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Abstract—Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The
simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a
probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks
are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new
exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity
bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while
the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the
computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms
available in literature to demonstrate its applicability and efficiency.

Index Terms—Computational biology, Stochastic simulation, Rejection-based stochastic simulation algorithm.
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1 INTRODUCTION under the same hypothesis as CME. Recently, extensions of SSA

Biological processes at molecular level are noisy due to trﬁ‘é“’e been introduced for considering environmental effeath

discreteness of species and the randomness of reactiaysf{tih afz blolc?t\ em|ca![_ reactl_cms dV\?th tt.'me'di%end&m rf;es [Jég”é[
[2], [3], [4]. The effects of noise may lead to significant olgas [12], [13], reactions wi elay times [12], [14], [15], [}.&an

in cellular behavior and ultimately in biological responi&g, mhc}?gge;?grﬁasnpcaeciflls@/flf?{ larae reaction networks is pro
[6]. Stochastic modeling and simulation of biological netks P 9 ' W IS pro-

provide a framework for a quantitative study of biologicgdtems h|b|t|\(ely expensive due tq two main fgctors: sear'chlng rﬁgxt
by taking biological noise into account. reaction events, and updating propensities of reactioreddition

In the stochastic chemical kinetics framework, the state gqany simulation runs must be performed in order to obtain a

: . reasonable statistical estimation of the system behdvatftirther
the system is modeled as a vector of population of each molec-

. - . . ronounce the performance problem of SSA. Different foanul
ular species. The interactions of species to produce regess. - . .
. - ions to accelerate these simulation steps of SSA are intextito
substances for cells are encoded by chemical reactionsebatw.

. ) . . . improve its performance in simulating large, complex bimiical
species. The occurrence of a reaction event is associatadawi P P glarg P

probability that is proportional to @ropensity which depends
on the reaction kinetics. The dynamic behavior of the biathe
ical network is fully described by the chemical master eipumat
(CME) [7] and its solution can be realized by an exact simarati
procedure called the stochastic simulation algorithm (5B
also known as the direct method (DM) [9]. SSA is exact in th
sense that it selects a reaction firing and moves the systen t
new state according to a probability distribution that igivsl

reaction networks. The next reaction method (NRM) [19] uses
a binary heap to extract the reaction firing. It also employs a
reaction dependency graghb decide which reactions update their
propensities after a reaction firing. The optimized directhrod
(ODM) [20], [21] improves the search for next reaction firgnigy
sorting reactions in descending order of propensities. Thki-m
Gimensional search accelerates the search for next redotimgs

By dividing reactions into groups [22]. The selection of thexin
reaction firing by the multi-dimensional search is composéd

- T o ) - selecting a group and locating the next reaction within gnatip.
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special form of thamass-actiorpropensity function oélementary RSSA-CR only updates the system state, while the propensity
reactions(reactions with at most two reactants). PDM factorizeBounds as well as underlying data structure do not need to
propensities of reactions into partial propensities amidigs these be updated. The propensity updates are performed only when
partial propensities by their common reactants. Thus,r ate necessary. Furthermore, RSSA-CR recomputes propensitygdboun
reaction firing, PDM can update propensities of reactionth wilocally for only reactions affected by the species whoseufaion

the shared reactant collectively in one operation. Theiglart exits the fluctuation interval by using species-reaction (SR)
propensity approach, however, is limited to class of reacti dependency grap[L6]. RSSA-CR is thus providing a significant
involving at most two reactants and their propensities nigst improvement for both the search and propensity updates, and
factorizable [30]. PDM does not apply if the model has reaxti makes it suitable for simulation of large, complex networksr
having more than two reactants (e.g., trimolecular reast{82]) models in which the ratio between the largest propensitythad

or a complex propensity function applied (e.g., Michadlisnten smallest one is bounded and the SR dependency graph is ,sparse
kinetics [33]). the computational time complexity of RSSA-CR is constant.

The rejection-based stochastic simulation algorithm The paper is organized as follows. Section 2 provides thk-bac
(RSSA) [16], [35] is introduced recently to accelerate thground of SSA for simulating biochemical reactions. Setti
exact simulation. It is specifically tailored for reactioatworks presents our new RSSA-CR algorithm. We describe in detail how
where complex propensity functions are applied. For ircgtan to employ the composition-rejection search on propensitynids
RSSA [13] is able to generate exact trajectory for nontrigades to select the next reaction firing in order to improve bothgbarch
where the reaction propensity takes a very complex functi@md propensity updates of the simulation. Section 4 shows th
(e.g., steep sigmoidal form), while existing algorithmgaduces numerical results of our new algorithm on concrete modetimgc
approximations because the computation by these algaiibm as benchmarks to demonstrate the applicability and effigieith
very demanding and simplifying assumptions are introdu@ée respect to the state of the art of SSA optimization. The caticty
principle of RSSA is using propensity bounds of reactions temarks are in section 5.
select next reaction firings. The propensity bound of a reads
an intervgl bounding all ppssible concrete pr.opensity emlluf 2 STOCHASTIC SIMULATION ALGORITHM
the reaction. The propensity bounds of reactions are dbtye . . . . .
specifying an arbitrary bound on the population of each issec We_ consider a well-mixed b_lochemlcal reactlpn network con-
which is called fluctuation interval or abstract state RSSA Sisting of V-molecular species labelefl; for i = 1...N.
updates the propensity bounds infrequently, only when tags 1he state X(¢) of the system at a time is a N-vector
moves out of its fluctuation interval. We remark that the choi <X (1) = (X1(), ..., X (1)) whereX,(?) is the absolute number
of the fluctuation interval and propensity bounds does niecaf ©f molecules of species;; in the system at the time. Species
the exactness of RSSA, but only its efficiency. RSSA selects tiieracts with each other to produce other species thraligh
next reaction firings in two steps. First, a candidate reacts 'cactions. Each reactiofi; for j = 1... M has a general form.
randomly selected proportionally to its propensity uppeurid.
Then, a rejection-based test is performed to ensure that the
selected reaction fires with the same probability deterchiog Wherec; is the stochasticate constant The species on the left
SSA. The evaluation of the exact propensity of the candidagisle of the arrow are callegactants while the ones on the right
reaction which is required by the rejection test in RSSA iside are callecproducts The non-negative integer;; and v;;,
postponed by exploiting its propensity lower bound. Thecexarespectively, callegtoichiometric coefficientsienote how many
propensity is evaluated only if needed. If a reaction is ptask mMolecules of a reactant are consumed and how many moledules o
to fire, only the state is updated and the next simulation stegoroduct are produced.
is performed without recomputing the propensity boundslyOn A reactionR; in the stochastic chemical kinetics is character-
in uncommon cases when the population of a species exits i#zed by two measurements that arepmpensitya; and a state
fluctuation interval, a new fluctuation interval for this sjgs is change vecton;. The propensity:; is a state-dependent function
defined. The propensity bounds of reactions as well have to @efined so that; (X (¢))dt gives the probability of reactior;
updated to reflect the changes. Improvements of RSSA [13], [3Zccurring in the the next time+- dt given the system stat& ()
have been introduced to improve its efficiency and applitgbi at time ¢. The state change vectar; characterizes how many
For instance, the simultaneous RSSA (SRSSA) is an efficighplecules of each species in the staf¢t) changes due to an
formulation of RSSA to support the simulation analysis. SRSS@ccurrence of?;. Theith element of the state change vectgiis
is able to generate many trajectories simultaneously imglesi equal tOUéj — v4;. Thus, an occurrence dt; moves the system
simulation run. It utilizes a single data structure acrodls drom stateX(t) at timet to a new stateX (t + 7) = X (t) + v;
simulations to select the reaction firings to form a trajectof ~ given thatR; is selected to fire at time+ 7.
each simulation. The memory requirement for SRSSA is thus An exact formula for the propensity of a reaction is depegdin
independent of the number of generated trajectories. on the chemical kinetics applied for the system under stlitis

We present in this paper a new algorithm, called RSSAs referred to as thdundamental hypothesief the stochastic
CR, to efficiently simulate large-scale biochemical reactiet- chemical kinetics [7], [8]. For mass action kinetics, progiey
works. RSSA-CR exploits the composition-rejection searcthen a; of a reactioni?; exists and is defined by:
propensity bounds to select next reaction firings. The i@ast o
in RSSA-CR are grouped by their propensity upper bounds. a5 (X (1)) = ejh;(X(®)) )
Therefore, the search cost for the selection of reactiongfiri wherec; is the stochastic rate constant alag X (¢)) counts the
in RSSA-CR is only proportional to the number of groups andumber of distinct combinations of reactants involvedin given
independent of the number of reactions. After a reactiondiri the stateX (¢) at timet. In case of theynthesis reactiofor source

Rj ZUUSl ++Un]Sn ﬁm/ljSl ++U;]Sn (1)
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reaction) where species are produced from an externaleatine search time complexity can be improved by the composition-
number of combinations of reactantshig( X (¢)) = 1. rejection search (SSA-CR). SSA-CR reduces the search by group-
The probability distribution of the system state, by theekts- ing reactions and applying the acceptance-rejection flecsag
tic chemical kinetics formulation, is completely descdbby the next reaction in the group. SSA-CR groups a reackiginto
the chemical master equation (CME) [7]. The solution of CME groupG; if its propensitya; satisfies29: 1 < aj < 2%, The
however, is hard to find analytically or numerically due te tiigh index ¢; of the groupG; is thus computed by; = [log(a;)]
dimensional state space, even though recent work [36],tf&% where the truncation operatdr] returns the largest integer not
to numerically solve CME with a predefined tolerant error. Thgreater thanc. The selection of the next reaction firing in SSA-
stochastic simulation algorithm (SSA) [8], [9] is an altatime CR is composed of two steps. First, it selects the gi@pwhich
approach for solving CME. SSA does not explore the whole statentains the next reaction firing. Then, the next reactiondift,,
space, but only realizes a possible new state by firing orstioea in the groupG; is located by applying the acceptance-rejection
at a time. SSA realizes a trajectory of the reaction netwark twith hat function2%. The average number of rejection tests to
sampling the joint probability density function (pdfjr, 1) with ~ select the next reaction firing?,, is bounded by2 because of
p(7, u)dr defining the probability that reactioR,, fires in the a, /2% > 1/2. Therefore, the selection of next reaction firings of
next infinitesimal timet + 7 + dr, given the system having stateSSA-CR depends only on the number of groups. If the number of

X (t) at timet. The analytical form op(7, 1) is given as: groups is bounded by a small constant, the search time caityple
of SSA-CR is constant.
p(7, 1) = ayerp(—aoT) (3) A naive implementation for propensity updates after a ieact

, ) firing is to recompute all propensities of reactions. Thisrapph
whereag = M a;. Integratingp(r, 1) over 7 from 0 to oo ; ; : i i
: 0 g=1%3"" AT, B B has linear time complexity with the number of reactions. An
gives that the probability that reactiaid, occurring in the next 54yanced approach will update only propensities of reastio
time is a discrete probability,, /ao. Summingp(, 1) over all  agected by the reaction firing. This is done by employing the
possible reaction index fronh to M gives that the probability o5ction dependency graph [19] that is a directed graph isigow
distribution of the firing timer is an exponential distribution o dependency of reactions in the network. A directed edge
Exp(ao). The behavior of the system given a sufficient numbgy,, ., reactionR; to reactionR; exists if firing R; affects the
of SSA realizations is ensured to converge to the result of CMEyqnensity of reactior?; and urgesR; to recompute its propen-
SSA samplep(7, ;1) and constructs a simulation trajectory ag;ry The dependency graph reduces the number of propensity

follows (see Algorithm 1). It computes propensities for j = ypdates to model-dependent. Thus, if 1) the number of reectio
L... M at the beginning. Then, each SSA simulation step seleGl$ich requires to update their propensities after a readiiing
the next reaction firingz,, and its firing timer by: is bounded by a small constant (i.e., the dependency graph is
1 1 sparse) and 2) the propensities do not vary significantgn the
T=—In (—) (4) computational cost of SSA-CR is constant time complexity. The
o 1 dependency graph of practical models, however, is oftersalen
n and highly connected. The propensity update cost is higlciwh
1 = smallest reaction index such thaz a; > reag  (5) often contributes abouw5% to 85% to the total simulation time.
J=1 Especially, for some special models where the number oftaite

) _ .. reactions by a reaction firings (), the propensity update cost
wherer; andry are random numbers from a uniform d'St”b”t'orbontributes even up 99% of the simulation time.

U(0, 1). Knowing the next reaction firing and its firing time, SSA

advances time t@ 4+ 7 and updates the state according to the

selected reactiol?,, to a new stateX (¢t + 7) = X (t) + v,. It 3 REJECTION-BASED ALGORITHM WITH
then updates propensities of reactions to reflect the clsangee ComMPOSITION-REJECTION SEARCH

system state. : : . .
y We present in this section our new algorithm RSSA-CR to

accelerate stochastic simulation of large reaction nedsvdry
employing the composition-rejection on the propensity rutsu
We first review the principle of the rejection-based stotibas
simulation algorithm (RSSA) for selection of reaction firingy
using propensity bounds. Then, we present the details of data
structures and procedure of RSSA-CR to optimize both of the
computationally expensive steps of the simulation disediss
the previous section. The selection of reaction firings in RSS
CR is independent of the number of reactions and bounded only
by the number of groups. The propensity updates of RSSA-CR
are avoided and performed infrequently. Furthermore, lygua
) ) ] Species-Reaction (SR) dependency graph, propensity upidates
For simulation of large reaction networks, the computaionRgsA-CR can be preformed locally.
cost of SSAin Alg. 1 is largely dominated by the cost of therclea
for next reaction firings (line 5) and the cost of propensitgates
after each reaction firing (line 7). 3.1 Background on RSSA
The selection of the next reaction firing in SSA is inefficienThe rejection-based stochastic simulation algorithm (RS%8],
because it increases linearly with the number of reactidhe [34], [35] is an exact simulation algorithm. RSSA correcyects

Algorithm 1 SSA

: time ¢ = 0 with state vectorX = x

2: compute propensity; for j = 1... M anday = ZjM:l a;

3: while (t < Tha.) do

4:  computer = (1/ag)In(1/r1) with r ~ U(0, 1)

5. select minimum reaction indepxs.t.zg-;l a;j > raag With
ro ~ U(0,1)

6: advancetime¢ = ¢ + 7 and stateX = X + v,

7:  update propensity; for j = 1... M and total sumag

8: end while

[




the next reactionR, to fire with probability a,/ag and its Groug 3
firing time 7 is drawn from an exponential distributidexp (ag) 8 81
(see Thantet al. [16] for a complete proof of its correctness). ] ]
RSSA accelerates the simulation by reducing average nuniber
propensity updates during the simulation. The propengitiates
are avoided and collapsed as much as possible by making use @ 41
propensity lower bound,; and upper bound; of each reaction
R; to select reaction firings. The propensity bounds of reastio 21 27
are derived by bounding the populatioX;(¢) of each species ] H
S; to an arbitraryfluctuation interval[X;, X;]. The constraint R: Rz Rs Ra Rs Ro Ry Rs Ry Re Rs R Rs Ro Rs Rs Re Ry
X(t) € [X,X] holds for each species on the staYdt). The ) reactions with upper bound propensities b) select a group
propensity bounds for reactions are computed by applying a
interval analysis or an optimization technique [39]. Forssia
action kinetics, the computation af; anda; is easy by making 2] 81
use of its monotonic property.

Group 3 Group 3

A
The selection of reaction firings by using propensity bousads >
performed in two steps. First, a candidate reacfignis selected | o
with probability @, /ao wheredg = Y"1~ @;. The candidate?,,
then enters a rejection test for validation with succesbaidity 2 24
a,/a,. The validation requires computing the exact propensity : 1 11
ay, but it is postponed by using the fact that if the candidate
is accepted with probability,, /@, then it is also accepted with
probability a,, /a,, because of the inequality, /a,, < a,/a@,. If
R, is accepted through the rejection test, its firing time is-geRig 1. steps for the selection of the next reaction firing in RSSA-CR. a)
erated. The firing time of an accepted candidA{gis generated There are 9 reactions. The bars represent the values of propensity upper
following an Er | ang(k,cTO) distribution wherek is the number bounds of reactions varying from 1 to 8. b) Reactions are grouped into

. P . . . K = 3 groups by their propensity upper bounds. Group 3 is selected. c)
of trials until itis accepted. In case, is rejected, a new CandldateA candidate reaction in the selected group is randomly and uniformly

reaction will be selected. selected by a rejection test. First, reaction Ro (point A) is randomly

. .. . . selected but is rejected. Reaction Rg is then selected and accepted
A simple strategy for realizing the candidate reacti@p IS (point B). d) Reaction Ry is validated through a second rejection test and

to represent thé/ propensity upper bounds; for j = 1... M is accepted because the random value (point C) is less than the exact

by an array of sizé// and linearly accumulates propensity uppelef_’Pe”rS]'ty ag. Note that Smfi)e thed gfoﬁpmg of reactions in F§SSA‘CR Is
. s - P — using the propensity upper bounds, the exact propensity of a reaction

boirlds until a smallest rgactlon mdgaxsatlsfylng ijl a; > may not satisfy the condition of the group.

r-ag wherer ~ U(0, 1). This search strategy is efficient for smalll

models because it does not require to build any complex data

structure. However, the search will become very computatio 32 RSSA with Composition-Rejection Search

expensive for large models because its computational st | . o
linearly increasing with the number of reactions, i.€(M). RSSA-CR employs the composition-rejection search on the

Improvements for the search of the candidate reaction haea b ProPensity bounds to improve both the search and propensity
introduced to improve the performance of RSSA [34]. The tredate costin simulating large reaction networks. It grogztions
based search reduces the computational cost to logaritimic Nt /£ groups labeleds; . .. G’k The condition to put a reaction
complexity by employing a binary tree structure where e 1% INt0 agrouply; depends on upper bound p[}?f’f”ﬁflspec;f'
propensity upper bounds; are stored in the leaves and the innelca!y G; contains reactiod?, if the condition2 ™" < @; < 2%
nodes store the sums of values of child nodes. A candidatégaa 1°!dS- In other words, reactioR; will be put into the group;

is realized by traversing the tree from the root to a leaf tuads With indexg; = [log(@;)] in which [—] is the truncation operator.
the reaction. The computational time complexity for sétecof €tPi = X r;ec, @; be the sum of the propensity upper bounds
the candidate reaction by the tree-based search is equakto af reactions in grougf¥; and letp, = Y = Zjlvilch be
height of the tree that i€)(log M ). However, if the propensity their total sum. The selection of the next reaction firing bySRS
upper bound of a reaction at a leaf changes, the change nfdR is a two-step search composed of selecting the group and the
be propagated from the leaf to the tree root which also taki@sating the next reaction firing within that group. Figurddpicts
O(log M). The computational cost for selection of a candidatée steps for the selection of the next reaction firing in RSFA-
reaction can be further reduced to constant time, (¥1), by First, RSSA-CR selects a candidate grakipwith probability
applying the table lookup search at the cost of pre-prongdsir p;/po. The selection of the candidate grod; is done by
building lookup tables. The principle of the table looku@ssd simply linearly summingp; until a minimum index! such that
is to distribute M probabilitiesa;/ag for j = 1...M into > ,_, p; > 71 - po is found wherer; ~ U(0,1). A binary tree-
lookup tables so that the selection of a candidate reactiemgts based search [25] can be applied to reduce the time compiéxit
probability only takes one comparison and (at most) two mgmothe number of group& is large.

accesses to the lookup tables. The disadvantage of thddaklep Knowing the groupG;, a reactionR?,, is randomly and uni-
search is that if the probability of a candidate reactionnges, formly selected and goes through a validation test to beptede
the whole lookup tables must be rebuilt which takeg)/) time for firing. A random numbers; ~ U(0, 1) is drawn and used
complexity. to compute a random reaction indgx = [re - |G;|] in which

[ T3

Ra Rs Ri Rs Ry R, Rs Rs Ry Ra Rs Ri Rs Ry Rz Rs Rs R;

c) select a candidate reaction in the group d) validate the candidate reaction
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|Gy| returns the cardinality of grougs; and [—] denotes the reactions should update their propensity bounds if a speiits
truncation operator. The validation of the candidatg requires its fluctuation interval, RSSA-CR employs the Species-Reactio

two consecutive rejection tests as follows. The first réjectest

(SR) dependency grap§ which is a directed bipartite graph

will accept reaction?,, as a candidate with acceptance probabilitghowing the dependency of reactions on species [16]. The SR
a,,/2%. This test does not need to generate a new random numbependency grapfi contains a directed edge from a spedieso

by noting thatrs = ro - |G;| — 1 is randomly distributed irf0, 1).

a reactionfz; if a change in the population of specigsrequires

RSSA-CR checks whethey < @, /2%. If the condition is true, reactionR; to recompute its propensity. The SR dependency graph
R,, will go through the second rejection test to decide whethisr i G is built once at the beginning of the simulation at line 2.

accepted to fire. In case the condition< @, /2% is false, a new
R, in G is selected until it is accepted. For the second rejecti

4lgorithm 2 RSSA-CR

test, RSSA-CR generates a random numbefrom U(0,1) and 1
checks whether, < a,/a, which requires to compute exact 2:
propensitya,,. If this check returns true, reactid®, is acceptedto 3
fire and its firing time is generated. Note that the propereiter 4
bounda, can be used in this second rejection test to postpone
computing ofa,, as much as possible. If the condition < a,, /a,, 5
is false, the candidate is rejected. At this point, RSSA-CRtbas

reject also the candidate grou;. In other words, RSSA-CR &
repeats the whole selection of a new group and then a caedidat
reaction in the group for validation. The search of next tieac 7:
firings in RSSA-CR is therefore sometimes requiring more coms:
putational effort; however, this additional computatiboast is  9:
small because it is only proportional to the number of grolfps 10:
which is often bound by a small constant and independenteof thi:
number of reactions. 12:

If reaction I, is accepted, its firing time is generated from
ankr | ang(k,po) distribution. However, the difference betweent3:

RSSA and RSSA-CR is that the number of tridlin RSSA-CR 14
counts only for the second rejection test (i.e., the numbénes 15:
performs the second rejection test on a candidate reactienitn  16:
is accepted by the first rejection test). 17:
18:

. 19:

3.3 The RSSA-CR Algorithm 20:

The complete RSSA-CR algorithm for exact stochastic simaati 21:
of large reaction networks is outlined in Alg. 2. The outptibo  22:
RSSA-CR simulation run is a trajectory showing the temporais:
dynamics of the biochemical reaction network starting ateti 24:

t = 0 with an initial statex and ending at timé’,,, .. 25:

Line 3 defines for each species;, for i = 1...N, a 26
fluctuation interval X ;, X ;] around its current populatioX;(t).  27:
The fluctuation interval is defined &, X;] = [(1-8;) X;, (1+  28:

;) X;] whered; is a parameter. For typical models, the parametexo:
d; chosen around0% to 20% of current populationX;(¢) gives  30:
better performance (see Sec. 4). In cA3€t) is small, an absolute 31:
interval sizeA is used instead [34]. RSSA-CR then computes fogo-
each reactioni?;, j = 1... M, a propensity lower bound; and  33:
a propensity upper bound; (line 4). The needed data structuresza:
for the simulation are set up in lines 5 - 6 where reactions ags:
grouped intoK groupsG; with i = 1...K based on their

propensity upper bounds;. We remark that the basg in the 36:
condition for grouping reactions can be chosen arbitrafilye 37
algorithm would work as well with any other base 1. If it is  3g:

: group M reactions intoX groupsGh, . .

initialize timet = 0 and state vectoX = x
build the species-reaction (SR) dependency g&ph
define a boundX;, X;] for eachX; in X withi =1... N
compute an upper bourd; and a lower bound:; for R;,
j=1...M -
., Gk so that group
G, containsR; with 29:=1 <@; < 2% forj=1...M
compute for groug~; thep; ZRJ_EQ a;withi=1... K
and sunmpy = > p; = Z]Nil a;
while (¢t < Tinqz) do
repeat
setaccepted = false
setu =1
repeat
select minimum group indeks.t. Zﬁzlpl > T Po
with r; ~ U(0,1)
repeat
compute index: = [y - |G4]] with o ~ U(0, 1)
setrs =1y - ‘Gl‘ — U
until (rs < a,/2%)
generatery, ~ U(0,1)
if (rs < a,/ay) then
setaccepted = true
else
evaluaten,, with stateX
if (ra < a,/a;) then
setaccepted = true
end if
end if
setu = u - r5 with r5 ~ U(0, 1)
until accepted
compute firing timer = (—1/po) In(u)
update timet = ¢ + 7 and stateX = X + v,
until (existsX; ¢ [X;, X;))
for all (X; ¢ [X;, X;]) do
define a newX;, X;| aroundX;
for all (R; € ReactionsAffectedB{S;)) do
compute bounds; anda;
update groug; with its p; fori = 1... K and sum
Po
end for
end for
end while

a small number, then we have more groups which increases the

cost for selecting a group. In the other case, if the base asge | The selection of the next reaction firing by the composition-
number, we have less groups but the number of rejections ofegection search on the propensity bounds in RSSA-CR are imple
reaction is high. The basg is often chosen because it can benented in lines 11 - 27. The search is repeated until a reagtjon
done by a singléog operation of a programming language [28]is accepted to fire. In line 28, RSSA-CR generates the reaction
The groups in our implementation are maintained dynanyicalfiring time 7. RSSA-CR maintains a variabig initialized to1 in

by using a dequeue and are arranged in descending ordgr ofine 10, by multiplying it with a random numbeg (line 26) each

to speed up the selection of the group [22]. To decide whid¢ime the second rejection test performed.



Knowing the reaction firing?,, and its firing timer, the time  3.3.2 Complexity of RSSA-CR
is advanced td = ¢ + 7 and the state is updated to a new stat@e now analyze the time complexity for each simulation tiera
X = X + v,. Line 30 checks whether the species populatiogf RSSA-CR in Alg. 2 assuming basic mathematical operations
is confined in its fluctuation interval. If this is the case, @wn (SUCh as+, —, X, /, [_]’ log) to be taken in constant time. The
search for the next reaction flrlng is performed without tleed Computa’[iona] time of RSSA-CR is Composed of two parts that
for updating the propensity bounds as well as the groups. dfe: 1) the cost for selection of a reaction firing in lines 27 and
the uncommon case there exists a spedigsvhose population 2) the cost for updating reaction propensity bounds of ieastin
X; ¢ [Xi, Xi] and RSSA-CR has to define a new fluctuatiofines 31 - 37. Note that the update is performed infrequesntig
interval around the current population of this species gndate only when there exists a species exiting its populatiorriate
propensity bounds of reactions. Let ReactionsAffectedBybe For selection of a reaction firing, RSSA-CR selects group
set of reactions which should update their propensity bsufid G, by a linear search (line 12) which také3(K) time com-
speciesS; moves out of its fluctuation interval extracted from thejlexity where K is the number of groups. It then selects a
SR dependency gragh RSSA-CR will recompute the propensitycandidate reactior?,, by the first rejection (lines 13 - 16) in
bounds for each reactio®; in ReactionsAffectedBy{;). The which the acceptance probability i5,/2% > 1/2 because of
corresponding groufs; holding R; as well has to update its 7 > 24-1. The last step validates the candidate reaction by the
p; and the total sunpo. In case the upper bound propensity oecond rejection (lines 17 - 25) whose acceptance protatsili
reaction?; does not satisfy the constraint of the grap, it has a, /@, > a,/a,. The acceptance probability of the next reaction
to be moved to another group. These steps are implemented;jig R, is thus bounded by, /(2a;). In other words, the

lines 31 - 37. average number of times that the validation test is perfdrme
to accept the reaction i = (2a,)/a,. The number of tests
3.3.1 Correctness of RSSA-CR « is depending only on the ratio of the propensity upper bound

RSSA-CR is an exact algorithm, in that the distribution of th nd lower bound of the reaction which can be tuned through the

generated trajectories is precisely the one given by the fdfy) uctl:_atlor}lnter\t/ar%,ﬂ. Spemflcatl_ly, letz,, be ."Jtl unflr:;oleculat_r
in Eg. 3. Hence, RSSA-CR is equivalent to other exact stomaﬁr'gac lon ofreactars;. The mass-action propensity of the reaction

simulation algorithms such as DM or RSSA. We now provide 32 forma, = c,X; and the fluctuation interval of the species

sketch of the correctness argument. is defined|.X;, X;] = [(1 — 6;)X;, (1 + 4;)X;]. The ratio of

) . . . the propensity upper bound over its lower bound is equal to
_ We start b)_/ ar_lalyzmg the group selectl_on step in Alg. 2, Whlcﬁ/at — (1+46,)/(1— 8;). Therefore, with, is chosen around
is performed in line 12. There, we use linear search to seiecfl%(yfft 20%. th ber of is bounded b
candidate grou?; with probability o to 0, the average number of tests is bounded between
2.44 < o < 3. For a bimolecular reactioR,,, a similar derivation
. _ b gives2.98 < a < 4.5. To conclude, the total computational cost
P(candidate grougr;) = I ©) for the selection of a reaction firing B(K).
. . . For the propensity update cost, Ietbe the average number of
After that, we select a candidate reactid, within group o ctions affected by a species in the set ReactionsAfBg(ed).
Gi. This is done using a rejection mechanism in the 100p & ost for updating propensity bounds and groups affesyea
lines 13-16. Inside such loop, reaction indgxis generated gpecies in lines 33 - 36 ©(D). Because the number of species

according to a discrete uniform distribution, whitg follows a i q1ved and caused by the reaction firing to move out of their
continuous uniform distribution, independent framOutside the ¢, t,ation intervals is a small number. the total updatet 6w

rejection loop, the distribution of, becomes conditioned by the ..o tions which affected by those specie®idD).

r3 < @,/2% test. Since&” is an upper bound for eaafy,, the Summing up, the cost of simulating one reaction in RSSA-CR
probability mass of each possilleoutcome is proportional ta,,. ;¢ O(K + D). For models where the number of groufisand

Hence, the number of reactions affected by a spediesire bounded by
a- a small constant, the computational time complexity of RSSA-
P(candidate reactiof,, | candidate groug;) = ——+— g o(1).
ZRJ- eq, 4y
ay,
= (") 4 BENCHMARK

b
o . . We report in this section the performance study of our new
Combining Eq. 6 an.d. Eq. 7 and apP'y'“g the probability Cha'l'—%SSA-CR algorithm in simulating large models. The benchmark
rule, we get the probability of the candidate reactidn as consists of three biological models: the B cell receptonaiing,
T the Linear chain and the Colloidal aggregation network. The B
P(candidate reactioR,,) = — (8) cell receptor signaling model is a real biological modelihgv
bo a large number of reactions which we use to demonstrate the
which is the same probability used in RSSA for candidate reaapplicability of RSSA-CR on a large-scale reaction network.
tions. From this point, the correctness argument of RSSA ean Bhe Linear chain and the Colloidal aggregation network are
adapted. The computed firing timecan be shown to follow the artificial models which are used to demonstrate the scéhalbil
Er | ang(k, po) distribution wherek is the number of rejections our algorithm in different contexts. For the Linear chain miod
in the outermost loop (11-27) before a candidate reacfiyn the number of reactions increases linearly with the numiser o
is accepted. Indeed, a convolution method is used in line 8Becies and the number reactions needs updating its pitypens
to sampler from such distribution. This ensures that the finahfter a reaction firing is fixed by a constant. In contrast, the
trajectory distribution is the wanted one [16]. number of reactions in the Colloidal aggregation model iases



as the square of the number of the species and the numbe 20 Search Time s log(Search Time)

reactions needs updating its propensity after a reactiomfis » |
increasing linearly with the number of species. All the dimau ¢
tion algorithms in this section were implemented in Java a < | 3
run on an Intel i5-540M processor. The implementation of t £ * )
algorithms as well as the benchmark models are freely dlaile 101
at http://www.cosbi.eu/research/prototypes/rssa. 51 !
L] 0
4.1 B cell receptor Signa”ng model 2200 Propensity Update Time » log(Propensity Update Time)
The B cell receptor (BCR) is an antigen (Ag) receptor locat 2% | 10
on the B cell's outer surface. It is composed of a membrai _**" | .

bound immunoglobulin molecule (lg) and a transmembrane £ 3 ;4 |
tein CD79, which is composed of two disulfide-linked chait < 1200 |
called CD79A (Iger) and CD79B (lg8). The binding of Ags 800 |

to the membrane Ig subunit stimulates the receptor agdoega 400 - 2
and transmits the signals to the cell interior through thevig o "
subunits. BCR aggregation activates Lyn and Fyn of the Srdyan Total Simulation Time log(Total Simulation Time)

protein tyrosine kinases (SFKs) as well as other tyrosinasés > | o SSAR ”

and initiates the BCR signaling pathway. The BCR signaling 2200 | PSSA-CR
turn activates multiple signaling cascades which resalts)any 2000 | HRSSA-Binary 8
possible effects to the fates of B cells including prolifeoa, e 1600 | = RSSA-Lookup
differentiation and apoptosis [40], [41], [42], [43]. The BCI ¥ 1200 | " RSSA-CR

receptor signaling pathway is thus therapeutic target ioua 800 1
neoplasms in cancer [44]. 01

We consider the BCR signaling model developed in Baua

al. [45] to study the effects of Lyn and Fyn redundancy to thejg. 2. performance of SSA-CR, PSSA-CR, RSSA-Binary, RSSA-
pathway. The model includes two feedback loops. The firgb lod.ookup and RSSA-CR on simulating the B cell receptor signaling model.

is a positive feedback loop that emanates upon the SEK-meedial Ne figures on the left show the times spent for the search of next
reaction firings (top plot), the propensity update (middle plot) and the

pho_s_phorylation of BCF_‘) and receptor-_bound LYn_ _and Fyn. Tngtal simulation time (bottom plot) which is the sum of search time,

positive feedback loop increases the kinase activitiesyof &nd  propensity update time and all other tasks (e.g., recording state and

Fyn. The second one is a negative feedback loop arising frowiting result to file). The figures on the right show the corresponding
_ ; : \f@lues in logarithmic scale.

SFK-mediated phosphorylation of the transmembrane adap

protein PAG1 (phosphoprotein associated with glycospilipigl-

enriched microdomains) which in turn decreases the kinethe a . . L L
ities of Lyn and Fyn. The BCR signaling model [45] consistéeaction firing and 3) the total simulation time which is thens

of 1122 species and24388 reactions. The average number off the search time, the propensity update time and the tiratsp
reactions updating their propensities after a reactiongiis about Iﬁ;:;“ other tasks (e.g., recording state and writing inteeenal
546. .

The performance of RSSA-CR in simulating the BCR sig- The overall conclusion from bottom plot of Fig. 2 is that
naling model is compared with SSA with composition-rejesti RSSA-CR has the best performance in comparison with all other
search (SSA-CR), Partial-propensity SSA with compositio/dorithms. For the composition-rejection approach, REFR-
rejection search (PSSA-CR). PSSA-CR is an efficient variant 8{gorithm is especially better in comparison with SSA-CR and
the stochastic simulation algorithm with compositioremtjon PSSA-CR in simulating the B cell receptor signaling model.
search [31]. PSSA-CR uses two composition-rejection seareRecifically, RSSA-CR is3.5 times faster than PSSA-CR and
to select the next reaction firing. We also compares RSSA-c¢gspectively200 times faster than SSA-CR. The significant speed
with other RSSA variants that are: RSSA with tree-based seat$ 0f RSSA-CR in comparison with SSA-CR and PSSA-CR
(RSSA-Binary) and RSSA with table lookup search (RSSA:omes from the significant reduction in the cost of propgnsit
Lookup) [34]. The fluctuation interval of the species used Wpdates while still have comparable search time. The ddtaile
RSSA is+10% of current state. If the population of a specie§omparison of algorithms follows.
is less thar25, the absolute interval sizA = 5 is used to define The top plot in Fig. 2 shows the search time of RSSA-CR
the fluctuation interval of this species. which is slightly slower than SSA-CR and PSSA-CR. This is

Figure 2 shows performances of simulation algorithms on tfgcause of more effort spent by RSSA-CR for selecting next
BCR signaling model. For each algorithm, the performance ofr@action firings. The acceptance probability of a reactioR$SA-
simulation run is recorded aftdi0” steps. The state are writtenCR is arounds5%, while this value in RSSA-Binary and RSSA-
to file after eachl0® steps, thus having in totdl00 time points. Lookup is80%. However, the search time of RSSA-CR is siill
The performance result is averagedilfly) independent simulation better in comparison with RSSA-Binary. The speed up gain in the
runs. Three measurements are considered for each algofjhmsearch of RSSA-CR in comparison with RSSA-Binary is atbut
the search time which is the CPU time spent for the selectigimes. By employing the lookup table search, the search of RSSA
of reaction firings, 2) the propensity update time which is CPUookup achieves the best performance.
time spent for the update of propensities of reactions afteh The more effort spent for the search of RSSA-CR is com-




: : . . . hi ity Undate Ti
pensated by a huge improvement in propensity update time. Search Time 100 Propensity Update Time

100
number of propensity updates of PSSA-CR and SSA-CR)is
since they have to update propensities of reactions aften e  ® ™
reaction firing. The update cost of PSSA-CR is smaller thi <o 3 60
SSA-CR because the update of propensities with shared nesct £ ,, £ 0 |
in PSSA-CR is performed collectively in single operation.eTh
number of propensity updates for RSSA-CR is o)) times, 2 1
which is significantly reduced in comparison with’ times by o | m—m———E | | S
PSSA-CR and SSA-CR Thus, the update COSt of RSSA-CR 100 500 1000N5000 10000 50000 100 500 1000 NSOOO 10000 50000

nearly20 times faster than PSSA-CR, and arouitd times faster

Total Simulation Time

100

than SSA-CR. For all RSSA variants, the propensity update time e SSACR

of RSSA-CR is the best, while this cost for RSSA-Lookup is 80 | —e—PSSA-CR

the worst. Note that SR dependency graph cannot be applied fo o o | o RSSA-Binary
RSSA-Lookup. The lookup tables used in RSSA-Lookup has to v _x_z:’::t:““”

be rebuilt anytime the propensity bound of a reaction is gbdn =

although the update cost of RSSA-Lookup is still better than 20 -

SSA-CR. The propensity update time of RSSA-Binary is slower 0 -
than RSSA-CR because each time propensity bound of a reaction 100 500 1000 5000 10000 50000

changes, it has to be propagated along the tree through dhe le N

holding the reaction to tree root to reflect the change. While . .« <A cR PSSA-CR RSSA-Binary, RSSA-

RSSA-CR only has to update the groups and move reaCtiq_rb%;kup and RSSA-CR on the Linear chain model by increasing values
between groups when necessary. The propensity update ftosefav (100, 500, 1000, 5000, 10000, 50000). The top-left figure shows the

RSSA-CR is nearly0 and30 times faster than RSSA-Binary andtime spent for the search of next reaction firings. The top-right figure
RSSA-Lookup, respectively. shows the propensity update time. The bottom figure shows the total

simulation time which is the sum of search time, propensity update time
and all other tasks (e.g., recording state and writing result to file).

4.2 Linear chain system

The linear chain model is an artificial model that is used tRSSA-CR. This is because SSA-CR uses only one rejection-test

measure the scalability of RSSA-CR when the propensity updatgr selecting the next reaction, while both PSSA-CR and RSSA-

contributed a small percentage in the total simulation fifffee CR employs two rejection tests. Finally, the update of RSSA-CR

search for next reaction firings contributes most to the Kitlan.  has the best performance in comparison with SSA-CR and PSSA-
The model consists d¥ speciesS; withi = 1... N inwhich  CR. The number of propensity updates of RSSA-CR is reduced to

a species is transformed to the spedigssuch that around2.4 x 10* and the acceptance probability of a candidate

¢ . . . reaction is kept aroun@5%. The number of propensity updates

Si = 8j, fori=1...Nandj=(i+1) mod N (9) {5 poth SSA-CR and PSSA-CR 807 because they have to

whereg; is the rate constant of the transformation. The number Bpdate propensities of reactions after each reaction firlrge

reactions) in the linear chain is equal to the number of specieggsult is RSSA-CR is aroun8D’% and10% faster than SSA-CR

i.e., M = N. The number of affected reactions which needs @nd PSSA-CR, respectively.

update their propensities in the Linear chain model is fixg@.b

In this experiment, the kinetics rate of all reactionsisteet =1 4.3 Colloidal aggregation network

for i = 1...N. The initial population of each specigs for

i =1... N is randomly taken fron® and10000. The fluctuation In the final example, the colloidal aggregation is used toafem

. . . . strate the significant improvements of RSSA-CR in comparison
interval of species used by all RSSA variantst$0% of current with PSSA-CR and SSA-CR where both the search for reaction

state. . . . . .
The Linear chain model is simulated by increasing the valuﬁgIngs and the propensity updates contribute are simultiot-

of N (100, 500, 1000, 5000, 10000 and 50000) to observe the 1eeCKS Of these simulation approaches. _

. o - . . The colloidal aggregation is a process that forms big clus-
scaling characteristic of the algorithms. The simulatibalbalgo- . ; : .
. . . ters from colloidal particles, e.g., proteins, nanobedtlss a
rithms is run100 times for each value oV to average the results ubiquitous phenomenon occurring in nature and widely @eglo
which are collected aftet0” simulation steps. The performances q P 9 y

L O e AL LI R, oo 0 01, e soroin o pn b
CR are depicted in Fig. 3. P ' p ; partgg

We have conclusions from Fig. 3. First, RSSA-Lookup has ﬂgeaterse oar][easni(:] tgr?r\lléi:/ri] di';e' ;—rTieclcgesve'lrrS]Z E:)(I)I((:)?(?;I (;'S“:.p tslizarnc
best search for all values dV; however, the high update cost ggreg P : ggtem

negates its total simulation time. The result is the peréoroe of thus a metastable system where a variety of different aggoey

; . states are achievable.
RSSA-lookup is the worst wherV is large. Second, the search The model containgV colloidal particles which can interact

cost of RSSA-_Blnary for Iarge‘[.'s the worst in comparison with with other species to form big clusters. The reaction netvioak
all other algorithms because it increases logarithmic \WthThe ; . . . ;
m?dels the colloidal aggregation process is defined by:

search cost of RSSA-CR is better than RSSA-Binary because |
is independent ofV. For example, the search cost of RSSA-CR g | g “™ g p—1. [N/2,m=n...N—m
for N = 50000 is 5 times faster than RSSA-Binary. Third, the erq

search of both SSA-CR is slightly faster than both PSSA-CR and Sp =¥ S+ Spg;p=1...N,qg=1...[p/2] (10)
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Fig. 4. Performance of SSA-CR, PSSA-CR and RSSA-CR on the Col-
loidal aggregation model by increasing values of N (10, 50, 100, 500).
The top-left figure shows the time spent for the search of next reaction
firings. The top-right figure shows the propensity update time. The

time of RSSA-CR is3.8 times faster than PSSA-CR.

5 CONCLUSIONS

We presented a new algorithm, called RSSA-CR, which combines
composition-rejection search and propensity bounds fprawing

the search for next reaction firings and reducing the number o
propensity updates in simulating large reaction netwoilse

time complexity of the search of RSSA-CR is independent of
the number of reactions, but is only depending on the number
of groups. By using the propensity bounds for selecting react
firings, RSSA-CR does not need to recompute these values in
most of its simulation steps. The propensity updates in RSSA-CR
are performed infrequently and only when necessary. Intiaddi

the recomputing of propensity bounds are performed lodally

the affected reactions only. These features of RSSA-CR makes it
suitable for the simulation of large reaction networks. Fardels
where the reactions are split among groups so that the search
for the candidate group has an average constant bound and the
dependencies between species and reactions are bounde&l;, RSS
CR has constant time complexity. The benchmark confirmed that
RSSA-CR is efficient for simulating large and complex models.

bottom figure shows the total simulation time which is the sum of search
time, propensity update time and all other tasks (e.g., recording state
and writing result to file).

(1]
wherec, ,, andc, 4 are rate constant of forward and reverse pro-
cesses, respectively. The number of reactidfisn the colloidal 2]
aggregation network is increasing in quadratically in thenber
of particles. Specifically, the number of reactiondis= [N2/2]. [3]
The average number of affected reactions which needs tateip |
their propensities is linear with the number of particl¥s The
initial population of all species in this experiment is set t[5]
#S; = 1000 for i = 1...N. The kinetics rate of all reaction 6]
is settoc,, ., = ¢p,q = 1. The fluctuation interval of species usecj
by RSSA-CR ist10% of current state.

We simulate the Colloidal aggregation model with differenif]
values of N (10, 50, 100 and 500) to observe the scaling 8]
characteristic of the simulation algorithms: SSA-CR, PSSA-CE?
and RSSA-CR. The algorithms are ru@0 times for each value of
N to average the results which are collected af@t simulation [l
steps. Figure 4 shows the performances of SSA-CR, PSSA-GRB,
and RSSA-CR.

The search of SSA-CR achieves the best performance for all
values of N; however; its update cost is many times slower th
PSSA-CR and RSSA-CR. For example, in cdée= 100, the
propensity update time of SSA-CR is rough}y) and 4 times [12]
slower than RSSA-CR and PSSA-CR, respectively. The result
is the performance of SSA-CR is the worst in simulating thﬁ3
Colloidal aggregation model, especially for lar§é The search
of RSSA-CR s slightly slower than PSSA-CR. For example, in
caseN = 500, the search time of PSSA-CR is arou2ff; faster
than RSSA-CR. Although the update cost of PSSA-CR is reduced
by updating propensities of reactions having common reactdl15]
collectively in one operation. PSSA-CR still requires tofpen
propensity updates after each reaction firing. Note thathia t[16]
model, the number of reactions needs updating their priyens
each reaction firing is linearly increasing witfi. This number in [17]
RSSA-CR is reduced to aroufick 10° (corresponding witl9% in
comparison withL0” times of PSSA-CR). The update cost RSSAg)
CR is 4 times faster than PSSA-CR. Thus, the total simulation
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