
BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–9

IPED2: Inheritance Path based Pedigree Reconstruction
Algorithm for Complicated Pedigrees
Dan He 1,∗, Zhanyong Wang 2, Laxmi Parida 1 and Eleazar Eskin 2

1IBM T.J. Watson Research, Yorktown Heights, NY.
2Dept. of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA.
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Reconstruction of family trees, or pedigree reconstruction,
for a group of individuals is a fundamental problem in genetics.
The problem is known to be NP-hard even for datasets known to
only contain siblings. Some recent methods have been developed
to accurately and efficiently reconstruct pedigrees. These methods,
however, still consider relatively simple pedigrees, for example, they
are not able to handle half-sibling situations where a pair of individuals
only share one parent.
Results: In this work, we propose an efficient method, IPED2,
based on our previous work, which specifically targets reconstruction
of complicated pedigrees that include half-siblings. We note that
the presence of half-siblings makes the reconstruction problem
significantly more challenging which is why previous methods exclude
the possibility of half-siblings. We proposed a novel model as well as
an efficient graph algorithm and experiments show that our algorithm
achieves relatively accurate reconstruction. To our knowledge, this is
the first method that is able to handle pedigree reconstruction based
on genotype data only when half-sibling exists in any generation of
the pedigree.
Availability: http://www.cs.ucla.edu/∼danhe/Software/IPED2.html
Contact: dhe@us.ibm.com

1 INTRODUCTION
A pedigree, or family tree, is a diagram which represents genetic
relationships between individuals of a family. Since a pedigree
defines the genetic relationships between individuals, a pedigree
provides a model to compute the inheritance probability for the
observed genotype data as all possible inheritance options for an
allele in an individual are encoded in the pedigree. Prediction of
pedigrees have been involved in a large number of research studies
[6, 17, 3, 20, 12] . Therefore, pedigree inference plays an important
role in population genetics.

The pedigree reconstruction problem using genotype data is to
reconstruct the unknown pedigree of a set of individuals given
genotype data or haplotypes for these individuals. The problem is
very challenging in that there are exponential number of possible
pedigree graphs and the number of unknown ancestors can be
very large as the height of the pedigree increases. Indeed even
constructing sibling relationships is known to be NP-hard [14]. The
pedigree reconstruction problem has a long history [8, 15, 1, 9, 16,
22].

In this work, we focused on reconstruction methods using
genotype data. There are existing methods to infer parentage
and sibship [13, 21], using maximal likelihood estimation
or combinatorial approaches. However, they are not targeting
reconstructing the whole pedigree. Various methods [24, 23, 14,
12] have been proposed for automatically reconstructing pedigree
using genotype data. The most recent progress on the pedigree
reconstruction problem is generation-by-generation reconstruction
approaches [14, 12]. The pedigree is reconstructed backwards in
time, one generation at a time. The input of these approaches
is the set of extant individuals with haplotype and identity-by-
descent (IBD) information available. IBD information encodes
the haplotype segments in two different haplotypes which have
been inherited from the same ancestor. At each generation, a
compatibility graph is constructed, where the nodes are individuals
and the edges indicate the pair of individuals which could be
siblings. The edges are defined via a statistical test such that an
edge is constructed only when the test score between the pair of
individuals is less than a pre-defined threshold. Sibling sets are
identified in the compatibility graph using a Max-clique algorithm
iteratively to partition the graph into disjoint sets of vertices. The
vertices in the same set have edges connecting to all the other
vertices of the same set. Kirkpatrick et al. [14] conducted a sampling
algorithm for the statistical test. The method is shown to be effective
for outbreeding case but inefficient for inbreeding case. He et al.
[12] proposed an inheritance path based algorithm, IPED, which
is able to conduct the statistical test efficiently using a dynamic
programming approach. IPED is shown to be efficient for both
outbreeding and inbreeding cases.

The two approaches [14] and [12] only considered pedigrees with
simple structure. They can not handle cases where the pedigrees
have more complicated structure. A common structure is half-
sibling, where two children share only one parent. The two
approaches can not handle half-siblings, which is indeed a common
scenario. This scenario is challenging for two reasons. First, half-
siblings and siblings are genetically hard to be distinguished.
Second, one individual can be involved in both sibling and half-
sibling relationships. As we will show later, due to reconstruction
errors, these relationships may conflict with each other. And these
relationships also define a set of constraints that we need to follow
when we create parents for the individuals.

c© Oxford University Press 2005. 1

ar
X

iv
:1

40
8.

55
30

v1
 [

cs
.D

S]
 2

3
A

ug
 2

01
4

http://www.cs.ucla.edu/~danhe/Software/IPED2.html
dhe@us.ibm.com

2 D He et al

In this work, we proposed a novel method IPED2 to address the
above problem. We proposed a new statistical test to detect half-
sibling relationships and a new graph-based algorithm to reconstruct
the pedigree when half-sibling is allowed. Our experiments show
that IPED2 has better performance for cases where there are half-
siblings. To our knowledge, this is the first method that can
reconstruct pedigrees with half-siblings using just genotype data.

2 PRELIMINARIES
2.1 Pedigree Graphs
A pedigree graph consists of nodes and edges where nodes are
diploid individuals and edges are between parents and children.
Circle nodes are females and boxes are males. An example of
pedigree graph is shown in Figure 1. Parent nodes are also called
founders. In the example, individual 13,14,15 are extant individuals
and their founders are individuals 9, 10 and 10, 11 respectively.
Outbreeding means an individual mates with another individual
from different family. In the example, 3,4 and 6, 7 are both
outbreeding cases. Inbreeding means an individual mates with
another individual from the same family. In the example, 9, 10
is inbreeding case. We can see inbreeding case is usually more
complicated as an individual can inherit from his ancestors in
multiple ways. For example, 13, 14 can inherit from 1, 2 in two
ways but 15 can inherit from 1,2 in only one way.

As we only have extant individuals and we reconstruct ancestors
of them, the pedigree is reconstructed backwards in time. We use
the same notion of generations in [14], namely generations are
numbered backwards in time, with larger numbers being older
generations. Every individual in the graph is associated with a
generation g. All the extant individuals are associated with g=1 and
their direct parents are associated with generation g=2. The height
of a pedigree is the biggest g. We define inheritance path between a
child and his ancestor the same as the one defined in [16], namely as
a path between the two corresponding nodes in the pedigree graph.
For example, the inheritance path between 1 and 15 consists of
nodes 1-6-10-15. There are two inheritance paths between 1 and
13: 1-4-9-13 and 1-6-10-13. Also we assume the inheritance paths
are not directed. Half-sibling is the case where two children share
only one common parent. Node 10 is shared by 13, 14, 15. As 13, 14
also share the other parent 9, they are siblings. The two pairs 13,15
and 14,15 are half-siblings as they only share one common parent.

The distance between parent and children in the pedigree graph is
one and the distance between siblings in the pedigree graph is two.
Meiosis is a type of cell division in which a nucleus divides into
four daughter nuclei, each containing half the chromosome number
of the parent nucleus. The number of meioses M between a pair of
individuals can be computed from the pedigree graph as the distance
between them. Therefore for a pair of siblings M = 2. As we will
show later, M will be used to evaluate the relationships between
individuals so pedigree graph is a critical data structure.

2.2 Identical-by-Descent (IBD)
Two or more alleles are identical-by-descent (IBD) if they are
identical copies of the same ancestral allele. As we can see in
Figure 2, the top plot, the two parents have alleles 1,2 and 3,4
respectively and the two children inherit one allele from the father

Fig. 1: An example of pedigree graph with half-siblings.

Fig. 2: Examples of IBD and IBD tracts.

and one allele from the mother. They inherit the same allele 1 from
the mother. Therefore the two alleles 1 of the two children are IBD.
IBD tracts are consecutive alleles in the genome shared between two
or more individuals if they inherit identical nucleotide sequences
in the regions from common ancestor. In Figure 2, the bottom
plot, we show an example of IBD tracts as the two highlighted
sub-sequences.

Many methods have been developed for IBD tracts detection
[2] [5] [10] [19] [11]. Most of these methods are based on haplotype,
which is the concatenation of the alleles on the same chromosome.
As identical sequences of alleles can happen by chance, the longer
the IBD tract is, the more likely it is truly by descent, or truly due to
inheritance. As there are two chromosomes in the genome, there are
two corresponding haplotypes. Given a pair of haplotypes, we can
identify all the IBD tracts between them and measure the average
length of the IBD tracts. In this work, we use Beagle [5] to identify
IBD tracts.

2.3 IPED
Our previous method IPED [12] is the only known algorithm
scalable to large pedigrees with reasonable accuracy for both
outbreeding and inbreeding cases using genotype data. IPED starts
from the extant individuals and reconstructs the pedigree generation
by generation backwards in time. For each generation, IPED
predicts the pairwise relationships between the individuals at the

3

current generation and create parents for them according to their
relationships. When IPED evaluates the pairwise relationships for
a pair of individuals, it considers the pairwise IBD length for their
extant descendants, namely the leaf individuals in the pedigree. A
statistical test is then conducted on the two individuals to determine
if they are siblings or not siblings. The test is different for extant
individuals and ancestral individuals. For a pair of extant individuals
i, j, IPED conducts a statistical test and computes a score vi,j
for both sibling case and first-cousin case using Equation 1 and
determines i, j are siblings if the score for sibling case is lower.

vi,j =

(
estimate(IBDi,j)− E(IBDi,j)

)2
var(IBDi,j)

(1)

where estimate(IBDi,j) is the estimated IBD length between
individuals i and j, E(IBDi,j) is the expected IBD length
between i and j, var(IBDi,j) is the variance of the IBD
length between i and j. estimate(IBDi,j) can be computed
easily given genotypes or haplotypes of individual i and j. As
recombination occurs in meioses, it is shown [7] that the length of
IBD between i and j follows an exponential distribution exp(Mr),
where M is the number of meioses between i and j, r is the
recombination rate which is set as 10−8, namely the probability for
recombination occurs at any loci is 10−8. Therefore, E(IBDi,j)
and var(IBDi,j) are computed as the following:

E(IBDi,j) =
1

M × r
(2)

var(IBDi,j) =
1

(M × r)2
(3)

The number of meioses M between a pair of individuals can be
computed from the pedigree graph. For outbreeding case, M =
2(g − 1) where g is the generation. So for extant individuals, as we
are reconstructing the second generation, g = 2 and thus M = 2.

To determine the relationship of a pair of ancestral individuals,
IPED uses a similar strategy as the one in [14]. Assuming
individuals k and l are at generation g > 1. The sets of all extant
descendants of k and l are K and L, respectively. IPED computes a
score vk,l between k and l as

vk,l =
1

|K||L|
∑
i∈K

∑
j∈L

vi,j

=
1

|K||L|
∑
i∈K

∑
j∈L

(
estimate(IBDi,j)− E(IBDi,j)

)2
var(IBDi,j)

(4)

where |K| is the size of K, the number of extant descendants of k,
i ∈ K is an extant individual in K, vi,j is computed via Equation
1. Again, IPED computes vk,l for both sibling case and first-cousin
case and determine k, l are siblings if the score for sibling case is
lower.

One of the challenges in this approach is to compute the expected
IBD length between a pair of extant individuals efficiently, in
the presence of inbreeding. IPED considers the inheritance paths

between the ancestor and the extant individuals, where each
inheritance path corresponds to one path in the pedigree between
the ancestor and the extant individual. The benefit of inheritance
paths is the distance of a pair of extant individuals can be computed
as the sum of the inheritance paths between the two individuals and
their common ancestor. If we know all the inheritance paths from the
ancestor to the extant individuals, we can compute the probability
that an allele of the extant individual is inherited from the ancestor
by using the average length of the inheritance paths. The probability
can be further utilized to compute the expected average IBD length
between a pair of extant individuals

However, the number of inheritance paths can be exponential.
Although the number of inheritance paths can be exponential, their
lengths are bounded by the height of the pedigree. Therefore IPED
uses a hash data structure IPP (Inheritance Path Pair) to hash all
the inheritance paths of the same length into a bucket and the
number of buckets is bounded by the height of the pedigree and
thus is usually small. IPPs are in the form of (length of inheritance
path, number of inheritance paths with such length) and they are
saved for each individual. A dynamic programming algorithm is
developed to populate the hash table of the individuals generation
by generation. By doing this, IPED avoids redundant computation of
the inheritance paths where the entire pedigree needs to be explored
repeatedly and thus the dynamic programming algorithm is very
efficient.

3 METHODS
3.1 IPED2
IPED is shown to be efficient for large pedigrees and for both
outbreeding and inbreeding cases. However, like all existing
methods, it considers only relatively simple pedigrees. In reality, the
pedigrees can be much more complicated. In this work, we consider
a complicated scenario: half-sibling, where two individuals share
only one parent, which is indeed a common scenario.

To address the half-sibling scenario, we proposed IPED2, which
is also an inheritance path based pedigree reconstruction method.
However, it significantly differs from IPED in both the statistical
model and the parent reconstruction algorithm as both of them
become much more complicated when half-siblings are considered.

3.1.1 Workflow We first show the workflow of IPED2: starting
from the extant individuals IPED2 reconstructs the pedigree
generation by generation backwards in time. For each generation,
IPED2 identifies the sibling and half-sibling relationships between
the individuals at the current generation, using a novel statistic test
model, and create parents for them according to their relationships
using a novel graph algorithm. The algorithm stops till a certain
height of generation is reached. Next we show more details of the
method.

3.1.2 Statistical Test In IPED, the statistic test compares only
two cases: sibling and non-sibling. For non-sibling, at most two
individuals are first-cousin so first-cousin is used. In order to
handle half-siblings, in IPED2 we need to compare the statistic test
results for fours cases: siblings, half-siblings, first-cousins, first-
half-cousins and select the case with the smallest score. As in the
genome one allele can be inherited from either father or mother and

4 D He et al

there are two alleles for each SNP, we need to consider inheritance
paths for both alleles, where each allele is on one of the two
haplotypes. Therefore we need to consider the average IBD length
of both haplotypes. For simplicity, we just call the distance between
two alleles from two haplotypes as the distance between the two
haplotypes.

Let’s first consider extant individuals. For sibling case, the
distance between two individuals is 2 for both haplotypes as alleles
from both haplotypes are inherited from the same pair of parents
and the distance between parent and child is one. For half-sibling
case, the distance between two individuals for one haplotype is 2,
for the other haplotype is at least 4, as one pair of alleles from the
two individuals are inherited from the same parent, the other pair of
alleles from the two individuals are inherited at least from the same
grandparent. Similarly, for first-cousin case, the distance between
two individuals are 4 for both haplotypes. For first-half-cousin case,
the distance between two individuals for one haplotype is 4, for the
other haplotype is at least 6.

Assuming individuals i, j both have a pair of haplotypes noted
as (i1, i2), (j1, j2), there are two possible ways to compare them
for IBD, namely [(i1, j1), (i2, j2)] or [(i1, j2), (i2, j1)]. We select
the way that maximizes the sum of the averaged IBD length for
both haplotypes as the larger the IBD length is, the more likely
the reported IBD tracts are true IBD tracts. We apply the following
equation:

vi,j =
max(vi1,j1 + vi2,j2 , vi1,j2 + vi2,j1)

2
(5)

where vi1,j1 is computed according to Equation 1 by considering
the estimated IBD between i1, j1.

For individuals on higher generations, we compute vk,l for every
pair of ancestral individuals k, l using Equation 4. To compute
vi,j for the pair of extant individuals i, j, we concatenate the
inheritance paths from k to i and from l to j and increase the
total length of the concatenated path by t according to a test option
for the four different cases. For each case the two combinations
of haplotype pairs from i, j may be increased by different length.
Therefore, without losing generality, assuming max(vi1,j1 +
vi2,j2 , vi1,j2 + vi2,j1) = vi1,j1 + vi2,j2 , we have t1 and t2 as
the distances between the alleles from the haplotype pairs i1, j1 and
i2, j2 between i, j, respectively. Assuming estimate(IBDi1,j1) ≥
estimate(IBDi2,j2) and t1 ≤ t2, then t1 is applied to vi1,j1 and
t2 is applied to vi2,j2 , namely the smaller one of t1 and t2 is applied
to the haplotype with larger average IBD length. For sibling case, t1
= t2 = 2. For half-sibling case, t1 = 2, t2 = 4. For first-cousin case,
t1 = t2 = 4. For first-half-cousin case, t1 = 4, t2 = 6.

To compute the score vi,j , we need to compute E(IBDi,j)
and V (IBDi,j) using Formula 3, where the key factor M is the
average distance between i, j. We conduct a dynamic programming
algorithm similar to that of IPED to compute the inheritance paths
which is shown to be very efficient for large pedigrees and for both
outbreeding and inbreeding scenarios.

The dynamic programming algorithm starts the reconstruction
from generation 2 as generation 1 consists of all the known extant
individuals. Then at generation 2, assuming we have a founder Gi

2

(without losing generality, assuming he is father) and his k children
in generation 1 as Gi1

1 , Gi2
1 , . . . , G

ik
1 . Then for every paternal allele

of each child, obviously we have 1 possible length 1 inheritance

Fig. 3: An example of the dynamic programming algorithm. (1, (3,
2), (4, 1)) indicates the corresponding node has a total of 2+1 = 3
inheritance paths to node 1, where 2 of them are of length 3, 1 of
them is of length 4.

path from the founder. Therefore, we save [Gij
1 , (1, 1)] for Gi

2 for
1 ≤ j ≤ k where (1, 1) is one IPP of the form (length of inheritance
path, number of inheritance paths with such length). Now let’s
assume we are at generation T, and we are reconstructing generation
T + 1. Again, assuming we have a founder Gi

T+1 as father and his
k children in generation T as Gi1

T , Gi2
T , . . . , G

ik
T . We then obtain

the IPPs for Gi
T+1 by merging the IPPs for Gi1

T , Gi2
T , . . . , G

ik
T . The

recursion is shown as below:

IPP (Gi
T+1) =

k∑
j=1

IPP (G
ij
T) + 1

where IPP (Gi
T+1) is the set of IPPs for node Gi

T+1. Assuming for
G

ij
T , we have IPPs

[Gt
1, ((Lj1 , Nj1), . . . , (Ljm , Njm))], IPP (G

ij
T) + 1 is to update

these pairs as
[Gt

1, (Lj1+1, Nj1), . . . , (Ljm+1, Njm)]. IPP (Ga
T)+IPP (Gb

T)
is to merge two sets of IPPs. When we merge two pairs (La, Na)
and (Lb, Nb), if La = Lb, we obtain a merged pair (La, Na +Nb).
Otherwise we keep the two pairs. Therefore, after the merge, we
obtain [Gt

1, ((L1, N1), . . . , (Lm, Nm))] for each extant individual
Gt

1 who is the descendant of Gi
T+1, where L1, . . . , Lm are all

unique and m ≤ T +1. The summation (
∑

) is similarly defined as
the repeated merging operation over multiple sets of IPPs.

An example of the dynamic programming algorithm is shown
in Figure 3. As we can see in the example, when we merge the
IPPs, we increase the length of the paths by 1 and add the number
for the paths of the same length. The complexity of this dynamic
programming algorithm is O(E × k ×H) where E is the number
of extant individuals, k is the number of direct children for each
founder, H is the height of the pedigree. Therefore it is linear time
with respect to the height of the pedigree.

Once the inheritance paths are computed, we can compute M
using Algorithm 1. The average number of meioses M is computed
as the average length of the paths between i, j. We have M1 =
ComputeDis(t1, IPPi, IPPj) and M2 =
ComputeDis(t2, IPPi, IPPj) where the function
ComputeDis() is defined in Algorithm 1 and IPPi is the
inheritance path pair of i. Then we use M1 and M2 to compute
vi1,j1 and vi2,j2 respectively using Equation 3, which are further
used to compute vi,j using Equation 5.

5

Fig. 4: Examples of a relationship graph (a) and the corresponding
virtual half-sibling graph (b).

3.1.3 Construct Parents Another challenging problem when half-
sibling is considered is to construct parents. To construct parents,
IPED builds a sibling graph on each generation where the nodes are
individuals and the edges indicate sibling relationships. A maximum
clique algorithm is applied to select the cliques of siblings in a
greedy manner. In IPED2, we need to consider both sibling and
half-sibling relationships and one node can be in both relationships.

To address this problem, we build a relationship graph, where
the nodes are individuals, the edges indicate sibling or half-sibling
relationships. As shown in Figure 4 (a), we use concrete edges
to indicate sibling relationships (we call them sibling edges), and
dashed edges to indicate half-sibling relationships (we call them
half-sibling edges). The problem of creating parents for each
individual given the graph is equivalent to the following labeling
problem:

PROBLEM 3.1. Given a relationship graph, we would like to
assign each node with two labels, such that the labels satisfy the
labeling constraints: (1) Each node has two different labels. (2)
A pair of nodes connected by a sibling edge have two identical
labels. (3) A pair of nodes connected by a half-sibling edge have
one identical label and one different label. (4) A pair of nodes that
are not connected by any edge have two different labels.

Algorithm 1 ComputeDis(t, IPPi, IPPj): Once all the inheritance
paths are computed, we can calculate the average number of meioses
between a pair of nodes i, j given their IPPs [12]

Input: t (test options), IPPi = [i, ((lg1 , ng1), . . . , (lgh , ngh)] and
IPPj = [j, ((lk1 , nk1), . . . , (lkf , nkf))]

Output: The approximate average path length between i, j
Length← 0
Num← 0
for a = 1 to h do

for b = 1 to f do
Num← Num+ nga × nkb

Length← Length+ (lga + lkb + t)× (nga × nkb)
end for

end for
approximate average path length← Length

Num

From now on we will use “labels” and “parents” interchangeably.
We call a solution that satisfies the above constrains a valid solution.
The challenge of the above problem is that a valid solution may
not always exist for a given relationship graph. For example, in

Figure 5 (a), all of the node should have identical labels as they
are all connected by sibling edges. However, some of them are not
connected directly by a sibling-edge, indicating they should have
different labels. Thus there is no valid solution. This is mainly due
to the statistical test errors where the tests either report false positive
or false negative sibling relationships.

Therefore, in order to guarantee a valid solution, we may need
to delete certain edges in the relationship graph to resolve conflict.
Notice we delete edges instead of inserting edges to resolve conflicts
because it would be complicated to determine which type of edges to
insert and we try to be conservative on determining the relationships.
As there are exponential number of ways to delete the edges with
respect to the number of edges, we propose a revised labeling
problem:

PROBLEM 3.2. Given a relationship graph, find a valid labeling
solution which requires the minimum number of edge deletions and
satisfies all the labeling constraints on the graph after the edge
deletions.

Notice the above problem is an optimization problem and a valid
solution always exists. A naive solution is to delete all the edges
such that all the nodes are disconnected. Then we can create a pair
of unique parents for each node. This solution is valid but obviously
not the optimal one.

To solve the above problem, a naive algorithm is to enumerate
all possible combinations of the edges to be deleted. Then we can
check for each combination if there is a valid labeling solution. This
algorithm is optimal but it is of complexity O(e!) where e is the
number of edges in the graph and is obviously not feasible for even
small graphs.

We observe that in the relationship graph, many edges are
irrelevant to the conflicts and deleting them would not help to
resolve the conflicts. We also observe that there are two types of
conflicts as shown below:

– Conflicts within connected components by sibling edges. As
shown in Figure 5 (a), we can see the connected component is
not a clique as there are missing edges. As sibling relationships
should be transitive, there is a conflict.

– Conflicts between sibling cliques. As shown in Figure 5 (b), if
two sibling cliques are connected by at least one half-sibling
edge, all pairs of nodes between the two cliques should be
connected by a half-sibling edge. Otherwise there is a conflict.

Notice the cliques can be of size one, namely it has only one node.
Therefore, we can first identify the cliques involved in the conflicts
and remove only those related edges to resolve the conflicts. For
conflicts among sibling cliques, we conduct a greedy strategy where
we select the maximal clique and then remove all the nodes and
edges of the clique. We then identify the next maximal clique in the
remaining graph and we repeat the process until there is no node left.
An example is shown in Figure 5 (a). For conflicts between sibling
cliques, we check if all pairs of nodes between the two cliques are
connected by a half-sibling edge. If not, we remove all the half-
sibling edges between the two cliques. An example is shown in
Figure 5 (b). So the two examples in Figure 5 are both reduced to
Figure 5 (c) once we resolve the conflicts.

6 D He et al

Table 1. The values of the five sets of parameters. Considering the fact that we only have few families in each generation, the true half-sibling rate is much
lower than the pre-set parameter. Please find the detailed explanation of the variables in the paper.

Parameter Set Ave. num. of children Num. of indi. each generation Rate of half-sibling Height
1 3 20 0 5
2 2 20 0.8 5
3 3 40 0.5 5
4 3 20 0.8 10
5 3 40 0.8 10

Table 2. Reconstruction accuracy for IPED2, IPED and COP for parameter sets one, two and three as shown in Table 1. We vary the height of the pedigree.

Parameter One Two Three
Height Family Size IPED2 IPED COP Family Size IPED2 IPED COP Family Size IPED2 IPED COP
g = 2 32 0.962 0.995 0.83 34 0.976 0.964 0.842 63 0.972 0.968 0.892
g = 3 42 0.780 0.789 0.428 50 0.684 0.631 0.422 82 0.750 0.721 0.576
g = 4 52 0.714 0.772 0.323 62 0.618 0.569 0.339 102 0.624 0.609 0.321
g = 5 64 0.704 0.771 0.322 72 0.603 0.569 0.337 122 0.616 0.601 0.310

Fig. 5: Examples of possible conflicts in relationship graph ((a) and
(b)) and their resolution (c).

Once we resolve all the conflicts, there is always a valid labeling
solution for the relationship graph. The problem is how should we
label the nodes. For nodes that are involved in the sibling cliques,
it’s relatively easy: we just need to create a pair of unique labels for
each clique and all the nodes share the same pair of labels. However,
if one sibling clique is connected to another sibling clique by half-
sibling edges, the two sibling cliques should share one common
parent. Therefore, when we create a pair of parents, we not only
need to check the sibling relationships, but also we need to check the
half-sibling relationships. As an individual can have many different
relationships, the problems becomes very complicated.

In order to develop an efficient labeling algorithm, we build a
“virtual half-sibling” graph from the relationship graph based on the
motivation that all the nodes in the same sibling clique should share
the same pair of labels. Thus we merge every sibling clique into a
“virtual” node and connect these “virtual” nodes by “virtual” half-
sibling edges if the two sibling cliques are still connected by half-
sibling edges after we have resolved all the conflicts. An example
is shown in Figure 4 (b). Now the problem is reduced to labeling
a graph where there are only half-sibling edges and thus becomes
easier.

We first show the following three lemmas.

LEMMA 3.3. Half-sibling relationships are not transitive.

Proof: As shown in Figure 1, nodes 13 and 15 are half-siblings
and nodes 14 and 15 are half-siblings. However, nodes 13 and
14 are siblings instead of half-siblings. Therefore, half-sibling
relationships are not transitive. We can not simply identify maximal
cliques in the half-sibling graph when we create parents for the
nodes.

LEMMA 3.4. In the half-sibling graph, all the nodes in the same
clique of size greater than one share one and only one common
parent.

Proof: For a clique of size two, as the two nodes are half-siblings,
they must share the same one common parent and only this parent.
For a clique of size larger than two, we start with clique of size
three. For example, we have three individuals A,B,C who are in
the same clique. Assuming A has parent 1,2 and B has parent 2,3.
As C is half-sibling of both A and B, C needs to share one parent
with A and one parent with B. The only possible parents for C are
(1,3) or (2,4) where 4 is a unique parent for C. However, as 2 mates
with both 1 and 3, 1 and 3 need to be of the same sex and they can

Table 3. Reconstruction accuracy for IPED2, IPED and COP for parameter sets four and five as shown in Table 1.

Parameter set Family Size Generation IPED2 IPED COP
4 101 10 0.333 0.284 0.275
5 232 10 0.240 0.214 0.163

7

Fig. 6: Examples of sequentially labeling the half-sibling graph.
Each step of the labeling process is shown.

not mate. So the pair of parents (1,3) would not happen in reality.
Thus the only valid solution is (2,4) and A,B,C share one and only
one common parent. For a clique of size larger than three, as it can
be decomposed into sub-cliques of size three, all the nodes need to
share the same one common parent and only the parent.

LEMMA 3.5. One individual can be only in at most two half-
sibling cliques of size greater than one.

Proof: For an individual to involve in a half-sibling clique, one
of the parents need to mate with multiple individuals. As one
individual has only two parents, at most both parents mate with
multiple individuals. Therefore the individual can only involve in
at most two half-sibling cliques.

Based on the above lemmas, we introduce a labeling algorithm
which is guaranteed to be valid. We first apply the well known
Bron-Kerbosch algorithm [4] on the “virtual half-sibling” graph,
which identifies all the maximum cliques of the graph. The time
complexity of the algorithm is O(N3) where N is the number of
nodes in the graph. Then for each maximum clique, we assign an
unique common label, which will be the shared parents of the clique.
Next we take each individual of each clique, if the individual is in
only one clique, we assign a unique label to the individual as the
other parent of this individual. If the individual is in two cliques,
his parents are the combination of the two unique labels of the two
cliques. According to Lemma 3.5, an individual can be in at most
two cliques. Thus the above labeling algorithm is guaranteed to
generate valid labels.

Notice the above algorithm has complexity O(N3 + N) where
O(N3) is the complexity to identify all maximum cliques and
O(N) is the complexity to assign labels for each individual. This
complexity is high if the number of nodes N in the graph is large.
In reality, the number of individuals on each generation is relatively
small, and N is the number of “virtual half-sibling” cliques. Thus
N is a relatively small number. So the algorithm is applicable to
relatively large pedigrees.

For illustration purpose, we show an example in Figure 6. Clearly
the graph contains 3 cliques. Thus in Figure 6 (a), we assign a
unique common label to each clique as a, b, c, respectively. Then
in Figure 6 (b), in each clique, we identify the nodes that belong
to only this clique. These four nodes are marked with orange color.
We assign one unique label to each such node. Combined with their
clique labels, we obtain the pair of labels for these four nodes as
ad, ae, cf, cg. In Figure 6 (c), for the blue node in both the clique
with common label a and common label b, we pair the two labels to
obtain ab. For the green node in both the clique with common label
b and common label c, we pair the two labels to obtain bc. Thus we
obtain a set of valid labels for this graph.

3.2 Performance Evaluation
To evaluate the performance of IPED2, we use the same metric used
in [12]:

accuracy(R,O) =

∑
i∈E,j∈E F (Ri,j , Oi,j)

|E|2

F (Ri,j , Oi,j) =

{
1 if Ri,j = Oi,j

0 otherwise

where R is the reconstructed pedigree, O is the original pedigree,
E is the set of extant individuals, |E| is the number of extant
individuals, Ri,j is the distance of individual i and j in pedigree
R and Ri,j = ∞ if i, j are not connected in the pedigree graph.
Notice if there are multiple paths between i and j in R, we select
the shortest path.

4 RESULTS
In order to test the performance of our method on complicated
pedigrees, we use simulated pedigrees with different parameter
settings and instead of genotype data, we simulate haplotypes
directly. The haplotypes of the individuals are generated according
to the Wright-Fisher Model [18] with monogamy. The model
takes parameters for a fixed populations size, a Poisson number of
offspring and a number of generations (or the height of pedigree).
We consider identical regions of length greater than 1Mb as IBD
regions. We compare IPED2 with IPED [12] and COP [14], the only
two known algorithms that are scalable to relatively large pedigrees.
COP is designed for only outbred pedigrees because the related
algorithm which can handle inbreeding, CIP, is not scalable to large
pedigrees. All the experiments are done on a 2.4GHz Intel Dual
Core machine with 4G memory.

We tested 5 sets of parameters, summarized in Table 1, by varying
every parameter of the Wright-Fisher Model. The parameters
include the average number of children of each family, the
approximate number of individuals of each generation, the rate
of half-sibling, the height, or the number of generations of the

8 D He et al

Table 4. Number of reconstructed half-siblings vs. real half-siblings
for the last four different parameter sets.

Parameter Set Reconstructed Real
2 32 80
3 62 150
4 42 122
5 111 220

pedigree. Note that the parameter that represents the number
of individuals per generation is only a parameter in the Wright
Fisher model and the actual number of individuals generated in the
simulation may differ. The rate of half-sibling is the probability
to have “wife-husband-wife”(or “husband-wife-husband”) triples
in each generation. According to the Wright-Fisher model, the
number of individuals in each generation is a constant number.
So, in order to simulate the next generation with the same number
of individuals, we generate children from the current generation
by forming couples(or triples) incrementally until we have enough
children. If the last family is a triple, it is not rare that we obtain
enough children from only one couple and the half-siblings from
this family is not selected into the next generation. Considering the
fact that we only have few families in each generation, the true half-
sibling rate is much lower than the pre-set parameter. For each set
of parameters, we randomly generate 10 pedigrees and report results
averaged over the 10 pedigrees.

In Table 2, we show reconstruction accuracy for IPED2, IPED
and COP for parameter sets 1, 2 and 3. For parameter set 1, the rate
of half-sibling is 0, namely there is no half-sibling in the pedigrees.
We can see that the accuracy of IPED2 and IPED are both much
better than that of COP. IPED2 has slightly worse accuracy than
that of IPED, due to the false positive half-sibling relationships.
However, when the rate of half-sibling is not 0, for parameter sets 2
and 3, IPED2 has better accuracy than that of IPED, indicating that
IPED2 is able to improve the reconstruction accuracy by effectively
capturing half-sibling relationships.

We also tested the performance of IPED2, IPED and COP for
deep pedigrees with 10 generations, with parameter settings 4 and 5.
The results are shown in Table 3. IPED2 again achieves much better
accuracy than those of IPED and COP. For both parameter settings,
both IPED2 and IPED outperform COP significantly. All three
methods finish in seconds even for the deep pedigrees, indicating
IPED2 is scalable to large and complicated pedigrees.

Finally we show the number of reconstructed half-sibling
relationships and the real half-sibling relationships for parameter set
2 to 5 in Table 4. We can see that IPED2 missed about half of the true
half-sibling relationships. This might be because we are relatively
conservative at claiming half-sibling relationships by deleting all
suspicious half-sibling relationships from the relationship graphs. In
our future work, we would like to develop more effective strategies
to identify half-sibling relationships.

5 DISCUSSION AND FUTURE WORK
We have presented a new efficient method for pedigree
reconstruction, IPED2, which is designed to handle complex
pedigrees. IPED2 is particularly designed to handle inbreeding and

the presence of half-siblings which to our knowledge, previous
methods could not address when genotype data is used. It utilizes
a novel statistic test model and a novel graph algorithm to handle
half-sibling scenario. We show that our method compares favorably
under a wide range of simulation scenarios to previous methods
such as IPED and COP and it is scalable to large pedigrees. In our
future work, we would like to explore a better way to handle the
conflicts in the relationship graph to capture more true half-sibling
relationships. For example, we would like to consider more actions
such as insertion, deletion and replacement to resolve the conflicts.
We would also like to consider cases where genotypes of ancestral
individuals are known and genotypes of extant individuals that are
not on the lowest generations are known.

REFERENCES
[1]G.R. Abecasis, S.S. Cherny, W.O. Cookson, L.R. Cardon, et al. Merlin-rapid

analysis of dense genetic maps using sparse gene flow trees. Nature genetics,
30(1):97–101, 2002.

[2]A. Albrechtsen, T. Sand Korneliussen, I. Moltke, T. van Overseem Hansen,
F.C. Nielsen, and R. Nielsen. Relatedness mapping and tracts of relatedness
for genome-wide data in the presence of linkage disequilibrium. Genetic
epidemiology, 33(3):266–274, 2009.

[3]D.M. Behar, S. Rosset, J. Blue-Smith, O. Balanovsky, S. Tzur, D. Comas,
R.J. Mitchell, L. Quintana-Murci, C. Tyler-Smith, and R.S. Wells. The
genographic project public participation mitochondrial dna database. PLoS
Genetics, 3(6):e104, 2007.

[4]Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Communications of the ACM, 16(9):575–577, 1973.

[5]B.L. Browning and S.R. Browning. A fast, powerful method for detecting identity
by descent. The American Journal of Human Genetics, 88(2):173–182, 2011.

[6]G. Coop, X. Wen, C. Ober, J.K. Pritchard, and M. Przeworski. High-resolution
mapping of crossovers reveals extensive variation in fine-scale recombination
patterns among humans. Science, 319(5868):1395–1398, 2008.

[7]K.P. Donnelly. The probability that related individuals share some section of
genome identical by descent. Theoretical Population Biology, 23(1):34–63, 1983.

[8]R.C. Elston and J. Stewart. A general model for the genetic analysis of pedigree
data. Human heredity, 21(6):523–542, 1971.

[9]M. Fishelson, N. Dovgolevsky, D. Geiger, et al. Maximum likelihood haplotyping
for general pedigrees. Human Heredity, 59(1):41–60, 2005.

[10]A. Gusev, J.K. Lowe, M. Stoffel, M.J. Daly, D. Altshuler, J.L. Breslow, J.M.
Friedman, and I. Pe’er. Whole population, genome-wide mapping of hidden
relatedness. Genome Research, 19(2):318–326, 2009.

[11]Dan He. Ibd-groupon: an efficient method for detecting group-wise identity-
by-descent regions simultaneously in multiple individuals based on pairwise ibd
relationships. Bioinformatics, 29(13):i162–i170, 2013.

[12]Dan He, Zhanyong Wang, Buhm Han, Laxmi Parida, and Eleazar Eskin. Iped:
Inheritance path based pedigree reconstruction algorithm using genotype data. In
Research in Computational Molecular Biology, pp. 75–87. Springer, 2013.

[13]Owen R Jones and Jinliang Wang. Colony: a program for parentage and
sibship inference from multilocus genotype data. Molecular Ecology Resources,
10(3):551–555, 2010.

[14]B. Kirkpatrick, S. Li, R. Karp, and E. Halperin. Pedigree reconstruction using
identity by descent. In Research in Computational Molecular Biology, pp. 136–
152. Springer, 2011.

[15]E.S. Lander and P. Green. Construction of multilocus genetic linkage maps in
humans. Proceedings of the National Academy of Sciences, 84(8):2363, 1987.

[16]X. Li, X. Yin, and J. Li. Efficient identification of identical-by-descent status
in pedigrees with many untyped individuals. Bioinformatics, 26(12):i191–i198,
2010.

[17]S.B. Ng, K.J. Buckingham, C. Lee, A.W. Bigham, H.K. Tabor, K.M. Dent, C.D.
Huff, P.T. Shannon, E.W. Jabs, D.A. Nickerson, et al. Exome sequencing identifies
the cause of a mendelian disorder. Nature genetics, 42(1):30–35, 2009.

[18]W.H. Press. Wright-fisher models, approximations, and minimum increments of
evolution. 2011.

[19]S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M.A.R. Ferreira, D. Bender,
J. Maller, P. Sklar, P.I.W. De Bakker, M.J. Daly, et al. Plink: a tool set for whole-
genome association and population-based linkage analyses. The American Journal

9

of Human Genetics, 81(3):559–575, 2007.
[20]B. Servin, O.C. Martin, M. Mézard, et al. Toward a theory of marker-assisted gene

pyramiding. Genetics, 168(1):513–523, 2004.
[21]Saad I Sheikh, Tanya Y Berger-Wolf, Ashfaq A Khokhar, Isabel C

Caballero, Mary V Ashley, Wanpracha Chaovalitwongse, Chun-An Chou, and
Bhaskar DasGupta. Combinatorial reconstruction of half-sibling groups from
microsatellite data. Journal of Bioinformatics and Computational Biology,
8(02):337–356, 2010.

[22]E. Sobel and K. Lange. Descent graphs in pedigree analysis: applications to
haplotyping, location scores, and marker-sharing statistics. American journal of
human genetics, 58(6):1323, 1996.

[23]B.D. Thatte and M. Steel. Reconstructing pedigrees: A stochastic perspective.
Journal of theoretical biology, 251(3):440–449, 2008.

[24]E.A. Thompson. Pedigree analysis in human genetics. Johns Hopkins University
Press Baltimore, MD, 1986.

	1 Introduction
	2 Preliminaries
	2.1 Pedigree Graphs
	2.2 Identical-by-Descent (IBD)
	2.3 IPED

	3 Methods
	3.1 IPED2
	3.2 Performance Evaluation

	4 Results
	5 Discussion and Future Work

