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Abstract

Recently, Hajirasouliha and Raphael (WABI 2014) proposed a model for deconvoluting mixed
tumor samples measured from a collection of high-throughput sequencing reads. This is re-
lated to understanding tumor evolution and critical cancer mutations. In short, their formu-
lation asks to split each row of a binary matrix so that the resulting matrix corresponds to a
perfect phylogeny and has the minimum number of rows among all matrices with this prop-
erty. In this paper we disprove several claims about this problem, including an NP-hardness
proof of it. However, we show that the problem is indeed NP-hard, by providing a different
proof. We also prove NP-completeness of a variant of this problem proposed in the same paper.
On the positive side, we propose an efficient (though not necessarily optimal) heuristic algo-
rithm based on coloring co-comparability graphs, and a polynomial time algorithm for solving
the problem optimally on matrix instances in which no column is contained in both columns
of a pair of conflicting columns. Implementations of these algorithms are freely available at
https://github.com/alexandrutomescu/MixedPerfectPhylogeny.
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1 Introduction

Tumor progression is assumed to follow a phylogenetic evolution in which each tumor cell passes its
somatic mutations to its daughter cells as it divides, with new mutations being accumulated over
time. It is important to discover what tumor types are present in the sample, at what evolutionary
stage the tumor is in, or what are the “founder” mutations of the tumor, mutations that trigger
an uncontrollable growth of the tumor. These can lead to better understanding of cancer [2, 23],
better diagnosis, and more targeted therapies [22].

DNA sequencing is one method for discovering the somatic mutations present in each tumor
sample. The most accurate possible observation would come from sampling and sequencing every
single cell. However, because of single-cell sequencing limitations, and the sheer number of tumor
cells, one usually samples populations of cells. Even though the samples are taken spatially and
morphologically apart, they can still contain millions of different cancer cells. Moreover, this
mixing is not consistent across different collections of samples. Therefore, studying only these
mixed samples poses a serious challenge to understanding tumors, their evolution, or their founding
mutations.

Solutions for overcoming this limitation can come from a computational approach, as one could
deconvolute each sample by exploiting some properties of the tumor progression. One common
assumption is that all mutations in the parent cells are passed to the descendants. Another one,
called the “infinite sites assumption”, postulates that once a mutation occurs at a particular site, it
does not occur again at that site. These two assumptions give rise to the so-called perfect phylogeny
evolutionary model. Hajirasouliha and Raphael proposed in [10] a model for deconvoluting each
sample into a set of tumor types so that the multi-set of all resulting tumor types forms a perfect
phylogeny, and is minimum with this property. Even though this model has some limitations, for
example it assumes no errors, and only single nucleotide variant mutations, it is a fundamental
problem whose understanding can lead to more practical extensions.

Other major approaches for deconvoluting tumor heterogeneity include methods based on so-
matic point mutations, such as PyClone [27], SciClone [21], PhyloSub [15], CITUP [20], LICHeE [26],
and methods based on somatic copy number alterations, such as THetA [25], TITAN [9] and Mix-
Clone [18].

Let us review two methods from the first category mentioned above. CITUP [20] exhaustively
enumerates through all possible phylogenetic trees (up to maximum number of vertices) and tries
to decompose each sample into several nodes of the phylogeny. The fit between each sample and
the phylogenetic tree is one minimizing a Bayesian information criterion on the frequencies of each
mutation. This is computed either exactly, with quadratic integer programming, or with a heuristic
iterative method. The tree achieving an optimal fit is output, together with the decompositions of
each sample as nodes (i.e., sets of mutations) of this tree.

Method LICHeE [26] also tries to fit the observed mutation frequencies to an optimal phyloge-
netic tree, but with an optimized search for such a tree. Mutations are first assigned to clusters
based on their frequencies (a mutation can belong to more clusters). These clusters form the
nodes of a directed acyclic graph (DAG). Directed edges are added to these graphs from a node to
all its possible descendants, based on inclusions among their mutation sets and on compatibility
among their observed frequencies. Spanning trees of this DAG are enumerated, and the ones best
compatible with the mutation frequencies are output.

As opposed to the problem proposed in [10] and considered in this paper, these two meth-
ods heavily rely on the mutation frequencies. Frequencies appear at the core of their problem
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formulations, and without them they would probably output an arbitrary phylogenetic tree and
a decomposition of samples into nodes of this tree compatible with the observed data. The two
problems in this paper have the same output, but only assume data on absence or presence of mu-
tations in each sample. The objective function of our first problem requires that the sum, over each
sample, of the number of leaves of the phylogeny that the sample is decomposed to, is minimum.
The second problem formulation only requires that output phylogeny has the minimum number of
leaves.

In this paper we show that several proofs from [10] related to the optimization problem proposed
therein are incorrect, including an NP-hardness proof of it.1 However, the NP-hardness claim turns
out to be correct: in this paper we provide a different NP-hardness proof. We also adapt this proof
to a variant of the problem also proposed in [10] but whose complexity was left open. This problem
asks to minimize the set (instead of multi-set) of all tumor types of the perfect phylogeny. The two
problems, formally defined in Section 2, are referred to as the Minimum Conflict-Free Row
Split and the Minimum Distinct Conflict-Free Row Split problem, respectively.

Moreover, we obtain a polynomial time algorithm for a collection of instances of the Minimum
Conflict-Free Row Split problem, which can be biologically characterized as follows. Say that
two mutations i and j are exclusive if i is present in a sample in which j is absent, and j is present
in a sample in which i is absent. Observe that exclusive mutations cannot both be present in the
same vertex of a perfect phylogeny. Thus, we say that a sample is a mixture at exclusive mutations
i and j if both i and j are present in that sample. The instances for which we can solve the problem
in polynomial time are such that for any two exclusive mutations i and j, no mutation is present
only in the samples mixed at i and j.

We also propose an efficient (though not necessarily optimal) heuristic algorithm for the
Minimum Conflict-Free Row Split problem, based on coloring co-comparability graphs,
and provide implementations of both algorithms, freely available at https://github.com/

alexandrutomescu/MixedPerfectPhylogeny.

Paper outline. In Section 2 we give all formal definitions and review the approach of [10]. In
Section 3 we give a complete characterization of the so-called row-conflict graphs, the class of graphs
considered in [10]. The complexity results are presented in Section 4, and the above-mentioned
polynomial time algorithm is given in Section 5. In Section 6 we discuss the heuristic algorithm for
general instances, and in Sections 7 and 8 we present experimental results on the binary matrices
from clear cell renal cell carcinomas (ccRCC) from [5]. We conclude the paper with a discussion in
Section 9.

Some of the results in this paper appeared in the proceedings of WABI 2015 [13]. In addition
to the material presented in [13], this paper contains all the missing proofs (complete proofs of
Theorems 2, 3, and 4, a more detailed proof of Lemma 2), a time complexity analysis of the
algorithm presented in Section 5, a discussion following the proof of Theorem 5 on the necessity of
the assumptions for the algorithm given in Section 5, and three additional sections (Sections 6, 7
and 8) describing a polynomial time heuristic for general instances and experimental results.

1Hajirasouliha and Raphael mentioned during their WABI 2014 talk that their claim about every graph being
a row-conflict graph (Theorem 4 in [10]) contained a flaw and proposed a correction stating that for every binary
matrix M with an all-zeros row and an all-ones row, the complement of GM,r (for any row r of M) is transitively
orientable (cf. Section 2 for the definition of GM,r and Theorem 2 below). In particular, the fact that Theorem 4
in [10] is incorrect implies that the NP-hardness proof from [10] is incorrect.
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2 Problem formulation

As mentioned in the introduction, we assume that we have a set of sequencing reads from each
tumor sample, and that based on these reads we have discovered the sample variants with respect
to a reference (e.g., by using a somatic mutation caller such as VarScan 2 [17]). This gives rise to
an m× n matrix M whose m rows are the different samples, and whose n columns are the genome
loci where a mutation was observed with respect to the reference. The entries of M are either 0 or
1, with 0 indicating the absence of a mutation, and 1 indicating the presence of the mutation. We
assume that the matrix has no row whose all entries are 0.

Under ideal conditions, e.g., each mutation was called without errors, and the samples do not
contain reads from several leaves of the perfect phylogeny, M corresponds to a perfect phylogeny
matrix. Such matrices are characterizable by a simple property, called conflict-freeness.

Definition 1. Two columns i and j of a binary matrix M are said to be in conflict if there exist
three rows r, r′, r′′ of M such that Mr,i = Mr,j = 1, Mr′,i = Mr′′,j = 0, and Mr′,j = Mr′′,i = 1. A
binary matrix M is said to be conflict-free if no two columns of M are in conflict.

It is well known that the rows of M are leaves of a perfect phylogenetic tree if and only if M is
conflict-free (see [3, 8]). Moreover, if this is the case, then the corresponding phylogenetic tree can
be retrieved from M in time linear in the size of M [7].

However, in practice, each tumor sample is a mixture of reads from several tumor types, and
thus possibly M is not conflict-free. If we are not allowed to edit the entries of M as done e.g. by
methods such as [29], [28], Hajirasouliha and Raphael proposed in [10] to turn M into a conflict-free
matrix M ′ by splitting each row r of M into some rows r1, . . . , rk such that r is the bitwise OR of
r1, . . . , rk; that is, for every column c, Mr,c = 1 if and only if Mri,c = 1 for at least one ri. The rows
r1, . . . , rk can be seen as the deconvolution of the mixed sample r into samples from single vertices
of a perfect phylogeny. One can then build the perfect phylogeny corresponding to M ′ and carry
further downstream analysis. Let us make this row split operation precise.

Definition 2. Given a binary matrix M ∈ {0, 1}m×n with rows labeled r1, r2, . . . , rm, we say that
a binary matrix M ′ ∈ {0, 1}m′×n is a row split of M if there exists a partition of the set of rows of
M ′ into m sets R′1, R

′
2, . . . , R

′
m such that for all i ∈ {1, 2, . . . ,m}, ri is the bitwise OR of the binary

vectors given by the rows of R′i. The set R′i of rows of M ′ is said to be a set of split rows of row ri.

Observe that a simple strategy for obtaining a conflict-free row split of M is to split every row r
into as many rows as there are 1s in r, with a single 1 per row. While this might be an informative
solution for some instances (cf. also Corollary 2 on p. 14), Hajirasouliha and Raphael proposed
in [10] as criterion for obtaining a meaningful conflict-free row split M ′ the requirement that the
number of rows of M ′ is minimum among all conflict-free row splits of M .

In this paper we consider the following problem, which we call Minimum Conflict-Free
Row Split problem. For a binary matrix M , we denote by γ(M) the minimum number of rows
in a conflict-free row split M ′ of M . This notation is in line with notation γ(M) used in [10]
to denote the minimum number of additional rows in a conflict-free row split M ′ of M , that is,
γ(M) = γ(M)−m, where m is the number of rows of M .
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Minimum Conflict-Free Row Split:
Input: A binary matrix M , an integer k.
Question: Is it true that γ(M) ≤ k?

The optimization version of the above problem (in which only a given subset of rows needs to
be split) was called the Minimum-Split-Row problem in [10], however, all results from [10] deal
with the variant of the problem in which all rows need to be split (some perhaps trivially by setting
R′i = {ri}), which is equivalent to the Minimum Conflict-Free Row Split problem.

Given a binary matrix M and a row r of M , the conflict graph of (M, r) is the graph GM,r

defined as follows: with each entry 1 in r, we associate a vertex in GM,r, and two vertices in GM,r

are connected by an edge if and only if the corresponding columns in M are in conflict. Denoting by
χ(G) the chromatic number of a graph G, Hajirasouliha and Raphael proved in [10] the following
lower bound on the value of γ(M):

Lemma 1. [10] Let M be a binary matrix M with a conflict-free row split M ′. Then, for every
row ri of M with a set R′i of split rows of M ′, we have |R′i| ≥ χ(GM,ri).

Corollary 1. For every binary matrix M , we have γ(M) ≥∑r χ(GM,r).

Hajirasouliha and Raphael also claimed in [10] the following hardness result.

Theorem 1. [10] The Minimum Conflict-Free Row Split problem is NP-hard.

To recall their approach for proving Theorem 1, we need one more definition. We denote the
fact that two graphs G and H are isomorphic by G ∼= H.

Definition 3. A graph G is a row-conflict graph if there exists a binary matrix M and a row r of
M such that G ∼= GM,r.

The proof of Theorem 1 was based on a reduction from the chromatic number problem in graphs
and relied on three ingredients: the lower bound given by Corollary 1, Theorem 4 from [10] stating
that every graph is a row-conflict graph, and an algorithm based on graph coloring, also proposed
in [10], for optimally solving the Minimum Conflict-Free Row Split problem by constructing
a conflict-free row split of M with exactly

∑
r χ(GM,r) rows. In particular, their results would

imply that the lower bound on γ(M) given by Corollary 1 is always attained with equality.
Contrary to what was claimed in [10], we show that there exist graphs that are not row-conflict

graphs. In fact, we give a complete characterization of row-conflict graphs, showing that a graph
is a row-conflict graph if and only if its complement is transitively orientable (see ??). Using a
reduction from 3-edge-colorability of cubic graphs, we show that it is NP-complete to test whether
a given binary matrix M has a conflict-free row split M ′ with number of rows achieving the lower
bound given by Corollary 1 (see ??). This implies that there exist infinitely many matrices for
which this bound is not achieved.

A corollary of our characterization of row-conflict graphs is that the chromatic number is poly-
nomially computable for this class of graphs. This fact with the assumption that P 6= NP, as well
as the existence of matrices M with γ(M) >

∑
r χ(GM,r), each individually imply that the claimed

NP-hardness proof of the Minimum Conflict-Free Row Split problem given in [10] is flawed.
Nevertheless, our NP-completeness proof (see Theorem 3) implies that Theorem 1 is correct.
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On the positive side, we give a polynomial time algorithm for the Minimum Conflict-Free
Row Split problem on input matrices M in which no column is contained in both columns of a
pair of conflicting columns (see Theorem 5).

We also consider a variant of the problem, also proposed in [10], in which we are only interested
in minimizing the number of distinct rows in a conflict-free row split of M . This problem is similar
to the Minimum Perfect Phylogeny Haplotyping problem [1], in which we need to explain a set
of genotypes with a minimum number of haplotypes admitting a perfect phylogeny. For a binary
matrix M , we denote by η(M) the minimum number of distinct rows in a conflict-free row split
M ′ of M . We establish NP-completeness of the following problem (see Theorem 4), which was left
open in [10].

Minimum Distinct Conflict-Free Row Split:
Input: A binary matrix M , an integer k.
Question: Is it true that η(M) ≤ k?

3 A characterization of row-conflict graphs

Definition 4. Given a binary matrix M and two columns i and j of M , column i is said to be
contained in column j if Mk,i ≤ Mk,j holds for every k. The undirected containment graph HM

is the undirected graph whose vertices correspond to the columns of M and in which two vertices i
and j, i 6= j, are adjacent if and only if the column corresponding to vertex i is contained in the
column corresponding to vertex j or vice versa.

Recall that an orientation of an undirected graph G = (V,E) is a directed graph D = (V,A)
such that for every edge uv ∈ E, either (u, v) ∈ A or (v, u) ∈ A, but not both. An orientation is
said to be transitive if the presence of the directed edges (u, v) and (v, w) implies the presence of the
directed edge (u,w). A graph is said to be transitively orientable if it has a transitive orientation.
The complement of a graph G is a graph G with the same vertex set as G in which two distinct
vertices are adjacent if and only if they are non-adjacent in G. Transitively orientable graphs
appeared in the literature under the name of comparability graphs (and their complements under
the name of co-comparability graphs). Transitively orientable graphs and their complements form
a subclass of the well known class of perfect graphs [6]. Therefore, odd cycles of length at least 5
and their complements are examples of graphs that are not transitively orientable.

Observation 1. For every binary matrix M , the graph HM is transitively orientable.

Proof. We say that column i is properly contained in column j if i is contained in j and Mk,i < Mk,j

for some k. Fix an ordering {c1, . . . , cn} of the columns of M . Let us define a binary relation @
on the set of columns on M by setting, for every two columns ci and cj of M , ci @ cj if and only
if either ci is properly contained in cj , or i < j and each of ci and cj is contained in the other one
(that is, as binary vectors they are the same). Observe that for a pair of columns ci and cj with
cicj ∈ E(HM ) we have either ci @ cj or cj @ ci but not both. The binary relation @ defines an
orientation of HM , by orienting each edge cicj as going from ci to cj if and only if ci @ cj . This
orientation can be easily verified to be transitive.
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In the next theorem, we characterize row-conflict graphs (cf. Definition 3).

Theorem 2. A graph G is a row-conflict graph if and only if G is transitively orientable.

Proof. (⇒) Let M be an arbitrary binary matrix, r an arbitrary row of M , and let G = GM,r. Let
N be the submatrix of M consiting of the columns of M that have 1 in row r. It is now easy to see
that GM,r

∼= GN,r. Moreover, any two columns of N are either in conflict or their corresponding
vertices are adjacent in HN . Therefore, HN

∼= GN,r. Since HN is transitively orientable (by
Observation 1), it follows that G is transitively orientable as well.

(⇐) We follow the strategy of the proof of Theorem 4 in [10] (which works for complements
of transitively orientable graphs). For the sake of completeness, we include here a short proof of
this implication. Let G be a graph such that H = G is transitively orientable, with a transitive

orientation
−→
H . It can be easily seen that

−→
H is acyclic, thus we may assume that vertices of G are

topologically ordered as V (G) = {v1, . . . , vn}, that is, for every directed edge (vi, vj) in
−→
H , we have

i < j. Let E(G) = {e1, e2, . . . , em}. We construct a matrix M with n columns and 2m + 1 rows,
such that GM,1

∼= G. The first row of M is defined to have all entries equal to 1. For every edge
ek = vivj , i < j, of G, the 2k-th row of M has entry 0 in the column corresponding to vertex vi,
and entry 1 in the column corresponding to vj . Additionally, the (2k + 1)-st row of M has entry 1
in the column corresponding to vertex vi, and entry 0 in the column corresponding to vj . Since the
first row has all entries equal to 1, after filling in these entries of M , the two columns corresponding
to vi and vj , respectively, are in conflict.

We need to fill in the remaining entries of M so that we do not introduce any new conflicts. For

every i, we fill in the remaining entries so that whenever (vi, vj) is a directed edge in
−→
H , the column

corresponding to the vertex vi is contained in the column corresponding to the vertex vj . This can

be achieved by examining the columns one by one, following the topological order (v1, . . . , vn) of
−→
H ,

and filling each unfilled entry with a 0, unless this would violate the above containment principle.
At the end of this procedure, there are no conflicts between columns corresponding to vertices

vi and vj , whenever (vi, vj) is a directed edge in
−→
H . Therefore, GM,1

∼= G.

Theorem 2 implies that odd cycles of length at least 5 and their complements are not row-
conflict graphs. The reader not familiar with transitively orientable graphs might find it useful to
verify that the cycle of length 5 cannot be transitively oriented.

4 Complexity results

Theorem 3. The following two problems are NP-complete:

• The Minimum Conflict-Free Row Split problem.

• Given a binary matrix M , is it true that γ(M) =
∑

r χ(GM,r)?

Proof. The Minimum Conflict-Free Row Split problem is in NP, since testing if a given bi-
nary matrix M ′ with at most k rows, equipped with a partition of its rows into m sets, satisfies the
condition in the definition of a row split, as well as the conflict-freeness, can be done in polynomial
time. To argue that the second problem is in NP, we proceed similarly as above, performing an ad-
ditional test checking that the number of rows of M ′ equals

∑
r χ(GM,r). (In this case, we will have

γ(M) ≤∑r χ(GM,r) and equality will follow from Corollary 1.) The value of
∑

r χ(GM,r) can be
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computed in polynomial time, since each graph GM,r is the complement of a transitively orientable
graph (by Theorem 2), and the chromatic number of complements of transitively orientable graphs
can be computed in polynomial time (see, e.g., [6]).

We prove hardness of both problems at once, making a reduction from the following NP-complete
problem [11]: Given a simple cubic graph G = (V,E), is G 3-edge-colorable? (A graph is cubic,
or 3-regular, if every vertex is incident with precisely three edges. A matching in a graph is a
set of pairwise disjoint edges. A graph is 3-edge-colorable if its edge set can be partitioned into 3
matchings.)

Given a simple cubic graph G = (V,E), we construct an instance (M,k) of the Minimum
Conflict-Free Row Split problem as follows:

• M is a (|V | + 3) × (|E| + 3) binary matrix, with rows indexed by V ∪ {r1, r2, r3}, columns
indexed by E ∪ {c1, c2, c3}, and entries defined as follows (see Fig. 1 for an example):

– For every row indexed by a vertex v ∈ V and every column indexed by an edge e, we
have

Mv,e =

{
1, if v is an endpoint of e;
0, otherwise.

– For every row indexed by a vertex v ∈ V and every column indexed by some c ∈
{c1, c2, c3}, we have Mv,c = 1.

– For every row indexed by some r ∈ {r1, r2, r3} and every column indexed by an edge
e ∈ E, we have Mr,e = 0.

– For every row indexed by some ri ∈ {r1, r2, r3} and every column indexed by some
cj ∈ {c1, c2, c3}, we have

Mri,cj =

{
1, if i = j
0, otherwise.

• k = 3|V |+ 3.

G = (V,E)

v1

v2v3

v4
e1

e2

e3
e4

e5
e6




1 0 1 1 0 0 1 1 1
1 1 0 0 1 0 1 1 1
0 1 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




M

e1 e2 e3 e4 e5 e6 c1 c2 c3

v1
v2
v3
v4
r1
r2
r3

k = 15

Figure 1: An example construction of (M,k) from G.

Note that for each row indexed by a vertex v ∈ V , the graph GM,v is isomorphic to the disjoint
union of two complete graphs with three vertices each, hence χ(GM,v) = 3. For each row indexed
by some r ∈ {r1, r2, r3}, the graph GM,r consists in a single vertex, thus χ(GM,r) = 1. It follows
that k =

∑
r χ(GM,r) and therefore M is a yes instance to the second problem (“Given a binary

matrix M , is γ(M) =
∑

r χ(GM,r)?”) if and only if (M,k) is a yes instance for the Minimum
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Conflict-Free Row Split problem. Hardness of both problems will therefore follow from the
following claim, which we prove next: G is 3-edge-colorable if and only if γ(M) ≤ k.

Suppose first that G is 3-edge-colorable, and let E = E1 ∪ E2 ∪ E3 be a partition of E into
3 matchings. We obtain a row split M ′ of M by replacing each row of M indexed by a vertex
v ∈ V with three rows and keeping each row of M indexed by some r ∈ {r1, r2, r3} unchanged.
Clearly, this will result in a matrix with k rows. For every v ∈ V , we replace the row of M
indexed by v as follows. Vertex v is incident with precisely three edges in G, say e1, e2, e3. Since
E1, E2, E3 are matchings partitioning E, we may assume, without loss of generality, that ei ∈ Ei
for all i ∈ {1, 2, 3}. The three rows replacing in M ′ the row of M indexed by v are indexed by v1,
v2, v3 and defined as follows: for every i ∈ {1, 2, 3} and every column c ∈ E ∪ {c1, c2, c3}, we have

M ′vi,c =

{
1, if c = ei or c = ci;
0, otherwise.

By construction, M ′ is a row split of M with k rows. We claim that M ′ is conflict-free. No pair of
columns indexed by two edges in E agree on value 1 in any row, hence they cannot be in conflict.
The same holds for any pair of columns indexed by two elements of {c1, c2, c3}. Consider now
two columns, one indexed by an edge e ∈ E and one indexed by ci ∈ {c1, c2, c3}. Without loss of
generality, we may assume that e ∈ E1. There are only two rows in which the column indexed by e
has value 1, namely the rows indexed by copies of the endpoints of e, say u1 and v1 (with u, v ∈ V ).
The values of M ′ in column ci at rows u1 and v1 are both 1 (if i = 1), otherwise they are both
0. Consequently, the two columns cannot be in conflict. Since M ′ is a conflict-free row split of M
with k rows, this establishes γ(M) ≤ k.

For the converse direction, let M ′ be a conflict-free row split of M with at most k rows. Let
V ′ = V ∪ {r1, r2, r3} and consider a partition {R′i | i ∈ V ′} of the set of rows of M ′ into |V | + 3
sets indexed by elements of V ′ such that for all i ∈ V ′, the row of M indexed by i is the bitwise
OR of the rows of R′i. Since k is a lower bound on γ(M), matrix M ′ has exactly k rows. This fact
and Corollary 1 imply that each row in M indexed by a vertex v ∈ V has |R′v| = 3 and each row
indexed by some r ∈ {r1, r2, r3} has |R′r| = 1.

We must have that for all i ∈ V ′, the row of M indexed by i is the bitwise sum of the rows of
R′i, that is, for every column c ∈ E ∪ {c1, c2, c3}, we have Mi,c =

∑
r∈R′i

M ′r,c. Indeed, if for some

i ∈ V ′ and some column c ∈ E ∪ {c1, c2, c3}, we have that
∑

r∈R′i
M ′r,c > 1, then i is a vertex of G.

Furthermore, since |R′i| = 3, there are either two edges of G, say e and f , incident with i such that
for some r ∈ R′i, we have M ′r,e = M ′r,f = 1, or there are two distinct elements e, f ∈ {c1, c2, c3} with
the same property. In the former case, considering the rows replacing the rows of M indexed by
the endpoints of e and f other than i, respectively, we find two distinct rows r′ and r′′ of M such
that M ′r′,e = M ′r′′,f = 1 and M ′r′′,e = M ′r′,f = 0, which contradicts the fact that M ′ is conflict-free.
In the latter case, the argument is similar.

By permuting the rows of M ′ if necessary, we may assume that each set of the form R′v is
ordered as R′v = {v1, v2, v3} so that

M ′vi,cj =

{
1, if i = j;
0, otherwise.

We claim that for every edge e = uv ∈ E and every i ∈ {1, 2, 3}, we have that M ′
ui,e

= M ′
vi,e

. If

this was not the case, then we would have M ′
ui,e

= M ′
vj ,e

= 1 for a distinct pair i, j ∈ {1, 2, 3}. But

9



then the columns of M ′ indexed by e and ci would both agree in value 1 in row indexed by ui and
disagree (in opposite directions) in rows indexed by vj and vi. Thus, they would be in conflict,
contrary to the fact that M ′ is conflict-free.

Since for every edge e = uv ∈ E and every i ∈ {1, 2, 3}, we have that M ′
ui,e

= M ′
vi,e

, we can
partition the edges of E into three pairwise disjoint sets E1, E2, E3 by placing every edge e = uv ∈ E
into Ei if and only if i ∈ {1, 2, 3} is the unique index such that M ′

ui,e
= M ′

vi,e
= 1. We claim that

each Ei is a matching in G. This will imply that G is 3-edge-colorable and complete the proof.
If some Ei is not a matching, then there exist two distinct edges, say e, f ∈ Ei with a common
endpoint. Let e = xy and f = xz. The columns of M ′ indexed by e and f agree in value 1 at
row indexed by xi, while they disagree (in opposite directions) in rows indexed by yi and zi. Thus,
they are in conflict, contrary to the conflict-freeness of M ′.

Hajirasouliha and Raphael proposed in [10] an algorithm based on graph coloring for optimally
solving the Minimum Conflict-Free Row Split problem by constructing a conflict-free row
split of M with exactly

∑
r χ(GM,r) rows. Since there are infinitely many cubic graphs that are

not 3-edge-colorable (see, e.g., [14]), the proof of Theorem 3 implies that there exist infinitely many
matrices M such that γ(M) >

∑
r χ(GM,r). On such instances, the algorithm from [10] will not

produce a valid (that is, conflict-free) solution.
Since the smallest cubic 4-edge-chromatic graph is the Petersen graph, the smallest matrix

M with γ(M) >
∑

r χ(GM,r) that can be obtained using the construction given in the proof of
Theorem 3 is of order 13 × 18. A smaller matrix M for which the bound from Corollary 1 is not
tight can be obtained by applying a similar construction starting from the complete graph of order
3 (which is a 2-regular 3-edge-chromatic graph):

M =




1 1 0 1 1
1 0 1 1 1
0 1 1 1 1
0 0 0 1 0
0 0 0 0 1


 .

We leave it as an exercise for the reader to verify that
∑

r χ(GM,r) = 8 and γ(M) ≥ 9 (in fact,
γ(M) = 9). Let us also remark that in [16, Section 4.2.1] a binary matrix M is given with
γ(M) =

∑
r χ(GM,r), on which the algorithm from [10] fails to produce a conflict-free solution.

We conclude this section with another hardness result.

Theorem 4. The Minimum Distinct Conflict-Free Row Split problem is NP-complete.

Proof. Membership in NP of the Minimum Distinct Conflict-Free Row Split problem can
be argued similarly as for the Minimum Conflict-Free Row Split problem. It suffices to argue
that there is a polynomially-sized conflict-free matrix M ′ such that M ′ is a row split of M with at
most k distinct rows. We may assume that for a partition R′1, . . . , R

′
m of rows of M ′ into m sets

satisfying the condition in the definition of a row split, the rows within each R′i are pairwise distinct.
Recall (e.g. from [8]) that a conflict-free matrix with d distinct rows and n columns corresponds to
a perfect phylogenetic rooted tree T such that: T has d leaves (the rows of the matrix), all internal
vertices of T are branching, and all edges from a vertex to its children are injectively labeled with
a column of M , with the exception of at most one edge which is unlabeled. Thus T has at most 2n
edges, and we infer that d ≤ 2n. Therefore, the total number of rows of M ′ does not exceed 2nm,
where m and n are the numbers of rows and columns of M , respectively.

10



The hardness proof is based on a slight modification of the reduction used in the proof of
Theorem 3. (See Fig. 2 for an example.) Given a cubic graph G = (V,E), we map it to (M,k)
where

• M is the binary matrix obtained from the binary matrix M described in the proof of Theo-
rem 3 by adding to it three columns d1, d2, d3, which on the rows indexed by V equal 0, and
on the rows indexed by r1, r2, r3, each di equals ci, i ∈ {1, 2, 3}.

• k = |E|+ 3.

G = (V,E)

v1

v2v3

v4
e1

e2

e3
e4

e5
e6




1 0 1 1 0 0 1 1 1 0 0 0
1 1 0 0 1 0 1 1 1 0 0 0
0 1 1 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1




M

e1 e2 e3 e4 e5 e6 c1 c2 c3 d1 d2 d3

v1
v2
v3
v4
r1
r2
r3

k = 9

Figure 2: An example construction of (M,k) from G.

We claim that (M,k) is an instance of the Minimum Distinct Conflict-Free Row Split
problem such that G is 3-edge-colorable if and only if η(M) ≤ k.

Suppose thatG is 3-edge-colorable. Given a partition of E into three matchings E = E1∪E2∪E3,
we construct the same matrix M ′ as described in the proof of Theorem 3, to which we append the
three columns indexed by d1, d2, d3 which are all 0s on the rows indexed by vertices, and which are
the same as in M on the rows r1, r2, r3. By the same argument given in the proof of Theorem 3, M ′

is conflict-free. Each row ri, i ∈ {1, 2, 3}, is distinct from all other rows of M ′. Let vi, i ∈ {1, 2, 3},
be a row corresponding to a vertex v and suppose M ′

vi,e
= 1, where e = uv is one of the three edges

incident to v, and e ∈ Ei. By construction, the only other row having a 1 in column e is ui. Thus,
row vi is different from all other rows, except ui. In fact, we can see that row vi is identical to row
ui, since they have no other entry 1 on the columns indexed by edges. Additionally, they both have
1 in column ci, since e ∈ Ei, and 0 in the other five columns in {c1, c2, c3, d1, d2, d3} \ {ci}. Hence,
the number of distinct rows of M ′ is at most 3|V |/2 + 3 = |E|+ 3 = k, since G is cubic, and thus
η(M) ≤ k.

For the converse direction, suppose that M ′ is a conflict-free row split of M with at most
k = |E| + 3 distinct rows. Let V ′ = V ∪ {r1, r2, r3} and consider a partition {R′i | i ∈ V ′} of the
set of rows of M ′ into |V | + 3 sets indexed by elements of V ′ such that for all i ∈ V ′, the row of
M indexed by i is the bitwise OR of the rows of R′i. We will prove that (1) the number of pairwise
distinct rows in R′v is 3 for all v ∈ V , and that (2) the number of pairwise distinct rows in Rr is 1
for all r ∈ {r1, r2, r3}. Applying the same approach as in the proof of Theorem 3 will then imply
that G is 3-edge-colorable.

As argued in the proof of Theorem 3, no row in R′v has two 1s on two columns indexed by two
edges, say e and f , because each of e and f has an endpoint which is not an endpoint of the other
edge (and thus a row with two 1s on two columns indexed by two edges would imply a conflict in
M ′). Moreover, no row in R′v has two 1s on two columns indexed by c1, c2, c3.

11



Let us associate with each row of M ′ belonging to some R′i with i ∈ V the edge column where
it has a 1 (if there is any). Since each edge column contains a 1 and no row has two 1s on the
columns indexed by edges, the number of pairwise distinct rows of M ′ indexed by a vertex is at
least |E|. Since in each R′ri , i ∈ {1, 2, 3}, we must have at least one row distinct from all other rows
of M ′ (because of the 1s in columns d1, d2, d3), and M ′ has at most |E|+ 3 pairwise distinct rows,
the number of distinct rows of M ′ is exactly |E|+ 3. This directly implies (2), more precisely, that
each Rr consists only of a row identical to the corresponding row of M .

In order to prove property (1), suppose now that there is a row of M indexed by a vertex v such
that R′v contains at least 4 pairwise distinct rows. Observe first that there is no row in R′v having
a 1 only in one column among {c1, c2, c3} (and only 0s in the columns indexed by edges). Indeed,
besides being distinct from the row in each R′r, r ∈ {r1, r2, r3}, it would also be distinct from each
of the set of at least |E| rows of M ′ having a 1 on a column indexed by an edge. Thus this would
contradict the fact that M ′ has at most |E|+ 3 pairwise distinct rows. This implies that there are
two distinct rows v′ and v′′ in R′v such that v′ and v′′ both contain a 1 on the same column indexed
by an edge, say e, but on a column among {c1, c2, c3}, say ci, v

′ contains 1 and v′′ contains 0. This
shows that there is a conflict in M ′, since M ′ri,e = 0 and M ′ri,ci = 1, a contradiction.

5 A polynomially solvable case

In this section we consider the binary matrices in which no column is contained in both columns of
a pair of conflicting columns, and derive a polynomial time algorithm for the Minimum Conflict-
Free Row Split problem on such matrices. The main idea behind the algorithm is the fact that
on such matrices the lower bound from Corollary 1 is achieved, and the bound can be expressed
in terms of parameters of a set of derived digraphs, the so-called directed containment graph (see
Definition 5 below).

Let M be a binary matrix such that no column of M is contained in two or more conflicting
columns. If there are duplicated columns in M , then we form a new matrix where we take just one
copy of the columns that are duplicated. Since an optimal solution of the reduced instance can be
mapped to an optimal solution of the original instance (by duplicating the columns corresponding
to the copies of the duplicated columns in M kept by the reduction), we may assume that there
are no duplicated columns in M .

Definition 5. Given a binary matrix M with distinct columns c1, . . . , cn and a row r of M , the

directed containment graph of (M, r) is the graph
−→
HM,r whose vertex set is the set of columns of

M having a 1 in row r, in which there is a directed edge from ci to cj if and only if i 6= j and ci is
contained in cj .

We will use the notation ci @r cj as a shorthand for the fact that (ci, cj) is a directed edge of
−→
HM,r.

We say that ci is a source of
−→
HM,r if ci ∈ V (

−→
HM,r) and there is no cj with cj @r ci. Let σ(M, r)

denote the number of sources in
−→
HM,r.

Lemma 2. If there are no duplicated columns in M , then σ(M, r) ≤ χ(GM,r) holds for any row r
of M .

Proof. Two vertices in the complement ofGM,r are adjacent if and only if the corresponding columns

of M are either disjoint or one contains the other one. However, since the vertices of both
−→
HM,r
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and GM,r correspond to columns in which M has value 1 in row r, no two such columns can be

disjoint. Consequently, the underlying undirected graph of
−→
HM,r is equal to the complement of

GM,r. The set of all sources of
−→
HM,r forms an independent set in its underlying undirected graph.

This set corresponds to a clique in GM,r. Therefore σ(M, r) ≤ ω(GM,r) ≤ χ(GM,r) (where ω(GM,r)
denotes the maximum size of a clique in GM,r).

Our algorithm is the following one (see also Fig. 3 for an example).

Input: An m × n binary matrix M with columns c1, c2, . . . , cn, without duplicated columns,
and such that no column of M is contained in both columns of a pair of conflicting columns.
Output: A conflict-free row split M ′ of M with γ(M) rows.
Algorithm:

1. Define a new matrix M ′ with columns c′1, c
′
2, . . . , c

′
n.

2. For each row r of M , add the rows r′1, . . . , r
′
σ(M,r) to M ′, defined as:

Let cr,1, . . . , cr,σ(M,r) be the sources of
−→
HM,r.

M ′r′i,c′j
=

{
1, if cr,i = cj or cr,i @r cj ;
0, otherwise.

3. Return M ′.




1 0 0 0 0
1 1 1 1 0
0 1 0 1 0
0 1 1 0 1
0 1 0 0 0




r

c1 c2 c3 c4 c5





1 0 0 0 0
0 1 1 0 0
0 1 0 1 0

r′1
r′2
r′3

M M ′
c′1 c′2 c′3 c′4 c′5

c1 c3 c4

c2

cr,1 cr,2 cr,3

−→
HM,r

Figure 3: An example of a matrix M in which no column is contained in both columns of a
pair of conflicting columns (c1, c2 and c3, c4 are conflicting). The rows r′1, r

′
2, r
′
3 constructed by

the algorithm corresponding to row r of M are shown in the center. On the right, the directed
containment graph of (M, r).

Theorem 5. For any m×n binary matrix M without duplicated columns such that no column of M
is contained in both columns of a pair of conflicting columns, it holds that γ(M) =

∑
r χ(GM,r) =∑

r σ(M, r). Moreover, a conflict-free row split M ′ of M with γ(M) rows can be constructed in
time O(mn2).

Proof. We claim that the matrix M ′ produced by the above algorithm is a conflict-free row split of
M with number of rows equal to γ(M).

It is clear that M ′ is a row split of M . Let us prove that M ′ is conflict-free. Suppose the
contrary, that is, let c′i and c′j be two columns of M ′ which are in conflict. Then, there exists a row
r′k of M ′ (obtained by splitting a row r of M) which has 1 in columns c′i and c′j .
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We will first show that ci is contained in cj or vice versa. If cr,k = ci (resp. cr,k = cj) then
ci @r cj (resp. cj @r ci) and therefore column ci is contained in column cj (resp. cj is contained in
ci). Suppose now that cr,k 6∈ {ci, cj}. Since r′k has 1 in columns c′i and c′j it follows that cr,k @r ci
and cr,k @r cj . This implies that column cr,k is contained in both column ci and column cj . By the
assumption on M , ci and cj cannot be in conflict, hence, one of them is contained in the other one.

Thus, we may assume without loss of generality that ci is contained in cj . Since c′i and c′j are
in conflict it follows that there exists a row w′` of M ′ which has 1 in column c′i and 0 in column
c′j . This implies that the corresponding row w of M has 1 in column ci, and consequently also in

cj , since ci is contained in cj . Therefore, both ci and cj are vertices of
−→
HM,w. If ci = cw,`, then

w′` has value 1 in column c′j (since ci is contained in cj), which contradicts the choice of w′`. Thus,

ci 6= cw,` and cw,` @w ci. However, since ci is contained in cj and
−→
HM,w is transitive, it follows that

cw,` @w cj . This implies that row w′` has value 1 in column c′j , which again contradicts the choice
of w′`. This finally shows that M ′ is conflict-free.

Since the number of rows in M ′ is
∑

r σ(M, r) and M ′ is conflict free, we have γ(M) ≤∑
r σ(M, r). By Corollary 1 and Lemma 2 we have

∑
r σ(M, r) ≤ ∑r χ(GM,r) ≤ γ(M). This

implies equality.
It remains to justify the time complexity. First, we compute, in time O(mn2), the transitive

orientation
−→
HM of the undirected containment graph HM as specified by Observation 1 (that

is, (ci, cj) is an arc of
−→
HM if and only if ci is properly contained in cj). Since for each row

r of M , the graph
−→
HM,r is an induced subdigraph of

−→
HM , the σ(M, r) sources of

−→
HM,r can

be computed from
−→
HM in the straightforward way in time O(n2). The corresponding σ(M, r)

new rows of M ′ can be computed in time O(σ(M, r)n), which results in total time complexity of
O(mn2) +O(

∑
r σ(M, r)n) = O(mn2), as claimed.

Note that the correctness of the algorithm crucially relies on the assumption that no column of
the input matrix is contained in both columns of a pair of conflicting columns. For example, the

algorithm fails to resolve the conflict in the 3× 3 input matrix M =




1 1 1
0 1 0
0 0 1


, which violates

the assumption (column c1 is contained in both columns c2 and c3, which are in conflict). Given
the above matrix M , the output matrix M ′ computed by the algorithm is in fact equal to M .

It is also worth mentioning that if the input matrix satisfies the stronger property that no column
is contained in another one, Theorem 5 implies that the näıve solution obtained by splitting each
row r into as many 1s as it contains always produces an optimal solution. This is true since all

vertices of
−→
HM,r are sources. We thus obtain:

Corollary 2. For any binary m× n matrix M such that no column of M is contained in another
one, it holds that γ(M) = m′, where m′ equals the number of 1s in M . Moreover, a conflict-free
row split M ′ of M of size m′ × n can be constructed in time O(m′n).

6 A heuristic algorithm based on coloring co-comparability graphs

As pointed out in Section 4, the graph theoretic algorithm from [10, Section 4] fails to always
produce a conflict-free row split of the input matrix. In this section, we propose a polynomial time
heuristic algorithm for the Minimum Conflict-Free Row Split problem, that is, an algorithm
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that always produces a conflict-free row split of the input matrix. This algorithm is also based on
graph colorings.

Before presenting the algorithm, we describe the intuition behind it. The lower bound on γ(M)
given by Corollary 1 follows from the fact that in every conflict-free row split M ′ of the input
matrix M , the rows replacing row r in the split can be used to produce a valid vertex coloring of
GM,r, the conflict graph of (M, r). The difficulty in reversing this argument in order to obtain a
row split of M having a number of rows close to the lower bound

∑
r χ(GM,r) is due to the fact

that we cannot independently combine the splits of rows r of M according to optimal colorings of
their conflict graphs, as new conflicts may arise.

We can guarantee that the corresponding row splits will be pairwise compatible (in the sense
that no new conflicts will be generated) as follows. We color GM , the conflict graph of the whole
input matrix (which we will define in a moment), and split each row r according to the coloring
of its conflict graph GM,r given by the restriction of the coloring of GM to the vertex set of GM,r.
The graph GM , the conflict graph of M , is defined as follows: with each column of M , we associate
a vertex in GM . Two vertices in GM are connected by an edge if and only if the corresponding
columns in M are in conflict. Note that each conflict graph GM,r of an individual row is an induced
subgraph of GM , hence the restriction of any proper coloring c of GM to V (GM,r) is a proper
coloring of GM,r.

The above approach will result in a row split having number of rows given by the value of∑
r |c(V (GM,r))|, where |c(V (GM,r))| denotes the number of colors used by c on V (GM,r). As a

first heuristic attempt to minimize this quantity, Kačar proposed in [16, Section 4.2.2] to choose
a coloring c of GM with χ(GM ) colors. However, this is computationally intractable. While row-
conflict graphs are characterized (in Theorem 2) as exactly the co-comparability graphs (that is,
as complements of transitively orientable graphs)—for which the coloring problem is polynomially
solvable [6]—, conflict graphs of binary matrices do not enjoy such nice features. Indeed, if G is any
graph of minimum degree at least 2, then G ∼= GM , where M ∈ {0, 1}E(G)×V (G) is the edge-vertex
incidence matrix of G (defined by Me,v = 1 if and only if vertex v is an endpoint of edge e).

This can be amended as follows. We can “restore” the structure of co-comparability graphs by
observing that GM is a spanning subgraph of HM , the complement of the undirected containment
graph HM (cf. Definition 4), and working with HM instead. Recall that HM is the undirected
graph whose vertices correspond to the columns of M and in which two vertices i and j, i 6= j,
are adjacent if and only if one the corresponding columns is contained in the other one. To show
that GM is a spanning subgraph of HM , note first that we may assume that V (GM ) = V (HM ) (as
both vertex sets are in bijective correspondence with the set of columns of M). Moreover, if two
vertices i and j of GM are adjacent, then the corresponding columns are in conflict, which implies
that neither of them is contained in the other one; consequently, they are adjacent in HM .

Since GM is a spanning subgraph of HM , any proper coloring of HM is also a proper coloring
of GM . Moreover, even though the graph HM might have more edges than GM , these additional
edges (if any) will not be contained in any of the graphs GM,r. Indeed, for every row r, its conflict
graph GM,r coincides both with the subgraph of GM induced by U := V (GM,r) as well as with the
subgraph of HM induced by U . This is because for any two vertices i and j in U that are adjacent
in HM , the corresponding columns cannot be disjoint, therefore, since i and j are not adjacent in
HM , the corresponding columns must be in conflict.

In view of the above observations, we propose choosing an optimal coloring c of the co-
comparability graph HM as a heuristic approach to minimizing the value of

∑
r |c(V (GM,r))| for a
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coloring c of GM . A row split of M is then defined according to the coloring c.
This leads to the following algorithm (see Fig. 4 for an example):

Input: An m× n binary matrix M with columns labeled with 1, . . . , n.
Output: A conflict-free row split M ′ of M .
Algorithm:

1. Define a new matrix M ′ with n columns labeled with 1, . . . , n.

2. Compute HM , the complement of the undirected containment graph HM .

3. Compute an optimal coloring c of HM .

4. For each row r of M :

Let c(V (GM,r)) = {sr1, . . . , srt}.
Add the rows r′1, . . . , r

′
t to M ′, defined as:

M ′r′i,j
=

{
1, if Mr,j = 1 and c(j) = sri ;
0, otherwise.

5. Return M ′.




1 0 0 0 0
1 1 1 1 0
0 1 0 1 0
0 1 1 0 1
0 1 0 0 0




r

1 2 3 4 5





1 0 0 0 0
0 0 0 1 0
0 1 1 0 0

r′1
r′2
r′3

M M ′
1 2 3 4 5

s1HM
1

2

34

5
s3

s3s2

s3

s1, s2, s3 – colors
as used by c

Figure 4: An example of a binary matrix M , the complement of its undirected containment graph
together with an optimal coloring c, and a split of a row of M according to the above algorithm.

Theorem 6. For any m× n binary matrix M , the above algorithm can be implemented to run in
time O(n2(n1/2 +m)). The matrix M ′ output by the algorithm is a conflict-free row split of M .

Proof. We first show that the matrix M ′ produced by the above algorithm is a conflict-free row
split of M . Clearly, M ′ is a row split of M . We say that a row r′ of M ′ is an r-row if r is
the row of M such that r′ was added to M ′ in step 4) of the algorithm when considering row
r. Suppose for a contradiction that M ′ is not conflict-free, and let {j, j′} be a pair of conflicting
columns of M ′. Then, there exist rows p, q, and r of M and rows p′i, q

′
k, and r′` of M ′ such that

p′i is a p-row, q′k is a q-row, and r′` is an r-row, M ′p′i,j
= M ′p′i,j′

= 1, M ′q′k,j
= 1, M ′q′k,j′

= 0, and

M ′r′`,j
= 0, M ′r′`,j′

= 1. Since M ′p′i,j
= M ′p′i,j′

= M ′q′k,j
= M ′r′`,j′

= 1, the definition of M ′ implies that
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Mp,j = Mp,j′ = Mq,j = Mr,j′ = 1 and c(j) = c(j′) = spi , c(j) = sqk, and c(j′) = sr` . Consequently,
spi = sqk = sr` . Moreover, since M ′q′k,j′

= 0 and c(j′) = sqk, we infer that Mq,j′ = 0 and, similarly,

since M ′r′`,j
= 0 and c(j) = sr` , we infer that Mr,j = 0. It follows that columns j and j′ of M are

in conflict. On the other hand, since c(j) = c(j′) and c is a proper vertex coloring of HM , vertices
corresponding to j and j′ are non-adjacent in HM . Hence, they are adjacent in HM , which means
that one of the columns j and j′ is contained in the other one, contradicting the fact that they are
in conflict. This completes the proof that M ′ is conflict-free.

It remains to justify the time complexity. The graph HM can be computed in time O(mn2) by
comparing every ordered pair of columns for containment. In the same time, we can also compute
a transitive orientation @ of HM (as done for example in Observation 1). An optimal coloring
of HM corresponds to a minimum chain partition of the partially ordered set P = (V (HM ),@
), and can be computed in time O(n5/2) as follows (cf. [24] and [19, p. 73-74]). Applying the
approach of Fulkerson [4], a minimum chain partition of P can be computed by solving a maximum
matching problem in a derived bipartite graph having 2n vertices. This can be done in time O(n5/2)
using the algorithm of Hopcroft and Karp [12]. Step 4) of the algorithm can be executed in time
O(
∑

r |c(V (GM,r)|n) = O(mn2). The claimed time complexity of O(n2(n1/2 +m)) follows.

7 Implementation and experimental results

C++ implementations of both algorithms are available at https://github.com/alexandrutomescu/
MixedPerfectPhylogeny. The input matrices must be in .csv format, and are allowed to have du-
plicate columns. In addition to a conflict-free row split matrix, we also output its perfect phylogeny
tree. We tested our implementation on the ten binary matrices constructed from clear cell renal
cell carcinomas (ccRCC) from [5]: EV001-EV003, EV005-EV007, RMH002, RMH004, RMH008,
RK26. The phylogenetic trees constructed by [5] from these matrices appear in [5, Fig.3].

Table 1: The numbers of rows, columns, and pairwise distinct columns in the input matrices, the
lower bounds on the minimum number of rows in conflict-free row splits of the input matrices given
by Corollary 1, and the numbers of rows and pairwise distinct rows in the matrices output by the
heuristic algorithm. The distinct rows form the leaves of the output perfect phylogeny.

Input lower bound Output
Name #rows #cols #distinct cols on #rows in output #rows #distinct rows

EV001 10 122 22 37 51 22
EV002 7 103 17 18 29 17
EV003 8 56 12 13 19 12
EV005∗ 7 83 10 7 7 7
EV006 9 76 11 13 25 11
EV007 8 66 15 19 25 15
RHM002 5 54 11 9 13 11
RHM004 6 140 17 16 21 17
RHM008 8 81 10 10 20 10
RK26 11 75 17 18 26 17

∗Input is conflict-free
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These ten matrices have between 5 and 11 rows, and between 55 and 140 columns. One of
them is already conflict-free, while the other nine do not belong to the polynomially-solvable case
discussed in Section 5. On each of these nine matrices, our heuristic algorithm from Section 6
runs in less than one second. On ten random binary matrices with 50 rows and 1000 columns,
the heuristic algorithm runs on average in 97 seconds. Due to the restricted structure of the input
matrices on which the polynomial time algorithm from Section 5 works correctly, we did not test
the implementation of this algorithm on random inputs. However, since this algorithm is simpler
than the heuristic one, it is plausible to expect that it will run at least as fast. Of course one might
want to first check whether the input m×n binary matrix satisfies the assumption that no column
is contained in both columns of a pair of conflicting columns. This can be tested straightforwardly
in time O(n2(m+n)) by first classifying each ordered pair of columns as conflicting, disjoint, or in
containment, and then testing each triple of columns for the condition that the first one is contained
in each of the other two, which are in conflict. The running time of this check is asymptotically
worse than that of the heuristic algorithm. However, we expect the running times to differ little on
practical instances of moderate sizes, since the constant hidden in the O() notation for the above
check is small.

In Table 1 we list the numbers of rows (i.e., samples) in the ten original matrices, together with
numbers of columns and pairwise distinct columns, the lower bounds on the minimum number of
rows in a conflict-free row split of each of the matrices given by Corollary 1, and the numbers of
rows and pairwise distinct rows in the matrices output by the heuristic algorithm. The similarity
between the numbers of pairwise distinct columns in the input and of pairwise distinct rows in the
output can be explained by the observation that if the input matrix consists of n pairwise distinct
columns, then there will be at most n distinct rows in the naive solution (split each row into as
many rows of the identity matrix as the number of 1s it contains). Thus n is an upper bound
for an optimal solution to the Minimum Distinct Conflict-Free Row Split problem, which
explains why our heuristic algorithm applied to the Minimum Distinct Conflict-Free Row
Split problem performs similarly as the naive one. In Fig. 5 we show four perfect phylogeny trees
corresponding to the matrices output by the heuristic algorithm. The results on all matrices are
available online, linked from https://github.com/alexandrutomescu/MixedPerfectPhylogeny.

We also ran our heuristic algorithm on the same datasets, with the difference that we removed
from the input matrices those columns that appear (as binary vectors) strictly less than 2 times
(this value is a parameter to our implementation). This is the same idea and default threshold used
by Popic et al. [26] in their tool LICHeE. Their motivation is that several mutations accumulate
before a new tumor branch separates, and thus such rare mutation patterns may be due to errors
in the data. We show four output trees in Fig. 6.

Finally, we also ran LICHeE on the same ten patients from [5]. Since LICHeE uses the variant
allele frequency (VAF) of every mutation, we used the matrices containing VAF values linked from
https://github.com/viq854/lichee/tree/master/LICHeE/data/ccRCC and ran LICHeE with
the parameters indicated therein. As referred to in the above, LICHeE starts by grouping the
robust mutations into clusters of size at least a given number, by default 2. (This is the same
experiment as the one done in the paper [26] introducing LICHeE; see [26] for further details.) We
show four trees produced by LICHeE in Fig. 7. Note LICHeE does not necessarily output binary
trees.
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Figure 5: Four perfect phylogeny trees corresponding to the conflict-free row split matrices output
by our heuristic algorithm from Section 6. The naming convention is: R1 is an original row (i.e.,
sample) name, and R1 1, R1 2, R1 3 are the row (i.e., samples) names corresponding to R1 in
the output matrix. Equal split rows form a single node of the perfect phylogeny (equalities are
indicated in boxes).
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Figure 6: The perfect phylogeny trees output by our heuristic algorithm, after removing from
the input matrices those columns that appear only once. The naming convention is as in Fig. 5.
Compare these trees to the trees from [5, Fig. 3] and to the ones from Fig. 7.
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Figure 7: The tumor evolutions predicted by LICHeE [26]. Numbers in the circles represent the
number of mutations at that node. See [26] for further details.

8 Discussion

After filtering the unique columns of the matrices EV003 and RMH002, the resulting matrices
are conflict-free. The perfect phylogeny for RMH002 (Fig. 6) is the same as the one produced by
LICHeE (Fig. 7) and the one from [5, Fig. 3]. The perfect phylogeny for EV003 (Fig. 6) is almost
identical to the one produced by LICHeE (Fig. 7) and the one from [5, Fig. 3], the only difference
being that each of the pairs of samples {R2, R5} and {R1, R3} is collapsed into a single leaf of
the phylogeny. This may be due to the fact that LICHeE and the method used by [5] exploit VAF
values, not only binary values. Overall, these two matrices suggest that filtering out rare columns
may be a relevant strategy.

All the columns of the matrix RMH008 appear at least two times, thus there are no columns
to be filtered out. While LICHeE finds that only samples R4 and R6 are a combination of more
leaves of the tumor phylogeny, our algorithm finds that all eight samples are combinations of two
or more leaves. However, there are similarities to the prediction of LICHeE. For example, both
samples R4 and R6 have mutations in common with R5 and R7 (R6 2 = R5 1 = R7 1, (R1 3 = )
R4 3 = R5 2 = R7 2). Our subclones R6 2 and R4 3 also correspond to the subclones R6 dom and
R4 min, respectively, found in [5]. Samples R4 and R6 also have mutations in common with R1
(R1 3 = R6 3 = R4 3), and with R2 (nodes R2 2 and R1 3 = R6 3 = R4 3 are both siblings of a
node at distance 4 from the root). The subclones R6 3 and R4 3 also correspond to the subclones
R6 min and R4 dom, respectively, found in [5].

In matrix RK26, 6 columns are unique, and they have been filtered out in Fig. 6. LICHeE
finds that only sample R5 is a combination of more leaves, while our algorithm again finds that all
samples are combinations of two or more leaves. However, there are again similarities in the results.
Sample R5 has mutations shared with R6, R7, R8 (nodes R5 2 and R6 1 = R7 1 = R8 1 are siblings
of a node at depth 4). Subclone R5 2 also corresponds to subclone R5 dom found in [5]. Sample R5
also has mutations shared with R9 and R10 (nodes R5 1, R10 1 and R9 1 have the lowest common
ancestor at depth 5). Subclone R5 1 also corresponds to subclone R5 min found in [5].
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9 Conclusion

In this paper we showed hardness of the Minimum Conflict-Free Row Split and the Minimum
Distinct Conflict-Free Row Split problems, and gave a polynomial time algorithm for the
Minimum Conflict-Free Row Split problem on instances such that no column is contained
in both columns of a pair of conflicting columns. More general tractable instances could be found
by inspecting further dependencies between column containment and conflictness. For example, it
remains open whether the Minimum Conflict-Free Row Split problem is tractable on matrices
in which no pair of conflicting columns is contained in both columns of a pair of conflicting columns.
It would also be interesting to identify polynomially solvable cases of the Minimum Distinct
Conflict-Free Row Split problem and to explore variations of the problems in which we are
also allowed to edit the entries of the input matrix.

In the paper we also gave a polynomial time heuristic algorithm for the Minimum Conflict-
Free Row Split problem based on graph coloring. We leave as a question for future research
to determine the (in-)approximability status of the optimization variants of the two problems.
Finally, we remark that in [10] it was assumed that the matrices have no duplicated columns,
which was not necessary in this paper.
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