
 

 

Efficient and powerful testing for gene set analysis 

applied to Genome-wide Association Studies. 

  
N. Vilor-Tejedor*, JR. González and ML. Calle 

Abstract— The goal of Genome-wide Association Studies (GWAS) is the identification of genetic variants, usually Single 

Nucleotide Polymorphisms (SNPs), that are associated with disease risk. However, SNPs detected so far with GWAS for most 

common diseases only explain a small proportion of their total heritability. Gene Set Analysis (GSA) has been proposed as an 

alternative to single-SNP analysis with the aim of improving the power of genetic association studies. Nevertheless, most GSA 

methods rely on expensive computational procedures that make unfeasible their implementation in GWAS. We propose a new 

GSA method, referred as globalEVT, that uses the extreme value theory to derive gene set p-values. GlobalEVT reduces 

dramatically the computational requirements compared to other GSA approaches. In addition, this new approach  improves the 

power by allowing different inheritance models for each genetic variant as illustrated in the simulation study performed and 

allows the existence of correlation between the SNPs. Real data analysis of an Attention-deficit/hyperactivity disorder (ADHD) 

study illustrates the importance of using GSA approaches for exploring new susceptibility genes. Specifically, the globalEVT 

method is able to detect genes related to Cyclophilin A like domain proteins which is known to play an important role in the 

mechanisms of ADHD development. 

Index Terms— Attention-deficit/hyperactivity disorder, Adaptive Rank Truncated Product method, Cyclophilin domain, Extreme 

value theory,  globalEVT. 

——————————      —————————— 

1 INTRODUCTION

enetic epidemiology focuses on the identification of 

genetic variants that are associated with health and dis-

ease in populations, and also, in the study of how these 

genetic variants interact with environmental factors [1]. A 

common strategy is to explore differences in genetic variability 

between diseased and non-diseased individuals using single 

nucleotide polymorphisms (SNPs) as markers of the variabil-

ity in a genome region. Single-SNP analysis, where each SNP 

is individually tested, is the usual statistical approach in Ge-

nome-wide Association Studies (GWAS). However, the main 

limitation of this strategy is the multiple testing correction that 

reduces dramatically the statistical power [2]. Gene set analy-

sis (GSA) is an alternative approach that provides the associa-

tion between a set of SNPs (i.e., gene sets or pathways) and the 

trait. These strategies meant to improve the power of single-

SNP analysis when the marginal effect of each SNP is small.  

A number of GSA methods have been proposed to analyze 

aggregated association evidences across SNPs. These include 

the Fisher's combination product method [3], the Stouffer's 

method [4] and the Wilkinson procedure [5]. Based on these, 

more recent methods were proposed such as the Threshold 

Truncated Product (TPM) method [6], the Rank Truncated 

Product (RPT) method [7], the Adaptive Rank Truncated 

Product (ARTP) method [8], the Sequential Test (SEQ) method 

[9] and the global Adaptive Rank Truncated Product 

(globalARTP) method [10]. Nevertheless, theoretical distribu-

tions of these techniques assume independence on the p-

values while this is not likely to be true because of the exist-

ence of Linkage Disequilibrium (LD). Therefore, significance is 

usually obtained through permutational approaches, such as 

randomly permuting the phenotype among individuals sever-

al times (at least 100,000,000 permutations for GWAS), which 

requires expensive computations. 

To overcome these problems, we propose the globalEVT algo-

rithm, a new implementation of the ARTP test statistic, where 

the theoretical distribution is obtained based on the extreme 

value theory. The main advantages of the proposed approach 

are that (1) it considers different inheritance models as pro-

posed in [10], (2) it allows for correlation between the SNPs as 

suggested in [11], and more importantly, (3) it reduces dramat-

ically the required computational time making possible its 

application in the context of GWAS. 

This article is organized as follows. In section 2, we present the 

proposed globalEVT algorithm. In section 3, we explore the 

performance and the computational requirements of the 
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globalEVT. For this purpose, we simulated different scenarios 

where we compare the results for globalEVT with ARTP and 

globalARTP. In section 4, we applied single-SNP analysis and 

the globalEVT in the context of a medical study on Attention-

deficit/hyperactivity disorder (ADHD). As a result, we ob-

tained some significant genes involved in the Cyclophilin-like 

protein receptor which was previously suggested as an im-

portant biological regulator for adult ADHD [12]. Finally, the 

paper ends with a discussion. 

2 METHODS 

Our starting point is the Adaptive Rank Truncated Product 

method (ARTP) proposed by  Yu et al., [8]. This GSA method 

consists on the combination of the k smallest marginal p-

values using a rank truncated statistic, where k is determined 

in an adaptive way. One limitation of this approach, and also 

of other GSA methods, is that they assume the same mode of 

inheritance for all SNPs in the set, usually, the additive model. 

GlobalARTP proposed by Vilor-Tejedor et al., [10] is an exten-

sion of ARTP that allows for different modes of inheritance of 

the SNPs. Another problem of using this approach is the com-

putational requirements since the final gene set p-value relies 

on the nonparametric null distribution of the ARTP test statis-

tic which is estimated using permutational procedures. [13] 

proposed the use of the generalized extreme value distribution 

for estimating the null distribution of this statistic. The maxi-

mum likelihood estimation of the three parameters (location, 

scale, and shape parameters) of the generalized extreme value 

distribution also requires the performance of a large number 

of permutations, but much less than the nonparametric esti-

mation and the tails of the distribution are estimated more 

accurately. 

 In this work we propose an alternative algorithm, referred to 

as the globalEVT, for estimating the null distribution of the 

ARTP test statistic using the extreme-value theory and a lim-

ited number of permutations. Our method reduces dramatical-

ly the computational requirements since only one-parameter 

distributions have to be fitted. We also improve the power of 

the proposed GSA approach by allowing different modes of 

inheritance for each SNP in the set and using the Max-statistic 

test [14]. Moreover, the proposed method accounts for correla-

tion between the SNPs. 

Considering a genetic association study where Y denotes dis-

ease status and          are the genotypes for a set of M 

genotyped SNPs within a gene or pathway, the proposed 

algorithm is based on the following result:  

Proposition. If             are independent and identically dis-

tributed uniform random variables in the interval [0,1] then the l-th 

order statistic, denoted by     , follows a Beta distribution Beta(l, M 

+ 1-l) with density given by 

   
     

  

            
             

We will also assume that when independence does not hold, 

that is, when            are dependent variables with 

standard Uniform distribution, it is possible to find a number 

       so that the distribution of the l-th order statistic,       

is approximately a Beta distribution, Beta( ,    +   -  ), where 

   
is interpreted as the effective number of independent tests. 

Taking these considerations, we propose the following algo-

rithm for obtaining the combined effect of a set of M SNPs. For 

easy of explanation we describe the method in the case where 

the M SNPs belong to the same gene and thus, the combined 

p-value corresponds to the gene p-value. 

 

Step 1. Best genetic model and transformation to uniformly distrib-

uted p-values: The first step performs an association analysis of 

each SNP with the phenotype, considering three different 

modes of inheritance (dominant, recessive and additive) and 

takes the minimum of the three likelihood ratio test p-values. 

This first step provides M p-values, one for each SNP in the 

gene:  

  
           

      
      

                   

where    
      

      
    are the p-values of j-SNP assuming a 

dominant, a recessive and an additive model,  respectively.  If 

the three tests were independent the distribution of      

would follow a Beta      distribution (see Preposition, consider-

ing l = 1, and M = 3) but, since the three tests are performed on 

the same SNP, the three tests are dependent and      follows a 

Beta       where x, the effective number of tests, has been 

estimated to be equal to 2.2 [14].  

We transform   
            into values from a standard 

Uniform distribution by applying the distribution function:  

                  
             

Step 2. Summarizing the   most associated SNPs: We sort increas-

ingly the uniformly distributed p-values,   , obtained in step 1, 

and considers the   best results, for    between        .  

                          

Our goal is to summarize these   first order statistics into a 

unique statistic but, for this, we first transform these values 

into uniformly distributed values.  If the SNPs are not corre-

lated, the order statistics               , would follow a 

Beta distribution Beta         , but if the SNPs were 

correlated, the distribution is Beta         ,         , 

where   is the effective number of tests calculated through 

the approximation approach proposed by Li et al., [11]. This 

method estimates   from the eigenvalues of the correlation 

matrix of the   SNPs, as  
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where    are the eigenvalues and      is an indicator func-

tion. 

As in the previous step, we transform the order statistics    

tics            into values from a standard Uniform dis-

tribution by applying their distribution function: 

                                 

As a summary statistic of the   best results, we consider the 

Fisher's combination approach: 

 

            

 

   

 

Due to    are uniformly distributed, then           follows a 

chi-squared distribution with 2 degrees of freedom and, if 

the   SNPs were uncorrelated the summary statistic    

would follow a chi-squared distribution with    degrees of 

freedom. Since the SNPs may be correlated, the distribution 

of    is a chi-squared distribution with   degrees of freedom. 

A permutational procedure is performed to estimate   as the 

mean from the permuted values. A small number of permu-

tations, for instance, a hundred, are enough to obtain a good 

estimate of  . 

We calculate the p-value corresponding to the statistic,   , 

using the reference chi-squared distribution, 

               

Step 3. Adaptive step: selection of the best truncation point: We 

repeat Step 2 for every   from 1 to  , where     is the 

maximum truncation point to be explored. As a final gene set 

statistic we take the best of all, 

                

Since         are correlated, the distribution of   can be 

approximated by a          , where   can be estimated from 

a permutational procedure as     
    

  
, using a small num-

ber of permutations. As previously, a hundred, are enough to 

obtain a good estimate of    

Finally, the transformation of   to a uniformly distributed 

value provides the adjusted p-value for the set of   SNPs: 

 

                        . 

3 SIMULATION STUDIES 

3.1 Simulation Design 

We performed a simulation study to evaluate the perfor-

mance of the globalEVT algorithm compared with the ARTP 

and globalARTP methods, in terms of type I error, power 

and computational time. To cover these objectives we simu-

lated 36 different scenarios summarized in Table 1. 

We simulated balanced case-control datasets with sample 

size N = 2000 (1000 cases and 1000 controls), one binary re-

sponse Y indicating disease status and M variables (M = 10, 

50, 100) representing the genotypes of a set of SNPs within a 

gene. The genotypes were simulated assuming independence 

between the SNPs and also assuming a Linkage Disequilibri-

um (LD) structure. For this, we used HAPGEN version 2.1.0 

[15], and took the M SNPs genotypes within a 700kb region 

on chromosome 21 with CEU HapMap as the reference pan-

el. A subset of c SNPs were considered to be causal, with  c=0 

(non causal SNPs), c=5 and c=10. For the independent SNPs 

scenarios, disease status was generated assuming an odds of 

risk model as described in [16] with a prevalence equal to 0.2. 

We examined the effect of the inheritance model. We as-

sumed that the causal SNPs followed an additive model with 

heterozygote relative risk equal to 1.2 or 1.12 and a recessive 

inheritance model with minor homozygote relative risk 

equal to 1.2. For the LD scenarios, disease status was gener-

ated using HAPGEN considering an additive inheritance 

model with heterozygote relative risk equal to 1.2 or 1.12.  

 

Gene set p-values and effective computational times were 

computed for each scenario, setting the truncation point 

value equal to K = 5. For the permutational procedures, 

ARTP and globalARTP algorithms, the total number of per-

mutations was B = 1,000. We repeated the process a hundred 

times for each scenario. As a summary result, we provided 

the empirical type I error, the power of the tests as the per-

centage of significant results at a nominal significance level 

(gene p-value < 0.05) and the mean effective computational 

time for each methodology based on the different gene sizes.  

The simulation procedure was executed using a Linux plat-

form Centos 5 (64-bit) 24 x Intel Xeon CPU with 2.4GHz and 

64 Gb of RAM Memory, and using version 3.1.0 of R soft-

ware. 

 
3.2 Simulation Results 

The results of the simulation study are summarized in Tables 

from 2 to 4.  

Table 2 provides the size or type I error of the tests (scenarios 

from 1 to 6). All considered methods controls type I error 

around the specified significance level.  

Tables 3 and 4 provide the power of the tests, that is, the 

percentage of significant results when the causal SNPs follow 

an additive inheritance model. In Table 3 we considered a 

stronger effect of each causal SNP with    = P(Y = 1|Aa)/P(Y 
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= 1|AA)= 1.2  and     = P(Y = 1|aa)/P(Y = 1|AA)= 1.44 (sce-

narios from 7 to 18) while in table 4 we considered a 

weaker effect  of    = P(Y = 1|Aa)/P(Y = 1|AA)= 1.12  and 

    = P(Y = 1|aa)/P(Y = 1|AA)= 1.25 (scenarios from 19 to 

30). Additionally, Table 5 provides the power of the tests 

when causal SNPs follow a recessive inheritance model 

with    = P(Y = 1|aa)/P(Y = 1|AA ∪ Aa)=1.2 (scenarios 

from 31 to 36 ). 

As it was to be expected, the strongest the effect, the larger 

the power of the test. Indeed, in table 3 all methods reach a 

power near 100%.  

When the individual marginal effects are not so strong (Table 

4) the power depends mainly on the number of causal SNPs 

(larger powers for c=10 than for c=5) and on the number of 

non-causal SNPs: The larger the number of noncausal SNPs 

(M-c), the lower the power of the tests. 

We compare the performances of the global methods 

(globalEVT and globalARTP) which allow different inher-

itance models, and the standard ARTP method that assumes 

the additive model for all SNPs. In the scenarios where data 

was generated under an additive model (Table 3 and Table 

4), the power of the global methods is very similar and the 

power of the ARTP method is slightly larger. However, when 

the recessive model was used for simulations (Table 5), the 

GlobalEVT and globalARTP are clearly more powerful than 

the ARTP algorithm. These results were to be expected since 

the globalEVT and globalARTP algorithms take account of 

the best inheritance model for each SNP while, as mentioned 

before, the ARTP method only considers the additive model. 

Hence, the results of this simulation study suggest that 

globalEVT and globalARTP algorithms have a similar per-

formance and clearly outperform the ARTP method which is 

strongly penalized by the inheritance model.  

Table 6 provides the computational times for the three differ-

ent methods. Notice that we based the computational proce-

dure on only B = 1,000 permutations, although at least 107 

would be required in GWAS. Larger values than B = 1,000 

were unfeasible for this simulation study due to the compu-

tational time required for the permutational approaches, 

ARTP and globalARTP algorithms. From this results we see 

that although globalEVT and globalARTP approaches have a 

similar power to detect significant genes, globalARTP takes 

around 10 times more computational time than globalEVT.  

These results reinforce that the globalEVT method has a 

good performance taking into account not only independent 

structures, but also the LD structures between SNPs. 

 

 
 

We can conclude that in all scenarios, globalEVT decreases 

manifestly the computational time required to compute gene 

set p-values while keeping the statistical power to assess 

gene set associations. These clearly improve the 

permutational gene set methods. The data sets supporting 

the results of these simulation studies are included within 

the article. 

4 APPLICATION ON ATTENTION-
DEFICIT/HYPERACTIVITY DISORDER 

Attention-deficit/hyperactivity disorder (ADHD) is an im-

portant and common childhood disorder characterized by 

three important neurological aspects,  hyperactivity, impul-

sivity and inattention, which affects children and can contin-

ue through adolescence and adulthood [17]. Results from 

recognized international GWAS studies suggest several 

genes that may be associated with the development of this 

disorder [18]. However, the polygenetic characterization of 

ADHD is still incompletely understood. We proposed the 

application of the globalEVT algorithm in order to improve 

the available information of gene set effects.  
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4.1 BREATHE project 

The BRrain dEvelopment and Air pollution ultrafine parti-

cles in school childrEn (BREATHE) project is a longitudinal 

study conducted from January 2012 to March 2013 in 39 

schools in Barcelona (Catalonia, Spain) to study the associa-

tion between air pollution and cognitive development of 

school children [19]. From the total of 2,904 children who 

participated in BREATHE, a subsample consisting of 1,648  

(154 cases and 1,494 controls) children aged 7 to 10 years was 

selected for the present study (Table 7) based on the available 

genetic and neurobehavioral information. 

 

Main Outcome: child ADHD 

The ADHD outcome was collected using the ADHD criteria 

of Diagnostic and Statistical Manual of Mental Disorders, 

fourth edition [20] and was dichotomized as 0 (ADHD symp-

tom absent), and 1 (ADHD symptom present) as described in 

[21]. 

 

Genomic sample 

Genome-wide  genotyping  was  performed  using  the  

HumanCore  BeadChip  WG-330-1101  (Illumina)  at  the  

Spanish  National  Genotyping  Center  (CEGEN).  A total of 

298,930 SNPs coded in b37 and positive strand were geno-

typed.  PLINK  was  used  for  the  data  quality  control 

following [22]. The quality control criteria excluded 58,827 

SNPs based on Hardy Weinberg Equilibrium (p < 10-e06), 

minor allele frequency (<1%) and call rate information (95%).  

The final genotyped data set consisted of 240,103 SNPs with-

in  14,662 different genes.  

 

4.2 Statistical Analysis 

Single-SNP analysis 

A logistic marginal regression analysis adjusting by gender 

and age was performed, resulting in 6 significant SNPs con-

sidering a suggestive level of significance (P < e-05) (Figure 1, 

Table 8). However, none of them were significant after mul-

tiple testing correction using the False Discovery Rate proce-

dure at a 5% FDR level [23].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  A) Quantile-quantile plot comparing empirical (−log10) p-

values against those expected under the null p-value distribution. B) 

Manhattan plot for the significance of the marginal results. 

 

 

GSA Analysis 

To explore associations at a gene set level, we mapped all 

SNPs from BREATHE project using the information provid-

ed by the HumanCore BeadChip WG-330-1101 of Illumina, 

and then, we grouped all different SNPs by gene.  

Table S1 shows the 21 significant genes found using 

globalEVT: the first two columns provide the name of the 

genes that are statistically significant at a 5% FDR level and 

the chromosome. The next two columns show the original p-

value provided by globalEVT and the adjusted p-value after 

multiple comparison correction. Last column provide the 
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description of the gene. These results suggest an interesting 

relationship with several neurological disorders genetically 

close to the ADHD, as HTN1 for Autism [24],  EPHX2 for  

Cerebrovascular function [25] and TRAPPC8 for congenital 

intellectual disability [26].  Moreover,  some regions of 

GAPVD1, TRAPPC8, CMC2, FAM168A, C6, C11orf30 and 

SLU7 have been previously reported as significant in the 

Genetic online Database for ADHD available at 

http://adhd.psych.ac.cn/index.do. Nonetheless, the most 

important result was found in a more complex biological 

level. Given the list of significant genes obtained from 

globalEVT (Table S1), we assessed the induced functional 

network by application of ConsensusPathDB [27-28]. 

ConsensusPathDB interconnects globalEVT significant genes 

through different types of biological interactions. This search 

identified three important biochemical reactions between a 

set of Cyclophilin A like domain proteins [Figure 2], which 

were revealed as an important regulator of the Ubiquitin-

proteasome system and ADHD development mechanisms 

[29]. Hence, results suggest that the significant genes ob-

tained from globalEVT may encode a relevant functional 

protein complex that has a high influence in ADHD.  

 

Figure 2.  Functional induced network for significant gene sets from 

globalEVT. 

 
These results together with the computational efficiency 

confirm that globalEVT is able to analyze GWAS providing 

genes which may play an important role in the mechanisms 

of the development of complex diseases, while the consid-

ered permutational GSA procedures (globalARTP and ARTP) 

are unfeasible. 

5 CONCLUSIONS 

We proposed a new algorithm in the context of GSA, the 

globalEVT, that reduces dramatically the computational time 

and the requirement of a large sample size with respect to 

the other GSA methods. The new approach improves power 

by allowing different inheritance models for each genetic 

variant as illustrated in the simulation study performed and 

also, it allows the existence of correlation between the SNPs 

computing the total number of effective tests based on the 

idea of [11]. For illustrative purposes, we applied our pro-

posed algorithm in a clinical context of ADHD. While mar-

ginal results are not conclusive and GSA-permutational 

procedures are not feasible to compute, the proposed 

globalEVT method improves the efficiency and allows identi-

fying significant signals of association at a gene-level. Hence, 

the application to ADHD study proved that the use of 

globalEVT in GWAS is feasible while permutation GSA 

methods are not. In addition, using the set of causal genes 

obtained from globalEVT for the ADHD study, we obtained a 

functional network configuration that reinforce  the perfor-

mance of our proposed approach. They reveal a strong rela-

tionship between some genes and several neuronal disorders 

suggesting new biological mechanisms linked to childhood-

ADHD development which have not been described yet. 

However, it is important to take into account that the pro-

posed method, and in general, the existing GSA approaches 

were designed to detect nominal effects and, for that, the 

main limitation is that its use is not appropriate when the 

genetic association is due to epistasis and not to marginal 

effects.  

The proposed algorithm is implemented in the R function 

globalEVT within the globalGSA package, available at CRAN 

(http://cran.r-

project.org/web/packages/globalGSA/index.html).  
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