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Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized clinically by 

motor dysfunction (bradykinesia, rigidity, tremor, and postural instability), and pathologically by 

the loss of dopaminergic neurons in the substantia nigra of basal ganglia. Growing literature 

supports that cognitive deficits may also be present in PD, even in non-demented patients. Gray 

matter (GM) atrophy has been reported in PD and may be related to cognitive decline. This study 

investigated cortical thickness in non-demented PD subjects and elucidated its relationships to 

cognitive impairment using High-resolution T1-weighted brain MRI and comprehensive cognitive 

function from 71 non-demented PD and 48 control subjects matched for age, gender, and 

education. Cortical thickness was compared between groups using a flexible hierarchical 

multivariate Bayesian model, which accounts for correlations between brain regions. Correlation 

analyses were performed among brain areas and cognitive domains as well, which showed 

significant group differences in the PD population. Compared to Controls, PD subjects 

demonstrated significant age-adjusted cortical thinning predominantly in inferior and superior 

parietal areas and extended to superior frontal, superior temporal, and precuneus areas (posterior 

probability > 0.9). Cortical thinning was also found in the left precentral and lateral occipital, and 

right postcentral, middle frontal, and fusiform regions (posterior probability > 0.9). PD patients 

showed significantly reduced cognitive performance in executive function, including set shifting 

(p=0.005) and spontaneous flexibility (p=0.02), which were associated with the above cortical 

thinning regions (p < 0.05).

Index Terms

Parkinson's Disease; Cognitive Impairment; MRI; Cortical Thickness; Hierarchical Bayesian 
Model

1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked clinically by 

motor dysfunction and associates pathologically with the loss of dopaminergic neurons in 

the substantia nigra pars compacta (SNc) of the basal ganglia (BG). Many non-motor 

symptoms are also present in PD and often attributed to extranigral non-dopaminergic 

system dysfunction [1]. Despite many effective dopamine replacement treatments, PD 

patients experience progressively more motor and non-motor disabilities, including 

cognitive, sensory, and emotional impairments [2], [3], [4]. Long-term followup studies have 

shown that 83% of PD patients suffer from dementia within 20 years of diagnosis [5], [6], 

[7]. Braak et al. [8] have hypothesized that the progression of a diverse sprectrum of motor 

and non-motor dysfunction is likely related to the ascending spread of α-synuclein-

immunopositive Lewy bodies and neurites from lower brainstem nuclei to cortical gray 

areas. The cortical involvement of Lewy bodies in PD was postulated to initiate in the 

temporal mesocortex region (stage 4), continue to the prefrontal cortex (stage 5), and finally 

reach to the primary sensory and premotor areas (stage 6) [8]. Although it is still unclear 
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whether Lewy bodies are the direct cause of neuronal degeneration, the pathological changes 

in the cortex may relate directly to cognitive impairment in PD.

Several in vivo functional neuroimaging studies of PD patients have been used to assess the 

neurodegenerative progression and their functional correlations in PD. For example, positron 

emission tomography (PET) studies have attempted to define abnormal covariance patterns 

of cortical and subcortical regional glucose metabolism that correlated with cognitive 

impairment [9], [10]. FMRI studies revealed the relationship between cognitive impairments 

and reduced neural activity in frontostriatal circuitry [3]. These functional neurological 

assessments, however, may be influenced by symptomatic treatments and functional states of 

patients.

Structural volumetric measurements with high-resolution magnetic resonance imaging 

(MRI) may reflect in vivo macroscopic atrophy of the regions of interest (ROIs) and have 

been adopted to characterize the pathological process. Recent MRI studies using voxel-

based morphometry (VBM) revealed a correlation of grey matter (GM) atrophy with disease 

stage and cognitive impairment in PD [11], [12], [13]. The results in nondemented PD were, 

however, more variable, with some studies reporting regional GM atrophy in frontal, 

temporal, or parietal cortex [14]. Conversely, some studies have shown no cortical atrophy in 

PD [15], [16]. The variability of VBM results and the lack of a consistent portrait of damage 

in the cerebral cortex may be due partly to non-specific spatial smoothing that mixes voxels 

far apart on the plane (e.g., on different hemispheres or sides of a sulcus) [17], [18].

Cortical thickness measures the shortest distances between a given brain surface and inner 

edge of cortical gray matter and may more directly reflect the underlying cyto- and 

myeloarchitecture of cortical structural changes. For example, it has been shown that 

neurons within the cerebral cortex are organized into ontogenetic columns that run 

perpendicular to the brain surface [19], and the cortical thickness measurement was linked to 

the number of cells within a column, reflecting the density of neuronal cell bodies and/or 

synaptic connections and the myelination of fibers [20], [21], [22] [23]. Thus, cortical 

thickness has been hypothesized to be a more promising tool to investigate GM changes 

related to PD cortical pathology. Consistent with this hypothesis, it has been demonstrated 

that cortical thinning occurs in both mild and advanced PD patients [24], [25], [26] [27], and 

can be associated with disease duration. In addition, accelerated cortical thickness changes 

and cognitive impairment have been reported in PD patients older than 70 years of age [28], 

[29] [30]. Studies in PD without dementia have reported cortical folding abnormalities and 

GM volume reductions [31]. However, it remains unclear whether there is any relationship 

with cognitive changes, and how cortical thickness is related to cognitive impairment in PD 

without dementia [32].

In this study, we tested the hypothesis that changes in cortical thinning can be detected in PD 

patients without dementia and these changes are correlated with measured cognitive decline. 

We adopted an advanced hierarchical multivariate Bayesian model to analyze the cortical 

thickness measurement and thinning pattern, which can take regions’ dependence into 

account using high resolution MRI on a large cohort of relatively younger PD patients 

without evidences of dementia. The basic analytic framework for the Bayesian model has 

Zhang et al. Page 3

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been previously applied to fMRI data [33], [34], and here we extend it for the first time for 

the analysis of cortical thickness. In addition, we performed correlation analysis between 

cortical thickness and neuropsychological tests to assess the neural substrates of cognitive 

decline in PD.

2 Materials and Methods

2.1 Participants

Patients with PD and control subjects (Control) were recruited for an ongoing study 

approved by the Institutional Review Board/Human Subjects Protection Office (IRB/HSPO) 

of Pennsylvanian State Hershey Medical Center. All participants provided written informed 

consent in accordance with IRB/HSPO guidelines and the Declaration of Helsinki.

71 PD patients without dementia were included in this study, who were diagnosed by a 

movement disorders specialist according to the published criteria [35], and were optimally 

managed with anti-parkinsonian medications. 48 Controls matched with PD patients for age, 

gender, education, and handedness, were selected from a pool of controls that were part of 

the ongoing study. Controls were free from any history of neurologic or psychiatric disorder, 

including previous head injury. All subjects were negative for other neurological history, 

hypothyroidism, vitamin B12 and folate deficiencies, and kidney and liver disease. None of 

the PD or Controls were demented with MMSE > 25 and DRS-2 > 10 [36], [37].

For both motor and cognitive tests, PD patients were assessed in a practically defined “off” 

state after withholding all medications overnight (~12 hours) [38]. Unified Parkinson’s 

Disease Rating Scale III (UPDRS) scores were recorded for all subjects and verified by a 

second rater from video recordings of the original assessment, except the rigidity. Disease 

severity was also recorded using Hoehn and Yahr staging [39].

2.2 Cognitive Assessment

All subjects were administered a standardized neuropsychological battery, along with the 

Hamilton Depression Scale (HAM-D) [40]. Montreal Cognitive Assessment (MoCA) [41] 

and the Dementia Rating Scale, Second Edition (DRS-2) [36]. One fine motor function 

domain and six cognitive domains were examined [13]: (1) processing speed, (2) Executive 

functions [set-shifting and spontaneous flexibility], (3) language, (4) learning/memory, (5) 

spatial cognition, and (6) attention/working memory. Each domain was assessed by two or 

more tests, except for the fine motor speed [13].

2.2 Neuroimaging Data Acquisition and Preprocessing

MRIs were acquired on a Siemens 3-Tesla TimTrio equipped with an 8-channel birdcage 

type In vivo coil. High-resolution T1-weighted (T1W) MRI images (3D MPRAGE, 

TR=1540 ms, TE=2.3 ms, voxel spacing 1.0×1.0×1.0 mm, image resolution 256×256 mm2, 

176 slices with no gap) were acquired for cortical thickness analysis.

Cortical thickness data were obtained using the Free-Surfer software package (version 5.3, 

available at: http://surfer.nmr.harvard.edu). The automated procedures first include 

resampling T1W MR images, motion correction, removal of non-brain tissue via a hybrid 
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surface deformation procedure [42]; Second, automated Talairach transformation, 

segmentation of the subcortical white matter (WM) and deep GM volumetric structures were 

applied [43]; Third is intensity normalization [44]; And then, tessellation of the GM/WM 

boundary, automated topology correction [45], and surface deformation following intensity 

gradients to place optimally the GM/WM and GM/cerebrospinal fluid borders at the location 

where the greatest shift in intensity defines the transition to the other tissue class [46], [47]. 

Cortical thickness was measured at each vertex of the WM/GM boundary by computing the 

shortest distance toward the pial surface. Cortical thickness maps were smoothed using a 

Gaussian kernel across the surface with a FWHM of 10 mm and averaged across subjects.

3 Statistical Analyses

3.1 MRI Thickness Analysis

We adopted a flexible multivariate Bayesian approach, based on an in-house hierarchical 

Bayesian model that enables the user to formulate probabilistic statements to quantify the 

evidence for cortical thickness differences between PD and Controls (http://

web1.sph.emory.edu/bios/CBIS/download_page.php). We extend the previous formulation 

of the model for fMRI data [33], [34] to analyze cortical thinning associated with PD. The 

hierarchical Bayesian model accounts for both spatial correlations between intra-regional 

voxels as well as between distinct cortical regions. Along the lines of Bowman et al. [33], 

the Bayesian model has the following hierarchical structure:

Yigj | μgj, αigj, xijq, σgj
2 MVN(μgj + 1αigj + ∑

q = 1

Q
γgjqxijq, σgj

2 I)

μgj |λgj
2 MVN(1μ0gj, λgj

2 I)

γgjq |τgjq
2 MVN(1γ0gjq, τgjq

2 I)

σgj
−2 Gamma(a0, b0)

αij MVN(0, Γ j)

λgj
−2 Gamma(c0, d0)
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τgjq
−2 Gamma(e0q, f 0q)

Γ j
−1 Wishart{(h0H0 j)

−1, h0}

where i = 1, …, N index subjects, j = 1, …, J index groups, and vg represents the number of 

voxels in a particular region indexed by g = 1, …, G with G as the total region number. We 

utilized the Desikan-Killiany Atlas regions from FreeSurfer, which included G =35 regions 

of interest and ∑g = 1
G νg = 16, 384 voxels in each hemisphere [48]. In the model, γgjq = 

(γgjq(1), …, γgjq(νg)) is the νg × 1 population-level parameter associated with the qth 

covariate xijq, q = 1, …, Q where Q is the dimensionality of the covariates of interest. In 

particular, pairwise spatial correlations among the voxels within the gth region are mediated 

by the random effect αigj. At the second level, the model expresses a prior belief that each 

voxel's cortical thickness population mean arises from a normal distribution with a mean 

given by the overall region mean μ0gj, which is the empirical mean across all subjects and 

intra-regional voxels, and the variance λgj
2 . It represents a reasonable starting point to assume 

that voxels’ cortical thickness within anatomically defined regions deviate around an overall 

mean for that region. Similarly, for each voxel, γgjq follows a normal distribution with mean 

γ0gjq and variance τgjq
2 . At the final level, the hierarchical model captures potential group-

related connectivity between brain regions through the covariance matrix Γj, which follows 

the inverse Wishart distribution with the positive definite matrix H0j as the inverse scale 

matrix. The Gamma and Wishart distributions are assumed in part due to mathematical/ 

computational convenience. For gamma distribution, we usually set a vague prior (less 

weight) and have enough data points to estimate the variance well. In case of Whishart 

distribution, we use the hyper parameter based on the data sample in the same format Kass 

and Natarajan [49] suggested, with the identity link for the normal distribution. In addition, 

we also include the covariance structure shrinkage tuning parameter to adjust the strength of 

belief of between region correlations and implemented in the software [34].

A Markov Chain Monte Carlo (MCMC) method with Gibbs sampling is performed for 

estimation, and the Gibbs sampling facilitates the estimation by providing substantial 

reductions in computing time and memory. We set weakly informative priors for the 

hyperparameters a0 = c0 = e0q = 0.1, b0 = f0q = 0.005, d0 = 0.01, and h0 = G (the total 

number of regions of interest), to ensure that the information in the data primarily governs 

the results [49]. The selection for h0 establishes a diffuse prior for the covariance matrix 

without raising concerns about an improper posterior distribution. More informative priors, 

however, may be employed when fairly precise information is available. The full conditional 

distribution for each parameter to run the Gibbs sampler is derived accordingly, which can 

be referred to Bowman et al. [33]. We performed 10,000 iterations with burn-in of 5,000 

iterations and thinning of 10 iterations (for storage and computation time). Despite the 

apparent complexity and rather rich formulation of our Bayesian hierarchical model as well 

as the high throughput nature of the data, computations for estimation are quite fast. For 
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instance, estimation for the Bayesian hierarchical models for our data with 71 PD and 48 

controls, the computation time is around one hour with our PC (two duo cores, 16G 

memory). The region-level parameters and voxel-level parameters showed evidence of 

convergence, after the burn-in period, in our MCMC analysis. We included age as a 

covariate in our Bayesian analysis. In preliminary analyses, age showed significant 

associations with average cortical thickness in each hemisphere with p-values less than 0.01 

shown in Fig. 1.

3.2 Neuropsychological Test Analysis

Two sample t-tests were used for group comparisons in demographic information and 

clinical characteristics (Table 1).

For neuropsychological data, cognitive test scores first were converted to standardized z-

scores and then cognitive domains analyzed using analysis of covariance (ANCOVA) with 

age and HAM-D scores as covariates. All analyses were performed using SAS 9.3 software 

(SAS Institute, Cary, NC).

3.3 Correlation Analysis between Cortical Thickness and Cognitive Tests

Additional correlation analyses were performed to assess the Spearman’s partial correlations 

between cortical thinning regions within each brain hemisphere and the cognitive variables 

in both PD patients and Controls. This additional correlation analysis using Spearman’s 

correlation can provide valid measures of their statistical dependence even if non-linear 

relationship exists.

4 Results

4.1 Demographics

From Table 1, there were no significant differences in age, gender, or education between 

PDs and Controls due to p-values greater than 0.05. PD patients had significantly higher 

HAM-D scores (p<0.001) and lower MoCA scores (p=0.013). 21 PD patients had HAM-D 

scores ≥10, consistent with depressive symptoms [40]. The average disease duration for PD 

subjects was 4.7 years, with a median of 2.5 years. Average Hoehn and Yahr staging was 

1.7, with 28 subjects having stage I disease, 35 subjects having stage II disease, and 8 

subjects having stage III disease.

4.2 Cortical Thickness Analysis

The average total left and right cerebral cortical thicknesses for the PD patients were 

2.25±0.17 mm and 2.24±0.16 mm, respectively, whereas these of the healthy controls were 

2.3±0.11 mm and 2.29±0.11 mm, respectively. As shown in Fig. 1, overall decline of cortical 

thickness was shown with aging in both Control and PD groups, but this association only 

achieved statistical significance in the PD group [29].

Fig. 2 shows the cortical thickness differences between PD patients and Controls using the 

Bayesian hierarchical model with the posterior probability threshold level set at 0.9, i.e. the 

posterior probability that cortical thickness for PD patients is less than controls, 
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Pr(PD<Control) = 0.9. The thresholded posterior probability maps reveal voxels for which 

the data provide evidence of cortical thinning in the PD compared with control. PD subjects 

demonstrated significant cortical thinning in the superior temporal and inferior and superior 

parietal areas that extended to superior frontal and precuneus regions. Cortical thinning also 

was found in the left precentral and lateral occipital, and the right postcentral, middle 

frontal, and fusiform regions. Table 2 gives out the regions information with the posterior 

probability over 0.9, such as regions’ name, coordinates and size.

Considering the potential group-related connectivity between brain regions through the 

covariance matrix Γj, Fig. 3 shows the posterior median of the correlation matrices for both 

the control and PD in left and right hemisphere. As expected, larger degree of inter-regional 

connectivity regions were found in superior temporal and inferior and superior parietal to 

frontal and precuneus regions, to reflect that these affect regions have a stronger inter-

regional functional connectivity among the PD group.

4.3 Cognitive Tests

Three PD patients who did not complete parts of the full neuropsychological battery were 

excluded from this analysis. Table 3 shows that PD subjects performed significantly lower 

than Controls on tasks related to fine motor speed (p < 0.001), processing speed (p = 0.002), 

set-shifting (p = 0.005), spontaneous flexibility (p = 0.02), and attention (p = 0.03). 

Language, learning/memory, and spatial cognition domains failed to show group differences 

(p > 0.05). Here the raw p-values are obtained based on two-sample t tests and the adjusted 

p-values are from the multivariate regression models adjusted for age and HAM-D 

covariates.

4.4 Correlations between Local Cortical Thickness and Cognitive Functions

Spearman’s partial correlation analyses with adjustment for age and HAM-D scores were 

conducted between the brain regions identified in the cortical thickness analysis and 

cognitive task scores. Table 4 shows that PD patients demonstrated significant positive 

correlations between the thickness in the fronto-parieto-temporal areas found in the 

Bayesian model and the executive functions of set shifting and spontaneous flexibility. 

Controls failed to show any correlations between the thickness and the executive functions 

(p>0.15).

5 Discussion

In this study, we adopted for the first time a flexible, hierarchical Bayesian spatial model to 

test the hypothesis that significant cortical thickness changes (i.e., cortical thinning) occur in 

PD patients without dementia compared with Controls. This model takes advantage of 

capturing the short-range correlations between voxels within a defined anatomical region as 

well as the (potentially) long-range inter-regional correlations. The posterior probability 

inferences were conducted to compute the contrast probability that an affected voxel exceeds 

some specified threshold (i.e., 0.9), which do not have to consider multiple tests because 

there are no false positives [33], [50], [51] [52], [53], [54], [55]. Note that we also tried 

linear mixed-effects models with subject-level and region-level random-effects, but there 
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were severe convergence issues for the cases with high-dimensionality of regions (i.e., 

G=35). However, the hierarchical Bayesian approach doesn’t suffer from this problem and 

also has the benefit of incorporating a flexible unstructured inter-region correlation matrix 

and exchangeable intra-region correlations (Fig. 3). Addtionally, the Bayesian framework 

enables us to formulate probabilistic statements that help to quantify the evidence provided 

by our experimental data. The inference framework also allows us to compute Bayesian 

credible intervals to make statistical inferences. Further, the MCMC estimation procedures 

produce samples from the joint posterior distribution of all of the model parameters, which 

facilitates estimation of and inferences about functions of the model parameters.

We found that PD patients without dementia displayed significant association between the 

global cortical thinning with aging, with a higher slope than Controls. In addition, the study 

demonstrated thinning in a number of specific cortical regions in PD, and this localized 

cortical thinning was significantly correlated with cognitive decline in PD patients. These 

results support that cortical thinning occurs in PD patients without dementia and may serve 

as a predictor for cognitive decline in this population.

Previous MR-based cerebral volume studies have revealed GM atrophy and decline of 

cognitive impairment in PD [11], [12], [13]. VBM analysis of the cerebral cortex, however, 

can be influenced by GM intensity and cortical folding patterns, and the results of VBM 

studies in non-demented PD subjects have been variable, and showing regional GM atrophy 

in frontal, temporal, or parietal cortex [14], [16]. While useful as an exploratory tool, VBM 

may not be adequate to detect the concrete anatomical changes occurring in the cerebral 

cortex. The surface-based cortical thickness analysis minimizes the influence of volume-

based methods and provides more direct measurements of gray matter changes and insight 

into disease pathogenesis [26]. Our results show that global cortical thickness decreases with 

advancing age in PD patients at twice of normal controls (0.47 mm annually vs 0.21 mm, 

respectively). Using the flexible hierarchical Bayesian spatial model, our study revealed 

robust cortical thinning findings reported to date in PD subjects without dementia (Fig. 2), 

and these regions show a higher interregion correlation captured in our model (Fig. 3).

Specifically, our study showed that non-demented PD patients demonstrated widespread 

cortical thinning in large scale neural networks involving the bilateral inferior and superior 

parietal regions, including the precuneus, as well as bilateral superior frontal and superior 

temporal regions compared to Controls. The precuneus has been described as a critical node 

of information convergence in the parietal network [56]. In addition, PET studies by 

Eidelberg et al. [9], [57] demonstrated a “PD-related cognitive pattern” (PDCP) that showed 

reduced metabolism of the dorsolateral premotor cortex (PMC), rostral supplementary motor 

area (pre-SMA), precuneus, and other posterior parietal regions, and expressed the correlates 

with performance on neuropsychological tests of memory and executive functioning in non-

demented PD patients. Our study for the first time demonstrated a converging pattern of 

anatomical frontal-parietal-precuneus thinning that occurs in non-demented PD patients and 

is related to decline in executive cognitive function. Of note, we utilized the Desikan-

Killiany atlas regions from FreeSurfer for analysis, which did not separate the SMA and pre- 

SMA. From our model in Figure 2, (a), (b), the SMA and pre-SMA near precentral and 

postcentral gyri showed strong posterior related to the frontal-parietal-precuneus regions. In 
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addition, the thinning in these regions was related to executive cognitive function. These 

findings support that neuroimaging-based evidence of structural changes may link to PD 

cortical pathology and the associated cognitive performance.

PET studies have shown that the greatest cerebral glucose metabolic rate reduction in PD 

occurs in the occipital lobe [58]. Similarly, Nagamachi et al. [59] demonstrated that the 

greatest difference in hypoperfusion observed between patients with milder PD (H&Y I and 

II) and patients with advanced PD (H&Y III and IV) was in the occipital cortex. Our 

findings suggest that left occipital cortex thinning in PD may reflect those functional 

changes (either as consequences or causes of these changes). Although we do not have 

visual specific testing or hallucination scores, it is of interest to determine whether the 

occipital cortical thinning will be predictive of future risk of visual specific dysfunction 

and/or hallucinations at later stages of the disease [60].

Pathologically PD is associated with a degeneration of the substantia nigra pars compacta of 

the basal ganglia, but it has been postulated that degeneration extends beyond the basal 

ganglia and affects more widespread brain areas as disease progresses [8]. It is possible that 

cortical changes in PD are due to primary cortical GM pathology consisting of Lewy bodies 

and neurites even in early clinical stage patients [8]. Since many of the cortical areas have 

direct projections to the striatum, it is also possible that the cortical changes reflect 

progressive cortico-striatal circuitry dysfunction in PD [3], [13], which may affect the 

glucose metabolism in cortical regions as shown in PET studies. The chronic “dis-use”, or 

hypofunction might be underlying the cortical thinning.

As expected, in our study, PD patients without dementia had reduced performance on several 

neuropsychological tests, particularly involving fine motor speed, processing speed, set-

shifting, spontaneous flexibility, and attention (refer to Table 3). Impaired fine motor speed 

and processing speed may have been exaggerated by testing patients in a practically defined 

“off” treatment state when there is comparatively greater basal ganglia dysfunction. 

Executive dysfunction in PD frequently has been attributed to dopamine loss in the striatum 

that may affect fronto-striatal functions by disrupting activity within cortico-basal ganglia 

and basal ganglia–thalamocortical circuits [3], [11], [12], [13]. Our MRI cortical thinning 

analysis, however, also showed that significant morphological brain structural changes 

occurred in bilateral parietal and superior frontal regions. The current analysis did not reveal 

group differences in language, spatial cognition, or learning/memory tests. This may be due 

partly to PD patients in the current study being in early stages of the disease.

We examined the relationship between cortical thinning and cognitive function in PD 

patients without dementia. The correlations between cortical thinning areas and decline in 

cognitive domain may extend the understanding of possible pathophysiological substrates 

underlying PD symptoms. Table 4 shows that moderately strong and statistically significant 

correlations were found between measures of executive function (including spontaneous 

flexibility and set-shifting) and cortical thinning in bilateral fronto-parietal regions in the PD 

sample but not Controls. These regions, including the superior parietal and precuneus, 

inferior parietal, and superior frontal cortices, have been linked together in a large scale 

neural network subserving integrative processing for executive functions [54], [56], [61], 
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[62], [63]. Morphological changes to these regions could contribute to executive function 

decline separately or in pathophysiologic synergy with basal ganglia dysfunction [64].

In summary, the current results showed that PD patients without dementia sustain cortical 

thinning which is related to performance reduction in several cognitive domains, with the 

most robust correlations occurring between fronto-parietal network changes and executive 

functions.

These results suggest that, in addition to corticostriatal circuit dysfunction, there are cortical 

anatomical changes and altered functional networks that likely underlie PD cognitive 

symptoms. Further studies are needed to clarify the effects of disease progression and 

potentially modifiable neuronal and cognitives.
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Fig. 1. 
Correlation between brain mean thickness and and age in PD and Controls. Each hemisphere 

data are plotted separately: (a) left hemisphere, (b) right hemisphere.
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Fig. 2. 
Cortical thickness contrast between PD and Controls using Bayesian hierarchical model. 

Pr(PD<Controls). (a) Left hemisphere with the posterior probability that the cortical 

thickness for PD is less than Controls, threshold level set at 0, i.e. Pr(PD<Control)>0; (b) 

Right hemisphere with the posterior probability threshold level set at 0; (c) Left hemisphere 

with the posterior probability threshold level set at 0.9, i.e. Pr(PD<Control)>0.9; (d) Right 

hemisphere with the posterior probability threshold level set at 0.9.
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Fig. 3. 
Posterior median correlation estimates of inter-regional connectivity for the PD data set. Top 

row are median correlation matrices for both the PD and Controls in the left hemisphere, 

bottom row show median correlation for PD and Control in the right hemisphere.
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TABLE 1

subjects’ Demographic information in the study

Measure Controls (n=48) PDs (n=71) p-value

Age (years) 61.70±7.35 62.21±8.59 0.73

Education (years) 15.78±2.89 14.97±2.73 0.13

Gender, M:F 30:18 40:28 0.69

Duration of disease (years) NA 4.7±5.3 NA

UPDRS NA 21.4±11.8 NA

HAM-D 3.71±2.34 7.17±4.12 <0.001

MoCA 26.15±2.24 24.75±3.67 0.013

Note: Mean±Standard Deviation (SD) for continuous variables, and frequencies for categorical variables. The p-values are based on two-sample t-
tests for continuous variables and Pearson’s Chi-square tests for categorical variables. The significance level was 0.05. (NA = not applicable).
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Table 2

Regions having posterior probability > 0.9

Region
Size

(voxel #)
X Y Z

Left Hemi- Cortical Name

Lateral occipital −21 −91 −13 673

Superior parietal −34 −48 44 1192

Superior frontal −9 45 16 2154

Precuneus −17 −60 17 857

Precentral −50 5 18 1868

Inferior parietal −42 −69 33 873

Superior temporal −54 1 −20 1694

Right Hemi-Cortical Name

Postcentral 36 −36 50 689

Rostral middle frontal 28 33 38 684

Superior parietal 24 −63 44 703

Fusiform 42 −63 −13 775

Superior frontal 20 43 35 2129

Precuneus 21 −62 12 710

Inferior parietal 45 −72 19 676

Superior temporal 44 1 −19 857
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Table 3

Neuropsychological test results for control and PD subjects.

Test Controls
(n =48)

PD
(n =68)

Raw p-
valuea

Adjusted p-valueb

Fine motor speed

Mean z-score −0.48 ± 1.44 −3.66 ± 3.53 < 0.001 < 0.001

GPD_D −0.50 ± 1.47 −4.13 ± 4.99 < 0.001 < 0.001

GPD_ND −0.46 ± 1.62 −3.19 ± 3.24 < 0.001 < 0.001

Processing speed

Mean z-score 0.62 ± 0.66 0.27 ± 0.89 0.01 0.002

CWInt Color 0.54 ± 0.76 0.22 ± 0.99 0.06 0.008

Symbol Search 0.71 ± 0.87 0.37 ± 0.95 0.05 0.002

Executive function: Set-shifting

Mean z-score 0.31 ± 0.42 −0.17 ± 0.98 0.0004 0.005

CWInt Inhibition 0.55 ± 0.65 0.08 ± 1.25 0.01 0.03

CWInt Inhibition Errors 0.32 ± 0.59 −0.44 ± 1.24 < 0.001 0.81

CWInt Switch 0.49 ± 0.97 0.30 ± 1.11 0.33 0.03

CWInt Switch Errors 0.49 ± 0.61 0.01 ± 1.03 0.002 0.70

VVT Total 0.09 ± 0.87 −0.27 ± 1.37 0.09 0.0002

VVT Switch −0.07 ± 0.88 −0.55 ± 1.44 0.03 0.0006

Executive function: Spontaneous flexibility

Mean z-score 0.29 ± 0.55 −0.02 ± 0.77 0.01 0.02

DesFlu Switch 0.69 ± 0.82 0.25 ± 1.09 0.02 0.04

DesFlu Total Correct 0.65 ± 0.97 0.19 ± 1.09 0.02 0.04

DesFlu Total Design 0.99 ± 1.19 0.59 ± 1.52 0.13 0.17

DesFlu Design Accuracy −0.56 ± 0.98 −0.77 ± 1.20 0.33 0.34

VerbFlu Letter −0.08 ± 0.87 −0.26 ± 1.15 0.34 0.14

VerbFlu Category 0.03 ± 0.93 −0.14 ± 1.08 0.37 0.18

Language

Mean z-score 0.46 ± 0.58 0.32 ± 0.75 0.29 0.25

CWInt Word 0.48 ± 0.71 0.31 ± 1.06 0.30 0.27

BNT 0.44 ± 0.93 0.33 ± 1.05 0.57 0.60

Spatial cognition

Mean z-score −0.09 ± 0.69 −0.33 ± 0.96 0.13 0.18

JoLO −0.19 ± 1.37 −0.49 ± 1.79 0.32 0.32

DRS2 Construction 0 −0.14 ± 0.40 0.005 0.06

Memory

Mean z-score −0.42 ± 0.91 −0.72 ± 1.07 0.12 0.13

BVMT-R Total Learning −0.34 ± 1.29 −0.72± 1.33 0.13 0.18

BVMT-R Delayed Recall 0.03 ± 1.41 −0.44± 1.36 0.11 0.22
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Test Controls
(n =48)

PD
(n =68)

Raw p-
valuea

Adjusted p-valueb

BVMT-R Discrimination Index* −0.69 ± 1.98 −1.27 ± 2.51 0.19 0.39

HVLT-R Total Learning −0.53 ± 0.89 −0.69 ± 0.97 0.36 0.09

HVLT-R Delayed Recall −0.70 ± 1.05 −0.64 ± 1.09 0.76 0.93

HVLT-R Discrimination Index* −0.30 ± 1.04 −0.53 ± 1.15 0.28 0.11

Attention

Mean z-score 0.46 ± 0.48 0.17 ± 0.72 0.01 0.03

Letter Number Sequencing 0.35 ± 0.58 0.13 ± 0.95 0.13 0.16

Spatial Span 0.52 ± 0.85 0.28 ± 1.05 0.20 0.26

Digit Span 0.52 ± 0.71 0.10 ± 0.76 0.003 0.008

Note: Mean±Standard Deviation (SD) is shown for all continuous variables.

Mean z-score: The average z-score from all sub-categories.

a
: The p-value is obtained based on a two-sample t-test for each variable.

b
: The adjusted p-value is obtained based on the multivariate regression models adjusting for age and HAMD covariates.

Note: Neuropsychological test results showing Mean ± Standard Deviation (SD). All test scores were converted to standard z-scores. Higher z-
scores
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Table 4

Spearman correlation (r) and p-value (p) between cognitive domain test and localized thinning regions for PD 

and control

Region
Name

PD Control

Set-
shifting

Spontaneous
Flexibility

Set-
shifting

Spontaneous
Flexibility

Left Cortical Region

Lateral occipital r=0.28 (p=0.025) 0.26 (0.036) 0.15 (0.32) 0.15 (0.31)

Superior parietal r=0.27 (p=0.027) 0.29 (0.019) 0.21 (0.15) 0.10 (0.49)

Superior frontal r=0.31 (p=0.012) 0.29 (0.019) 0.14 (0.36) 0.13 (0.38)

precuneus r=0.27 (p=0.028) 0.25 (0.041) 0.13 (0.4) 0.11 (0.48)

precentral r=0.28 (p=0.025) 0.27 (0.029) 0.14 (0.35) 0.14 (0.34)

Inferior parietal r=0.27 (p=0.03) 0.26 (0.034) 0.13 (0.39) 0.12 (0.41)

Superior temporal r=0.26 (p=0.039) 0.26 (0.035) 0.14 (0.35) 0.14 (0.36)

Right Cortical Region

postcentral r=0.24 (p=0.051) 0.24 (0.05) 0.13 (0.37) 0.15 (0.33)

Rostral middle frontal r=0.31 (p=0.012) 0.31 (0.011) 0.10 (0.50) 0.14 (0.36)

Superior parietal r=0.33 (p=0.006) 0.34 (0.006) 0.11 (0.46) 0.15 (0.30)

fusiform r=0.26 (p=0.035) 0.27 (0.029) 0.09 (0.51) 0.13 (0.36)

Superior frontal r=0.28 (p=0.026) 0.29 (0.017) 0.10 (0.48) 0.14 (0.35)

precuneus r=0.30 (p=0.016) 0.32 (0.009) 0.09 (0.51) 0.17 (0.25)

Inferior parietal r=0.32 (p=0.010) 0.32 (0.01) 0.08 (0.60) 0.15 (0.30)

Superior temporal r=0.35 (p=0.005) 0.32 (0.01) 0.10 (0.50) 0.19 (0.21)
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