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Abstract

Coalescent histories provide lists of species tree branches on which gene tree coalescences can 

take place, and their enumerative properties assist in understanding the computational complexity 

of calculations central in the study of gene trees and species trees. Here, we solve an enumerative 

problem left open by Rosenberg concerning the number of coalescent histories for gene trees and 

species trees with a matching labeled topology that belongs to a generic caterpillar-like family. By 

bringing a generating function approach to the study of coalescent histories, we prove that for any 

caterpillar-like family with seed tree t, the sequence (hn)n≥0 describing the number of matching 

coalescent histories of the nth tree of the family grows asymptotically as a constant multiple of the 

Catalan numbers. Thus, hn ~ βtcn, where the asymptotic constant βt > 0 depends on the shape of 

the seed tree t. The result extends a claim demonstrated only for seed trees with at most 8 taxa to 

arbitrary seed trees, expanding the set of cases for which detailed enumerative properties of 

coalescent histories can be determined. We introduce a procedure that computes from t the 

constant βt as well as the algebraic expression for the generating function of the sequence (hn)n≥0.
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1 Introduction

Coalescent histories, mathematical structures representing combinatorially distinct ways in 

which a given gene tree can coalesce along the branches of a given species tree, are 

important in a variety of phylogenetic problems [6], [14], [15]. They arise, for example, in 

proofs concerning theoretical properties of species tree inference algorithms [1], [18], in 

empirical analyses of gene tree probability distributions [16], and in studies of gene trees 

under hybridization [21]. Many of these applications trace to the appearance of coalescent 

histories in a sum performed in a fundamental calculation for inference of species trees from 

information on multiple genetic loci, the evaluation of gene tree probabilities conditional on 

species trees [5].

Owing to uses of coalescent histories in sets over which sums are computed, as well as in 

state spaces of certain phylogenetic Markov chains [7], [10], [11], solutions to enumerative 
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problems involving coalescent histories contribute to an understanding of the computational 

complexity of phylogenetic calculations. A recursion for the number of coalescent histories 

for a given gene tree and species tree has been established [13], and several studies have 

reported exact numerical results and closed-form expressions for the number of coalescent 

histories for small trees and for specific types of trees of arbitrarily large size [4]–[6], [13]–

[15], [19]. The latter computations have proceeded both by solving or deploying the 

recursion in specific cases [13]–[15], [19], as well as by identifying correspondences 

between coalescent histories and other combinatorial structures for which enumerative 

results have already been established [4]–[6].

One class of gene trees and species trees of particular interest for enumeration of coalescent 

histories is the caterpillar-like families, trees that have a caterpillar shape, except that the 

caterpillar subtree with r taxa is replaced by a subtree of size r that is not necessarily a 

caterpillar subtree (Fig. 1). For the simplest caterpillar-like family, the caterpillar trees 

themselves, if the gene tree and species tree have the same caterpillar labeled topology with 

n taxa, then, as reported in [5], the number of coalescent histories is a Catalan number,

(1)

For Tr-caterpillar-like families, in which the r-taxon subtree of an n-taxon caterpillar species 

tree is replaced by an r-taxon subtree Tr (Fig. 1), by employing the recursion, Rosenberg 

[14] obtained the exact number of coalescent histories for all n, for each Tr with r ≤ 8, in the 

case that the gene tree and species tree have the same labeled topology. Rosenberg [14] 

argued that in each of these cases, as n → ∞, the number of coalescent histories is 

asymptotic to a constant multiple of the Catalan numbers. A proof of this result has been 

presented in full for each case with r ≤ 5 [4], [13], [14], and by computer algebra for cases 

with r = 6, 7, and 8 [14].

Each case considered by [14] involved cumbersome computations specific to the choice of 

Tr, limiting the generality of the approach. While no reason exists to suspect that the method 

of [14] would not extend to larger r, it is desirable to find another method that is practical for 

a general Tr. Here, using a substantially different strategy that brings to studies of coalescent 

histories the methods of analytic combinatorics, we produce an enumeration result that 

covers caterpillar-like families in general. We show that the result of [14] applies to all 

caterpillar-like families, not only those for which Tr has r ≤ 8. That is, we demonstrate that 

for any Tr, as n → ∞, the number of coalescent histories in the Tr-caterpillar-like family is 

asymptotic to a constant multiple of the Catalan numbers—thus extending a result known 

only for r ≤ 8 to arbitrarily large r. We describe a method and symbolic tool for computing 

the constant. Finally, we discuss the impact of the results in mathematical phylogenetics.
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2 Preliminaries

2.1 Species trees and coalescent histories

We consider binary rooted leaf-labeled species trees, taking a single arbitrary labeling 

(without loss of generality) to represent a given unlabeled species tree topology. We consider 

an arbitrarily labeled species tree and its unlabeled tree interchangeably, treating the labeling 

as implicit.

We examine coalescent histories for the case in which gene trees and species trees have the 

same labeled topology t, terming a coalescent history in this case a matching coalescent 
history. To be a matching coalescent history, a mapping h from the internal nodes of t 
(viewed as the gene tree) to the branches of t (viewed as the species tree) must satisfy two 

conditions (Fig. 2): (a) for each leaf x in t, if x descends from node k in t, then x descends 

from branch h(k) in t; (b) for each pair of internal nodes k1 and k2 in t, if k2 descends from 

k1 in t, then branch h(k2) descends from or coincides with branch h(k1) in t. We henceforth 

consider only matching coalescent histories, treating “matching” as implicit; we also refer 

simply to histories for short.

2.2 Caterpillar-like families of species trees

For a binary species tree t with at least 2 taxa, we denote by (t(n))n≥0 the caterpillar-like 

family generated by seed tree t. This family is recursively defined by taking t(0) = t and 

letting t(n+1) be the tree obtained by appending t(n) and a single leaf to a shared root (Fig. 1).

Our interest is in the number of matching coalescent histories of t(n) for n ≥ 0, a quantity we 

denote by hn(t) or simply hn. We note that whereas [14] indexed trees by their numbers of 

taxa, here n represents the number of taxa appended above the root of the seed tree, so that if 

seed tree t has |t| taxa, then |t| + n gives the number of taxa in t(n).

2.3 Principles of analytic combinatorics

We rely on techniques of analytic combinatorics [8] to obtain our enumerative results, and 

recall several key points. In general, an integer sequence (an)n≥0 can be associated with a 

formal power series , also termed the generating function of the integers 

an. Considering z as a complex variable, typically in a neighborhood of 0, features of the 

function A(z) are related to the growth of the coefficients an.

More precisely, generating functions, considered as complex functions, enable analyses of 

the asymptotic growth of the associated integer sequences through the analysis of their 

singularities in the complex plane. In particular, under suitable conditions, there exists a 

general correspondence between the singular expansion of a generating function A(z) near 

its dominant singularities—those nearest the origin—and the asymptotic behavior of the 

associated coefficients an (Chapter VI of [8]). We make use of theorems that describe this 

correspondence.
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2.4 Catalan numbers

The Catalan sequence appears often in combinatorics [8], [9], [17] and features prominently 

in our analysis. Rewriting eq. (1) with index n rather than n − 1,

(2)

The associated generating function is well known [17]:

(3)

By definition, if [zn]f(z) denotes the nth term in the power series expansion of f(z) at z = 0, 

we have

(4)

Here,  is replaced by , as the constant 1 does not contribute to the 

power series expansion for terms of order n+1, with n ≥ 0. Asymptotically, applying 

Stirling's formula  to eq. (2), the Catalan sequence satisfies

(5)

3 The number of matching coalescent histories for caterpillar-like families

We aim to find a procedure that evaluates the number of coalescent histories hn(t) for 

matching gene trees and species trees in the caterpillar-like family that begins with seed tree 

t, and moreover, to show that

(6)

where the multiplier βt > 0 for the Catalan sequence is a constant depending on t. In other 

words, we wish to demonstrate that as n → ∞, hn/cn converges to a constant βt > 0 that 

depends on the seed tree t.

First, in Section 3.1, we determine a lower bound for the number of matching coalescent 

histories of the nth tree t(n) of the caterpillar-like family with seed tree t. Next, in Section 

3.2, we introduce a concept of m-rooted histories of a species tree t(n). The section provides 

an iterative construction of the rooted histories of t(n+1) from those of t(n), describing the 
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construction by means of a convenient labeling scheme. We follow a commonly used 

combinatorial enumeration strategy [2], [3] that determines a recursive succession rule for 

successive collections of objects in a sequence and then uses this rule to compute a 

generating function. In Section 3.3, we use the iterative construction to produce a bivariate 

generating function whose coefficients hn,m are the numbers of m-rooted histories for trees 

t(n). We next obtain the generating function for the integer sequence (hn)n≥0 describing the 

number of matching coalescent histories for the t(n). Finally, using the lower bound from 

Section 3.1, in Section 3.4, we apply methods of analytic combinatorics to study the 

asymptotic behavior of hn.

3.1 Lower bound for hn

For our asymptotic analysis, we will need an initial lower bound for hn. To produce this 

bound, we first define V as the tree with 2 taxa. Recalling that we index trees so that the 

number of taxa in a tree exceeds by n the number of taxa in the seed tree, we have [4], [13], 

[14]

We can then use a constructive procedure, illustrated in detail in Figure 3, to show that for 

any seed tree t with |t| ≥ 2,

(7)

For a seed tree t, we can superimpose V on t so that the root rV of V matches the root rt of t 
(Fig. 3B). The two leaves of V are identified with two of the leaves of t, one on each side of 

the root of t. Generating caterpillar-like families by adding n single branches separately to V 

and to t, the superposition of V on t extends, so that V(n) is superimposed on t(n) (Fig. 3C). 

The n caterpillar branches of t(n) and V(n) then correspond.

Each matching coalescent history h of t(n) determines a corresponding matching coalescent 

history h′ of V(n) by considering the restriction of h to the set of internal nodes of t(n) that 

correspond to internal nodes of V(n) (Fig. 3D). Thus, for any seed tree t, the number of 

matching coalescent histories of t(n) is greater than or equal to that of V(n). In symbols, we 

have eq. (7). We will use this result in Section 3.4.

3.2 Iterative generation of rooted histories

This section describes the iterative procedure that for a seed tree t eventually enables us to 

determine a formula for hn. First, in Section 3.2.1, we discuss m-rooted histories, which 

extend the concept of matching coalescent histories, introducing an additional parameter m. 

Next, in Section 3.2.2, we examine the relationship between rooted histories and the 

extended coalescent histories of [13], importing results on extended coalescent histories into 

the more convenient framework of rooted histories. We expand our goal of enumerating 

matching coalescent histories for t(n), considering a more general problem of enumerating 

for m ≥ 1 the m-rooted histories of t(n).
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In Section 3.2.3, we define an operator Ω for constructing the rooted histories of t(n+1) from 

the rooted histories of t(n). Next, in Section 3.2.4, we introduce a labeling scheme that in 

Section 3.2.5 enables us to switch from counting rooted histories to counting multisets of 

labels. At the end of Section 3.2, we will have converted our enumeration problem into an 

enumeration that is more convenient for constructing a generating function.

3.2.1 m-rooted histories—Consider a tree t with |t| ≥ 2, and suppose that the branch 

above the root of t (the root-branch) is divided into infinitely many components. A matching 

coalescent history mapping the internal nodes of t onto the branches of t is said to be m-
rooted for m ≥ 1 if the root of t is mapped exactly onto the mth component of the root (Fig. 

4). It is said to be rooted if it is m-rooted for some m. Branches are numbered so that branch 

m = 1 is immediately above the root node, and m is greater for components that are farther 

from the root.

For a rooted history h of a tree t, m = m(h) denotes the component of the root-branch of t 
that receives the image of the root of t. Hn,m(t) denotes the set of m-rooted histories of t(n), 

and  the set of its rooted histories. The number of m-rooted histories 

of t(n) is hn,m = |Hn,m|, and the number of 1-rooted histories hn = hn,1 is also the number of 

matching coalescent histories. Enumerating the matching coalescent histories of t(n) is 

equivalent to enumerating its 1-rooted histories.

3.2.2 Rooted histories and extended histories—Rooted histories are closely related 

to extended coalescent histories, as defined by [13]. We use this relationship to study 

properties of rooted histories. Rosenberg [13] defined the set of k-extended coalescent 

histories of a tree t with |t| ≥ 1 for integers k ≥ 1; we also consider k = 0 by setting the 

number of 0-extended histories to 0.

A k-extended history is defined as a coalescent history for a species tree whose root-branch 

is divided into exactly k ≥ 0 parts. In other words, the root-branch has exactly k ≥ 0 possible 

components onto which a k-extended history can map the gene tree root. Here we consider 

matching k-extended histories, so that the internal nodes of a tree t are mapped to the 

branches of t and its k components above the root. For convenience, we refer to extended 

histories by the index k, reserving the index m for rooted histories.

By the definitions of k-extended and m-rooted histories, for each k ≥ 0, the set of k-extended 

histories of a tree is exactly the set of all m-rooted histories with 1 ≤ m ≤ k. Therefore, for a 

tree t with at least 2 leaves, if we label by et,k its number of k-extended histories, then for 

each m ≥ 1 the number of m-rooted histories of t is

(8)

Note that for m = 1, we explicitly use in eq. (8) the fact that et,0 is defined and equal to 0. In 

addition to setting et,0 = 0 for any tree t, as in [13] we set et,k = 1 for all k ≥ 1 in the case that 

t has exactly 1 leaf.
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Suppose |t| ≥ 1 and k ≥ 0. Denote by tL and tR the left and right subtrees of the root of t. We 

can compute et,k recursively as in Theorem 3.1 of [13]:

(9)

As was already observed in the remarks following Corollary 3.2 of [13], by eq. (9), for any 

tree t with |t| ≥ 1, for positive integers k ≥ 1, the function f(k) = et,k is a polynomial in k. 

With our extension to permit k = 0, we can extend this fact to k ≥ 0 for |t| ≥ 2: for any tree t 
with |t| ≥ 2, and for k ≥ 0, we claim that the function f(k) = et,k is a polynomial in k. Note 

that in allowing k = 0, we claim et,k is a polynomial in k only for |t| ≥ 2; for |t| = 1, et,k is not 

a polynomial in k because et,0 = 0 and et,k = 1 for k ≥ 1.

To prove the claim, fix t with |t| ≥2 and consider the variable k over domain [1, ∞). We 

demonstrate that f(k) is a polynomial in k for domain [0, ∞) by showing that the closed-

form for f(k) has a factor of k, so that our choice et,0 = 0 in eq. (9) is compatible with the 

polynomial expression valid for k ≥ 1.

Observe that for i ≥ 1, etL,i and etR,i are polynomials in i, say PtL(i) and PtR(i). Replacing 

terms etL,i+1 and etR,i+1 in the recursion in eq. (9) by polynomials PtL(i + 1) and PtR(i + 1), 

we obtain

(10)

where P′(i) denotes a polynomial in i that results from the product of PtL(i + 1) and PtR(i 
+ 1). By Faulhaber's formula for sums of powers of integers, symbolic sums of the form 

 for a fixed integer p ≥ 0 are polynomials containing a factor of k in their closed 

forms (Section 6.5 of [9])—for example, . Thus, because the 

polynomial P′(i) is a linear combination of terms of the form ip, the closed-form expression 

for the sum  appearing in eq. (10) also has a factor of k. It therefore has a value 

of 0 at k = 0.

Functions et,k for trees t with 1 ≤ |t| ≤ 9 and k ≥ 1 appear in Tables 1-4 of [13]. For |t| ≥ 2, as 

we have shown, these example polynomials are divisible by the variable representing the 

number of components of the root-branch. By eq. (8), we immediately obtain the following 

result.

Proposition 1: For any tree t with |t| ≥ 2 and for m ≥ 1, the number h0,m of m-rooted 

histories of t is a polynomial in m that can be computed by the difference in eq. (8) using et,k 

as in eq. (9).

Disanto and Rosenberg Page 7

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As an example of Proposition 1, consider the tree t = ((A, B), (C, D)), identifying this 

arbitrary labeling with the unlabeled tree (()()). By applying the recursive procedure in eq. 

(9), we find that for k ≥ 0, the number of k-extended coalescent histories for t is 

 [13]. The difference eq. (8) yields that for m ≥ 1, the number of m-

rooted histories of t is h0,m = et,m − et,m−1 = m2 + 2m + 1.

3.2.3 Rooted histories of t(n+1) from those of t(n)—This section introduces an 

operator Ω that generates the rooted histories of t(n+1) from those of t(n). For each rooted 

history h′ of t(n+1), there exists exactly one rooted history h of t(n) with h′ ∈ Ω(h). Recalling 

the definitions of the sets Hn,m(t) and Hn(t) of m-rooted and rooted histories of t(n), we 

define Ω as follows.

Definition: Let  denote the power set of set X, and fix tree t. The 

operator Ω is a function

where for a rooted history h ∈ Hn(t), Ω(h) is the set of rooted histories h′ ∈ Hn+1(t) for 

which the restriction of h′ to t(n+1) excluding its most basal caterpillar branch coincides with 

the rooted history h of t(n).

Denote by b1, b2, . . . , bn+1 the caterpillar branches in t(n+1), from the least basal b1 to the 

most basal bn+1 (Fig. 5). Upon removal of the most basal caterpillar branch bn+1 from t(n+1), 

the root of t(n+1)—to which branch bn+1 is attached—is replaced by a demarcation between 

the first and second components of the root-branch of t(n). For instance, in Fig. 5A, starting 

from tree t = ((A, B), (C, D)), we consider h‴, a 3-rooted history of t(3). By removing the 

most basal caterpillar branch b3 of t(3), we reduce to the 1-rooted history h″ of t(2) (Fig. 5B). 

Next, by removing the caterpillar branch b2 of t(2), we reduce to the 2-rooted history h′ of 

t(1) (Fig. 5C). By removing the remaining caterpillar branch b1 from t(1), we reduce to the 2-

rooted history h of t = t(0) (Fig. 5D). Therefore, by the definition of Ω, we have h′ ∈ Ω(h), h
″ ∈ Ω(h′), and h‴ ∈ Ω(h″).

By definition, Ω has the property that for each rooted history h′ ∈ Hn+1(t), with n ≥ 0, there 

exists exactly one rooted history h ∈ Hn(t) such that h′ ∈ Ω(h). In other words, for each n ≥ 

0, the set of rooted histories Hn+1(t) can be partitioned as a disjoint union,

(11)

The set Hn+1(t) is therefore generated without double occurrences of any rooted history by 

applying Ω to the rooted histories in Hn(t). It follows immediately that in performing n 
iterations of Ω to obtain Ω[. . . [Ω[Ω(H0)]] . . .] from the set H0 of rooted histories of t(0), all 

the rooted histories of t(n) are generated exactly once.
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3.2.4 Labels for rooted histories—The operator Ω, starting from the rooted histories of 

t(n), generates the rooted histories of t(n+1). In this section, we introduce a labeling scheme, 

giving each m-rooted history h of t(n) a label L(h) = (n, m). We then describe how Ω acts on 

the labels of the rooted histories, characterizing the set of labels L[Ω(h)] = {L(h′) : h′ ∈ 
Ω(h)}. Our goal is to represent each set Hn of rooted histories of t(n) by the multiset of its 

labels, reducing the enumeration of |Hn,m| to the problem of counting certain ordered pairs 

(n, m) iteratively generated by simple rules that reflect how the rooted histories in Hn+1 are 

generated according to rule Ω from the rooted histories in Hn by eq. (11).

In our labeling, each rooted history h ∈ Hn(t) that maps the root of t(n) onto the mth 

component of the root-branch of t(n) receives label L(h) = (n, m). Enumeration of hn = |Hn,1| 

then reduces to enumeration of those rooted histories labeled by (n, 1).

Note that a label (n, m) does not uniquely specify an m-rooted history of t(n): a tree t(n) has 

in general many m-rooted histories, each receiving the label (n, m). In other words, if h, h̄ ∈ 
Hn(t) and L(h) = L(h̄), then h and h̄ are not necessarily the same rooted history of t(n). We 

will, however, consider for n ≥ 0 multisets of labels in which we find a copy of the label (n, 
m) for each m-rooted history of t(n).

To characterize how the operator Ω acts on the labels for rooted histories, consider an m-

rooted history h ∈ Hn(t), so that h maps the root of t(n) onto the mth component of the root-

branch of t(n). This history is labeled L(h) = (n, m). For instance, taking the seed tree t = ((A, 
B), (C, D)), the history h of t = t(0) depicted in Figure 6A is labeled L(h) = (0, 3), whereas 

the history h of t(1) in Figure 6C has L(h) = (1, 1).

By applying Ω to a history h of t(n) with L(h) = (n, m), we produce a set of rooted histories 

Ω(h) ⊆ Hn+1(t). The set of labels for Ω(h),

is determined according to the rule:

(12)

where m′ denotes the value of the parameter m—the component of the root-branch of t(n+1) 

to which the root is mapped—for the rooted histories h′ ∈ Ω(h) of t(n+1).

The rule in eq. (12) distinguishes between two cases depending on whether the value of the 

parameter m = m(h) of the generating rooted history h is equal to or exceeds 1. In both 

cases, the set L[Ω(h)] contains infinitely many labels, each with its first component equal to 

n+1, as the labels refer to rooted histories of t(n+1). The value of the second component m′ 
ranges in [m − 1, ∞) if m ≥ 2, and in [1, ∞) if m = 1.
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Recall that according to the definition of Ω, from an m-rooted history h of t(n) (Fig. 6A and 

6C), we generate an m′-rooted history h′ ∈ Ω(h) of t(n+1) (Fig. 6B and 6D) by (i) choosing 

the component m′ of the root-branch of t(n+1) onto which h′ maps the root of t(n+1), and (ii) 

letting h′ coincide with h on all nodes of t(n+1) except the root. The rooted history h′ 
coincides with h once we remove the most basal caterpillar branch of t(n+1).

Figure 6 illustrates both cases of eq. (12). In step (i), infinitely many choices of m′ are 

possible, because the root-branch of t(n+1) is divided into infinitely many parts. The most 

basal caterpillar branch in t(n+1) is attached at the border between the first and second 

components of the root-branch of t(n). Thus, the addition of the (n + 1)st caterpillar branch 

eliminates a component of the root-branch, so that if the starting rooted history h has m ≥ 2 

(Fig. 6A), then the root of t(n) maps to component m − 1 of the root-branch of t(n+1). The 

root of t(n+1) can map to this same branch, or to any branch m′ with m′ ≥ m − 1. For 

instance, in Figure 6B, one of the rooted histories h′ generated by a rooted history h with m 
= 3 has m′ = m − 1 = 2.

If h has m = 1, however, then production of h′ is slightly different (Fig. 6C). By definition, 

the parameter m for a rooted history cannot be smaller than 1. The value m′ = m − 1 is not 

permitted, and m′ remains greater than or equal to m = 1 (Fig. 6D).

3.2.5 Counting the labels of rooted histories—The labeling scheme in Section 3.2.4 

encodes the application of the operator Ω to the rooted histories of t(n). Now that we have 

described the set of labels L[Ω(h)] arising from the label L(h) according to the rule in eq. 

(12), the problem of counting a set of rooted histories becomes a problem of counting the set 

of the associated labels along with their multiplicities—or the multiset of the labels.

For n ≥ 0 and m ≥ 1, we use Ω((n, m)) to denote, with an abuse of notation, the set of labels 

L[Ω(h)] when L(h) = (n, m). Recalling that iterative application of Ω to the rooted histories 

H0 of tree t0) generates the rooted histories Hn of t(n), the enumeration of |Hn,m| for tree t = 

t(0) becomes a problem of counting those labels of the form (n, m) that are generated when 

we iteratively apply the operator Ω as Ω[. . . [Ω[Ω(L0)]] . . .] starting from the multiset of 

labels L0 = {L(h) : h ∈ H0(t)} (Fig. 7).

Eq. (12) characterizes the set of labels L[Ω(h)] of the rooted histories in Ω(h) in terms of the 

label L(h) of rooted history h. If L(h) = (n, m), then Ω((n, m)) denotes the set of labels 

L[Ω(h)]. Thus, converting the notation from histories to labels, eq. (12) becomes

(13)

For the seed tree t, we count hn,m = |Hn,m| by evaluating number of occurrences of the 

ordered pair (n, m) in the multiset Ln defined as

(14)
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In symbols, we have

(15)

By eq. (11), each multiset Ln is generated iteratively (Fig. 7). We start with the multiset of 

labels

(16)

For each n ≥ 0, the multiset Ln+1 is obtained as

(17)

where the symbol ⨄ denotes the union operator for multisets. Thus, in M = M1 ⨄ M2, if an 

element x appears n1 times in M1 and n2 times in M2, then it appears n1 + n2 times in M. Eq. 

(17) provides an iterative generation of the labels for the rooted histories of Hn+1(t) from the 

labels of the rooted histories of Hn(t), retaining information about the multiplicity of 

occurrences of each label.

3.3 Rooted histories and generating functions

We have now obtained eq. (15), which gives an equivalence between the number of m-

rooted histories of t(n) and the number of labels (n, m) in the multiset Ln, and eqs. (16) and 

(17), which give through Ω (eq. (13)) an iterative procedure that generates the family of 

multisets (Ln)n≥0. In this section, we translate the iterative procedure into algebraic terms, 

determining the generating function associated with the integer sequence (hn)n≥0.

First, in Section 3.3.1, we characterize a generating function g(y) for the sequence (h0,m)m≥1. 

Next, in Section 3.3.2, we deduce an equation satisfied by the bivariate generating function 

F(y, z) for (hn,m)n≥0,m≥1. In Section 3.3.3, we solve the equation, obtaining the desired 

generating function f(z) for the sequence (hn,1)n≥0. This generating function can be written 

in turn as a function of g(y).

3.3.1 Generating function for (h0,m)m≥1—In this section, we characterize the 

generating function g(y) that counts for a given seed tree t the labels in the multiset L0 

describing the labels of the rooted histories of t.

Fix the seed tree t. Recalling the equivalence in eq. (15), define the generating function

(18)
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the mth coefficient of whose power series expansion provides the number h0,m of labels (0, 

m) appearing in L0. By Proposition 1, h0,m can be expressed as a polynomial in the variable 

m and can thus be decomposed as a finite linear combination of terms of the form mk, where 

k is a non-negative integer. That is, for a certain finite set of non-negative integers with 

largest element K,

(19)

where the wk are constants.

We introduce generating functions gmk, one for each k from 0 to K, in which the mth 

coefficient is mk:

(20)

Because K is finite, the desired generating function g(y) can be written as a finite linear 

combination of this new collection of generating functions gm0 (y), gm1 (y), . . . , gmK (y). 

More precisely, by substituting in eq. (18) the polynomial in eq. (19) and switching the order 

of summation, we obtain

(21)

We now state a lemma that characterizes the generating functions gmk (y)

Lemma 1: For each non-negative integer k from 0 to K, the generating function gmk (y) in 

eq. (20) is rational with denominator (1 − y)k+1. That is, gmk (y) has the form

where P(y) is a polynomial in y.

Proof: We proceed by induction on k. If k = 0, then by eq. (20), gm0 (y) = 1/(1 − y)−1 = y/(1 

− y). Assume the inductive hypothesis for gmk (y). Applying eq. (20) to gmk+1 (y), we can 

recover gmk+1 (y) as

(22)
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which by the quotient rule for derivatives is a rational function with denominator (1 − y)k+2.

The proof of the lemma gives a recursive procedure in eq. (22) to compute the functions gmk 

(y). By eq. (21), we immediately obtain from the lemma a result about the generating 

function g(y).

Proposition 2: The generating function g(y) whose mth coefficient [ym]g(y) is the number 

of m-rooted histories h0,m of a seed tree t can be written as a finite linear combination

(23)

where b ≥ 1 and J ≥ 1 are positive integers, each aj is a non-negative integer, and the qj are 

constants.

As an example, we show how the procedure in Proposition 2 can determine the generating 

function g(y) for t = ((A, B), (C, D)), the same example seed tree for which we computed the 

polynomial h0,m via Proposition 1. Recall from Section 3.2.2 that h0,m = m2 + 2m + 1. To 

obtain the generating function g(y) that has coefficients [ym]g(y) = m2 + 2m + 1, we sum 

generating functions for monomials m2, 2m, and 1. We already know gm0 (y), and by 

applying eq. (22), we have

Thus,

(24)

In eq. (24), g(y) is written as in eq. (23), taking b = 3, J = 3, (a1, a2, a3) = (1, 2, 3), and (q1, 

q2, q3) = (4, −3, 1).

3.3.2 Bivariate generating function for (hn,m)n≥0,m≥1—Given t, the polynomial 

nature of h0,m in m enabled us to obtain a generating function for h0,m. We now use the 

iterative procedure in eq. (17) to determine an equation that characterizes the bivariate 

generating function with coefficients hn,m. We represent each label of the form (n, m) by a 

symbolic algebraic expression in the variables y and z, so that (n, m) is replaced by znym. 

Let  be the multiset of all m-rooted histories for all trees t(n). Considering y and z 
as complex variables in two sufficiently small neighborhoods of 0, we aim to characterize 

the bivariate function F(y, z) that admits the expansion
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where the sum is over all labels in the multiset L and thus has a term for each m-rooted 

history of each t(n). In particular, the function F(y, z) is the bivariate generating function of 

the integers hn,m, and its Taylor expansion can be written as

(25)

where the coefficients hn,m appear explicitly.

By differentiating F(y, z) with respect to y and then taking y = 0, we obtain

(26)

Thus, for each n ≥ 0, we have

By representing each label of the form (n, m) by the symbolic expression znym and assuming 

the complex variables y and z are sufficiently close to 0, the recursive generation in eq. (17) 

of the multisets of labels L0, L1, L2, . . . determines an equation for F(y, z), demonstrated in 

Appendix 1:

(27)

Eq. (27) holds if the complex variables y and z are in two sufficiently small neighborhoods 

of 0, and it characterizes the generating function F(y, z).

3.3.3 Generating function for (hn,1)n≥0—We now have an equation satisfied by the 

bivariate generating function F(y, z). Further, we have eq. (26), which demonstrates that the 

desired generating function for the sequence (hn)n≥0 is obtained from . By applying 

the kernel method [2], [12], we can determine the power series  from eq. (27).

The idea of the method consists of coupling the two variables (z, y) as (z, y(z)) in such a way 

that two conditions hold. First, (i) substituting y = y(z) cancels the kernel of the equation, 

that is, the factor 1−z/[y(1−y)] on the left-hand side of eq. (27). Second, (ii) for z near 0, the 

value of y(z) remains in a sufficiently small neighborhood of y = 0, so that eq. (27) still 
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holds near z = 0 after substituting y = y(z). This condition is required, as the power series 

expansion in eq. (25) for F(y, z) has been assumed to be valid in a neighborhood of (y, z) = 

(0, 0), and the derivation of eq. (27) relies on the fact that y and z are sufficiently close to 0. 

If the two conditions hold, then

so that g(y(z)) must be a power series for z = 0, because so must be .

The required substitution couples y and z in such a way that 1 − z/[y(1 − y)] = 0, so that 

. To determine whether to take the negative root y1(z) or the 

positive root y2(z), we note that if z is near 0, then y1(z) approaches 0, so that y1(z) lies in a 

neighborhood of y = 0 and g(y1(z)) admits a power series expansion for z near 0. For y2(z), 

however, if z is near 0, then y2(z) approaches 1, and thus, g(y2(z)) is not a power series for z 
near 0 due to the pole of the function g(y) at y = 1 (Proposition 2). The only solution 

satisfying both (i) and (ii) is consequently

(28)

which, with the generating function C(z) of the Catalan numbers as in eq. (3), satisfies Y(z) 

= zC(z). Substituting y = Y(z) in eq. (27), we have , yielding the 

following result.

Proposition 3: Fix tree t. Let g(y) be the generating function associated with the polynomial 

h0,m (eq. (18)). Let Y(z) be as in eq. (28). Then the generating function 

is given by

(29)

The proposition thus determines the generating function f(z) = g(Y(z))/z for the integer 

sequence describing the number of matching coalescent histories of species trees in the 

caterpillar-like family (t(n))n≥0. The function g depends on the seed tree t, whereas Y(z) is 

fixed in eq. (28) and does not depend on t.

As an example, recall that for t = ((A, B), (C, D)), in eq. (24), we have computed the 

generating function g for the number h0,m of m-rooted histories of t = t(0). By Proposition 3, 

the generating function for the number hn of matching coalescent histories of t(n) is
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Taking the Taylor expansion of f, we obtain

(30)

The coefficients hn accord with the enumeration of matching coalescent histories reported in 

Corollary 3.9 of [13] and Table 3 of [14] for caterpillar-like families with seed tree t = ((A, 
B), (C, D)), except that those results tabulated numbers of coalescent histories by the 

number of taxa, whereas here, we use the index of the caterpillar-like family. Thus, in this 

example, the coefficient of zn gives the number of matching coalescent histories for a tree 

with n+4 taxa, as |t| = 4. Shifting the index in the formula from [13], [14] to agree with our 

indexing scheme, we obtain [(5(n+4) − 12)/(4(n + 4) − 6)]c(n+4)−1 = [(5n + 8)/(4n + 10)]cn+3 

for the number of matching coalescent histories of t(n). This formula gives precisely the 

coefficients in the Taylor expansion in eq. (30).

3.4 Asymptotic behavior of hn

From Proposition 3, we have the generating function f that counts matching histories of t(n) 

for a given fixed seed tree t. Applying techniques of analytic combinatorics as introduced in 

Section 2.3, we can determine the asymptotic behavior of the coefficients of the generating 

function

(31)

with Y(z) as in eq. (28). To simplify notation, we work with f̃ instead of f.

First, in Section 3.4.1, we obtain an asymptotic equivalence between hn and βtcn, where βt is 

a constant depending on the seed tree t, and the cn are the Catalan numbers (eq. (1)). Next, in 

Section 3.4.2, we produce a general procedure to determine the constants βt, employing this 

procedure to obtain values of βt for all seed trees t with |t| ≤ 9. We demonstrate that our 

values of βt accord with constant multiples of the Catalan numbers previously obtained 

according to a different method [14] for seed trees with |t| ≤ 8.

3.4.1 A general asymptotic result—Recall that given t, Proposition 2 provides a 

procedure to determine the rational function g in eq. (31). Writing g as the finite linear 

combination in eq. (23), the values of b, J, and the (aj)1≤j≤J and (qj)1≤j≤J can all be computed.
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As noted in Section 2.3, the expansion of f̃ at its dominant singularity characterizes the 

asymptotic behavior of the coefficients hn−1. Appendix 2 obtains this expansion at the 

dominant singularity ,

(32)

(33)

with

(34)

(35)

Note that in eq. (32), the seed tree affects only the constants αt and βt computed in eqs. (34) 

and (35) from g, as written in the linear combination in eq. (23). Excluding the constant αt 

that does not influence the asymptotic behavior of the coefficients, the main term of the 

expansion of f̃(z) (eq. (33)) is the product of βt and the generating function , 

whose nth is Catalan number cn−1 (eq. (4)).

Theorem VI.4 of [8] indicates that under conditions satisfied by f̃, the asymptotic 

coefficients of a generating function as n → ∞ are obtained from the expansion of the 

function at the dominant singularity; moreover, the error term in the asymptotic coefficients 

can be computed from the error term in the singular expansion. Applying the theorem to the 

expansion in eq. (32), we obtain the asymptotic behavior of the coefficients [zn]f̃(z) = hn−1.

Proposition 4: For any seed tree t, when n → ∞, the number hn of matching coalescent 

histories for t(n) satisfies

(36)

where βt is a constant that depends on t. The constant βt is computed in eq. (35) once the 

function g, defined in eq. (18), is written as the linear combination in eq. (23).
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We immediately obtain the following corollary, corresponding to our initial claim in eq. (6).

Corollary 1: For any seed tree t, there exists a constant βt > 0 (eq. (35)) such that when n → 
∞,

(37)

Proof: The result follows from Proposition 4 by noting that if βt > 0, then

Note that we are claiming βt > 0. From the definition of βt in eq. (35), because the qj are 

permitted to be negative, it is not immediately clear that βt > 0. Proposition 4 eliminates the 

possibility that βt is negative, as hn−1 is necessarily positive. To show that βt ≠ 0, note that by 

eq. (36), βt = 0 would give

(38)

so that hn−1/(4n/n2) would remain bounded by a constant as n → ∞.

We now apply the lower bound hn ≥ cn+1 from eq. (7). By eq. (7), we have

As n → ∞,  diverges to ∞, while  converges to 1 by eq. (5). 

Therefore, the sequence hn−1/(4n/n2) must diverge and eq. (38) cannot hold. Thus, βt ≠ 0.

As an example of Corollary 1, consider t = ((A, B), (C, D)). By decomposing the function g 
of eq. (24) as in eq. (23), we have already obtained the parameters b, J, (aj)1≤j≤J, and (qj)1≤j≤J 

in Section 3.3.1. Therefore, computing βt as in eq. (35), we obtain

Eq. (37) then produces hn ~ 80cn. Note that the limit  produced for this tree from 

hn = [(5n + 8)/(4n + 10)]cn+3 in Section 3.3.3 agrees with the limiting result hn ~ 80cn. 

Recalling eq. (2),
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3.4.2 Determining βt from the seed tree t—We have shown in Corollary 1 that the 

number of matching coalescent histories hn for the caterpillar-like family t(n) is, for a 

constant βt, asymptotic to βtcn. We can now assemble our results to describe a procedure 

that given a seed tree t with |t| ≥ 2 determines both the generating function with coefficients 

hn and the constant βt.

(i) Determine by eq. (9) the polynomial et,k in k ≥ 0 that counts k-extended 

histories of t.

(ii) Compute from eq. (8) the polynomial in m that counts for m ≥ 1 the number of 

m-rooted histories of t.

(iii)
Obtain the generating function  with coefficients h0,m by 

using Proposition 2.

(iv)
Determine the generating function  with coefficients hn by 

applying Proposition 3.

(v) Write g(y) as a linear combination according to eq. (23), determining the 

values of b, J, and the aj and qj.

(vi) Compute the asymptotic constant βt from eq. (35).

We have programmed this procedure in Mathematica; starting from a given seed tree t, our 

program CatFamily.nb can automatically compute for the caterpillar-like family t(n) the 

generating function with coefficients hn and the asymptotic constant βt. Using this program, 

we have evaluated βt for each seed tree with 9 taxa, collecting the results in Table 1.

Recall that Rosenberg [14] reported the asymptotic constant multiples of the Catalan 

numbers, , which represent asymptotic numbers of coalescent histories for seed trees with 

up to 8 taxa, indexing the results by the number of taxa m rather than by the index n of the 

caterpillar-like family. Also recall that for seed tree t, tree t(n) has m = |t| + n taxa (Fig. 1). In 

the notation of [14], writing Atm,1 as the number of matching coalescent histories in the 

caterpillar-like tree with seed tree t and m ≥ |t| taxa, we have hn = Atm,1.

By eq. (5), we have the asymptotic equivalence cn ~ cn+k/4k for each positive integer k. 

Therefore,

(39)
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where the asymptotic constant βt of Corollary 1 is normalized to obtain

(40)

This computation converts the asymptotic constant multiple βt of cn into a corresponding 

multiple  of cm−1, as reported in [14] for small trees. Comparing Table 1 with Table 3 of 

[14], we see that for the cases examined by [14], the values of  we compute from the 

associated βt agree with the values that were previously reported. This agreement is 

unsurprising; our method for calculating the constants βt and  is simply a computational 

implementation based on our theorems, and the agreement confirms the validity of the 

implementation. Although [14] considered only |t| ≤ 8, our method applies for arbitrary |t|.

Evaluation of βt proceeds quadratically in |t|. The recursive step (i) requires at most |t| − 1 

recursive calls, one for each internal node of t. Step (ii) is a polynomial subtraction at most 

linear in |t|, producing the polynomial h0,m with order at most equal to the order of et,m 

minus 1—that is, at most |t| − 2. Step (iii) determines the generating function g(y) (eq. (18)) 

from h0,m and the generating functions gmk (y) (eq. (20)). For each k with 0 ≤ k ≤ |t| − 2, gmk 

(y) is computed in k recursive calls of eq. (22). As the order of h0,m is at most |t| − 2, the 

total cost for calculating g(y) is thus quadratic in |t|. Steps (iv), (v), and (vi) do not involve 

recursion and are at most linear in |t|. Thus, because step (iii) is the most expensive step, we 

see that the cost of the procedure that determines the asymptotic constant βt increases as 

.

4 Conclusions

In this paper, we have solved a problem left open by [14] on determining the number of 

coalescent histories for gene trees and species trees that have a matching labeled topology 

and that belong to a generic caterpillar-like family. We have proven that for any seed tree t, 
the integer sequence (hn)n≥0, whose nth element represents the number of matching 

coalescent histories of the caterpillar-like tree t(n), grows asymptotically as a constant 

multiple of the Catalan numbers, that is, hn ~ βtcn, where the constant βt > 0 depends on the 

shape of the seed tree t. Rosenberg [14] had previously obtained this result for seed trees 

with at most 8 taxa; here, by using a succession rule for recursive enumeration and then 

applying techniques of analytic combinatorics, we have not only proven the existence of the 

constant βt for seed trees of any size, we have also produced a procedure that computes βt as 

well as the expression for the generating function of the integers (hn)n≥0.

The numerical results on the constants βt extend the empirical observation of [14] that the 

caterpillar-like families that produce the largest numbers of matching coalescent histories are 

those whose seed tree has a high level of balance. By extending from seed trees with |t| ≤ 8 

taxa to those with |t| = 9, we observe that the constants βt for the caterpillar-like families 

with the largest and smallest numbers of matching coalescent histories become further 

separated, so that for n large, many more coalescent histories exist by which a gene tree can 

match the species tree for some species trees than for others. For the 9-taxon seed tree with 
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the largest ,  compared to  for the seed tree with the smallest . Our 

procedure for evaluating βt and  as a function of the seed tree can now enable further 

systematic analyses of the correlates of the constants βt and , to facilitate additional 

explorations of determinants of the numbers of matching coalescent histories.

Nevertheless, although the constants βt and  do depend on the seed tree, we have shown 

that otherwise, all caterpillar-like families are asymptotically equivalent in their numbers of 

matching coalescent histories. Computation time is often a challenge in phylogenetic 

problems, as the discrete structures of phylogenetics can grow rapidly in number with the 

number of taxa. Our results contribute to the study of computational complexity in 

phylogenetics, as the complexity of the evaluation of probabilities important in 

characterizing gene tree distributions [5] is proportional to the number of coalescent 

histories. That all caterpillar-like families have the same growth pattern up to a constant 

suggests that as the number of taxa increases, such evaluations will be comparably complex 

for all caterpillar-like trees. In large trees, the caterpillar branches contribute to the 

asymptotic growth of the number of matching coalescent histories—which follows a 

multiple of the Catalan numbers—and the seed tree only to the constant by which the 

Catalan numbers are multiplied.

The extent to which other tree families follow the Catalan sequence in their numbers of 

matching coalescent histories remains unknown, though we have recently found a family, the 

lodgepole family—defined iteratively by setting λ0 to a tree with one taxon and sequentially 

forming λn+1 by appending λn and a cherry to a shared root—for which the number of 

matching coalescent histories grows faster than with a constant multiple of the Catalan 

numbers [6]. Further analysis of this heterogeneous behavior of the increase in the number 

of coalescent histories will be useful in performing comparisons of coalescent history 

algorithms with algorithms that obtain similar phylogenetic probabilities but that do not rely 

on coalescent histories [20]. The use of our substantially different approach employing 

analytic combinatorics opens new methods for theoretical analysis of coalescent histories 

and can potentially assist in understanding when Catalan-like growth, the rapid growth of 

the lodgepole family, and intermediate or perhaps still faster growth patterns will apply.

We note, however, that our strategy for evaluating the asymptotic properties of the number of 

coalescent histories in caterpillar-like families has, like the work of [14], relied on the fact 

that the difficulty of the general problem of enumerating coalescent histories is partly evaded 

by restricting attention to caterpillar-like trees. In the recursion for the number of coalescent 

histories given a matching gene tree and species tree [13, eq. 1], a term arising from the 

subtree with fewer branches collapses to 1 for the caterpillar case, greatly simplifying the 

recursion. This reduction enabled the work of [14] for caterpillar-like families, and it also 

enables our approach of iteratively adding single-taxon branches to define the operator Ω 
and the generating function hn,m. Thus, in enumerating coalescent histories for matching 

lodgepole gene trees and species trees, we proceeded by a different method, establishing a 

bijection between coalescent histories and established combinatorial structures [6]. We do 

expect, however, that a generating function approach will be fruitful in other scenarios, 
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perhaps including cases with gene trees and species trees that are caterpillar-like, but non-

matching.
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Appendix 1. The equation for F(y, z)

In this appendix, we complete the derivation of eq. (27) satisfied by F(y, z). In the generating 

function F(y, z) (eq. (25)), each monomial znym corresponds to a label (n, m) ∈ Ln that in 

turn represents an m-rooted history of t(n). Recall that the multisets of labels L0, L1, L2, . . . 

(eq. (14)) can be iteratively generated according to eq. (17) through the operator Ω defined in 

eq. (13), starting from the multiset L0. Also recall that by considering the multiset of labels 

, we can write . We use the iterative generation of the 

family of multisets (Ln)n≥0 to obtain an equation for F.

By eq. (13), for n ≥ 0 and m ≥ 2, for each occurrence in Ln of a label (n, m), a copy of each 

label in set

belongs to the multiset Ln+1. Thus, in algebraic terms, each time that an expression znym 

with n ≥ 0 and m ≥ 2 is counted in the generating function F—written znym ∈ F in what 

follows—the terms  appear in F as well. Summing over all znym ∈ F with n 
≥ 0 and m ≥ 2, we obtain

(41)

Similarly, for n ≥ 0 and m = 1, for each occurrence in Ln of a label (n, 1), a copy of each 

label in set Ω((n, 1)) = {(n + 1, j) : j ≥ 1} appears in multiset Ln+1. Thus, for each term zny ∈ 

F, with n ≥ 0, the terms  are counted in F as well. Summing these terms for all 

zny ∈ F with n ≥ 0,

(42)

Notice that the sum of the expressions in eqs. (41) and (42) is the algebraic representation of 

the multiset of labels L \ L0. More precisely, each term znym ∈ F associated with a label (n, 
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m) ∈ Ln, with n ≥ 1, is counted—and counted exactly once—in the sum of eqs. (41) and 

(42). Therefore, to complete the description of F, we require only those terms z0ym 

associated with labels (0, m) ∈ L0. These terms are represented

(43)

considering that  (eq. (15)) and that by definition, 

 (eq. (18)).

We can now equate the full generating function F(y, z) to the sum of eqs. (43), (41), and 

(42), obtaining

Applying the fact that  for y near 0 in the complex plane, we then have

(44)

By eq. (25) and the fact that the multisets Ln of labels (n, m) for m-rooted histories of t(n) 

have hn,m elements,

Substituting in eq. (44), the last two expressions yield

(45)

which can be rewritten as in eq. (27).

Appendix 2. The dominant singularity and singular expansion of f ̃(z)

This appendix obtains the singular expansion of f̃(z) described in eq. (32). In eq. (31), we 

have defined f̃(z) as a composition f̃(z) = g(Y(z)), with the internal function Y(z) as in eq. 
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(28) and the external function g(y) as in eq. (23). Owing to the presence of the square root in 

the expression for Y(z), the dominant singularity of the internal function Y(z)—the 

singularity nearest the origin of the complex plane—is at . Computing the value of Y(z) 

at its dominant singularity, we obtain . In particular, we have , where 1 is 

the radius of convergence of the finite series corresponding to the external function g in f̃. 
Indeed, it immediately follows from Proposition 2 that y = 1 is the dominant singularity of 

g(y).

As detailed in Section VI.9 of [8], on dominant singularities of compositions, we are in the 

setting of the subcritical case, in which the inequality  implies that the dominant 

singularity of g(Y(z)) coincides with the dominant singularity  of the internal function 

Y(z) rather than the dominant singularity y = 1 of the external function g(y). The desired 

singular expansion of f̃(z) = g(Y(z)) at the dominant singularity  can be obtained by 

inserting y = Y(z) in the regular (non-singular) expansion of g(y) at .

To recover the expansion of g(y) at , we expand and then sum each term qj[yaj/(1 − y)b] 

of the finite linear combination in eq. (23). At , each of these terms is an analytic 

function, and we can thus use Taylor's formula to produce the desired expansion. We obtain 

at 

By summing over the indices 1 ≤ j ≤ J of eq. (23), the expansion of g(y) at  is

(46)

with the constants αt and βt defined as in eqs. (34) and (35). Plugging y = Y(z) from eq. (28) 

into eq. (46), we finally obtain the singular expansion of f̃(z) at  as in eq. (32).
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Fig. 1. 
A caterpillar-like family of species trees (t(n))n≥0. For a seed tree t, by adding n ≥ 0 branches 

each with 1 leaf, we obtain the nth tree of the family, t(n). If t has 2 taxa, then (t(n))n≥0 is 

simply the caterpillar family.
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Fig. 2. 
Matching coalescent histories. (A) A matching coalescent history. (B) A mapping from the 

internal nodes of a tree to its branches that does not satisfy condition (a). Leaf B is 

descended from node k but does not descend from branch h(k). (C) A mapping from the 

internal nodes of a tree to its internal branches that does not satisfy condition (b). Node k2 is 

descended from node k1, but branch h(k2) is strictly ancestral to branch h(k1).
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Fig. 3. 
Superposition of the caterpillar tree family on a caterpillar-like tree family with arbitrary 

seed tree of size |t| ≥ 2. (A) A seed tree t and the seed tree V for the caterpillar family. (B) 

Superposition of V on t, so that the roots rV and rt overlap. (C) Superposition of V(2) (shaded 

internal nodes) on t(2) (shaded and unshaded nodes). The n = 2 caterpillar branches in V(2) 

and t(2) overlap, and rV still matches rt. (D) A matching coalescent history of t(2) (dashed and 

dotted arrows) determines a matching coalescent history of V(2) (dashed arrows) by ignoring 

arrows from the unshaded nodes.
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Fig. 4. 
Rooted histories of a tree. (A) A 3-rooted history. The root-branch is divided into infinitely 

many components, the third of which receives the image of the root. (B) A 1-rooted history. 

The number of 1-rooted histories corresponds to the number of matching coalescent 

histories of the tree.
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Fig. 5. 
The relationships among rooted histories for sequential members of caterpillar-like families. 

For a rooted history h‴ of t(3), with t = ((A, B), (C, D)), the figure sequentially removes 

caterpillar branches. By definition, a rooted history h′ of t(n+1) belongs to the set Ω(h) if, by 

removing the most basal caterpillar branch bn+1 in t(n+1), we recover the rooted history h of 

t(n). Note that when we remove the basal caterpillar branch bn+1 from t(n+1), the root of 

t(n+1)—to which the branch bn+1 is attached—becomes the boundary between the first and 

second components of the root-branch of t(n), and is depicted as a horizontal segment. (A) h
‴ ∈ Ω(h″). (B) h″ ∈ Ω(h′). (C) h′ ∈ Ω(h). (D) h. For each rooted history, the value of the 

parameter m, representing the component of the root-branch that receives the image of the 

root, is shown.
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Fig. 6. 
Generation of rooted histories of t(n+1) from rooted histories of t(n), as given by rule Ω 
applied to seed tree t = ((A, B), (C, D)). To obtain rooted histories of t(n+1) (right) from 

rooted histories of t(n) (left), we choose the component m′ of the root-branch of t(n+1) onto 

which the root of t(n+1) is mapped (solid arrows). The smallest among infinitely many 

possible choices are depicted. For all nodes of t(n+1) except the root, the rooted history 

generated for t(n+1) coincides with the generating rooted history of t(n) (dashed arrows). (A) 

A case with m ≥ 2. A 2-rooted history h of t(0), labeled (0, 3), is shown. (B) Ω(h) for h in 

(A). 2-, 3-, and 4-rooted histories of t(1) belonging to Ω(h) are shown and are labeled (1, 2), 

(1, 3), and (1, 4), respectively. Because m ≥ 2, m′ ≥ m − 1 as in eq. (12). (C) A case with m 
= 1. A 1-rooted history h of t(1), labeled (1, 1), is shown. (D) Ω(h) for h in (C). 1- and 2-

rooted histories of t(2) belonging to Ω(h) are shown and are labeled (2, 1) and (2, 2), 

respectively. Because m = 1, m′ ≥ m.
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Fig. 7. 
Iterative application of a rule for generating the multiset of the labels of the rooted histories 

of a tree t(n). The iterative procedure starts with the multiset L0 that contains those labels of 

the form {(0, m) : m ≥ 1} associated with the rooted histories of a seed tree t = t(0). In the 

first step of the iteration, we apply Ω (eq. (13)) to each label of L0. In the second step, we 

apply Ω to each label resulting from the first step, and so on. The number of m-rooted 

histories of t(n) corresponds to the number of labels (n, m), considered with their 

multiplicity, generated after the nth step of the iteration.
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TABLE 1

Asymptotic constants βt with hn ~ βtcn, for seed trees t with 9 taxa.

Seed tree t β t βt
∗ Seed tree t β t βt

∗

65,536 1 128,864
4, 027
2, 048

81,920
5
4 166,624

5, 207
2, 048

94,208
23
16 197,296

12, 331
4, 096

104,448
51
32 224,704

3, 511
1, 024

138,240
135
64 308,576

9, 643
2, 048

118,784
29
16 262,000

16, 375
4, 096

113,408
443
256 250,272

7, 821
2, 048

148,480
145
64 339,504

21, 219
4, 096

177,664
347
128 417,632

13, 051
2, 048

141,312
69
32 326,240

10, 195
2, 048

193,536
189
64 464,128

1, 813
256

121,472
949
512 182,912

1, 429
512
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Seed tree t β t βt
∗ Seed tree t β t βt

∗

157,888
2, 467
1, 024 243,904

3, 811
1, 024

187,776
1, 467
512 296,064

2, 313
512

214,720
3, 355
1, 024 344,512

5, 383
1, 024

296,192
1, 157
256 487,808

3, 811
512

251,136
981
256 410,112

801
128

162,560
635
256 214,016

209
64

219,136
107
32 306,112

4, 783
1, 024

268,288
131
32 294,784

2, 303
512

177,664
347
128 425,216

1, 661
256

249,344
487
128 366,720

2, 865
512

353,536
1, 381
256 532,224

2, 079
256

Values of βt appear for each of the 46 unlabeled species trees with 9 taxa. For each species tree t, we also provide the constant  (eq. 

(40)). Trees are listed in increasing order by rank as defined in Section 2 of [14]. In the left column, each seed tree t belongs to a caterpillar-like 

family (t ̃(n))n, with |t̃| < 9. In these cases, we recover the values of  as determined in Table 3 of [14].
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