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Abstract

It is challenging to obtain reliable and optimal mapping between networks for alignment 

algorithms when both nodal and topological structures are taken into consideration due to the 

underlying NP-hard problem. Here, we introduce an adaptive hybrid algorithm that combines the 

classical Hungarian algorithm and the Greedy algorithm (HGA) for the global alignment of 

biomolecular networks. With this hybrid algorithm, every pair of nodes with one in each network 

is first aligned based on node information (e.g., their sequence attributes) and then followed by an 

adaptive and convergent iteration procedure for aligning the topological connections in the 

networks. For four well-studied protein interaction networks, i.e., C.elegans, yeast, 

D.melanogaster and human, applications of HGA lead to improved alignments in acceptable 

running time. The mapping between yeast and human PINs obtained by the new algorithm has the 

largest value of common Gene Ontology (GO) terms compared to those obtained by other existing 

algorithms, while it still has lower Mean normalized entropy (MNE) and good performances on 

several other measures. Overall, the adaptive HGA is effective and capable of providing good 

mappings between aligned networks in which the biological properties of both the nodes and the 

connections are important.
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 I. Introduction

NEtwork alignment algorithms are often used to compare different biomolecular networks to 

explore signaling pathways, conserved function modules, regulatory relationships, and the 

evolution of species [1]. For example, in protein interaction networks (PINs), the protein-

protein interaction (PPI) data such those in yeast [2], and a variety of other organisms, 

including bacteria, worm, fly and human, may be used with the network alignment approach 

to determine whether the conserved sequences in different species have similar functions [3]. 

In this way, the network annotation of any species can be efficiently transferred to another 

species [4] as a means to study human disease using the model organism [5].

Typically, a biomolecular network consists of thousands of biomolecules with each node 

having biological attributes that influence its functions. In addition, the connections between 

nodes are also directly linked to their biological functions [6], [7]. For example, it was 

reported that the accuracy of the prediction of protein functions based on a network was 

approximately 58%–63% versus an accuracy of 37%–53% predicted on the basis of 

sequence similarity. In the same study, the success rate of PPI prediction using a network 

was 40%–52% versus a success rate of 16%–31% from sequence information [8]. However, 

when aligning biomolecular networks, optimal mapping among networks is difficult when 

both nodes and topological structures are taken into consideration. Such mapping becomes 

more intricate because of the addition of false-positive and false-negative results from 

experimental data.

Two major approaches have been developed to address this complexity: heuristic methods 

and parameterized algorithms.

A typical feature of heuristic methods is the use of the Greedy algorithm (GA). The 

PathBlast family tools [9]–[12] are representative of heuristic approaches. NetworkBLAST-

M [13], an improved version of NetworkBLAST [11], attempts to align two or more 

networks by greedily searching conserved regions. Graemlin 2.0 [14] considers phylogenetic 

relationships to infer a network, then optimizes the learned objective function. IsoRank [15] 

formulates the alignment as an eigenvector problem and uses a greedy algorithm to obtain 

the final alignment. The algorithm is extended to IsoRankN [16], which uses spectral 

clustering on a graph to improve the global network alignment. Also based on IsoRank, a 

new algorithm that uses interaction probabilities is developed to explore more meaningful 

alignments [17]. The PISwap algorithm [18] computes a PINs alignment based on a local 

optimization heuristic. GRAAL [7] is a greedy “seed-and-extend” approach analogous to the 

popular BLAST [19] algorithm for sequence alignment. MI-GRAAL [20] is a further 

improvement of GRAAL that is designed to build a matrix of confidence scores based on 

different measures of similarity between nodes and that aligns networks using a greedy 

algorithm. GEDEVO [21] is an ingenious method based on the Graph Edit Distance (GED) 

model that aligns networks using a novel evolutionary algorithm that attempts to minimize 
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the GED. NETAL [22] aligns networks very quickly; it pre-processes topological scores and 

biological scores separately, then uses GA to find the global alignment and focuses on 

topological similarities in the current version. Both GEDEVO and NETAL work with large 

networks and attain high EC (edge correctness) values. Each of these algorithms has its 

advantages and contributes to the comparison of biomolecular networks. However, heuristic 

approaches are limited because they do not guarantee the quality of the solution. In some 

cases, these methods are unstable and depend largely on the experience of the researcher.

Compared to typical heuristic methods, parameterized algorithms can achieve an optimal 

alignment at the cost of more simulation time. An example is the color-coding method [23], 

which can be used to obtain a better alignment by finding simple paths and circles of a 

specified edge length along with other small subgraphs within a graph. However, the search 

target is usually limited to a small number of proteins due to the computational cost. QPath 

[24] incorporates the query with an inexact match to speed up the original color-coding 

method but has similar time complexity issues. Another example is the H-GRAAL [25] 

method, which is based on the Hungarian algorithm (HA) [26] and which finds an optimal 

assignment for a given cost matrix. Although H-GRAAL is more accurate than its 

corresponding heuristic counterpart GRAAL [7], it is substantially more expensive [25].

We present a hybrid algorithm that combines HA and GA (HGA) to align biomolecular 

networks in this paper. Considering both similarities between biomolecules and interactions, 

we use HA to obtain better node assignment and GA to reduce the computation time, which 

is critical for resolving the alignment of large-scale networks.

Typically, the alignment of networks can be carried out by two distinct types of methods: 

local and global algorithms [8]. Global algorithms compare entire node-and-edge structures 

among networks [7], [10], [14]–[16], [18], [20], whereas local algorithms identify local 

regions in networks that exhibit similar node and edge structures [9], [13]. HGA explores 

global algorithms to align a pair of networks.

The rest of this paper is organized as follows. In Section 2, network alignment is illustrated, 

and the hybrid algorithm HGA is presented. In Section 3, we explore the adaptive 

parameters for HGA and examine the effect of the key parameters. In Section 4, we use 

PINs as an example of an application of HGA and compare it with several other algorithms. 

Finally, Section 5 presents a discussion and our conclusions.

 II. Methods

 A. Problem Formulation

Biomolecular networks can be represented as graphs in which nodes (or vertices or points) 

and edges denote biomolecules and their connections, respectively. For example, in PINs, 

the nodes are the proteins and the edges are their interactions. The object of optimizing the 

alignment of two networks is to obtain a mapping that best describes the similarity of the 

nodes as well as that of their connections. Such an alignment problem is described as 

follows.
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Two networks A and B are represented by GA = (VA, EA) and GB = (VB, EB), respectively, 

in which VA = {u1, u2, …, un} and VB = {v1, v2, …, vm} are nodes and n ≤ m and 

,  are edges.

A network is represented by an adjacent matrix X for which each entry xij is 0 if no edge 

connects nodes ui and uj; otherwise, xij is 1. For a network A of n nodes and a network B of 

m nodes, the adjacent matrices are An×n = (aij), 1 ≤ i, j ≤ n, aij ∈ {0,1}, and Bm×m = (bij), 1 ≤ 

i, j ≤ m, bij ∈ {0,1}, respectively.

We define a set N to denote the neighbors of a node xi in network A or B:

(1)

(2)

Here, NA(ui) is the set including neighbors of node ui in network A, and NB(vi) is the set 

including neighbors of node vi in network B.

The alignment of two networks is to find a mapping ϕ = {ϕ1, ϕ2} : GA → GB such that

1. ∀ui ∈ GA, there exists a unique ϕ1(ui) ∈ GB;

2. ∀e = (ui, uj), there exists a unique ϕ2(e) = (ϕ1(ui), ϕ1(uj)).

This mapping is obtained by optimizing an objective score that may include the node alone 

or both the edge and the node. In the matrix representation of this mapping, there is only one 

nonzero (i.e., one “1”) element in each row and all values of “1” must be in different 

columns. That is, for each node in network A, there is one node in network B that it matches.

To enable the mapping, first, the “similarity” between a pair of nodes (ui, vj), ui ∈ GA, vj ∈ 

GB, 1 ≤ i ≤ n, 1 ≤ j ≤ m must be estimated. This quantity, the similarity coefficient sij, may or 

may not contain information for the edge connecting the two particular nodes. For the two 

networks, the similarity matrix is S = (sij), i = 1…n, j = 1…m.

Such an alignment problem is of high computational complexity because of the underlying 

subgraph isomorphism problem, which is known to be NP-hard [27] and only special cases 

of which can be solved in polynomial time [28].

 B. Algorithm

Here, we present an algorithm that integrates HA and GA to find an alignment for two 

networks. During the iterative process, at each re-matching step we first use HA for the 

preliminary assignment and then use GA to complete the matching. In this way, we can take 

advantage of the strength of GA, which is simple and effective (but is less accurate), and the 

strength of HA, which optimally matches the nodes between the aligned networks (but is 

computationally expensive).
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There are two major steps in the HGA algorithm. First, because we consider both the node 

similarity and topological similarity of the two networks, we iteratively compute the overall 

similarity matrix by gradually incorporating the topological and node information for the 

two networks; second, we construct the mapping matrix to establish the matching of the 

networks.

 1) An iterative procedure to compute the similarity matrix

i. Initialization:

The initial similarity matrix, denoted by , where t = 0, can be based 

only on node information, for example, using homologous coefficients of 

proteins computed by BLAST for PINs.

ii. Updating the similarity matrix:

The similarities of neighbors for each pair of matching nodes (up, vq) are then 

rewarded with a positive number ω, leading to an updated similarity matrix 

with the following entries:

(3)

All matching nodes can be found by the mapping matrix M(t) described in 

Section II-B2.

This approach using ω for the neighbors is based on the Neighbor Biased 

Mapping (NBM) [29] method; thus, neighbors have more opportunities to 

match with each other when two nodes are matched. Moreover, HGA defines 

the reward parameter (ω) that is adaptively updated according to the degree of 

the neighbors. The choice of ω will be discussed in Section II-C1.

iii. Adding topology information:

Given any two nodes ui, vj in the networks A and B, respectively, their 

topological similarities are computed based on an approach previously used for 

the topological similarity of biomolecular networks [5], which we have called 

the topological similarity parameter (TSP). The TSP includes  and , which 

are updated according to the rule that two nodes are similar if they link or do 

not link to similar nodes [30].

 represents the average similarity between the neighbors of ui and vj, and 

represents the average similarity between the non-neighbors of ui and vj. For 

, we first obtain the sum of similarities of each pair of nodes uk and vl that 

are the neighbors of ui and vj and then normalize the sum by the total number 

of neighbor pairs. If both ui and vj are isolated points,  is defined as the sum 

of similarities of every pair (uk, vl) normalized by the total number of such 
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pairs, n × m. For , we first obtain the sum of similarities of each pair of 

nodes uk and vl that are the non-neighbors of ui and vj and then normalize the 

sum by the total number of non-neighbor pairs, (n − |NA(ui)|)(m − |NB(vj)|). If 

both ui and vj link to all of the nodes in their networks, then  is defined as 

the sum of similarities of every pair (uk, vl) normalized by the total number of 

such pairs, n × m.

(4)

(5)

When PINs evolve from a common ancestor of two closely related species, 

proteins within the two networks might have essentially identical amino acid 

sequences. During evolution, proteins may be duplicated, inserted or deleted in 

networks [31]; hence, the topology of the evolved networks changes. To find 

the most similar alignment between the networks, topological information 

must be incorporated along with sequence information [5].

(6)

iv. Continue to step ii) until one of the following conditions is satisfied:

a.

b.

where ɛ is a prescribed tolerance. Typically, we choose ɛ = 0.01 to 

allow 1% error.

c. A sum score, which will be given later in formula (14), does not 

change in three continuous iterations. The sum score is calculated 
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in each iteration to record the score of the mapping matrix at that 

iteration, as described in Section II-B2.

The convergence of a similar iteration procedure for obtaining a 

similarity matrix has been previously proved based on the power 

method [30].

 2) Construction of the mapping matrix—Now that a sequence of similarity matrices 

S(t) for t = 0, …, k has been obtained, the mapping matrix for each of the similarity matrices 

must be constructed.

i. Initial matching:

For S(0), which might only contain initial similarities of the nodes in network A 

and B, it is simple to calculate the corresponding mapping matrix M(0) using 

HA:

(7)

in which i = 1…n, j = 1…m.

ii. Re-matching:

Finding the mapping between the nodes of two networks is similar to assigning 

tasks to workers. HA is good at such assignment problems but is with time 

consuming especially for a large number of tasks. S(t)(t > 0) contains the 

topological information for the network, the similarity matrix becomes more 

complex and it becomes more difficult to obtain the mapping matrix directly 

using HA alone. We use HGA to divide S(t) into two matrixes: the H-matrix, in 

which each row has at least h nonzero entries, and the G-matrix, which collects 

the remaining entries of S(t). The value h is an empirical value that might 

depend on the number of homologs of proteins in the other network, providing 

a balance of good performance and good mapping. A large h corresponds to a 

small H-matrix, resulting in good mapping among fewer nodes, whereas a 

small h indicates a large H-matrix that is time-consuming to solve. For 

example, the H-matrix of PINs addresses those proteins that correspond to a 

greater number of similar proteins in the other network in their initial state. We 

explored a wide range of values for h, and we set it as 5 for our experiments. 

For the alignment between the yeast and human PINs, yeast proteins that have 

at least 5 homologous proteins in the human network are collected into the H-

matrix. HA is used to assign proteins of yeast in the H-matrix to match their 

best counterparts in human PIN. The G-matrix is sparser. We then apply GA to 

the yeast proteins in the G-matrix that have not been matched in the H-matrix.

Specifically, suppose S(t)(t > 0) is divided into the H-matrix and G-matrix as 

follows:

Xie et al. Page 7

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



H-matrix:

(8)

G-matrix:

(9)

where gi + hj = n. First, we assign proteins in the H-matrix to match their best 

counterparts using HA and mark the corresponding columns in the G-matrix. 

For example, if  matches with vp ∈ GB, that is,  in M(t) is 1, then 

we mark column p in the G-matrix. Next, we use GA to assign those 

unmatched proteins in the G-matrix, and we no longer consider those in the 

marked columns (e.g. column p). Finally, we obtain M(t), which is computed 

by HA and GA. The final output of the mapping matrix MF is the desired 

mapping that has the best sum score based on equation (14).

 3) Scoring the mapping matrix to obtain the optimal mapping—For a typical 

global network alignment problem, each node in one network is only matched with one node 

in the other network. Edge Correctness (EC) is often used to measure the degree of 

topological similarity [7], [15], [20], [32] and can be estimated as the percentage of matched 

edges,

(10)

Another way to measure alignment is to use the Largest Common Connected Subgraph 

(LCCS) [20]. A greater number of nodes and edges in the LCCS implies a better alignment. 

Obviously, both the EC and the LCCS only indicate topological similarities other than the 

original attributes of the nodes, such as the amino acid sequences or functional similarities 

of the proteins in PINs.
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If the correct mappings between the aligned networks GA and GB are known, Node 

Correctness (NC) and Interaction Correctness (IC) can also be used to indicate the alignment 

quality. NC is the percentage of nodes in GA that are correctly mapped to nodes in GB, and 

IC is the percentage of correctly mapped interactions [25].

For PINs, one can posit an objective function based on similarities of network topology, the 

sequences and their relative weights [33]. Another popular approach is Gene Ontology (GO) 

[34], in which an alignment has a higher biological relevance when more matched proteins 

in this alignment share more GOs [20], [25].

Mean normalized entropy (MNE) is also an useful indicator of the function coherence of the 

alignments. Lower MNE means that the matched proteins have greater consistency, which is 

a better indication of proteins sharing the same function [35].

Here, we include information on both nodes and edges in the score (the points and edges 

score, PE) that is defined similarly to the measures used by INM [5].

First, we define .

Next, we set  as the edge weight between nodes ui and uj in network A, which 

indicates the reliability of this edge (it is usually set to be 1 by default). We define the 

following:

(11)

in which,

(12)

(13)

PE is clearly stricter than EC because it reflects the status of both the node and edge matches 

in the mapping. The score for an edge (the Edge Score, ES) equals zero if any of its nodes 

does not match with its similar nodes, and the score for a node (the Point Score, PS) equals 

zero if none of its edges has a score.
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To illustrate the scoring, we show an example for the alignment of a three-node network to a 

four-node network (see Fig. 1).

Because EC is a popular quantity used by many algorithms and PE indicates the level of 

matching of both nodes and edges, we compute the final sum score of a mapping as follows:

(14)

For each iteration, we calculate the SS of its mapping matrix, select the one with the highest 

SS as the final mapping when the computation is completed, and then obtain its 

corresponding PE, EC and so on.

 4) Flow chart—Fig. 2 shows a summary flow chart for HGA.

The computation of topological similarities for each pair of nodes in the two networks, 

and , consumes the dominant portion of the CPU time, and it has a time complexity of 

O(n × m)2.

 C. Parameters

 1) An adaptive parameter—Two similar proteins may often interact with other similar 

proteins. In other words, if protein u in network A is similar to v in network B, protein a, a 

neighbor of u, is likely to be similar to protein b that is a neighbor of v. HGA adopts NBM 

[29] when it aligns networks A and B, and it rewards the similarity coefficient of a and b 
with ω so that they have a greater opportunity to match each other [5].

In particular, we define ω as follows:

(15)

where sim(u, v) is the homologous coefficient between u and v and |NA(a)| is the degree, 

which is the number of its neighbors, of a in the network A. This relation implies that the 

greater the similarity between u and v (corresponding to a higher sim(u, v)), the greater the 

likelihood that their neighbors are also similar. The value of ω reaches a maximum when all 

of the neighbors of a and b are similar to each other. We note that it is important to 

normalize by the total number of neighbors (|NA(a)|) to account for the relative contribution 

of the neighbors in formula (15).

Because the similarity of the neighbors of a node affects the overall match between the 

nodes, it is natural that the award parameter ω should depend on the topological locations for 

each node rather than remaining as a fixed or an empirical value as seen in the previous 

study [5].

 2) Relaxation factor—When the sequence similarity and the topological similarity are 

considered equally important in the network alignment process, the iteration of the similarity 
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matrix can be updated with equation (6). A more flexible approach is the introduction of a 

relaxation factor (α) to weight the sequence or the topology information when HGA is 

employed. With this weighting, equation (6) becomes

(16)

implying that when α is small, the alignment is mainly affected by the topological 

information, and when α is close to 1, the alignment is mostly controlled by the sequence 

homology information.

We will explore more details about these two parameters in Section III.

 III. Explore the Key Parameters

 A. Data Sets

 1) Yeast and human—The yeast S.cerevisiae PIN, Ynet2390n, contains 2390 proteins 

with 16,127 interactions [36] [20]. To perform this comparison, we extracted a subnetwork 

(Ysubnet38n) from Ynet2390n. Ysubnet38n was chosen to have 131 edges and 38 nodes 

such that each node had homologous proteins in the human PIN and the average 

homologous proteins were greater than 10. The human PIN [20], Hnet9141n, contained 

9141 proteins with 41,456 interactions.

In our experiments, we downloaded 6641 yeast sequences from UniProt [37] on May 18, 

2012, and 9588 human sequences were taken from [38].

The homologous coefficient, sim(ui, vj), was calculated based on the E-value of BLAST 

[19]. We used the following equation (17) to transform the E-value to a value between 0 and 

1, which was then used as the entry for the initial similarity matrix S(0).

(17)

 2) C.elegans and D.melanogaster—The C.elegans (CE) and the D.melanogaster 
(DM) PINs have been collected by Bonnie Berger’s group [39]. The former has 5851 

interactions among 2745 proteins, in which there are 1469 multiple edges and 40 loops. The 

latter has 26,712 interactions among 6709 proteins, in which there are 6952 multiple edges 

and 110 loops. The H-matrix collects 687 of 2745 rows of this CE-DM similarity matrix.

Using the PISwap approach [18], we normalized the BLAST scores retrieved from the 

IsoRank website [39] and used them as the initial similarity coefficients for HGA.
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 B. The Adaptive Parameter

There are two ways to award a similarity coefficient through ω. The first approach is to 

award it by constructing a new similarity matrix during each iteration of HGA. The 

similarity coefficient can also be awarded after all iterations are completed, which is similar 

to the approach in INM [5]. In the first approach, ω is involved in the iteration itself for 

better integration of the topological information and the sequence information.

Applications of these two approaches to the real data indicate that for large data sets (the 

first pairs of the networks shown in Table I), updating ω during each iteration is necessary. 

INM [5], based on a fixed ω, requires a very long computation time such that the algorithm 

becomes impractical. This computational burden is due to the time complexity of the 

matching process in INM. For smaller networks, such as the second set, Ysubnet38n and 

Hnet9141n, INM can compute the matching. All evaluation indicators, including PE, ES, EC 

and LCCS, are less than the corresponding cases using HGA, in which ω is updated during 

each iteration. For the alignment of the third set, INM generates a much higher EC and 

LCCS but the lowest PE and HGp.

Table I also contains the results for the case in which the “best” alignment was found only 

based on sequence information (α = 1) without any iteration. Although HA was effective at 

task assignment, it was difficult to obtain a better PE or EC because the topological 

information was not integrated with the sequence information. For the third pair of networks, 

even the PE (62.08) and HGp (1523) based on sequences were slightly higher than those for 

HGA (57.96, 1488), and the EC and LCCS were much lower than HGA and INM.

If the topological information is integrated with the node information, for example, by 

setting α = 0.4, alignment of these networks by HA alone, but not by a hybrid of HA and 

GA, becomes impractical because of the unacceptable computation time required.

 C. The Relaxation Factor

As mentioned in Section II-C2, the alignment is more controlled by the sequence homology 

information when α is closer to 1. As shown in Fig. 3, PE was low, and the maximum EC 

was highest when α=0.1. When α increased (i.e., more sequence information was included), 

more homologous proteins were matched, leading to an increase in PE and a decrease in the 

maximum EC. However, PE cannot increase continuously because the number of matched 

edges is likely to decrease when more homology information is incorporated with a higher 

weight, leading to a decrease in PE. α = 0 is a special case, which means that the original 

node information is ignored during the iteration after integration of the node information 

with the topological structure. When α = 0, topological information is paramount, and the 

EC is almost equal to its lowest value when α = 0.1. Although the PE is not at a minimum, 

the SS defined by formula (14) cannot reach a maximum; thus, we do not consider it a good 

choice for the best mapping.

In general, α may be set to be a value close to 0.5 for equal weighting of the topological and 

the homology information.
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Of course, depending on the specific alignment objective and potential differing reliability of 

the source data for topology and homology, α can be adjusted to obtain the best mapping. PE 

may be used as an overall indicator for alignment even when one might not aim at achieving 

the highest PE. Similarly, EC may be used as a good indicator of similar topology between 

two networks when the alignment algorithm does not include both homology and 

topological information.

As noted in Section II-B, the alignment is obtained by maximizing SS among all iterations. 

When SS is at a maximum, the PE may be at a maximum, but the EC may not achieve the 

maximum value among all iterations. Fig. 3(b) plots the maximum EC among all iterations 

as well as the value of EC when the SS is a maximum. We found that these two ECs agree 

very well except when α = 0.1 and α = 0, indicating that HGA finds the alignment with the 

highest PE and the nearly highest EC. This finding suggests that the alignment found by 

HGA approximates the best mapping considering both sequence and topological 

information.

 IV. Comparison with other methods

In this section, we use PINs as an example to compare HGA with several other algorithms. 

In particular, we aligned the yeast and human PINs.

 A. Case 1

Because it was difficult to compare the accuracy and performance of different algorithms for 

the alignment of two networks that had no “exact solution”, the same network as the aligned 

networks was used instead. Specifically, we used Ysubnet38n and aligned it with itself using 

HGA. The H-matrix collected 22 of 38 rows of this yeast-yeast similarity matrix. As 

expected, for all α (described in Section II-C2) from 0 to 0.9, all nodes matched with 

themselves, and the two networks completely coincided with each other in alignment with 

HGA, in which all of NC, IC and EC were 100%.

NETAL [22] and GEDEVO [21] could generate the same mapping, in which all nodes in the 

two networks were matched with their exact counterparts. This reflects the fact that the two 

networks were duplicated.

We also aligned this subnetwork with itself using MI-GRAAL by exploring different 

combinations of the four topological and sequence measures presented in [20]. We found 

that no alignment could make the two networks completely coincide with each other except 

for a particular choice of parameter of SeqD (p=16). The number of correctly mapped nodes 

obtained by other parameters was typically in the range of 2 to 28, with the corresponding 

NC ranging from 5.26% to 73.68%, and the number of correctly mapped edges ranged from 

47 to 131, with the corresponding mapped rate ranging from 35.88% to 100%. Interestingly, 

we found that even when the rate was 100%, the NC was not necessarily 100% because the 

nodes of some edges were not matched to themselves.

None of IsoRank, PISwap and GRAAL was able to find the exactly matched mapping. 

Although the EC of IsoRank was 100%, the NC was 86.84%. The NC and EC of PISwap 
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were 57.89% and 47.33%, respectively. We carried out 10 alignments to calculate the NC 

and EC of GRAAL, in which the NC was from 63.16% to 86.84% and the EC was from 

99.24% to 100% with the parameter α=0.8, which was the core alignment of GRAAL.

 B. Case 2

We next aligned Ysubnet38n with Hnet9141n using HGA, IsoRank, GRAAL, MI-GRAAL, 

NETAL, GEDEVO and PISwap. The H-matrix contained 28 of 38 rows of this yeast-human 

similarity matrix.

For this alignment, HGA had a PE=76.41 with an ES=55 and a PS=21.41, whereas the other 

algorithms in Table II had PE, ES and PS=0 except for MI-GRAAL and PISwap. Moreover, 

the number of HomoloGene pairs among matched proteins (HGp) of HGA was 38, which 

was the same in PISwap, meaning that all of the proteins in Ysubnet38n were matched with 

their homologous proteins. In contrast to the mapping of HGA and PISwap, none of the 

proteins matched by IsoRank, GRAAL, and GEDEVO were homologous (HGp =0), and far 

fewer pairs of proteins were homologous for the alignment of NETAL or MI-GRAAL.

Table II also shows that the EC by HGA was higher than the corresponding score by 

PISwap, IsoRank, GRAAL, MI-GRAAL and GEDEVO and was very close to that from 

NETAL. Moreover, the LCCS of HGA was greater than that for PISwap, IsoRank, GRAAL, 

and MI-GRAAL.

Comparing the alignment of the networks in Table III and Table II, the main difference 

between the two groups of aligned networks is that all proteins in Ysubnet38n had 

homologous proteins in Hnet9141n (Table II), but some of the proteins (approximately 20%) 

in Ynet2390n had no homologous proteins in Hnet9141n (Table III). The homologous 

relationship was observably different between these two pairs of networks. Corresponding to 

the increased rate of homologous proteins between the two aligned networks (from 80% to 

100%), the EC of HGA was increased by 28.58% (from 13.4% to 41.98%). The EC of 

NETAL ranged from 36.1% to 42.75%, an increase of 6.65%, and the EC of GEDEVO 

ranged from 22.45% to 35.11% with the parameter maxsame = 5000, an increase of 12.66%. 

IsoRank and GRAAL were similar to GEDEVO. Their ECs were increased by 13.36% and 

15.12%, respectively. Using the parameter SeqD, the sequence matrix presented in [20], MI-

GRAAL had an EC that ranged from 14.78% to 38.17%, an increase of 23.39%; the EC of 

PISwap ranged from 8.3% to 32.82%, an increase of 24.52%; these values are close to that 

of HGA.

In most cases, it should be expected that the more homologous proteins exist between the 

two networks, the more similar the two networks become, leading to a larger value of EC. 

HGA correctly captured this network alignment property.

 C. Case 3

Next, we explored larger networks: the yeast PIN Ynet2390n and the human PIN 

Hnet9141n. The H-matrix collected 773 of 2390 rows of the yeast-human similarity matrix. 

HGA was applied to these two PINs along with six other algorithms.
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As shown in Table III, all values of IsoRank [15] and GRAAL [7] were less than HGA.

Although MI-GRAAL [20], NETAL [22] and GEDEVO [21] showed higher EC values and 

more LCCS edges, the PE, ES and PS for HGA were dramatically higher than those values 

for these three algorithms. In particular, the PE of NETAL was 0. Although NETAL found 

36.1% of edges conserved, the score from these edges (ES) was zero. One possible reason is 

that none of the nodes of the matched edges were homologous proteins; the other possibility 

is that the two nodes for each edge were not homologous with their counterparts in the 

aligned network. For example, there are three pairs of matched edges  and ,  and , 

 and  in Fig. 1: thus, ,  and  may contribute to the calculation of EC. However, 

based on equation (12), only the edge  has an ES because its nodes u1 and u2 are similar 

to v1 and v2, respectively. Moreover, based on equation (13), both nodes u1 and u2 have a PS 

because they are similar to the nodes to which they are matched and belong to the edge , 

which has an ES. The node u3 will not receive a PS because none of its edges has an ES. If 

none of the pairs of the matched nodes belong to the same edge, the score of all nodes is 

zero because none of the edges they belong to has a score. As a result, both ES and PS are 

zero, leading to a zero PE. Similarly, the high ES computed by HGA in Table III indicates 

that for the majority of the matched interactions, the nodes in Ynet2390n were homologous 

with the nodes in Hnet9141n. This result occurred because HGA considered both node 

attribution and the topological structure to achieve the mapping, whereas NETAL considered 

only the topological information in the current version. Moreover, compared with PISwap 

[18], HGA had lower PE, ES and PS. However, its EC was higher, and the LCCS was larger.

Table III also shows the substantial difference in HGp between HGA and the other 

algorithms except PISwap, which means that HGA matched more homologous proteins with 

each other and the number of HGp was very close to that of PISwap.

This finding suggests that neither EC nor LCCS is a gold standard for the evaluation of 

network alignment. In other words, if one emphasizes EC alone while focusing on global 

alignment, some important local similarity information might be ignored. To avoid this 

situation, our PE score balances both nodes and topological attributes and provides a good 

measurement that accounts for both local and global information. Accordingly, a better way 

to evaluate an alignment is to compare EC, LCCS and PE together.

To measure the biological relevance of the alignment obtained by HGA, we counted the 

matched protein pairs that had at least 1–6 common Gene Ontology (GO) terms [34]. The 

GO terms used here were downloaded from UniProt [37] in July and August 2012. The 

results presented in Table IV indicate that the alignment using HGA was more highly 

enriched for GO terms, implying that HGA matched more proteins with similar functions.

Furthermore, we explored the ratio of matched proteins in clusters and MNE based on 

IsoBase, which is for functionally related proteins querying across species [35]. Proteins 

within an IsoBase cluster stand a good chance to share similar GO annotations, and lower 

MNE means that the proteins have greater consistency. We first found the matched proteins 

that are within IsoBase clusters and then computed the average mean entropy (ME) and 
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MNE of the protein pairs within different clusters. As shown in Table V, none of the pairs of 

proteins matched by NETAL and GEDEVO belonged to any cluster in IsoBase, and the ratio 

of GRAAL was only 0.11%, whereas HGA had a larger ratio of 24.81%, as high as PISwap 

and higher than IsoRank and MI-GRAAL. At the same time, the average ME and MNE of 

HGA were very close to those of IsoRank and PISwap, and lower than that of MI-GRAAL. 

Overall, the higher ratio of matched proteins in the same clusters of IsoBase along with a 

lower MNE implies that HGA matched more functionally related proteins.

We also investigate the statistical significance of our alignment results using HGA. By 

randomly changing edges but holding the original degree of each node in human PIN [40], 

we generated 50 random networks that were used to align with the yeast PIN to obtain 50 

different alignments. We estimated that the p-value was approximately 1.85 × 10−102 (T-

test).

On a personal computer running 64-bit CentOS release 6.3, 8 Intel Xeon CPUs and with 8 

GB RAM, the typical CPU time for HGA or GEDEVO is more than 50 hours for a typical 

simulation. GEDEVO might take more time when its EC value is greater than 30%, although 

the program can run multithreads according to the number of CPU cores. For similar cases, 

IsoRank, GRAAL and MI-GRAAL took approximately 50 minutes, 90 minutes and 3 hours, 

respectively, whereas PISwap took approximately 10 minutes. NETAL is significantly faster 

than all other algorithms studied, taking only approximately 150 seconds, but it is based on 

topological information alone. To accelerate HGA, we have implemented a preliminary 

parallel algorithm using MPI for distributing the simulation. For the same case, HGA now 

only took approximately 6 hours on 4 computing nodes with 16 cores.

Taken together, the comparison among the different algorithms indicate that HGA generated 

alignments that had a lower MNE. The matched proteins using the HGA mapping had the 

most common GO terms. PE and HGp of HGA were close to PISwap and much higher than 

other algorithms, whereas HGA had larger LCCS and higher EC than PISwap. Althouth the 

computational efficiency of HGA needs further improvement, HGA is capable of finding 

more conserved interactions with strong biological relevance for PINs.

 V. Conclusion

The global alignment of biomolecular networks is important for the development of network 

medicine and the study of species evolution. In this work, we present a hybrid algorithm 

(HGA) that combines HA and GA for more accurate alignment but with decreased 

computation time compared to HA. In particular, our experiments show that HGA aligns 

large networks well with an acceptable computation time, whereas HA fails. The programs, 

data sets and alignments are available at http://biocenter.shu.edu.cn/software/index.php/hga.

Including information from both the biomolecules themselves and the network topology, 

HGA places an emphasis on the influence of neighbors. We have introduced an award 

coefficient in the neighbor bias method, which adaptively updates similarities between nodes 

based on their locations and their neighbors’ information. In our method, we also have 

introduced a new factor (PE) to evaluate the alignment quality, which infers the similarity 
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between aligned networks based not only on topological information but also on 

biomolecular attributes, in addition to using popular measurements such as EC, LCCS, 

common GO and HGp.

Because HGA is adaptive in considering the node neighbor’s information, the common GO 

terms found using HGA are higher than those obtained by other existing algorithms. For 

example, the number of common GO terms in PINs of yeast and human that are greater than 

six was found to be 27.17% using HGA alignment, whereas the corresponding numbers for 

other alignment approaches were 9.21% to 26.77%. To the best of our knowledge, the 

mapping between yeast and human found by HGA has the highest rate of common GO 

terms.

Another advantage of HGA is on evaluating the factor HGp (the HomoloGene pairs among 

matched proteins). Typically, HGA mapping has significantly more HGp, although it might 

not achieve the highest EC value. Other algorithms that consider only topological structure 

usually find it difficult to increase HGp (and also common GO terms), whereas these 

algorithms have better computational efficiency or achieve higher EC values. In addition, the 

application of HGA to IsoBase provides lower ME and MNE and a higher ratio of matched 

proteins in clusters of IsoBase, whereas the three factors of NETAL and GEDEVO are zero.

For networks whose edges have different weights, the presented HGA requires 

modifications. The choice of parameters in HGA will most likely depend on various network 

features, and a systematic exploration on how the network structure affects those parameters 

needs to be conducted. HGA has not shown major improvements in time complexity, and 

further improvements in computational efficiency are also needed for HGA, especially for 

analyzing large-scale networks. It would also be interesting to perform biological 

experiments to test or validate those alignments obtained by HGA. Although HGA was 

developed for the alignment of biomolecular networks, it might also be useful for comparing 

other types of complex networks in which both nodes and edges are important and, in 

particular, when the edge information may be only partially complete or unreliable.
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Fig. 1. 
Alignment for two small networks. The dotted lines indicate the mapping between GA and 

GB. In this alignment, u1, u2 and u3 are matched with v1, v2 and v3, respectively. ,  and 

 are conserved edges that are matched with ,  and , respectively. Therefore, EC is 

100%. Supposing that u1 is similar to v1 and u2 is similar to v2, then  is the only edge that 

will receive ES, and u1 and u2, but not u3, are nodes that will receive PS.
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Fig. 2. 
Flow chart of HGA
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Fig. 3. 
Alignment of Ynet2390n and Hnet9141n using different Relaxation Factors α = 0, 0.1, …, 

0.9, 1. PE, EC in the final mapping with the maximum SS and the maximum EC as 

functions of the Relaxation Factors.
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TABLE V

Mean entropy, mean normalized entropy of the yeast-human alignment based on IsoBase

ratio in IsoBase (%) average ME average MNE

IsoRank 7.62 0.1034 0.0805

GRAAL 0.11 0 0

MI-GRAAL* 4.57 0.1346 0.0945

NETAL** 0 0 0

GEDEVO*** 0 0 0

PISwap 25.37 0.096 0.0699

HGA 24.81 0.1053 0.0757

*
The alignment with EC=14.78

**
The alignment with EC=36.1 in [22]

***
The alignment with EC=38.14 in [21]
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