strategies together, namely word enumeration and
position-specific weight matrix updating [10]. PREGO was
proposed to maximize the Spearman rank correlation between
the predicted and the actual binding intensities of ChIP-Chip
data [16]. Herd clustering was proposed for multiple TFBS
motif elucidation on PBM data [17]].

Given a set of DNA sequences, PBM can be used to mea-
sure their binding signal intensities for a given DNA-binding
protein. Specifically, each probe sequence is associated with a
normalized signal intensity value. The higher the normalized
signal intensity, the stronger is the binding preference of the
DNA-binding protein to the corresponding probe sequences.
It should be noted that the actual mathematical relationship
between the real binding affinity and the normalized sig-
nal intensity is unknown since it still depends on specific
experimental settings [14]. Given such data, our goal is to
uncover a motif model which can summarize and represent
the DNA binding preference of the DNA-binding protein. The
most common motif models are matrix models which assume
independence between adjacent motif positions, justified by
the experimental and theoretical statistical mechanical study
[L8]. Although a recent attempt has been made to generalize
matrix models, the insertion and deletion operations between
adjacent nucleotide positions are still challenging [19]. In
this work, we describe our efforts in comparing different
approaches to learn DNA motif models for ranking motif
instances on PBM data.

II. PROBLEM DESCRIPTION

For each PBM dataset, we are given a set of DNA sequences
{seq1, seqa, ..., seqy } and the corresponding normalized signal
intensity values {1, I, ..., I,,} (e.g. Array #1). Following the
PBM data analysis convention, we refer to such type of input
dataset as an array in this manuscript. To extract informative
motif data, a sliding window of length & is used to scan each
DNA sequence (and its reverse complement) in order to count
and record the normalized signal intensity values for each
k-mer. Once all the DNA sequences are scanned, a list of
normalized signal intensity values is obtained for each k-mer
that is present in those DNA sequences. The median of the list
is calculated as the median signal intensity i, for each k-mer
Sm. Among those k-mers, some are motif instances (positive
k-mers) while the others are just background k-mers. Robust
estimate procedures proposed in RankMotif++ [14] can then
be applied to learn the positive k-mers. Nonetheless, it has
been pointed out that such a robust procedure may not be
suitable for all proteins [20]]. In light of that, the highly ranked
k-mers are regarded as the positive k-mers in this study.

After a set of positive k-mers were selected, they are aligned
using a multiple sequence alignment method. The aligned
k-mers are then input for training a motif matrix model to
represent the binding preferences of the DNA-binding protein
of interest, using evolutionary algorithms.

In this study, we aim at evolving motif models which can
truly capture the information from PBM data, reflecting the

true binding sequence preferences of DNA-binding proteins.
In particular, we seek to evolve matrix models to accurately
rank the median signal intensities of positive k-mers. In
summary, the problem is formulated as follows:

Input: A set of aligned DNA k-mers with their median signal

intensities D = {(81, ,ul), (82, [1,2), (337 /,63)7 ey (S]u, ,u,]y[)} of
length L where s, is the mth aligned DNA k-mer with its
median signal intensity pu,,. Each aligned DNA k-mer s,
can be represented as S;, = Sy,15m2...5mr Where sp,, is the
p-th nucleotide of s,,:

Smp € {A,C, G, T, —}
vm e {1,2,...M},Vp e {1,2,...,L}

QOutput: A matrix model © trained to represent the input
aligned k-mers D such that the objective function, Spear-
man rank correlation coefficient between the predicted scores
{S6(sm),¥Ym € {1,2,..., M }} and the actual median binding
intensities{ pt,, vm € {1,2, ..., M}} of the input aligned k-
mers D, is maximized:

argmaxf @ D EM ((Xm_X)(Ym_?))
® S (X - X2 (- ¥

..Z

i€{A,C,G,T,~}
0<©; <1Vie{ACGT, -}, Vje{l,2, .., L}

@ij =1Vje {1,2,...,L}

where X, is the rank of Sg (sm) and Y, is the rank of fi,,.
X and Y are the average ranks and the function Seo(s,,) is
defined as follows:

HJ liciacer- }63"”72
Hj:l Hz’:{A,C,G,T,—} Bz[gw_L]

where B; is the occurring fraction of the ¢th nucleotide in all
the background sequences [21]].

So(sm) =log

III. METHODOLOGY

We note that past literature usually focus on recognizing
motif consensus patterns which is not our major theme here.
Our main focus is to learn models to fit regressions on the
ranks of the top k-mers from PBM. To solve the problem, we
apply and compare different optimization methods on PBM
benchmark datasets.

In this section, we briefly review and describe the opti-
mization methods which we have applied to the proposed
problem (See “Problem Description”), including interior point
method [22]], genetic algorithm [23]], differential evolution
[24], crowding genetic algorithm [25], and crowding differ-
ential evolution [25]. Those methods are selected to represent
different algorithmic paradigms. For instance, interior point
method represents the line search optimization paradigm [26];
genetic algorithm represents the nature-inspired optimization
paradigm [27]]; differential evolution represents the stochastic
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beam search optimization paradigm [28]]; crowding differen-
tial evolution and crowding genetic algorithm represent the
multimodal optimization paradigm [29].

A. Interior Point Method (IPM)

Assuming function convexity, line search numerical opti-
mization techniques have been proved successful in different
applications , for example, gradient descent and Newton’s
method [26]. In particular, the Interior Point Method (IPM)
is considered as the state-of-the-arts numerical optimization
technique to optimize nonlinear functions with linear con-
straints [22]]. Briefly, instead of traversing the surface of
feasible regions, it traverses from the interior points of feasible
regions to reach an optimal solution. Such a strategy enables
the interior point method to handle multiple sparse linear
constraints effectively, making it suitable for this study since
the proposed porblem here also has multiple sparse linear
constraints (See “Problem Description”).

B. Genetic Algorithm (GA)

Nonetheless, the existing real world problems are seldom
convex [23]. To circumvent the issue, drawing inspiration from
the nature, Genetic Algorithm (GA) is proposed. Comparing
to traditional algorithms, its parallel search capability and
stochastic nature enable it to excel in search performance
in a unique way [30]. A genetic algorithm usually starts
with a randomly initialized population. The population then
evolves across several generations. In each generation, fit
individuals are selected to become parent individuals. They
cross-over with each other to generate new individuals, which
are subsequently called offspring individuals. Randomly se-
lected offspring individuals then undergo certain mutations.
After that, the algorithm selects the optimal individuals for
survival to the next generation according to the survival
selection scheme designed in advance. For instance, under the
overlapping population scheme [31]], both parent and offspring
populations participate in the survival selection. Otherwise,
only the offspring population will participate in the survival
selection. The selected individuals then survive to the next
generation. Such a procedure is repeated again until certain
termination condition is met [32]. In this study, we follow the
unified approach proposed by De Jong to implement GA [31].

C. Differential Evolution (DE)

Differential Evolution (DE) was first proposed by Price and
Storn in the 1990s [33]. It demonstrated great potential for
real function optimization in the subsequent contests [24].
For each individual in a generation, the algorithm randomly
selects three individuals to form a trial vector. One individual
forms a base vector, whereas the value difference between
the other two individuals forms a difference vector. The sum
of those two vectors forms a trial vector, which recombines
with the individual to form an offspring. Replacing the typical
crossover and mutation operation by this trial vector gener-
ation, manual parameter tuning of crossover and mutation is
no longer needed. It can provide differential evolution a self-
organizing ability and high adaptability for choosing suitable

step sizes which demonstrated its potential for continuous
optimization in the past contests [27]. A self-organizing ability
is granted for moving toward the optima. A high adaptability
is achieved for optimizing different landscapes [34]]. With
such self-adaptability, differential evolution is considered as
one of the most powerful evolutionary algorithms for real
function optimization. For example, mechanical engineering
design [35] and nuclear reactor core design [36].

D. Crowding DE (CDE) and Crowding GA (CGA)

Although the above, people pointed out that most of the
existing algorithms can be easily trapped in local optima. To
extend their capabilities, Thomsen [25] incorporated crowding
techniques [37]] into differential evolution (CDE) and genetic
algorithm (CGA) for diversity-preserving and multimodal op-
timization. For all offspring in each generation, they can only
replace the most similar individuals. Although an intensive
computation is accompanied, it can effectively transform them
into new and effective algorithms specialized for multimodal
optimization [38]]. To determine the dissimilarity (or distance)
between two individuals, the dissimilarity measurement pro-
posed by Goldberg and Richardson [39] and Li et al. [40] is
adopted. The distance between two individuals is based on
their Euclidean distance. The smaller the distance, the more
similar they are and vice versa.

IV. BENCHMARKING
A. Data Sources

We have adopted the PBM datasets from [14]]. Specifically,
the PBM datasets focus on five proteins of interest. For each
protein, we have two array sets of DNA probe sequences, i.e.
array #1 and array #2. Each DNA probe sequence on the
array is associated with a normalized signal intensity value.
The higher the value, the higher is the binding preference
of a DNA-binding protein to that DNA sequence. For each
DNA-binding protein, the two arrays (data replicates) are both
used for performance comparison. In particular, we seek to
examine how each method can rank the aligned input k-
mers accurately (i.e. Spearman rank correlation coefficient in
“Problem Description”). For the sake of completeness, the
PBM microarray data provided in the comprehensive mouse
PBM dataset repository [41] have also been adopted.

B. Parameter Setting

All methods are implemented in MATLAB codes with
the default floating point number representation. Progressive
multiple alignment is adopted (MATLAB function: multialign
with terminal gaps adjusted option); each pair-wise alignment
is done with the NUC44 scoring matrix [42]. After that, pair-
wise distances between sequences are computed by counting
the proportion of sites at which each pair of sequences are
similar and different using NUC44 (ignoring gaps). Assuming
equal variance and independence of evolutionary distance
estimates, the guide tree is calculated by the neighbor-joining
method. For all evolutionary computation methods, population
type is overlapping [31]]. Population size is set to 50. For
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population initialization, half of individuals (i.e. 25 individ-
uals) are set to the top 25 aligned k-mers while the other
half are randomly generated. On each dataset, we have run
each method 30 times to estimate their overall performance.
Regarding about the termination condition, as mentioned in
the previous study [38]], different algorithms perform different
operations in one generation, it is unfair to set the termination
condition as the number of generations. Alternatively, it is also
unfair to adopt CPU time because it substantially depends
on the implementation techniques for different algorithms.
For instance, the sorting techniques to find elitists and the
programming languages used. In contrast, objective function
evaluation is always the performance bottleneck [43] [ﬂ Thus
the termination condition is set to 1000 and 10000 objec-
tive function evaluations in this study. Uniform nucleotide
background distribution is adopted to compute the fitness
function since the k-mers are from PBM. Numerical finite
difference method is adopted to approximate gradients for
the interior point method. For all genetic algorithm methods,
block crossover and intermediate crossover can be chosen. The
crossover probability is set to 0.8 while mutation probability
is set to 0.05. Gaussian mutation with step size 0.5 is applied
[31]. Parent selection is set to stochastic uniform selection.
For GA, deterministic binary tournament and roulette-wheel
(ak.a. fitness proportional) selection can be chosen for survival
selection; For CGA, crowding selection is used for survival
selection. For all differential evolution methods, crossover
probability is set to 0.8 while the trial vector coefficient F
is set to 0.9. For crowding-based methods, crowding factor is
set to the population size, avoiding replacement errors.

C. Performance Comparison

Having set the parameters, we have run each method on
each dataset for 30 times. For each run, the best individual
model is selected as the final model which is then evaluated its
ability to rank the input aligned k-mers. For each dataset, we
have calculated the mean and standard deviation of the 30 runs
for each method. Especially, a naming scheme is proposed to
denote different versions of GA and CGA. GA(block,FP) de-
notes the GA with block crossovers and fitness proportional se-
lection; GA(block,DBT) denotes the GA with block crossovers
and deterministic binary tournament; CGA(block) denotes
the CGA with block crossovers and crowding selection;
GA(numeric,FP) denotes the GA with intermediate crossovers
and fitness proportional selection; GA(numeric,DBT) denotes
the GA with intermediate crossovers and deterministic binary
tournament; CGA(numeric) denotes the CGA with intermedi-
ate crossovers and crowding selection.

1) Mono-nucleotide modeling: The results at 1000 objec-
tive function evaluations are depicted in Fig. [l From the
results at 1000 fitness function evaluations, we can have
several observations. (1) The numeric crossover operator (i.e.
intermediate crossover) is found beneficial to the overall
performance. If we compare the GAs with block crossovers
to the GAs with intermediate crossovers, we can observe an

'For example, over ten hours are needed to evaluate a calculation in
computational fluid dynamics [44]

PV
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Fig. 1. Performance histograms of different methods applied to mono-
nucleotide motif modeling at 1000 and 10000 objective function evalua-
tions. The vertical axis denotes the number of datasets falling into each
mean performance bin, while the horizontal axis denotes the mean per-
formance bins (Spearman rank correlation). GA(block,FP) denotes the GA
with block crossovers and fitness proportional selection; GA(block,DBT)
denotes the GA with block crossovers and deterministic binary tournament;
CGA(block) denotes the CGA with block crossovers and crowding selection;
GA(numeric,FP) denotes the GA with intermediate crossovers and fitness
proportional selection; GA(numeric,DBT) denotes the GA with intermediate
crossovers and deterministic binary tournament; CGA(numeric) denotes the
CGA with intermediate crossovers and crowding selection

overall increase in the mean performance if the intermedi-
ate crossover operator is used. (2) Although both CDE and
CGA(numeric) both adopt numeric operators, CGA(numeric)
methods show better performance than CDE at 1000 objec-
tive function evaluations. (3) Fitness proportional selection is
worse than the other selections. If we compare the GAs with
fitness proportional selection to the GAs with deterministic
binary tournament and crowding selection, a decrease in mean
performance is observed. A possible explanation is that fitness
proportional selection is stochastic, resulting in replacement
errors [34]. On the other hand, the other selection methods are
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deterministic such that replacement errors can be avoided. (4)
GA(numeric,DBT) and CGA(numeric) perform the best, while
IPM performs the worst on the datasets. It is surprising be-
cause IPM is one of the state-of-the-art numerical optimization
method but even the simplest method (DE) can still performs
better than it, indicating the non-convexity of the objective
function. Another possible reason is that IPM spend too many
function evaluations to compute numerical gradients.

On the other hand, we observe that most of the methods
have not reached their maximal performance for ranking k-
mers on the datasets at 1000 objective function evaluations;
for instance, only less than 10% datasets can achieve the
mean of Spearman rank correlation coefficients larger than 0.8.
Thus we have relaxed the termination condition to be ten-fold
(10000 evaluations). The results at 10000 objective function
evaluations are also depicted in Fig. E} From the results, we
also have several observations. (1) The overall performance
of most methods are enhanced after we have relaxed the
termination condition except IPM and GA(numeric,FP). The
performance of IPM and GA(numeric,FP) have been inhib-
ited due to function non-convexity and replacement errors
respectively as described in the previous text. (2) The best-
performing methods are DE, CDE, and CGA(block), while
the worst one is still IPM. (3) In contrast to the observation
at 1000 evaluations, CDE show better performance than CDE
at 10000 evaluations, reflecting the relative long-term compet-
itiveness of CDE. (4) With the relaxed termination condition,
the long-term advantages of block crossover operators can
now be observed. The GA methods with block crossovers
demonstrate better performance than the previous setting (1000
evaluations). They can even show comparable results with the
other methods.

To investigate the relationships between different methods
under different termination conditions (1000 and 10000 ob-
jective function evaluations), we have drawn a scatter plot to
visualize and compare the methods’ performance at 1000 and
10000 evaluations in Fig. [2] From the figure, we can observe
that most of the methods perform better at 10000 evaluations
than the reciprocal cases at 1000 evaluations (except IPM
and GA(numeric,FP)). It is expected since the methods are
given more evaluations for their convergence. IPM does not
perform well because it assumes function convexity which
is not realistic and applicable to the problem here. On the
other hand, the GA(numeric,FP) involves the combination
of intermediate crossover operators and fitness proportional
selection. The intermediate crossover operators are known to
promote incremental convergence which can deepen the effects
of replacement errors induced by fitness proportional selection
[45]].

2) Di-nucleotide modeling: In the previous section, we
have focused on mono-nucleotide motif modeling which is the
most common motif model. It assumes independence between
adjacent motif positions, as justified by the experimental and
theoretical statistical mechanical study [18]. Nonetheless, it
is well-known that adjacent nucleotide dependency exists in
some DNA motifs [20]. Thus a recent attempt has been made
to generalize the model to handle di-nucleotide representations
[L9]. In this study, we try to apply and compare the methods
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I
N
T

Spearman Rank Cor
o
N
:
.
+
+ .
S .
F o L
N . o .
2 o Do
o RS
S RN
508 .
P 0 .
S 2.
PN .
<
<
<
%
< O
<><> SO &
<>
<
SO O

Baseline

o
&
L 5 & +
03 & 848 o & 8 v S ok
< “  CDE
¢ GA(block,FP)
GA(block,DBT)
4 0800 00 o CGA(:I:)ck)
01 [t oo 0 & GA(numeric,FP)
jéF £ $\ i £ GA{numeric,DBT)
0 Hh | ) - |
0 0.2 0.4 06 0.8 1

lation at 1000 evaluati

Spearman Rank Cor

Fig. 2. Scatter plot for comparing the performance values at 1000 function
evaluations and the performance values at 10000 function evaluations under
mono-nucleotide motif modeling. Each dot denotes a single method’s per-
formance on a single dataset. The vertical axis is the mean performance at
10000 evaluations, while the horizontal axis is the mean performance at 1000
evaluations. The solid line denotes the baseline on which the performance at
1000 and that at 10000 evaluations are the same.

to build di-nucleotide motif models to solve the PBM motif
ranking problem.

The di-nucleotide modeling results at 1000 objective func-
tion evaluations are depicted in Fig. 3] From the figure,
we can observe the phenomenon similar to the reciprocal
mono-nucleotide modeling results in Fig. [T} for instance,
GA(numeric,DBT) and CGA(numeric) still performs the best
while IPM is the worst one. Block crossovers still don’t have
enough evaluations to unleash its long-term competitiveness.
Fitness proportion selection is still not found beneficial to
solve the problem. CGA performs better than CDE, although
their methodology are similar to each other.

Similar to mono-nucleotide modeling, we observe that most
of the methods have not reached their maximal performance
for ranking k-mers on the datasets at 1000 objective function
evaluations. Thus we have relaxed the termination condition
to be ten-fold (10000 evaluations). The results at 10000
objective function evaluations are depicted on Fig. [3] (details
can be found in supplementary materials). From Fig. [3| we
can observe that the results are largely consistent with the
reciprocal mono-nucleotide modeling results in Fig. [I] with
some differences which are described one by one as follows:
(1) GA(block,FP) performs even poorer than GA(numeric,FP)
which is not observed in mono-nucleotide modeling, imply-
ing that the replacement errors induced by fitness propor-
tional selection are disastrous for di-nucleotide modeling. (2)
CGA(numeric) becomes the best-performing method for di-
nucleotide modeling, beating DE and CDE which are the best
methods for mono-nucleotide modeling at 10000 evaluations.
In particular, CGA(numeric) can achieve good ranking per-
formance (Spearman rank correlation coefficients> 0.75) on
about 90% of the datasets.

To investigate the relationships between different methods
under different termination conditions (1000 and 10000 ob-
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Fig. 3. Performance histograms of different methods applied to di-nucleotide
motif modeling at 1000 and 10000 objective function evaluations. The vertical
axis denotes the number of datasets falling into each mean performance
bin, while the horizontal axis denotes the mean performance bins (Spearman
rank correlation). GA(block,FP) denotes the GA with block crossovers and
fitness proportional selection; GA(block,DBT) denotes the GA with block
crossovers and deterministic binary tournament; CGA(block) denotes the
CGA with block crossovers and crowding selection; GA(numeric,FP) denotes
the GA with intermediate crossovers and fitness proportional selection;
GA(numeric,DBT) denotes the GA with intermediate crossovers and determin-
istic binary tournament; CGA(numeric) denotes the CGA with intermediate
crossovers and crowding selection

jective function evaluations), we have drawn a scatter plot to
visualize and compare the methods’ performance at 1000 and
10000 evaluations in Fig. ] From the figure, we can observe
that a sharper improvement trend than the improvement trend
observed under mono-nucleotide modeling in Fig. 2} One
of the possible explanations is that the degree of freedom
under di-nucleotide modeling is much bigger than that under
mono-nucleotide modeling. It can enable diverse optimization
methods to find their own ways to optimize the objective
function smoothly.

at 10000
e o o o
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Fig. 4. Scatter plot for comparing the performance values at 1000 function
evaluations and the performance values at 10000 function evaluations under
di-nucleotide motif modeling. Each dot denotes a single method’s performance
on a single dataset. The vertical axis is the mean performance at 10000
evaluations, while the horizontal axis is the mean performance at 1000
evaluations. The solid line denotes the baseline on which the performance
at 1000 and that at 10000 evaluations are the same.

3) Modeling Comparison: Since we have applied the meth-
ods under different modeling settings: mono-nucleotide mod-
eling and di-nucleotide modeling, it is interesting to check
whether there is any performance improvement after using di-
nucleotide modeling (quadratic model complexity [19]) over
mono-nucleotide modeling (linear model complexity [19]).
Thus we have drawn a scatter plot to compare the performance
values of different methods under mono-nucleotide modeling
and those under di-nucleotide modeling in Fig. [3] It can be
observed that all of the methods, except GA(block,FP), can
achieve better performance under di-nucleotide modeling than
mono-nucleotide modeling, justifying the quadratic increase in
model complexity.

D. Model Analysis

After the runs (30 runs for each PBM dataset), we have
learned thousands of models. It is interesting for us to inves-
tigate how the models have been distributed. In particular, as
elaborated in the previous sections, we are very interested in
the models learned by CGA(numeric) since CGA(numeric)
is the best method for di-nucleotide modeling among the
methods tested. Thus we have plotted the model lengths,
ranking performance (Spearman rank correlation coefficient),
and position entropies of the models learned by CGA (numeric)
at 10000 objective function evaluations as shown in Fig. [6
It can be observed that the average position entropies of the
models tend to be be centered around 3.6 (Maximum is 4),
reflecting that the motif models learned are complex from the
information theory view. The performance of the models is
quite satisfactory since the mode of Spearman rank correlation
coefficient is near 0.9. On the other hand, it can be observed
that the model lengths are usually around 12 ~ 14 nt which
are consistent with the existing TFBS knowledge [20].
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Fig. 5. Scatter plot for comparing the performance values of different methods
under mono-nucleotide modeling and those under di-nucleotide modeling.
Each dot denotes a single method’s performance on a single dataset. The
vertical axis denotes the mono-nucleotide modeling performance at 10000
evaluations, while the horizontal axis denotes the di-nucleotide modeling
performance at 10000 evaluations. The solid line denotes the baseline on
which the mono-nucleotide modeling performance value is the same as the
di-nucleotide modeling performance value.

E. Sensitivity Analysis

In the previous comparison, we have just adopted a single
multiple sequence alignment method for the PBM k-mer
alignment. One may wonder if the choice of multiple sequence
alignment method could affect the resultant DNA motif k-mer
ranking performance (Spearman rank correlation coefficient).
Therefore, we have conducted a performance sensitivity anal-
ysis on different uses of multiple sequence alignment method
with CGA(numeric) which is the best modeling optimization
method we have found so far. The results are tabulated in
Table [Il Interestingly, it can be observed that MUSCLE is the
best performing multiple sequence alignment method which is
consistent with the existing benchmark studies [46].

F. Parameter Analysis

On the other hand, algorithmic parameter choice is one of
the determining factors for the modeling performance of the

optimization methods tested. Of the parameters used, popula-
tion size is the most influential parameter in this study since
such a parameter is involved in all the optimization methods
we have compared except IPM. Therefore, we have conducted
a parameter analysis on population size settings. Similar to the
previous section, CGA(numeric) is chosen for investigation
because it is the best optimization method concluded from the
previous comparisons. The results are tabulated in Table
The results indicate that small population sizes are beneficial
to the current DNA motif modeling problem. It is expected
because it has just been reported that a single consensus DNA
motif k-mer pattern is more energetically favorable than its
neighborhood patterns [47]]. Thus the population optimizations
methods in this study require few individuals for evolutionarily
capturing that single consensus DNA motif k-mer pattern.
In addition, we observe that the effect of population size
parameter is less pronounced in di-nucleotide modeling than
mono-nucleotide modeling. A possible explanation is that di-
nucleotide modeling needs more candidates for encoding that
consensus DNA motif k-mer pattern to address its increased
model complexity than mono-nucleotide modeling.

V. APPLICATIONS
A. PBM Rotation Testing

In PBM technology, we usually have two PBM array
datasets for each protein of interest. To test the accuracy of
the models learned using CGA(numeric), we can apply each
model to its corresponding replicate alternatively. For instance,
a model learned on array #1 can be applied to rank the probes
on array #2 and vice versa. Especially, we are interested in
the abilities of the models learned using CGA(numeric) to
predict positive probes among all the available probes in an
array dataset. Thus we have adopted the traditional measure
to define positive probes on each dataset [14]. Mathematically,
we define a positive probe to be the probe y whose normalized
signal intensity m, > mi + 40 where mi and o are the
median and the median absolute deviation (MAD) of all the
probe normalized intensities in the same dataset divided by
0.6745 (the MAD of the unit normal distribution) respectively.
Following that definition, we have tested the models learned
using CGA(numeric) at 10000 evaluations on the previous
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TABLE I

SENSITIVITY ANALYSIS ON DIFFERENT USES OF MULTIPLE SEQUENCE ALIGNMENT METHODS UNDER DIFFERENT MODELING STRATEGIES. THE
TERMINATION CONDITION IS RELAXED TO 10000 OBJECTIVE FUNCTION EVALUATIONS FOR COMPREHENSIVE COMPARISONS. ENTRIES DENOTE THE
SPEARMAN RANK CORRELATION COEFFICIENTS BETWEEN THE ACTUAL MEDIAN BINDING INTENSITIES OF THE INPUT ALIGNED K-MERS AND THE

TENTATIVE SCORES PREDICTED BY CGA(NUMERIC) ON DIFFERENT PBM DATASETS (ON THE TOP ROW).

Modeling Type MSA [ Cbf1_deBruijn_v1 Cbfl_deBruijn_v2  Ceh-22_deBruijn_vl  Ceh-22_deBruijn_v2 Oct-1_deBruijn_v1
multialign 0.90 £ 0.00 0.89 £ 0.01 0.69 £0.01 0.56 £0.01 0.71+£0.01

mono-nucleotide modeling ~MUSCLE 0.89 £+ 0.01 0.86 £+ 0.01 0.84 £+ 0.01 0.81 £+ 0.01 0.92 £ 0.00
ClustalW 0.91 + 0.01 0.89 + 0.01 0.61 £0.01 0.59 £ 0.02 0.62 £ 0.01
multialign 0.90 £+ 0.00 0.90 + 0.01 0.75 +0.02 0.57 £ 0.02 0.67 £+ 0.01

di-nucleotide modeling MUSCLE 0.92 £ 0.01 0.87 £ 0.01 0.90 £+ 0.01 0.85 £+ 0.01 0.94 £+ 0.00
ClustalW 0.91 £ 0.00 0.90 £+ 0.01 0.72 £0.01 0.70 £0.01 0.66 + 0.02

Modeling Type MSA ‘ Oct-1_deBruijn_v2  Rapl_deBruijn_vl Rapl_deBruijn_v2 Zif268_deBruijn_v1 Zif268_deBruijn_v2
multialign 0.67 £0.01 0.79 £ 0.01 0.80 £0.01 0.76 £0.01 0.68 £+ 0.01

mono-nucleotide modeling MUSCLE 0.91 £+ 0.01 0.80 £ 0.01 0.92 £ 0.00 0.80 £ 0.01 0.89 4 0.00
Clustal W 0.65 £ 0.01 0.68 £ 0.01 0.73 £0.01 0.67 £0.01 0.59 £+ 0.02
multialign 0.71+£0.01 0.81 £0.01 0.81 £0.01 0.77 £0.01 0.70 £ 0.02

di-nucleotide modeling MUSCLE 0.92 £ 0.01 0.95 4+ 0.00 0.95 4 0.00 0.82 4+ 0.01 0.92 + 0.00
ClustalW 0.69 £ 0.01 0.78 £ 0.01 0.79 £0.01 0.72 £0.01 0.72 £ 0.02

TABLE 11

PARAMETER ANALYSIS ON POPULATION SIZE UNDER DIFFERENT MODELING STRATEGIES. THE TERMINATION CONDITION IS RELAXED TO 10000
OBJECTIVE FUNCTION EVALUATIONS FOR COMPREHENSIVE COMPARISONS. ENTRIES DENOTE THE SPEARMAN RANK CORRELATION COEFFICIENTS
BETWEEN THE ACTUAL MEDIAN BINDING INTENSITIES OF THE INPUT ALIGNED K-MERS AND THE TENTATIVE SCORES PREDICTED BY CGA(NUMERIC)
ON DIFFERENT PBM DATASETS (ON THE TOP ROW).

Modeling Type

PopSize | Cbfl_deBruijn_v1

Cbf1_deBruijn_v2

Ceh-22_deBruijn_v1

Ceh-22_deBruijn_v2

Oct-1_deBruijn_v1

25 0.91 + 0.00 0.91 £+ 0.00 0.70 £+ 0.01 0.56 £+ 0.00 0.73 £+ 0.01
mono-nucleotide modeling 50 0.90 £ 0.00 0.89 £0.01 0.69 £ 0.01 0.56 & 0.01 0.71+£0.01
100 0.88 +0.01 0.87 +0.01 0.65 £ 0.01 0.53 £0.01 0.66 £+ 0.01
25 0.90 £ 0.01 0.90 £ 0.01 0.75 £ 0.02 0.57 £+ 0.02 0.67 £ 0.02
di-nucleotide modeling 50 0.90 £ 0.00 0.90 + 0.01 0.75 £ 0.02 0.57 + 0.02 0.67 + 0.01
100 0.89 £ 0.00 0.90 + 0.00 0.73 £0.01 0.56 £ 0.01 0.65 + 0.01
Modeling Type PopSize [ Oct-1_deBruijn_v2  Rapl_deBruijn_vl Rapl_deBruijn_v2 Zif268_deBruijn_v1 Zif268_deBruijn_v2
25 0.67 £ 0.01 0.80 £ 0.01 0.83 £ 0.01 0.77 £ 0.01 0.71 £ 0.01
mono-nucleotide modeling 50 0.67 4= 0.01 0.79£0.01 0.80 £0.01 0.76 + 0.01 0.68 +0.01
100 0.65 + 0.01 0.76 +0.01 0.77 £ 0.01 0.74 +0.01 0.63 +0.02
25 0.70 + 0.03 0.81 £ 0.01 0.82 £ 0.01 0.77 £ 0.02 0.71 £ 0.02
di-nucleotide modeling 50 0.71 4+ 0.01 0.81 4+ 0.01 0.81 +0.01 0.77 4+ 0.01 0.70 +0.02
100 0.69 + 0.01 0.79 +0.01 0.80 + 0.01 0.74 £+ 0.02 0.68 +0.01
benchmark PBM datasets. In particular, we use a sliding win-
dow (with the same length as the learned model of the protein 100 -
of interest) to scan each sequence and adopt the maximal 90
score as the score of each sequence. Mathematically, given -
a DNA sequence D = djdads...dr and the corresponding @
model learned M, we compute its predicted score By (D) as E 1
. 5 60
- H
=] u
BM(D) = In;lX SM(dpdp+1dp+2...dp+L_1) 5 E
S 40 H
Vpe{l,2,...T—L+1} 8 :
g 30 0
2 H
where Sar(dpdpt1dpt2...dpyr—1) is the function S previously 20 .
described. 10 :
The Area Under Curve (AUC) of Receiver Operating Char- o
acteristics (ROC) curve is adopted as the performance metric 0 01 02 03 04 05 06 07 08 09 1

to estimate the models’ accuracies which are depicted in Fig.
From the results, it can be observed that the models learned
using CGA(numeric) at 10000 objective function evaluations
usually show good performance in predicting positive probes
on another array dataset. In particular, most of their AUC
values are above 0.5 which is the baseline performance
value, reflecting the usefulness of the models learned using
CGA(numeric). It also implies some data consistency exists

Area Under Curve (AUC)

Fig. 7. Area Under Curve (AUC) Value Distribution after PBM rotation
testing. The vertical dotted line is the baseline borderline (AUC> 0.5).

between different PBM array datasets for each protein of
interest.
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ChIP-Seq dataset.

B. ChIP-Seq Peak Sequence Predictions

To demonstrate the utility of the models we have learned
further, we have followed the past literature to apply the
models to predict ChIP-Seq peak sequences among a set of
sequences [48]. In particular, we have checked which models
we have learned from the datasets are also found in the
ENCODE database (K562 cell line), resulting in the following
proteins of interests; Namely, Egrl, Mafk, and Max. The
Egrlprotein is called Early Growth Response protein 1, a zinc
finger protein encoded by Egrl gene in mammalian genomes
[49]. It is a nuclear protein which function is to regulate cell
differentiation and mitogenesis, which is also suggested to
be involved in different cancers [50]. In contrast, the Mafk
protein is a relatively unknown basic leucine zipper (bZIP)
transcription factor responsible for developmentally regulated
expression of the globin genes [51]. The third one is the MAX
protein which is a member of the basic helix-loop-helix leucine
zipper (bHLHZ) family of transcription factors. It can interact
with several other proteins including the oncoprotein, Myc
[52]].

Following the convention in the past literature [48]], we have
obtained the ChIP-Seq peak sequences from their BED files
in the ENCODE database. After that, we randomly sample
equal amounts of sequences with the same lengths as the
peak sequences such that a ChIP-Seq peak sequence dataset
is obtained for each protein of interest. In each dataset, half
of the sequences are the peak sequences from the ENCODE
database while the other half are the background sequences
randomly sampled.

After the ChIP-Seq peak sequence datasets are obtained,
similar to the previous section, we applied the models learned
after 10000 objective function evaluations to perform the
binary classification tasks on the ChIP-Seq peak sequence
datasets using Bjs(D). Having scanned the datasets, we
checked our predictions with the actual peak labels. The re-
sults are depicted as Receiver Operating Characteristic (ROC)
curves in Fig. |8} It can be observed that the models learned
are found beneficial for the proteins of interests in predicting
peak sequences (above baseline), demonstrating its biological
applicability. Nonetheless, we would like to note that the per-
formance can be improved further by incorporating additional

biological features from other information sources such as
histone marks, DNA methylation, nucleosome occupancy, and
DNA double helix shape types.

VI. DISCUSSION

Gene expression is primarily regulated by the DNA binding
of various modulatory transcription factors (TF) onto cis-
regulatory DNA elements near genes. To fully understand gene
functions, it is essential to identify the binding preference of
TFs to their corresponding DNA binding sites (TFBS).

To elucidate TFBSs, we have introduced and described the
Protein Binding Microarray (PBM) DNA motif model building
problem. Such a problem is slightly different from the previous
motif discovery problems in the sense that we seek to build
DNA motif models which can recover the binding preference
of TFs quantitatively, instead of pure TFBS sequence pat-
tern discovery. To tackle the problem, different optimization
methods have been applied to learn mono-nucleotide matrix
models and di-nucleotide models on more than 200 datasets.
From the results, it can be observed that the stochastic
beam search method (i.e. DE) and multimodal optimization
methods (i.e. CDE and CGA(numeric)) performed very well
in building mono-nucleotide matrix model for ranking the
DNA motif instances correctly. For di-nucleotide modeling,
CGA(numeric), representing the natured-inspired multimodal
optimization paradigm, has been shown to be the best method
among the methods tested for capturing the binding preference
of proteins on those datasets. In addition, we have observed
a general performance improvement trend after adopting di-
nucleotide modeling over mono-nucleotide modeling. Model
analysis has been conducted to analyse the statistical prop-
erties of the models learned by CGA(numeric). Lastly, the
models have been applied to two different biological prob-
lems; namely, PBM probe rotation testing and ChIP-Seq peak
sequence prediction. The testing and prediction results inde-
pendently validate and demonstrate the biological applicability
of the models learned.

In the future, the prediction of the measured binding affini-
ties will be an interesting direction if the PBM technology can
be improved to be more noise-free and platform-independent
than the current form.
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Table S1: Di-nucleotide modeling performance comparison if the termination condition
is relaxed to 10000 objective function evaluations. Entries denote the Spearman rank
correlation coefficients between the actual median binding intensities of the input aligned
k-mers and the tentative scores predicted by different methods (on the top row) on
different PBM datasets (on the leftmost column).

TPM DE CDE GA(block,FP) GA(block,DBT) CGA(block) GA(numeric,FP) GA(numeric,DBT) CGA (numeric)
id3a_3875.1_v1_deBruijn 0.15£0.13 0.684+0.02 0.66 £0.01 0.32 £0.08 0.58 £0.03 0.68 £0.02 0.37 £0.09 0.60 £ 0.03 0.75 £ 0.02
875.1_v2_deBruijn 0.11£0.14 0.82+£0.02 0.80£0.01 0.39£0.13 0.73 £0.03 0.81 £0.01 0.48 £0.14 0.74 £0.03 0.85£0.01
875.2_v1_deBruijn 0.14£0.14 0.74£0.01 0.73+0.01 0.27 £0.08 0.67 £0.03 0.74 £0.01 é 0.68 +0.04 0.79 £ 0.01
Arid3a_3875.2_v2_deBruijn 0.11£0.13 0.67£0.02 0.65%0.02 0.16 £ 0.08 0.58 £0.04 0.71 £0.02 0.60 £ 0.03 0.80 £ 0.02
Arid5a_3770.2_v1_deBruijn 0.09£0.14 0.84+0.02 0.83+0.01 0.39 £0.10 0.74 £0.04 0.82 £0.02 0.47 £0.16 0.76 = 0.05 0.89 +0.01
Arid5a_3770.2_v2_deBruijn 0.11£0.10 0.73£0.01 0.72+0.01 0.26 £ 0.05 0.66 £ 0.03 0.73 £0.01 0.39+£0.14 0.68 £+ 0.03 0.78 £0.01
Ascl2.2654.2_v1_deBruijn 0.15£0.10 0.71£0.01 0.70 +0.01 0.37 £0.09 0.64 +0.04 0.72 £0.01 0.45+0.14 0.63 £ 0.05 0.73 £0.01
Ascl2_26t 2_deBruijn 0.15£0.12 0.77£0.01 0.75+0.01 0.39 £ 0.09 0.73 £0.04 0.80 £0.01 0.44£0.11 0.71£0.04 0.81£0.01
Atf1_3026.3_v1_deBruijn 0.09£0.11 0.80+0.02 0.78+0.03 0.19 £0.10 0.60 £ 0.04 0.75 £ 0.02 0.30 £0.19 0.63 £ 0.04 0.85 £ 0.02
Atf1_3026.3_v2_deBruijn 0.09£0.14 0.85+0.02 0.85+0.02 0.29 £0.15 0.76 £ 0.04 0.84 £ 0.02 0.60 £ 0.08 0.76 £ 0.05 0.92£0.01
Bbx_3753.1_v1_deBruijn 0.11£0.12 0.69+0.02 0.66 £ 0.01 0.22 £ 0.08 0.65 £ 0.03 0.70 £ 0.01 0.32+0.13 0.66 £ 0.02 0.72 4 0.01
Bbx_3753.1_v2_deBruijn 0.15£0.13 0.77+£0.02 0.72£0.02 0.21 £ 0.09 0.67 £0.04 0.76 £ 0.02 0.30 £0.14 0.69 £ 0.04 0.84 £0.02
Bcl6b_0961.2 deBruijn 0.10£0.13 0.71+£0.02 0.67 £ 0.02 0.30 £0.07 0.62 £ 0.03 0.70 £ 0.02 0.36 £0.11 0.63 £ 0.04 0.79 £ 0.02
Bel6b_0961.2_v2_deBruijn 0.20£0.17 0.82+0.01 0.80+0.02 0.37 £0.10 0.75 £ 0.03 0.82 £0.01 0.41£0.14 0.78 £0.03 0.86 £ 0.01
Bhlhb2_1274.3_v1_deBruijn 0.19£0.11 0.9440.01 0.94+0.01 0.59 £0.14 0.88 £ 0.04 0.94 £0.01 0.64 £ 0.09 0.90 £ 0.02 0.97 £0.01
Bhlhb2_1274.3_v2_deBruijn 0.16 £0.09 0.924+0.01 0.91£0.01 0.53 £0.15 0.83 £0.03 0.90 £0.01 0.63 £0.08 0.85 £ 0.02 0.94 £ 0.01
Bhlhb2_4971.1_v1_deBruijn 0.19£0.13 0.95+£0.01 0.94+0.01 0.58 £0.12 0.88 £0.03 0.93 £0.01 0.65 £ 0.12 0.89 £ 0.02 0.97 £ 0.00
Bhlhb2_4971.1_v2_deBruijn 0.16 £0.13 0.924+0.01 0.92£0.01 0.56 £0.13 0.84 £0.03 0.91£0.01 0.62 £0.10 0.86 £ 0.03 0.95 £0.01
E2F2.1022.2_v1_deBru 0.07£0.10 0.69+0.02 0.66 +0.02 0.20 £0.07 0.60 £ 0.05 0.70 £0.02 0.28 £0.16 0.64 £0.04 0.77 £0.02
E2F2.1022.2_v2_deBruijn 0.15£0.16 0.81+0.02 0.77£0.02 0.21 £0.09 0.80 £0.03 0.85 £ 0.01 0.24 £0.10 0.83 £0.03 0.89 £0.02
E2F2.1022.4_v1_deBruijn 0.07£0.09 0.76+£0.03 0.73£0.03 0.13 £0.07 0.60 £ 0.05 0.74 £0.02 0.24£0.15 0.61 £0.04 0.84 £0.02
E2F2.1022.4_v2_deBruijn 0.12£0.15 0.77£0.02 0.76 =0.01 0.27 £0.09 0.69 £ 0.04 0.76 £0.01 0.36 £0.18 0.72 £0.03 0.82£0.01
E2F3_3752.1_v1_deBruijn 0.14£0.10 0.79+0.02 0.78 £0.02 0.24 £0.07 0.66 £ 0.03 0.76 £0.01 0.34£0.13 0.68 +0.04 0.85+0.01
E2F3_3752.1_v2_deBruijn 0.09£0.08 0.70+0.03 0.69£0.02 0.17 £0.05 0.62 £ 0.04 0.72 £0.02 0.34£0.15 0.62 £ 0.04 0.77 £0.02
E2F3_3752.2_v1_deBruijn 0.19£0.13 0.73+£0.02 0.70 £0.02 0.24 £0.08 0.67 £0.03 0.73 £0.02 0.20 £ 0.09 0.67 £0.03 0.79 £0.01
E2F3_3752.2_v2_deBruijn 0.13£0.13 0.76+£0.02 0.71 £0.02 0.30 £0.07 0.69 £ 0.04 0.77 £0.02 0.32 £0.10 0.71 £0.04 0.79 £0.04
Egr1-2580.1_v1_deBruijn 0.14£0.16 0.84+0.02 0.83+0.02 0.20£0.11 0.73 £ 0.06 0.85 £ 0.02 0.39 £ 0.21 0.74 £0.04 0.90 £ 0.01
Egr1-2580.1_v2_deBruijn 0.11+£0.10 0.724+0.03 0.71 4+ 0.02 0.17+0.13 0.64 £ 0.04 0.74 £0.02 0.31 £0.16 0.65 £ 0.05 0.83 £0.02
Egr1_2580.2_v1_deBruijn 0.06£0.14 0.80+0.02 0.78 £0.02 0.16 £0.16 0.68 £ 0.05 0.79 £ 0.02 0.31£0.19 0.73 £0.04 0.89 £ 0.01
Egr1_2580.2_v2_deBruijn 0.14+£0.10 0.78+0.02 0.76 +0.02 0.15 £ 0.10 0.65 £ 0.04 0.78 £ 0.02 0.29 £0.18 0.66 £ 0.04 0.8540.01
Ehf_3056.2_v1_deBruijn 0.06 £0.12 0.72+£0.02 0.71£0.03 0.16 £ 0.10 0.54 £0.04 0.68 £ 0.02 0.41£0.13 0.57 £ 0.03 0.76 £ 0.02
Ehf_3056.2_v2_deBruijn 0.14£0.13 0.86+0.01 0.85+0.02 0.30 £0.08 0.73 £ 0.05 0.84 £0.01 0.51£0.15 0.77 £ 0.04 0.91 £0.01
76.1_v1_deBruijn 0.08£0.12 0.70£0.01 0.69 £ 0.02 0.18 £0.10 0.61 £0.03 0.68 £0.01 +0.16 0.62 £ 0.04 0.75 £ 0.01
76.1_v2_deBruijn 0.11£0.10 0.72£0.03 0.69 = 0.02 0.23 £0.07 0.63 £0.04 0.71£0.02 0.32£0.13 0.64 £+ 0.04 0.80 £0.01
Eomg 921.4_v1_deBruijn 0.13£0.14 0.82+0.02 0.81£0.02 0.22£0.11 0.68 £ 0.05 0.78 £0.02 0.52£0.11 0.69 £ 0.04 0.86 £+ 0.01
Eomes_0921.4_v2_deBruijn 0.07£0.07 0.66+£0.02 0.65=%0.02 0.17 £0.09 0.52 £0.04 0.63 £0.03 0.33£0.13 0.56 £ 0.04 0.78 £0.02
Esrra_2190.2_v1_deBruijn 0.09£0.12 0.76 £0.01 0.74%0.01 0.15£0.12 0.68 £0.03 0.75£0.01 0.41 £0.16 0.70 £0.02 0.81£0.01
Esrra_2190.2_v2_deBruijn 0.11£0.12 0.78+£0.03 0.74£0.03 0.15£0.10 0.60 £ 0.03 0.70 £0.03 0.20 £0.12 0.63 £0.04 0.85£0.02
Foxa2_2830.2_v1l_deBruijn 0.10£0.11 0.84+0.01 0.82+0.01 0.36 £0.14 0.66 £ 0.04 0.79 £0.01 0.55 £ 0.06 0.68 £ 0.06 0.89 £0.01
Foxa2_2830.2_v2_deBruijn 0.14£0.15 0.80+0.01 0.78 £0.02 0.23£0.14 0.64 £0.04 0.77 £0.01 0.42£0.13 0.65 £ 0.04 0.82£0.01
Foxj1.3125.2_v1_deBruijn 0.07£0.11 0.71+£0.02 0.67£0.03 0.15£0.10 0.65 £ 0.03 0.72 £0.01 0.19+£0.12 0.65 £ 0.03 0.76 £ 0.02
Foxj1.3125.2_v2_deBruijn 0.10£0.10 0.79+0.02 0.77£0.02 0.17£0.12 0.71 £0.04 0.79 £ 0.02 0.28 £0.21 0.73 £0.03 0.86 £ 0.01
Foxj3.0982.2_v1_deBruijn 0.13£0.13 0.83+0.02 0.81£0.01 0.41£0.11 0.70 £ 0.04 0.80 £ 0.01 0.54£0.11 0.72 £ 0.03 0.86 4 0.01
Foxj3_0982.2_v2_deBruijn 0.13£0.14 0.87+0.02 0.86+0.01 0.41£0.17 0.79 £ 0.04 0.88 £ 0.01 0.54 £0.15 0.78 £0.04 0.93 £ 0.01
Foxk1-2323.4_v1_deBruijn 0.12+0.11 0.88+0.01 0.88+0.01 0.40 £0.11 0.74 £ 0.04 0.86 + 0.02 0.53 £0.14 0.75 £ 0.04 0.92 4 0.01
Foxk1.2323.4_v2_deBruijn 0.17+£0.13 0.86+0.01 0.85+0.01 0.40 £0.15 0.79 £ 0.03 0.85 £ 0.01 0.57 £0.14 0.79 £ 0.03 0.92 4 0.01
Fox11-2809.2_v1_deBruijn 0.16 £0.14 0.83+0.02 0.82+0.02 0.34 £0.09 0.70 £ 0.05 0.82 £ 0.02 0.48 £0.13 0.70 £ 0.05 0.88 £ 0.02
Fox11-2809.2_v2_deBruijn 0.11£0.12 0.82+0.03 0.81+£0.02 0.25 £0.11 0.67 £ 0.06 0.81£0.02 0.47£0.13 0.69 £ 0.05 0.90 £ 0.02
Gabpa_2829.2_v1_deBruijn 0.09£0.10 0.85+0.02 0.83+0.02 0.31 £0.16 0.69 £ 0.04 0.82 £0.02 0.51 £0.13 0.70 £ 0.05 0.90 £ 0.02
Gabpa_2829.2_v2_deBruijn 0.11£0.12 0.79£0.02 0.79£0.02 0.23 £0.10 0.65 £ 0.04 0.75 £0.02 0.43 £0.16 0.67 £ 0.05 0.88 £0.02
sata3_1024.3_v1_deBruijn 0.12£0.15 0.76£0.02 0.74£0.02 0.20£0.11 0.72 £0.04 0.77 £0.01 +0.18 0.73 £0.03 0.82£0.01
0.14£0.12 0.82+0.02 0.80£0.02 0.20 £0.10 0.72 £0.04 0.81 £0.02 .36 £0.22 0.75£0.04 0.90 £0.01
_v1_deBruijn 0.07£0.07 0.69+0.03 0.65=%0.03 0.19 £0.09 0.59 £0.04 0.70 £0.02 0.18 £0.08 0.62 £0.03 0.77 £0.02
3.4964.2_v2_deBruijn 0.16£0.13 0.81+0.02 0.79£0.02 0.24 £0.07 0.76 £ 0.04 0.81 £0.02 0.30 £0.13 0.77 £0.04 0.86 £+ 0.01
Gata5_3768.1_v1_deBruijn 0.13£0.14 0.86+0.02 0.84+0.02 0.19£0.11 0.75 £ 0.05 0.86 £ 0.02 0.39+£0.24 0.78 £0.04 0.90 £0.01
Gata5_3768.1_v2_deBruijn 0.09£0.11 0.59+0.02 0.58 £0.02 0.15 £ 0.08 0.50 £ 0.04 0.59 £ 0.02 0.20 £0.12 0.52 £0.03 0.68 £ 0.02
Gata6_3769.1_v1_deBruijn 0.14£0.13 0.82+£0.01 0.81£0.01 0.26 £0.15 0.74 £0.04 0.82 £0.01 0.45+0.18 0.77 £0.03 0.87£0.01
Gata6_3769.1_v2_deBruijn 0.15£0.13 0.82+0.02 0.79£0.02 0.36 £ 0.05 0.74 £0.03 0.81 £0.01 0.40 £ 0.09 0.73 £0.03 0.83 £0.02
Gem1_3732.1_v1_deBruijn 0.10£0.09 0.69+0.02 0.68 £ 0.02 0.16 £ 0.07 0.58 £ 0.06 0.72 £0.03 0.40 £0.13 0.59 £ 0.06 0.79 £ 0.02
Gem1.3732.1 deBruijn 0.14+0.13 0.84+0.02 0.82+0.02 0.29 £0.10 0.70 £ 0.04 0.80 £ 0.02 0.37£0.11 0.70 £ 0.04 0.88 £ 0.02
Glis2_1757.2_v1_deBruijn 0.08£0.09 0.72+0.02 0.71£0.02 0.12 £ 0.08 0.60 £ 0.05 0.70 £ 0.02 0.23 £0.15 0.65 £ 0.05 0.83 £0.02
Glis2_1757.2_v2_deBruijn 0.08£0.14 0.79+£0.02 0.77£0.02 0.26 £0.13 0.70 £0.04 0.79 £ 0.02 0.50 £0.14 0.73 £0.03 0.88 4+ 0.01
Gm397_175: v1_deBruijn 0.08£0.10 0.83+0.02 0.8240.02 0.28 £0.12 0.72 £0.04 0.82 +0.02 0.44 £0.16 0.73 £ 0.05 0.90 £ 0.02
Gm397-1753.4_v2_deBruij 0.13£0.10 0.81+£0.02 0.81+0.02 0.30 £0.14 0.68 £ 0.05 0.80 £0.02 0.47£0.12 0.69 £ 0.04 0.88 +0.01
Gmeb1.1745.2_v1_deBruijn 0.12£0.09 0.664+0.02 0.63 £0.01 0.13 £0.10 0.55 £ 0.04 0.63 £0.02 0.15+£0.11 0.58 £ 0.03 0.70 £ 0.01
Gmeb1_174; 2_deBruijn 0.12£0.15 0.80%£0.01 0.78£0.01 0.37£0.14 0.71 £0.04 0.79 £0.01 0.52£0.12 0.73 £0.04 0.84 £+0.01
Hbp1.2241.2_v1_deBruijn 0.08£0.11 0.70£0.02 0.68£0.02 0.15£0.12 0.62 £ 0.04 0.71 £0.02 0.17 £0.10 0.59 £ 0.05 0.76 £ 0.01
Hbp1.2241.2_v2_deBruijn 0.16£0.21 0.74£0.01 0.72%0.01 0.44 £0.04 0.70 £0.02 0.74 £0.01 0.42 £0.05 0.70 £0.02 0.76 = 0.01
Hicl_2816.2_v1_deBruijn 0.06£0.11 0.78+£0.02 0.76 £0.02 0.20 £0.10 0.63 £0.05 0.76 £0.02 0.40 £0.19 0.63 £ 0.05 0.83 £0.01
Hicl_2816.2_v2_deBruijn 0.17£0.13 0.72+£0.01 0.70£0.01 0.34 £0.08 0.62 £ 0.03 0.70 £0.01 0.38 £0.12 0.65 £ 0.02 0.74 £0.01
Hnf4a_2640.2_v1_deBruijn 0.06£0.13 0.76+£0.02 0.73£0.02 0.21£0.13 0.74 £0.04 0.80 £0.01 0.19+£0.14 0.74 £0.04 0.84 £0.01
Hnf4a_2640.2_v2_deBruijn 0.04£0.08 0.63+0.02 0.61+0.02 0.11 £0.07 0.52 £0.04 0.61 £0.02 0.17£0.11 0.54 £0.04 0.68 £ 0.02
Hoxa3_2783.2_v1_deBruijn 0.13£0.15 0.82+0.02 0.79+0.02 0.45 £0.07 0.74 £0.03 0.80 £ 0.01 0.51 £ 0.09 0.75£0.04 0.84 £0.01
Hoxa3_2783.2_v2_deBruijn 0.14£0.14 0.82+0.02 0.81£0.02 0.22 £ 0.09 0.73 £0.04 0.81 £0.02 0.39£0.18 0.77 £0.04 0.91 £0.02
IRC900814_3520.1_v1_deBruijn | 0.13+0.12 0.7440.01 0.73+0.01 0.19£0.14 0.69 £ 0.03 0.74 £ 0.01 0.26 £0.14 0.69 £ 0.03 0.77 4+ 0.01
IRC900814_3520.1_v2_deBruijn | 0.15+0.18 0.86 +0.02 0.85 +0.02 0.21 £0.14 0.75 £ 0.04 0.84 £ 0.02 0.32£0.13 0.76 £ 0.03 0.89 £ 0.01
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Table S2: Di-nucleotide modeling performance comparison if the termination condition
is relaxed to 10000 objective function evaluations. Entries denote the Spearman rank
correlation coefficients between the actual median binding intensities of the input aligned
k-mers and the tentative scores predicted by different methods (on the top row) on
different PBM datasets (on the leftmost column).

IPM DE CDE GA(block,FP) GA(block,DBT) CGA(block) GA(numeric,FP) GA(numeric,DBT) CGA (numeric)
f3_3985.1_v1_deBruijn 0.07+£0.11 0.704+0.02 0.68 £0.02 0.28 +£0.15 0.62 4+ 0.03 0.714+0.02 0.42 £0.12 0.62 +0.04 0.78 £0.02
Trf3_3985.1_v2_deBruijn 0.13£0.10 0.75£0.02 0.72 £ 0.02 0.1740.11 0.66 4 0.03 0.74 4 0.02 0.21£0.12 0.69 £+ 0.04 0.85 4 0.02
1rf4_3476.1_v1_deBruijn 0.13+£0.11 0.87£0.01 0.86+0.01 0.3740.19 0.79 4 0.04 0.86 +0.01 0.61£0.11 0.80 = 0.04 0.9140.01
Trf4_3476.1_v2_deBruijn 0.11+£0.13 0.8240.02 0.81 £0.01 0.23+0.13 0.70 +0.04 0.79+0.01 0.50 £0.17 0.72 +£0.05 0.87 +£0.01
Irf5_3874.1_v1_deBruijn 0.18+0.16 0.86+£0.02 0.85+0.01 0.29 4 0.11 0.75 4 0.03 0.85 4 0.02 0.51£0.16 0.77 £ 0.04 0.93 +0.01
3874.1_v2_deBruijn 0.12+0.13 0.86+£0.01 0.85+0.01 0.3740.19 0.72 4 0.06 0.84 4 0.02 0.56 £ 0.07 0.71 £ 0.05 0.90 = 0.01
03.1 deBruijn 0.09+£0.11 0.82£0.03 0.81+0.02 0.16 4 0.09 0.69 4 0.05 0.8140.02 0.48 £0.16 0.71 +0.06 0.91+0.01
1rf6_3803.1_v2_deBruijn 0.15+£0.12 0.81£0.01 0.79 +0.02 0.26 4 0.14 0.76 4 0.04 0.82 4 0.02 0.31£0.17 0.77 +0.03 0.86 & 0.01
Isgf3g-2853.2_v1_deBruijn 0.08+£0.10 0.794+0.03 0.77 £0.02 0.19+0.10 0.67 4+ 0.03 0.77 £ 0.02 0.30 £0.19 0.71 £ 0.04 0.88 +0.01
Isgf3g-2853.2_v2_deBruijn 0.13+£0.14 0.86£0.02 0.83 +0.02 0.3340.15 0.76 4 0.03 0.85 4 0.01 0.50 £ 0.16 0.78 £ 0.04 0.92 4 0.01
Jundm?2_0911.3_v1_deBruijn | 0.16 £0.13 0.80+0.02 0.77 £0.02 0.25+0.11 0.69 4 0.03 0.76 4 0.02 0.28+£0.13 0.69 = 0.03 0.8240.01
Jundm2_0911.3_v2_deBruijn | 0.12+£0.10 0.794+0.02 0.78 £0.02 0.18 +0.09 0.68 +0.04 0.77 +£0.02 0.21 £0.09 0.70 £ 0.04 0.87 +£0.01
KIf7_0974.2_v1_deBruijn 0.07£0.15 0.78£0.01 0.75+0.02 0.1740.11 0.69 4 0.04 0.78 4 0.02 0.22+£0.12 0.72 4+ 0.03 0.85 4 0.01
KIf7_0974.2_v2_deBruijn 0.14+0.13 0.83£0.01 0.81+0.01 0.16 +0.15 0.74 4 0.04 0.8140.02 0.34 £0.15 0.74 = 0.03 0.88 +0.01
Lef1_3504.1_v1_deBruijn 0.04+£0.10 0.764+0.03 0.76 £ 0.02 0.1140.08 0.62 4 0.06 0.76 + 0.02 0.31£0.18 0.65 % 0.06 0.85 4 0.02
Lef1_3504.1_v2_deBruijn 0.10+£0.11 0.76 £0.02 0.76 + 0.02 0.1740.10 0.61 4 0.05 0.73 4 0.02 0.28+£0.17 0.62 & 0.06 0.83 +0.01
Mafb_2914.2_v1_deBruijn 0.18+£0.19 0.88+0.01 0.86 +0.01 0.4240.13 0.82 4+ 0.03 0.88 +0.01 0.56 £ 0.14 0.85 +0.02 0.92 +0.01
Mafb_2914.2_v2_deBruijn 0.16 £0.15 0.80£0.03 0.77 £ 0.02 0.2140.10 0.72 4 0.04 0.81 4 0.02 0.26 £ 0.12 0.74 £ 0.03 0.8740.01
Mafk_3106.2_v1_deBruijn 0.09+0.10 0.74£0.02 0.73+0.01 0.19 4 0.08 0.63 4 0.04 0.72 4 0.02 0.34 £0.17 0.64 = 0.04 0.8240.02
Mafk_3106.2_v2_deBruijn 0.11+£0.10 0.7140.02 0.69 £0.02 0.21 4+ 0.09 0.65 4 0.04 0.73 +0.02 027 +£0.14 0.66 +0.03 0.78 £ 0.02
Max_3863.1_vl_deBruijn 0.13+£0.16 0.82£0.02 0.82+0.02 0.45 4 0.07 0.78 4 0.02 0.84 4 0.01 0.52 £ 0.09 0.81 4 0.04 0.88 4+ 0.01
Max_3863.1_v2_deBruijn 0.14+0.16 0.90£0.01 0.89+0.01 0.56 4 0.14 0.83 4 0.04 0.90 = 0.01 0.60 £0.13 0.87+0.03 0.95+0.01
Max_3864.1_v1_deBruijn 0.16 £0.16 0.784+0.01 0.78 £0.02 0.46 4 0.08 0.76 + 0.02 0.80 4 0.02 0.50 £ 0.08 0.79 £+ 0.02 0.85 4 0.01
Max_3864.1_v2_deBruijn 0.17+£0.20 0.84£0.02 0.82+0.02 0.46 +0.11 0.8140.03 0.87+0.01 0.58 £0.13 0.86 & 0.02 0.90 & 0.01
Mtf1_2377.2_v1_deBruijn 0.15+£0.15 0.81+0.01 0.79+0.01 0.414+0.14 0.75 4+ 0.03 0.81+0.01 0.50 £0.14 0.75+0.03 0.85 +0.01
Mtf1_2377.2_v2_deBruijn 0.14+£0.18 0.84£0.01 0.82+0.01 0.26 4 0.10 0.77 4 0.02 0.83 4 0.01 0.43 £ 0.20 0.78 £ 0.03 0.89 4+ 0.01
Myb_1047.3_v1_deBruijn 0.10+0.14 0.78£0.01 0.77+0.01 0.2140.10 0.69 4 0.04 0.79 +0.01 0.50 £0.12 0.69 = 0.05 0.84 +0.01
Myb_1047. _deBruijn 0.10+£0.11  0.7340.01 0.71 £0.02 0.35 4 0.09 0.64 4+ 0.03 0.71+0.01 0.47 £0.12 0.65 +0.03 0.76 £ 0.01
Mybl1.1717.2_v1_deBruijn 0.15+£0.19 0.81£0.01 0.80+0.01 0.29 4 0.09 0.74 4 0.02 0.8140.01 0.50 £ 0.09 0.74 £+ 0.04 0.84 & 0.00
Mybl1_1717.2_v2_deBruijn 0.17+0.14 0.80£0.01 0.80%0.02 0.4240.10 0.7140.04 0.78 +0.02 0.52+0.10 0.72+0.04 0.87+0.01
Myf6_3824.2_v1_deBruijn 0.15+0.12 0.70£0.01 0.69 +0.01 0.28 4 0.09 0.62 4 0.03 0.69 £ 0.01 0.42 +£0.12 0.63 +0.03 0.71 +0.01
deBruijn 0.06+£0.12 0.71£0.02 0.68+0.02 0.1740.10 0.61 4 0.04 0.69 4 0.02 0.21£0.10 0.64 &+ 0.04 0.74 4 0.02
1.deBruijn | 0.114+0.11 0.73£0.02 0.71 +0.02 0.17+0.10 0.63 +0.04 0.71+0.02 021 +£0.13 0.64 +0.04 0.79 £ 0.02
2_deBruijn | 0.14 +£0.12  0.7740.02 0.76 + 0.02 0.25 4 0.07 0.61 4 0.06 0.75 4 0.02 0.29 £ 0.11 0.63 & 0.05 0.85 4 0.01
Nr2f2_2192.2_v1_deBruijn 0.19+£0.19 0.84£0.01 0.82+0.01 0.3240.12 0.80 4 0.02 0.85+0.01 0.34 £0.12 0.81+0.03 0.87 4+ 0.02
Nr2f2.2192.2_v2_deBruijn 0.15+£0.14 0.8040.02 0.79 £0.02 0.20 +0.14 0.75 4 0.03 0.80 +0.01 0.28 £0.15 0.76 £ 0.03 0.86 +0.01
Osr1_3033.2_v1_deBruijn 0.07£0.14 0.81£0.02 0.79 +0.02 0.3340.16 0.69 4 0.04 0.79 4 0.02 0.51£0.14 0.70 & 0.05 0.87 4+ 0.01
Osr1-3033.2_v2_deBruijn 0.14+0.12 0.80£0.02 0.78+0.02 0.20 & 0.06 0.68 & 0.05 0.79 £ 0.01 0.27£0.13 0.69 = 0.04 0.87+0.01
Osr2.1727.2_v1_deBruijn 0.11+0.13 0.74£0.01 0.73+0.01 0.19 4 0.04 0.62 4 0.03 0.72 4 0.02 0.27£0.13 0.64 +0.04 0.80 & 0.02
Osr2_1727.2_v2_deBruijn 0.10+£0.12 0.85£0.02 0.84 +£0.02 0.20 4 0.06 0.73 4 0.04 0.84 4 0.02 0.30 £0.18 0.74 +0.04 0.9140.01
Plagl1 0972.2_v1_deBruijn 0.15+£0.12 0.874+0.01 0.86£0.02 0.53 +£0.11 0.78 £ 0.03 0.86 +0.02 0.56 £ 0.07 0.77 £0.03 0.90 £ 0.01
Plagl1_0972.2_v2_deBruijn 0.11£0.12 0.84£0.01 0.83%£0.01 0.40 £ 0.11 0.75 4 0.05 0.8340.01 0.51£0.14 0.76 & 0.04 0.88 +0.01
Rara_1051.2_v1_deBruijn 0.13+£0.12 0.78£0.02 0.77£0.01 0.2240.10 0.67 4 0.03 0.77 4+ 0.02 0.52+0.14 0.69 = 0.05 0.8540.01
Rara_1051.2_v2_deBruijn 0.09+0.09 0.7940.02 0.78 £0.02 0.21 +0.13 0.67 4+ 0.04 0.77 £ 0.02 0.42 +£0.19 0.69 + 0.04 0.84 +0.02
Rfx3_3961.1_v1_deBruijn 0.15+£0.21 0.81£0.01 0.80+0.01 0.30 4 0.19 0.79 4 0.02 0.82 4 0.00 0.33 £0.19 0.77 +0.02 0.82 4 0.01
Rfx3_3961.1_v2_deBruijn 0.18+0.15 0.80£0.01 0.77 £0.02 0.23+0.11 0.73 4 0.03 0.80 = 0.01 0.27 £ 0.08 0.74 = 0.04 0.824+0.01
Rfx3.4970.2_v1_deBruijn 0.12+0.17 0.7140.01  0.70 £0.01 0.28 4 0.14 0.66 4 0.02 0.72 4+ 0.01 0.34 +£0.16 0.66 & 0.02 0.73 +0.01
Rfx3.4970.2_v2_deBruijn 0.19+0.24 0.90£0.01 0.89+0.01 0.50 4 0.09 0.89 4 0.02 0.92+0.01 0.63+£0.13 0.88 +0.02 0.9240.01
Rfx4_3761.1_v1_deBruijn 0.15+£0.17 0.77£0.01  0.77 £0.01 0.28 +0.16 0.74 +0.02 0.77+0.01 0.28 £0.15 0.72 +£0.02 0.78 £0.01
Rfx4_3761.1_v2_deBruijn 0.10£0.18 0.85+£0.01 0.84 £0.01 0.3240.16 0.78 4 0.03 0.84 4 0.01 0.33+£0.14 0.78 £ 0.03 0.86 4 0.01
Rfxdc2_3516.1_vl_deBruijn | 0.10£0.10 0.78£0.01 0.75£0.02 0.18 +£0.11 0.65 4 0.05 0.76 4 0.02 0.17 £ 0.09 0.65 = 0.04 0.824+0.02
Rfxdc2_3516.1_v2_deBruijn | 0.15+£0.16 0.82+0.01 0.80 £ 0.01 0.26 +0.16 0.69 4 0.04 0.80 +0.01 0.31+£0.14 0.71 +£0.04 0.83 +£0.01
Rxra_1035.2_v1_deBruijn 0.16 £0.11  0.67+£0.01 0.65+0.01 0.1940.12 0.62 4 0.03 0.67 4 0.01 0.24£0.11 0.64 &+ 0.02 0.714+0.01
Rxra_1035.2_v2_deBruijn 0.20+£0.16 0.80£0.01 0.79+0.02 0.26 4 0.16 0.78 +0.03 0.82+0.01 0.46 £ 0.15 0.79 = 0.02 0.85%0.01
Sfpil1-1034.2_v1_deBruijn 0.17+0.14 0.83+£0.01 0.82+0.01 0.22£0.11 0.74 4 0.03 0.83 4 0.01 0.44 +£0.19 0.78 + 0.02 0.88 4+ 0.01
Sfpil_1034.2_v2_deBruijn 0.07+£0.12 0.71£0.02 0.70 £ 0.02 0.20 4 0.08 0.66 4 0.03 0.714+0.01 0.43+£0.17 0.66 & 0.04 0.76 + 0.01
Sfpil_1034.3_v1_deBruijn 0.08+0.11 0.80+0.02 0.79 £ 0.01 0.28 +0.14 0.75 4+ 0.02 0.81 4+ 0.02 0.36 £ 0.20 0.75 +0.04 0.87 £ 0.01
Sfpil_1034.3_v2_deBruijn 0.15+£0.13 0.77£0.01 0.76 = 0.01 0.1740.14 0.70 4 0.03 0.76 4 0.01 0.25+0.13 0.73 +0.03 0.83 +0.01
Six6-2267.4_v1_deBruijn 0.10+0.15 0.80£0.01 0.80%=0.01 0.36 & 0.15 0.7140.04 0.78 +0.01 0.56 £ 0.10 0.72+0.04 0.83 +0.01
Six6_2267.4_v2_deBruijn 0.10+£0.12  0.78+0.01 0.75 £ 0.01 0.19+0.12 0.73 +0.03 0.78 £ 0.01 0.27 +£0.20 0.74 +£0.03 0.83 +0.01
Smad3_3805.1_vl_deBruijn | 0.19+0.21 0.87+0.01 0.85+0.01 0.36 4 0.12 0.79 4 0.04 0.87+0.01 0.48+£0.13 0.80 & 0.02 0.89 4+ 0.01
Smad3_3805.1_v2_deBruijn | 0.13£0.15 0.79+0.02 0.78 £0.02 0.18 +0.08 0.63 +0.04 0.75+0.01 0.30 £0.13 0.66 = 0.05 0.85 +0.02
Sox1-2631.2_v1_deBruijn 0.07£0.07 0.71£0.03 0.66 £ 0.03 0.1340.08 0.60 =4 0.06 0.70 4 0.02 0.11 £ 0.09 0.61 £+ 0.04 0.77 £ 0.03
Sox1-2631.2_v2_deBruijn 0.12+0.14 0.61£0.01 0.60+0.01 0.25 4 0.09 0.55 4 0.02 0.6140.01 0.26 £ 0.07 0.56 & 0.02 0.64 +0.01
Sox11.2266.2_v1_deBruijn 0.09+£0.09 0.7040.02 0.68 £0.02 0.14 +0.08 0.58 +0.04 0.70 +0.04 021 +£0.13 0.58 +0.05 0.82 +0.02
Sox11.2266.2_v2_deBruijn 0.08+0.10 0.71£0.03 0.67 %+ 0.03 0.1340.08 0.58 4 0.05 0.70 4 0.02 0.17 £ 0.09 0.61 & 0.05 0.78 4+ 0.02
Sox12_3957.1_v1_deBruijn 0.08+0.10 0.77£0.02 0.74 £0.02 0.16 4 0.09 0.69 & 0.05 0.77 4+ 0.03 0.21£0.11 0.69 = 0.04 0.86 = 0.02
_deBruijn 0.09+0.08 0.8240.02 0.81 +£0.01 0.28 4+ 0.15 0.77 4 0.05 0.83 +0.02 0.49 +£0.17 0.76 + 0.04 0.90 +0.01
Sox13.1718.2_v1_deBruijn 0.09+0.13 0.81£0.01 0.80+0.01 0.2240.12 0.70 4 0.04 0.80 4 0.02 0.39 £0.21 0.74 +0.03 0.89 4 0.01
Sox13-1718.2_v2_deBruijn 0.15+£0.14 0.86+0.02 0.83 £0.01 0.21+0.11 0.77 £ 0.05 0.86 +0.02 0.34 £0.18 0.80 +0.04 0.93 +£0.01
Sox14.2677.2_v1_deBruijn 0.13£0.15 0.77£0.02 0.73 £ 0.02 0.32 4 0.06 0.67 4 0.04 0.77 4 0.02 0.35 £ 0.10 0.67 £ 0.04 0.76 & 0.02
Sox14_2677.2_v2_deBruijn 0.10+0.11 0.80£0.02 0.79+0.03 0.24 4 0.09 0.67 4 0.05 0.79 4 0.02 0.42+0.19 0.69 = 0.04 0.87 4+ 0.01
Sox15_3457.1_v1_deBruijn 0.05+0.08 0.7040.02 0.65+0.02 0.16 +0.07 0.63 4+ 0.03 0.68 +0.01 0.19 £ 0.09 0.65 +0.03 0.76 + 0.02
Sox15_3457.1_v2_deBruijn 0.06 £0.12 0.73£0.03 0.72+0.03 0.2240.11 0.62 4 0.04 0.74 4 0.03 0.32£0.19 0.67 &+ 0.04 0.87 4 0.02
Sox17-2837.2_v1_deBruijn 0.07£0.09 0.69+0.02 0.66+0.02 0.14 4 0.10 0.59 4 0.04 0.69 & 0.02 0.17 £ 0.08 0.63 = 0.05 0.77 £ 0.01
Sox17.2837.2_v2_deBruijn 0.13+£0.17 0.824£0.02 0.80 £0.01 0.3340.14 0.76 4+ 0.03 0.83 4 0.01 0.47 £0.17 0.75 + 0.03 0.87 £ 0.01
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Table S3: Di-nucleotide modeling performance comparison if the termination condition
is relaxed to 10000 objective function evaluations. Entries denote the Spearman rank
correlation coefficients between the actual median binding intensities of the input aligned
k-mers and the tentative scores predicted by different methods (on the top row) on
different PBM datasets (on the leftmost column).

IPM DE CDE GA(block,FP)  GA(block,DBT) CGA(block) GA(numeric,FP) GA(numeric,DBT) CGA (numeric)

Sox18-3506.1_v1_deBruijn 0.104£0.09 0.81+£0.02 0.77 £0.02 0.22 4 0.09 0.71 £ 0.04 0.81 £ 0.02 0.22 4 0.08 0.72 £ 0.04 0.89 4+ 0.01
Sox18_3506.1_v2_deBruijn 0.094+0.14 0.83+£0.01 0.81+0.01 0.274+0.15 0.74 £0.04 0.82 +£0.01 0.39+0.19 0.75 £ 0.04 0.87 +£0.01
Sox21.3417.1_v1_deBruijn 0.104+0.14  0.78£0.02 0.76 = 0.02 0.30 +£0.11 0.74 £0.03 0.80 £ 0.02 0.41+0.15 0.77 £0.04 0.83 +£0.02
Sox21_3417.1_v2_deBruijn 0.1140.09 0.75+£0.02 0.74 £ 0.02 0.20 4 0.08 0.65 £ 0.04 0.76 £ 0.02 0.42 4 0.19 0.66 £ 0.04 0.85 4 0.02
Sox30-2781.2_v1_deBruijn 0.124+0.10 0.76£0.02 0.75+0.02 0.23+0.15 0.65 £ 0.05 0.75 £ 0.01 0.45 4+ 0.15 0.67 +£0.04 0.82 +0.01
Sox30-2781.2_v2_deBruijn 0.114+0.14 0.83+£0.02 0.82+0.01 0.3240.15 0.74 £0.04 0.85 £ 0.02 0.50 +0.15 0.75 £ 0.04 0.92 +0.01
Sox4.2941.2_v1_deBruijn 0.1140.11 0.77+£0.02 0.75+0.02 0.2740.11 0.66 + 0.04 0.74 £0.02 0.35 +0.15 0.71 £ 0.04 0.85 +0.01
Sox4.2941.2_v2_deBruijn 0.084+0.11 0.75+£0.02 0.72+0.03 0.16 +£0.07 0.62 £0.05 0.74 £0.02 0.25+£0.17 0.66 £ 0.04 0.83 +£0.02
Sox5_3459.1_v1_deBruijn 0.0940.11  0.80£0.02 0.79 %+ 0.02 0.21+0.11 0.64 £ 0.06 0.79 £ 0.02 0.38 +0.19 0.68 £ 0.05 0.89 +0.01
Sox5_3459.1_v2_deBruijn 0.094+0.12  0.80+£0.02 0.77 +0.02 0.19 4+ 0.09 0.75 £ 0.03 0.82 £0.02 0.46 +0.17 0.77 £0.03 0.88 +£0.01
Sox7_3460.1_v1_deBruijn 0.084+0.12 0.80£0.02 0.79+0.02 0.20 +£0.11 0.68 £ 0.04 0.78 £0.02 0.37+0.16 0.70 £0.03 0.86 +0.01
Sox7_3460.1_v2_deBruijn 0.1140.10 0.814+0.02 0.80 £0.01 0.23 4 0.15 0.73 £ 0.03 0.81£0.01 0.38 +0.21 0.77 £ 0.03 0.89 4+ 0.01
Sox7_.4972.2_v1_deBruijn 0.144+0.13  0.81+£0.02 0.79+0.02 0.25+0.14 0.72 £0.04 0.80 +£0.02 0.24 +£0.10 0.75 £ 0.03 0.89 +0.01
Sox7.4972.2_v2_deBruijn 0.114+0.12  0.69£0.02 0.66 =0.02 0.14+0.10 0.64 £0.04 0.70 £0.02 0.24+0.17 0.67 £0.04 0.81 +£0.02
Sox8_1733.2_v1_deBruijn 0.16+0.14  0.84+£0.02 0.83+0.02 0.24 4+ 0.11 0.76 £ 0.03 0.84 £0.01 0.40 4 0.21 0.78 £ 0.03 0.9140.01
Sox8.1733.2_v2_deBruijn 0.144+0.16 0.88+£0.01 0.88+0.01 0.44 +0.18 0.82 £0.02 0.89 +£0.01 0.61 4+ 0.16 0.85 £ 0.02 0.91 +0.01
Sp100-2947.2_v1_deBruijn 0.114+0.12 0.83+£0.02 0.81+0.02 0.23 +0.09 0.75 £ 0.04 0.83 £0.02 0.314+0.17 0.77 £0.05 0.89 +0.01
Sp100-2947.2_v2_deBruijn 0.1140.15 0.82+0.01 0.79£0.01 0.40 £ 0.12 0.73 £ 0.03 0.81+0.01 0.54 4 0.13 0.76 £ 0.03 0.8740.01
Sp4.1011.2_v1_deBruijn 0.094+0.13 0.88+£0.02 0.86+0.01 0.194+0.13 0.78 £ 0.06 0.86 £ 0.02 0.53 +0.20 0.76 £ 0.04 0.94 +0.01
Sp4.1011.2_v2_deBruijn 0.154+0.14  0.81£0.02 0.79+0.02 0.21+0.12 0.72 £0.04 0.82 £0.02 0.39+0.18 0.74 £0.05 0.86 +0.01
Spdef_0905.2_v1_deBruijn 0.104+0.12  0.80+0.01 0.80£0.01 0.20 4 0.10 0.67 £ 0.05 0.77 £ 0.02 0.44 4 0.18 0.68 £ 0.05 0.86 + 0.01
Spdef_0905.2_v2_deBruijn 0.174+0.16 0.84+0.01 0.83+0.01 0.234+0.14 0.76 £0.03 0.83 £0.01 0.40 +0.22 0.79 £ 0.02 0.90 +0.01
Srf_3509.1_v1_deBruijn 0.134+0.12 0.76£0.03 0.73 +0.02 0.23+0.11 0.67 £0.04 0.76 £ 0.02 0.24 +0.12 0.70 £0.03 0.84 +£0.01
Srf_3509.1_v2_deBruijn 0.134+0.14 0.77+£0.02 0.75+0.02 0.18 +0.12 0.67 £ 0.04 0.76 £ 0.02 0.1740.15 0.70 £ 0.04 0.84 +0.01
Sry_2833.2_v1_deBruijn 0.084+0.09 0.74+0.03 0.70 +0.03 0.174+0.10 0.66 £ 0.05 0.75 £ 0.02 0.14+0.11 0.67 £0.05 0.83 +£0.02
Sry_2833.2_v2_deBruijn 0.104+0.11  0.79£0.02 0.75 +0.02 0.15 4 0.09 0.74 £0.03 0.81 +£0.02 0.19+0.11 0.77 £0.03 0.89 +0.01
Thp_pr781.1_v1_deBruijn 0.124+0.11 0.80+£0.01 0.79+0.01 0.414+0.10 0.67 £ 0.05 0.77 £0.02 0.51 +0.07 0.66 + 0.05 0.83 £0.01
Tbp_pr781.1_v2_deBruijn 0.144+0.14 0.74£0.01 0.73+0.01 0.38 +0.05 0.65 £ 0.03 0.73 £0.01 0.39+0.10 0.65 £ 0.04 0.78 £0.01
Tcf1-2666.2_v1_deBruijn 0.1540.16  0.87+0.01 0.86+0.01 0.28 4 0.16 0.85 £ 0.03 0.89 £ 0.01 0.38 4+ 0.15 0.85 £ 0.02 0.92 4+ 0.01
Tcf1_2666.2_v2_deBruijn 0.074+0.11 0.77£0.02 0.77+0.01 0.45+0.11 0.69 £ 0.04 0.80 +£0.02 0.50 £ 0.11 0.70 £ 0.05 0.87 +£0.02
Tcf1 2666.3_v1_deBruijn 0.164+0.14  0.80£0.02 0.79+0.02 0.444+0.10 0.70 £0.03 0.78 £0.01 0.50 +0.10 0.72 £0.04 0.86 +0.01
Tecf1-2666.3_v2_deBruijn 0.0840.12 0.73+£0.02 0.72+0.01 0.34 4+ 0.08 0.64 +0.04 0.72 £ 0.02 0.43 4 0.09 0.65 £ 0.05 0.84 4 0.02
Tcf3_3787.1_v1_deBruijn 0.074+0.10 0.79+£0.02 0.78 +0.02 0.21+0.11 0.66 +0.03 0.75 £ 0.02 0.39+0.19 0.68 £ 0.04 0.85 +0.02
Tcf3_3787.1_v2_deBruijn 0.134+0.11 0.83+£0.01 0.82+0.01 0.26 +0.11 0.72 £0.03 0.81 £0.01 0.394+0.14 0.74 £0.03 0.88 +£0.01
Tecf7-0950.2_v1_deBruijn 0.0740.10 0.76 £0.02 0.75+0.02 0.16 4 0.07 0.64 +0.03 0.73 £ 0.02 0.3240.18 0.67 +0.04 0.83 +0.02
Tcf7.0950.2_v2_deBruijn 0.114+0.13  0.70£0.01 0.69+0.01 0.20 +0.09 0.62 +£0.03 0.70 £0.02 0.424+0.13 0.63 £ 0.04 0.77 £ 0.01
Tcf712_3461.1_v1_deBruijn 0.124+0.12  0.77£0.02 0.74 +0.02 0.19 +0.09 0.68 £ 0.05 0.78 £0.02 0.24+0.14 0.68 £ 0.04 0.86 +0.02
Tef712_3461.1_v2_deBruijn 0.1140.15 0.81+£0.02 0.80 £ 0.02 0.24 4 0.07 0.70 £ 0.04 0.79 £ 0.02 0.40 £ 0.18 0.72 £ 0.04 0.88 4+ 0.02
Tcfap2a_2337.3_vl_deBruijn | 0.10£0.10 0.57+0.01 0.55 4 0.01 0.15 4+ 0.06 0.48 £0.04 0.56 +0.01 0.224+0.10 0.48 £0.04 0.58 +0.02
Tcfap2a_2337.3_v2_deBruijn | 0.124+0.13 0.76 £0.01 0.74 +0.01 0.30 +0.07 0.69 £ 0.03 0.75 £ 0.01 0.50 +0.13 0.68 £ 0.03 0.77 £ 0.01
Tefap2b_3988.1_v1_deBruijn | 0.06 +0.12  0.69 +0.01 0.67 + 0.01 0.26 4 0.07 0.63 £ 0.03 0.68 £ 0.01 0.29 4 0.15 0.63 £ 0.02 0.69 £+ 0.01
Tcfap2b_3988.1 v2_deBruijn | 0.13£0.13 0.714+0.00 0.70 £ 0.01 0.214+0.10 0.63 £0.02 0.69 £ 0.01 0.374+0.18 0.62 £ 0.04 0.71 +£0.01
Tefap2c2912.2_v1_deBruijn | 0.154+0.13  0.58 £0.01  0.56 +0.01 0.23 +0.07 0.47 £0.03 0.55 £ 0.02 0.24 +0.07 0.47 £0.03 0.58 £ 0.01
Tefap2¢2912.2_v2_deBruijn | 0.16 +0.15 0.75+0.01 0.73 +0.01 0.26 4 0.08 0.67 £ 0.03 0.73 £0.01 0.38 +0.15 0.66 +0.03 0.75 £ 0.01
Tcfap2e.: vl_deBruijn | 0.114+0.16 0.78£0.01 0.77 £0.01 0.29+0.12 0.68 £0.03 0.78 £0.01 0.46 +0.16 0.70 £ 0.04 0.80 +£0.01
Tefap2e 371 _deBruijn | 0.24 £0.15 0.7440.01 0.74 £0.01 0.474+0.07 0.69 £ 0.03 0.75 £ 0.01 0.52 4+ 0.06 0.69 £ 0.02 0.78 £0.01
Tcfe2a_3865.1_v1_deBruijn 0.134+0.11 0.65+£0.01 0.64 +0.01 0.18 +0.08 0.59 £ 0.02 0.64 +£0.01 0.29 +0.15 0.61 +£0.01 0.66 £ 0.01
Tcfe2a_3865.1 v2_deBruijn | 0.19£0.13 0.794+0.02 0.77 £ 0.01 0.27+0.10 0.80 £0.02 0.81£0.01 0.31+0.15 0.83 £0.01 0.86 +0.01
7Zbtb122932.2_v1_deBruijn | 0.124+0.11  0.88+£0.02 0.88+0.01 0.28 +0.17 0.75 £ 0.04 0.85 £ 0.02 0.55 4 0.13 0.76 £ 0.04 0.94 +0.01
Zbtb12.2932.2 v2_deBruijn | 0.15+£0.13 0.8840.02 0.87 £ 0.02 0.314+0.16 0.78 £0.03 0.88 £0.01 0.50 +£0.17 0.77 £0.05 0.94 +£0.01
Zbtb3_1048.2_v1_deBruijn 0.124+0.15 0.82+0.01 0.81+0.01 0.4240.15 0.80 £0.03 0.83 £0.01 0.54+0.14 0.77 £0.04 0.86 +0.01
Zbtb3-1048.2_v2_deBruijn 0.1140.11  0.73+0.01 0.71 +£0.01 0.26 4 0.15 0.64 +0.03 0.72 £ 0.01 0.48 +0.11 0.65 £ 0.03 0.76 +0.01
Zbtb7b_1054.2_v1_deBruijn | 0.10+£0.13 0.774+0.02 0.75 £ 0.02 0.23+0.11 0.71 £ 0.04 0.78 £0.02 0.26 +0.13 0.74 £0.03 0.86 +0.01
Zbtb7b_1054.2_v2_deBruijn | 0.144+0.12 0.81£0.02 0.78 +£0.01 0.24+0.11 0.74 £0.03 0.80 £0.01 0.43 +£0.18 0.77 £0.04 0.90 +£0.01
0.1140.08 0.71+£0.02 0.67 £ 0.02 0.16 4 0.09 0.69 £ 0.04 0.74 £ 0.01 0.1340.12 0.70 £ 0.04 0.79 £ 0.01

. 0.114+0.14 0.81+£0.02 0.78+0.01 0.224+0.13 0.76 £ 0.04 0.83 £0.01 0.28 £ 0.21 0.78 £0.02 0.87 +£0.01
Zfp128_2806.2_vl_deBruijn | 0.17£0.11 0.834+0.01 0.81£0.01 0.29 +0.16 0.75 £ 0.02 0.82 +£0.01 0.45+0.17 0.75 £ 0.02 0.85 +0.01
5.2_.v2_deBruijn | 0.15+0.14  0.844+0.01 0.82+0.01 0.29 4 0.15 0.75 £ 0.02 0.8140.01 0.30 4 0.15 0.77 £ 0.02 0.88 4+ 0.01
Zfp1612858.2_vl_deBruijn | 0.08 £0.15 0.8640.02 0.8440.01 0.28 +£0.15 0.75 £ 0.05 0.83 £0.01 0.414+0.21 0.79 £ 0.03 0.90 +0.01
Zfp161.2858.2 v2_deBruijn | 0.124+0.15 0.90 £0.01 0.88+0.01 0.494+0.14 0.84 £0.03 0.90 £ 0.01 0.57 +0.16 0.84 £ 0.04 0.93 +0.01
7fp1872626.2_vl_deBruijn | 0.11+0.12 0.75+0.02 0.74 +0.02 0.2140.10 0.60 £ 0.04 0.72 £ 0.02 0.384+0.18 0.63 £ 0.04 0.80 & 0.02
Zfp1872626.2_v2_deBruijn | 0.09 £0.14 0.77£0.02 0.76 £ 0.02 0.214+0.10 0.65 £ 0.04 0.75 £ 0.01 0.43 +£0.15 0.66 £ 0.03 0.82 +£0.01
Zfp281.0973. 0.094+0.10 0.71£0.02 0.69 % 0.02 0.14 4+ 0.09 0.63 £ 0.04 0.71 £0.02 0.124+0.10 0.68 £ 0.04 0.81 +0.02
7fp281_0973. 0.074+0.07 0.72+£0.02 0.68+0.03 0.154+0.10 0.62 £ 0.04 0.72 £0.02 0.18 £ 0.14 0.64 £ 0.05 0.84 +0.02
Zfp410_3! vl_deBruijn | 0.09+£0.11 0.81£0.02 0.81 £0.02 0.28 +£0.18 0.66 £ 0.04 0.79 £0.03 0.524+0.11 0.68 £ 0.06 0.90 +£0.01
Zfp410_3034.2 v2_deBruijn | 0.114+0.13 0.87+0.02 0.87 +0.01 0.27 4+ 0.16 0.80 £ 0.02 0.86 £ 0.01 0.49 £ 0.21 0.81 £ 0.03 0.92 4+ 0.01
Zfp691_0895.2_vl_deBruijn | 0.13+£0.20 0.8840.01 0.8740.01 0.374+0.14 0.83 £0.02 0.88 +£0.01 0.45 +0.22 0.86 +0.02 0.93 +£0.01
Zfp691_0895.2_v2_deBruijn | 0.20£0.19 0.834+0.02 0.81£0.02 0.374+0.14 0.80 £0.02 0.84 £0.01 0.38 +£0.10 0.81 £0.02 0.88 +£0.01
Zfp740_0925.2_v1_deBruijn | 0.08 +£0.08 0.84+0.03 0.82+0.03 0.18 +0.11 0.73 +£0.04 0.82 £ 0.02 0.274+0.17 0.77 £ 0.04 0.92 4+ 0.01
Zfp740.0925.2_v2_deBruijn | 0.06 £0.08 0.7940.02 0.76 £ 0.02 0.15 4+ 0.09 0.72 £0.04 0.79 £ 0.02 0.29 +0.16 0.74 £ 0.04 0.89 +0.02
Zic1.0991.2_v1_deBruijn 0.134+0.11  0.68£0.02 0.65+0.02 0.14 +0.10 0.62 £ 0.04 0.70 £0.02 0.16 £ 0.11 0.65 £ 0.03 0.77 £ 0.01
Zic1.0991.2_v2_deBruijn 0.0940.10 0.59£0.02 0.56 £ 0.02 0.12 4 0.09 0.53 £ 0.03 0.60 £ 0.02 0.15 4 0.08 0.56 £ 0.03 0.68 £ 0.02
7ic22895.2_v1_deBruijn 0.114+0.09 0.78£0.02 0.76 +0.02 0.19 +0.09 0.69 +0.04 0.78 £0.02 0.21+0.14 0.74 £0.03 0.86 +0.02
Zic22895.2_v2_deBruijn 0.10+0.10 0.75+£0.02 0.74 %+ 0.03 0.23+0.11 0.67 £0.04 0.76 £0.02 0.424+0.15 0.69 £ 0.04 0.83 +£0.02
Zic3-3119.2_v1_deBruijn 0.164+0.13 0.76 £0.02 0.74£0.01 0.2140.13 0.70 £ 0.03 0.76 £ 0.01 0.2440.13 0.72 £ 0.03 0.8140.01
Zic3_3119.2_v2_deBruijn 0.134+0.12 0.84+0.01 0.81+0.02 0.214+0.10 0.73 £0.04 0.83 £0.02 0.224+0.14 0.76 £ 0.04 0.88 +£0.01
Zscan4 2667.2_v1_deBruijn | 0.14+£0.15 0.87+£0.02 0.85 +0.02 0.53 4+ 0.08 0.77 £0.04 0.86 £ 0.01 0.55 +0.12 0.76 £ 0.04 0.90 +0.02
Zscand_2667.2_v2_deBruijn | 0.09 +0.08 0.84+0.02 0.84 +0.02 0.40 4 0.15 0.69 £ 0.05 0.80 £ 0.01 0.46 4 0.11 0.67 £ 0.04 0.87 4+ 0.01
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