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Switched latent force models for reverse-engineering
transcriptional regulation in gene expression data

Andrés F. Lépez-Lopera, and Mauricio A. Alvarez

Abstract—To survive environmental conditions, cells transcribe their response activities into encoded mRNA sequences in order to
produce certain amounts of protein concentrations. The external conditions are mapped into the cell through the activation of special
proteins called transcription factors (TFs). Due to the difficult task to measure experimentally TF behaviours, and the challenges to
capture their quick-time dynamics, different types of models based on differential equations have been proposed. However, those
approaches usually incur in costly procedures, and they present problems to describe sudden changes in TF regulators. In this paper,
we present a switched dynamical latent force model for reverse-engineering transcriptional regulation in gene expression data which
allows the exact inference over latent TF activities driving some observed gene expressions through a linear differential equation. To
deal with discontinuities in the dynamics, we introduce an approach that switches between different TF activities and different dynamical
systems. This creates a versatile representation of transcription networks that can capture discrete changes and non-linearities We
evaluate our model on both simulated data and real-data (e.g. microaerobic shift in E. coli, yeast respiration), concluding that our
framework allows for the fitting of the expression data while being able to infer continuous-time TF profiles.

Index Terms—biology and genetics, differential equations, gene expression data, latent force models, reverse-engineering,
transcriptional regulation.

<+

INTRODUCTION

ranscriptional regulation is the biological process in

living organisms in which the cell regulates the
conversion of DNA to RNA (transcription) in response
to external stimuli [1], [2]. It is well known that the
source stimuli are mapped into the cell by special proteins
called transcription factors (TFs). According to the needs
of the cell, TF regulators may bind to specific genes to
activate or inhibit their transcription in order to control
mRNA activity [2], [3]. The information encoded within
the mRNA sequence is translated to the ribosome, place
in which it is synthesized into amino-acid chains to
produce certain amounts of specific protein concentrations
[1]. Self-regulation in cells is carried out by controlling
the production of these concentrations, allowing cells to
adapt to changes in environmental conditions. For this
reason, the understanding of the transcriptional regulation
in gene expressions is key for describing the biophysics,
genetic and molecular basis, and it has been widely
demanded in biomedical and bioengineering applications
[1], [2], [4]. Drug design, bacterial transcription, and genetic
engineering are some case studies in which transcriptional
regulation contains important biological information [5]-[8].

Microarray technology are usually used to measure
mRNA activities on a genome-wide scale. Techniques such
as chromatin immunoprecipitation (ChIP) have largely
unveiled the wiring of cellular transcriptional regulatory
networks, identifying which mRNA are bound by which TF
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regulators [7]. More recently, high throughput sequencing
methods have been developed to provide more precise
measurements for gene expression quantification [9], [10].
However, while specific genes are relatively easy to measure
experimentally, there are some challenges in measuring
active TF concentration levels (or to evaluate their effect
on genes) [7]. The comprehension of both gene expression
activity and TF behaviour, together with the knowledge
of key biological parameters, are needed to obtain a
fully quantitative description of transcriptional processes.
Although important, transcriptional regulation in gene
expression data is far from being wholly understood [11].
Aiming to develop probabilistic approaches for
modelling  transcriptional = processes, the statistical
community has proposed several methods to infer TF
activities [6]-[8], [11]-[17]. Current studies suggest that
reverse-engineering approaches based on differential
equations provide high accurate performances [7], [11],
[15], [16]. In [12], a parametric approach based on a
time-dependent linear ordinary differential equation (ODE)
is introduced in order to describe gene activities. The
approach presents two challenges. First, it is based on
Markov Chain Monte Carlo (MCMC), requiring substantial
computational resources to carry out the inference of
TF concentrations [12]. Second, the approach limits
the inference of TF regulators to discrete time-points
where the data were collected. Later in [7], the authors
show that Gaussian processes, inspired by the physical
model from [12], provide a simple and computationally
efficient non-parametric method for reverse-engineering
of continuous-time TF profiles [7]. The aim from [7] is
to infer the TF activity when there are no observations
of its behaviour but using the data available from
gene expressions. In particular, they introduce Gaussian
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priors over the activities of latent TFs, and compute the
corresponding Gaussian process of the mRNA profiles
for which the mechanistic model is encoded into its
covariance function. The hybrid framework from [7] greatly
outperforms the approach from [12], making it an attractive
model for more realistic regulatory networks. The proposal
from [7] is extended later in [13] to infer latent chemical
species in biochemical networks exhibiting also accurate
results.

The approaches proposed in [7], [12]-[15] may be
applied effectively when modelling dynamics of simple
regulatory networks, where the gene expression data are
driven by a finite set of TF regulators. However, in order
to survive to environmental changes, cells continuously
control the production of the proteins commonly exhibiting
sudden changes in the TF activities. Sudden oxygen
starvation in bacterium organisms is an example where
the TF activity changes suddenly from an inactive state
to an active state in order to activate or inhibit its
transcription. Here, the absence of oxygen provokes that
the organism moves from a nitric metabolism (without
oxygen) to an aerobic (with oxygen) metabolism. This
type of changes in the TF dynamics due to external
stimuli demand proper models, representing interesting
challenges to the computational biology community [8],
[16], [18]. To the best of our knowledge, there are only
two approaches in which quick time-varying behaviours
of TF regulators are taken into account. The first approach
is the switched-based model of continuous-time TF protein
proposed in [8], where the TF regulator is stimulated by
stress signals. In [8], the latent process in [7] is modelled
as a Markovian stochastic process accounting for the
transitions between two states. The model from [8] is later
extended in [18] for learning combinatorial transcriptional
dynamics from gene expression data. The second approach
is the multi-switch model proposed in [16]. It consists
of a piecewise-linear ODE model of mRNA dynamics,
which can be fitted with a reversible jump MCMC
sampler for estimating the gene-specific hyperparameters
[16]. Approaches from [8] and [16] have shown satisfactory
results to fitting the switching changes in TF behaviours,
but computational overheads are significant due to complex
inference algorithms.

Inspired by the idea of combining Gaussian processes
with first order ordinary differential equations for modelling
transcriptional regulation, in this paper we introduce a
switched dynamical latent force model [19] that accounts for
the quick time-varying behaviour of transcription factors in
different transcriptional regulation processes. Latent force
models [14], [15] are Gaussian processes with covariance
functions derived from principled mechanistic models
expressed as ordinary or partial differential equations. The
Gaussian process model proposed by [7] can be seen as a
particular case of a latent force model, one for which the
covariance function is derived from a first order ordinary
differential equation. Whereas a traditional latent force
model assumes that the source underlying the mechanistic
model is smooth, a switched dynamical latent force model
[19] allows for discontinuities or non-smooth transitions for
the latent input. In this paper, sharp transitions in a latent
source can be either used to represent the on/off switching

TABLE 1
Mathematical notations

Symbol Definition
a,A Constants, hyperparameters
X, m, [ Column vectors
X, K, X2 Matrices
X7 X1 Transpose/Inverse of X
y(t) Function with entry ¢

y(t1,t2, -, tn)
{ya(t)} 4

Function with multiple entries t1,t2,---,tn
A set of functions y4(t) whered =1,---,D

erf{x} Error function evaluated at =
p(z) Marginal density distribution of x
p(x|0) Conditional distribution of x given
GP(m,K) Gaussian process with mean m and covariance K
N (m,K) Gaussian distribution
Ky y Covariance matrix with entries k¢,y (t,t’)
ka,y(t,t) Covariance function between z(t) and y(¢')

of different transcription factors or a transcription factor
with sudden changes in its dynamics. Switched dynamical
latent force models were introduced by [19] for segmenting
motor skills for humanoid robotics applications. Motor skills
are represented using second order ordinary differential
equations.

The switched dynamical latent force model constrains
the gene activity (output) at each switching time to be
the same, allowing for the gene expressions to remain
continuous and piecewise differentiable. It also provides an
exact and computationally efficient framework for inference
over the latent TF profiles.

We test our model under different artificial toy data and
real-world biological problems (e.g. microaerobic shift in
E. coli, and the control of ribosomal production in yeast
metabolic cycle). For the real-data examples, we compare
the results of our approach with respect to the ones
proposed in [8], [18], due to the availability of their codes
to reproduce the examples.

This paper is organised as follows. The background
is described in section 2. We introduce the standard
latent force model (LFM) proposed in [14]. In section 3,
we derive the switched dynamical LFM when modelling
reverse-engineering transcriptional regulation for quick
time-varying TF regulators. The procedure followed for
the experimental results is given in section 4. In section
5, we show and discuss the results obtained employing
our framework on both artificial data and real-world
biological data. Section 6 shows the conclusions, as well
as the potential future work. Finally, in the appendices,
we describe in detail the computation of some necessary
expressions required for the formulation of the model.

2 BACKGROUND

In this section, we focus on the description of
reverse-engineering transcriptional regulation, and review
the standard latent force model (LFMs) using Gaussian
processes (GPs) for reverse-engineering transcriptional
regulation. Table 1 shows the mathematical notations
employed in this paper.
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2.1 Reverse-engineering for transcriptional regulation
in gene expression data

In order to develop probabilistic reverse-engineering
approaches for transcription networks, several models have
been proposed to infer activity levels of proteins from
time-series measurements of the targets’ expression levels
[71, [8], [11]-[18], [20]-[22]. Recent studies have shown that
there is a simplification to model transcriptional regulation
processes in which the gene expression data involve the
use of differential equations [7], [13], [16], [18]. To describe
the reverse-engineering transcriptional regulation in gene
expression data, different mechanistic models have been
employed: from linear ordinary differential equations (ODE)
[7], [8], [11], [13]-[18], [21], to non-linear partial differential
equations (PDE) [15], [20]-[22]. However, since the early
days of molecular biology, the mechanistic model based on
the first-order ODE from [1] has shown accurate results with
high-resolution dynamics experiments [1], [2].

Later in [7], [15], the physical system from [1] is extended
for multiple gene activities in which the contribution of
external stimuli are included. According to [7], [15], a set of
D gene expressions {y4(t)}2_, (outputs), which are driven
by a set of R TF regulators {u,(t)}2; (driven-forces), can
be modelled using the following set of D coupled first-order
ODEs

R
+ ’Ydyd(t) = Bd + Z Sr,dur (t)v (1)

r=1

dyd (t)
dt

where By and 7,4 correspond to the basal transcription
and the decay rate of the d-th gene, respectively. The
term S, 4 represents the sensitivity of gene d with respect
to the protein u,(t). We note that the Equation (1)
assumes that the transcript is degraded proportionally
to its concentration, with a degradation rate 4. The
production term By + % | S, ju,(t) comprises the basal
transcription rate By, which may vary proportionally
according to the protein activities {u,(t)}Z ; [12]. The
mechanistic model from Equation (1) can be seen as an
overly simplified system, but it is amongst the methods
with more accurate performance for modelling biological
and bacterial transcription networks [7], [8], [11]-[15].

2.2 Latent force models using Gaussian processes

Latent force models (LFMs) using Gaussian processes (GPs)
have been introduced first in [14], [15] as a hybrid model
to combine data-driven modelling with physical models.
For standard LFMs, the mechanistic model is encoded into
the mean and the covariance function of the GP obtained
for the outputs, and between the outputs and latent inputs
[15], [21]. Initially, LFMs have been introduced to model
mainly two demanding real-world applications based on
ODE: human motion capture data, and reverse-engineering
transcriptional regulation [14]. However, LEM may also be
applied to spatio-temporal problems described by partial
differential equations (PDE) [15], [21], and in other types of
research fields such as neuroscience [23].

For reverse-engineering transcriptional regulation in
gene expression, using the mechanistic model from
Equation (1), an LFM assumes that the TF regulators
{u-(t)}E_, are unknown functions (latent forces) due to

the fact that the TF behaviours are commonly difficult
to measure experimentally. For this reason, some prior
assumptions are required over each latent function wu,(t).
If we assume that u,.(t) follows a zero-mean GP prior with
covariance function ky, o (¢,t'),

uT(t> ~ QP(O, k’u,,,,u,,.(ﬁ, t/)), ()

then, due to linearity of the Equation (1), the output y4(?)
follows a GP with mean function m4(t) and covariance
function k,, ., (t,t"). This is

ya(t) ~ GP(ma(t), Kyaya (t, t/))v 3)

where my(t) and ky, ,,(¢,t") depend on the mechanistic
model, and they contain the biological properties from
Equation (1). Furthermore, the cross covariance function
kyyu.(t, ") between y,4(t) and u,(t) can also be computed
for inference purposes [15], [24]. The resulting joint GP from
the LFM approach can be written as a joint multivariate
Gaussian distribution for a finite number of time points,

obtaining
ul (0] [Kuu K/,
y m| " Ky Kyyl)'
T

The latent vector is given by u = [u], --,uj]", where
u, € RY*! contains N evaluations of the function w,.(t)
at particular points ¢ = {t,})_,. The vectors y =
vy, --,y5]T, and m = [m],---,m[]", are defined in a
similar way to u: the vectors y,; € RY¥*1! and mg; € RV*L,
contain the evaluations of the output function y,4(t) and the
mean function mg(t), respectively. The terms Ky, Ky u,
and Ky y, are covariance matrices with entries given by
the functions Ky, o, (t,t), Ky, u,., (t,t'), and ky, . (L, t),
respectively.

Additionally, we are interested in the likelihood
p(yl@), used for estimating biological parameters 6 =
{Va, Ba, Sa}Y_,. We can also use the likelihood to estimate
any additional hyperparameters associated with the GP
prior over the functions u,(t). By using the Bayes’ theorem
and the Gaussian properties, it is possible to infer the
TF activity through the computation of the posterior
distribution p(uly) [25], [26].

23 LFMs for reverse-engineering
regulation in gene expression data

transcriptional

Reverse-engineering transcriptional regulation in gene
expression data can be formulated as an LEM in which the
mechanistic model is governed by the model from Equation
(1). As we described in subsection 2.2, we need to compute
the functions my(t) and k, ,,, (t,t') to build the GP over the
outputs {y4(t)}2_,. First, we need to compute the solution
for Equation (1), which is given by [7], [15]

R
yalt) = [1 - cd<t)]% +ea®ya(0) + 3 fraltiur), (@)

where y4(0) is the initial gene expression abundance level,
and terms c¢4(t) and f, 4(t, u,) are defined as

ca(t) = exp {—at},
fr,d(tv uy) = ST,dCd(t) / u,(7) exp {vat} dr.
0
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We note that the term f, 4(¢, ) has an implicit dependence
on the force u,(t). The uncertainty on the output yqu(t)
comes from the uncertainty over {u,.(t)}%; and the
uncertainty over the initial condition y,4(0).

We make the following assumptions in order to build the
GP over the outputs {ya(t)}2_,. First, we assume that the
initial conditions, y;~ = [y1(0),42(0),--,yp(0)] ", follow a
zero-mean Gaussian distribution with covariance Kro. We
also assume that the initial conditions are independent of
the latent forces {u,(t)};, plus we place an independent
GP prior over each latent force u,(¢). It then follows that the
mean function mg(t) is given by

By
Vd '

The covariance function ky,, ,(t,t') between any two
output functions, d and d’, at any two times, ¢ and ¢/, is
given by

ma(t) = [1 = ca(t)] ®)

R
kydyyd/ (t, tl) = cq(t)ca (t/)gyd,y(i/ + Z kfr,dvfr,d/ (t, t/)> (6)
r=1

where o, ., , are entries of covariance matrix K¢, and the
covariance ky, , ¢ ., (t,t") is defined as

kfnd’fr,d’ (t, t/) = Sr,dSr,d/Cd(t)Cd/ (t/) X

t t!
/ exp {747} / exp {'Vd/Tl} Euyu, (7,7 )d7' dr.
0 0

We see that the covariance ky, , r , (t,t') depends on the
covariance function between the latent forces k. ., (t,t'). If
we assume that each kernel k,, . (¢,t') follows a Squared
Exponential (SE) kernel function given by
t—t')?
(lT) } ; @)

T

Koy, (8,1) = exp{ —

where ¢, is known as the length-scale parameter related to
ur(t), then ky, , ¢ ., (t,t') can be computed analytically [7]

Sr,dSr,d’er\/%

kfr,dvfr‘d/ (tvt,) = 9 [ﬁ(vd”’ydvtvt/)+il(7d77d”tlvt)]’

(8)
where the function E(Vd/, vd,t,t') is given by

iL(’YdU Yd»t, t,) =

[T(w, £,1) — exp {—vat} T(rar b, 0)] ,
Yd + Var

with
T(y . t',1) = exp{o? 4 } exp{—a (' — 1)} x

{erf{tl_t—y }—&—erf{i—ku H
gr r,d’ gr r,d’ )

with v, ¢ = £,7y4/ /2, and erf{-} is the error function.

We also need to compute the cross-covariance between
the d-th output function and the latent force at any two
times, ¢ and t/, to complete the joint multivariate Gaussian
distribution from subsection 2.2. Such covariance follows as

t
Ky (£,8) = Sy.aca(t) / oxp {7ar} Fu, . (7.8)d1.
0

Expression for k. (t,f') can also be computed
analytically, and it is given by
So alyr/T
kydﬂlwr(t?t/) = %T('Ydatvt/)- )

24(t)

I
pa(t,ti,ta,u1) 1
Y 1 pa(t,te, ts, uz)

]

|

I

|
ui (t) |

I u2(t)

|

|

\/—N
I |
| |
| |
| |
to t1 t2 t3

Fig. 1. Cartoon representation of output z4(t) switching its behaviour
between points tg, t1, t2 and t3.

Then, using the covariances functions from Equations (7),
(8), and (9), the posterior distribution p(uly) (ie. full
inference of protein profiles given the gene expression data)
can be computed according to [7], [24].

Apart from the advantages of using GP-based
approaches (e.g. inference of continuous responses,
handling of uncertainties) [24], the posterior covariance
given by the LFM framework depends on the biological
principles from Equation (1). In addition, as previous
studies suggest, employing physically inspired covariances
provide more accurate predictions even in regions where
there is no available gene expression data [15]. More
experimental and theoretical properties about using LFM for
reversing-engineering transcription regulation are discussed
in [7], [13], [21].

3 SwITCHED LFM FOR REVERSE-ENGINEERING
TRANSCRIPTIONAL REGULATION

Exploiting the advantages of using GPs with physically
inspired covariances for reverse-engineering transcriptional
regulation, we now introduce a new LFM that allow the
on and off switching of different latent forces in different
time segments. This makes possible to express changes
in the output of a dynamical system due to potentially
non-continuous changes in the TF activity. We assume
that the gene profiles in each segment are driven by R
independent TF regulators. We constrain the gene activities
at each switching time to be the same, so that they remain
continuous. Figure 1 shows a cartoon representation of
gene expression zg(t) switching its behaviour in three
non-overlapping segments, between points ¢y, ¢1, t2 and ¢3
when only one TF protein is driving the process in each
segment (R = 1). That means that in each interval (t;_1,,),
only the latent force u,_1 () is active.

3.1 Definition of the model

First, we assume that the input space is divided in a
series of non-overlapping intervals [tq,l,tq]?zl. During
each interval, R independent TF proteins {u,,—1(t)}2,
out of R x @ forces are active. The forces {u, ,—1(t)}2,
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are activated after time ¢,_; (switched on) and
deactivated (switched off) after time ¢, [19]. We use the
reverse-engineering model from Equation (1) to describe
the contribution of ou‘rguts due to the sequential activation
of forces {u 4—1(t)}, 27 ;1. For simplicity, we remove the
mean of the process for further analysis. However, the mean
function from the Equation (5) could easily be included in
the GP regression formalism.

A particular output z4(t) at a particular time instant ¢, in
the interval (¢,_1,%,), is expressed as

za(t,tg—1,tq) = pa(t, tg—1,tq, ug—1), for 1<d<D,

where py(t,tq—1,1tq, Urg—1) uses the model from Equation
(4), and is equal to

pa(tstg—1,tq, trg—1) = ca(t — tq—1)za(tg-1)
R (10
+ Z fr,d(t7 tq—la tcp ur,q—l);

r=1

with

fr,d<t7 tqfla tq7 ur,qfl)

t’]
,(qd Ve (t)/ Up,g—1(T) exp {vaT} dT.

tg—1

1)

Note that the sensitivity parameters S’(q contain one
additional index compared to the standard LFM from
subsection 2.3. This is because we need to define a set of
sensitivity parameters {S,«’d}f:’?’ 4— for each interval when
g = 1,2,---,Q. In this sense, the terms Sf,qd_l) represent
the sensitivity of gene d respect to protein u,, 1 (t) at the
interval ¢g. The expression from Equation (10) is assumed
to be valid for describing the output only inside the interval
(t4—1,tq). Note that the operator f, 4(t,tq—1,tq, Ur g—1) from
Equation (11) is a function of four arguments: the first
argument, ¢, refers to the independent variable; the second
argument t,_; and the third argument ¢, specify the
lower and upper limits of the time interval to be analysed
(respectively); and the last argument, u, ,—1, specifies the
r-th latent force that is acting within the interval g.

Given the parameters 8 = {%z’Sﬁf@,fr,q}fz’lf’f?:ﬁq:o/
the uncertainty in outputs is induced by the prior
over the initial conditions z4(t4—1) for all values of
tqy—1, and the latent forces {u,,_1(t)}2, that are active
during (t4—1,ty). We place an independent GP prior
over each latent force u,q4—1(t). For initial conditions
24(tg—1), we assume that they are also hyperparameters
to be estimated or random variables with uncertainty
governed by independent Gaussian distributions with
covariance matrices K} .. We also consider that the outputs
should be continuous at the switching points. Therefore
the uncertainty about initial conditions for interval g,
zd(tg—1), is proscribed by the GP that describes the
outputs z4(t) in the previous interval ¢ — 1. The random
variables z4(t,—1) are then Gaussian-distributed with mean
values given by pq(tq—1,tq—2,tq—1,ug—2) and covariances
kzdyzd/ (tQ*l’ tQ’*l)'

3.2 Covariance for the outputs

For continuous output signals, we must take into account
the constrains at each switching time instant. Such
constrains cause initial values for each interval to be
dependent on final conditions for the previous interval
and induce correlations across the intervals [19]. We are
interested in the computation of covariance functions
for the outputs, and between the outputs and the
latent forces, as we described for the SIM framework
in section 2.3. We need to compute the covariance
COV{Zd(t,tq_l,tq),Zd/ (t/,tq/_l,tq/)} for Zd(t,tq_l,tq) in
time interval (¢,—1,1,), and za/ (¥, ¢, _;,ty) in time interval
(tg—1,tqy ). For this reason, we have to analyse three
regimes: ¢ > ¢/, ¢ = ¢’ and ¢ < ¢'. We compute the first
two cases, ¢ > ¢’ and ¢ = ¢'. The solution for ¢ < ¢’ is given
by g > ¢/, when the roles between ¢ and ¢’ are interchanged.

3.2.1 Covariance for the interval (t,_1,t,)

For the covariance k., ., (t,t') = cov{zq(t), za(t')} in the
interval (t4—1,t,), we obtain an expression similar to the
one obtained in Equation (6) for the standard LFM,

kzaz,zd/ (t, t/) = (t —tq— l)cd’(tl - tq—l)kzgz,zd/ (tq—h tq—l)
frodofr d’

where the covariance k., ., (t4—1,t4—1) is given by

(12)
(t, 1),

the  covariance  between  pg(tq—1,tq—2,tq—1,Uq—2)

and  pg(tg—1,tq—2,t4—1,Ug—2) (considering outputs

should be continuous across switching points),
. ( . .

and the covariance & fq)d s, (6t) is  given by

cov{fra(t,tg—1,tq: Urg—1), frar (t tq—1,tq, Urq—1)} which
can be computed using Equation (8).
3.2.2 Covariance for the interval (t,—1,t,) and (ty—1,tq)
When ¢ > ¢/, we have to take into account the correlation
between the initial condition z4(ftq—1) and the latent
forces {u,,—1(¢)}E ;. This correlation appears due to
the contribution of {u, ,_1(#')}X, to generate the initial
conditions z4(tq—1). We can then rewrite k., ., (t,t') as

Keg oy (6,1) = ca(t — tg—1)car(t' —ty—1)kzy 2y (tg—1,tg—1)
R

tealt —tg—1) Y cov{za(tg—1), fra (' ty—1,tg ung—1)}.
r=1
(13)

For ¢ = ¢’ + n, we obtain the following recursive equation
for the covariance between the initial condition z4(t;—1) and

fr,d’(t tq 717tq 7u7’,q 71)
COV{Zd(tq—l)v fr,d’ (tla lgr—1,tq, Ur,q’—l)}

-1
= |:H Cd(tqfi — tq,ifl) k}(idﬂ)d/ (tqfn, j}/)7

where the term k(f N f) Y (tg—n,t') is given by the

covariance between fr,d( g—nstg—n—1:tqg—n,Urg—n—1) and
frar (' tg—1,tq,urg—1), and it can be computed using
Equation (8). In the appendix A, we show in detail the
computation for the covariance of the outputs when only
one TF (R = 1) is driven the output in each interval. The
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generalization of the model is straightforward for the case in
which R TF regulators are acting in each interval (assuming
they are independent).

For the estimation of TF activities, we also need
to compute the cross-covariances between the outputs
zq(t,tg—1,ty) and the latent forces wu,q—i1(t). The
computation of those covariances follows a similar
procedure than the one employed for the covariance
between the outputs, and its expression is given in the
appendix B.

4 PROCEDURE

In this section, we describe additional details of
the hyperparameters estimation, computational
implementation, and biological datasets employed in
this paper.

covariance

4.1 Hyperparameter estimation of

functions

Given the number of outputs D, the number of intervals @,
and the number of TF proteins R acting in each interval, we
estimate the parameters 8 = {~q, 57(,2 rgy tgt1 }dDZ’If,’?:_l}qzo
by maximizing the marginal-likelihood of the joint GP
{z4(t)}1_, using gradient-descent methods [19], [24],
[27]. Given a set of input discrete-time points, t =
{tn})_,, the marginal-likelihood is given as p(z|@) =
N (zlm,K,, + %), where z = [z{,---,z]]", with z; =

[za(t1), -, za(ty)]"; m = [m],--- m}]", with entries
my = [mg(t1),---,ma(ty)]" given by the mean behaviour

given from Equation (5); and K,, is a D x D
block-partitioned matrix with blocks K, , . The entries
in each of these blocks are evaluated using k., ., (t,t).
Furthermore, k., ., (t,t') is computed as we showed in
subsection 3.2, according to the particular regimes of ¢ and
¢’ (see Equations (12) and (13)). Note that the computation
of mq(t) and k., .- (t,?') depend on the dynamic system, the
mean and the covariance functions from the latent forces of
u,(t), but they do not depend directly on w,(¢). Finally, the
covariance matrix X is included in order to take into account
additive noises with variances o2, i.e. 3 is an identity block
matrix, where the entries of the blocks is given by 6584 4.

4.2 Computational implementation

The multi-output switched dynamical latent force model
for reverse-engineering transcriptional regulation in gene
expression data was developed in MATLAB®, and the
codes used in this paper are available on Github: https://
github.com/anfelopera/SDLFM_ReverseEngineering. It is
based on the GPmat Toolbox.! For the implementation of the
codes, we work with the inverse of the length-scale defined
as £, = (2/0,4)"/?. Algorithm 1 shows the pseudo-code
for the implementation of the switched latent force model
for reverse-engineering transcriptional regulation in gene
expression data.

Results presented here that use the models from [8], [18],
were reproduced using their corresponding source codes.

1. The GPmat toolbox provides several MATLAB® implementations
of Gaussian processes based models. It is available in: https:/ /github.
com /SheffieldML/GPmat

Algorithm 1 Switched force model for

reverse-engineering
1: procedure PREDICTION OF TF PROFILES USING THE GENES
PROFILES
2: Input: number of outputs D, number of intervals (), number
of latent forces R, genes profiles {z4(t)}2_,, initial set of
hyperparameters 6 = {74, Sﬁfﬁ,ér,q, tq+1}dD:’?,’?:711

latent

,q=0
3: Compute the covariances matrices Kz, Kuu, and K; 4
according to sections 2 and 3.
4: Estimate the hyperparameters 6 by maximizing the

marginal-likelihood of the joint GP {z3(¢)}1,, i.e. 8 =
argmaxg{p(z|0)} (see subsection 4.1).

5: Using the partitioned Gaussian properties [24], compute
the posterior of p(u|z, 8).

4.3 Biological datasets
4.3.1 Microaerobic shift in E. coli

The bacterium Escherichia coli (E. coli) has been extensively
studied due to its quick adaptation to sudden changes in its
environment [28]. This allows researchers to make routinely
experiments over its robust organism without damaging
the cells. For example, the sudden oxygen starvation in
the E. coli environment provokes the bacterium organism
changes from a nitric (absence of oxygen) metabolism to
a much more energetically favourable aerobic metabolism
(presence of oxygen) [8]. The E. coli dataset employed in [8],
contains microarray data of five different gene expression
levels (ompW, y3jiD, hypB, moad, and aspA), which are
regulated by a TF protein known as FNR (Fumarate and
Nitrate reductase Regulatory) [28]. Different microarray
measurements represent changes in the concentrations
of mRNA relative to the initial condition. There are
measurements at five-time instants: 0, 5, 10, 15 and 60 min.

4.3.2 Control of ribosomal production in yeast metabolism

This dataset describes the dynamics of control of ribosomal
protein production in the metabolism of a specific type
of eukaryotic microorganism. The phenomenon is known
as yeast respiration [18]. The metabolic cycle was assayed
using microarrays by Tu et al. in [29]. The dataset contains
the measurements of 3178 gene expression levels, measured
in 36-time points sampled at 25 min intervals through three
cycles of yeast respiration. In each cycle, the organism is
forced to a starvation of oxygen, followed by a constant
supply of glucose for a period of time. Experimental studies
of yeast respiration have shown that there are two important
transcriptional regulators for controlling the production of
ribosomal proteins, FHL1 (Four and a Half LIM domains 1)
and RAP1 (RAs-related Protein 1) [18], [30], [31]. According
to the ChIP-on-chip data,? there are ten genes that depend
on both transcription proteins. First, the FHL1 protein
regulates solely two genes: YLRO30W and TKL2. Second,
RAP1 protein regulates other two different genes: YOR359W
and PFK27. The remaining five genes (RPL9A, RPL13A3,
RPL17B, RPL30 and RPS16B) are jointly regulated by FHL1
and RAP1, although the precise nature of the control is not
known.

2. ChIP-on-chip is a technology that combines chromatin
immunoprecipitation with DNA microarray. ChIP-on-chip is used
to investigate interactions between proteins and DNA in vivo.
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Fig. 2. Toy experiment 1. (a) covariance matrix between the outputs of
the model with entries given by k. . (¢, t'); with hyperparameters D = 1,
Q@ = 3 and R = 1; and switching points at ¢t; = 1 and t2 = 3. (b)
samples generated from the zero-mean GP, y(t) ~ GP(0, k.- (¢, t')).

5 RESULTS AND DISCUSSION

We propose several artificial experiments in order to
highlight some properties of our approach that we cannot
discuss in detail with the real study cases. Next, we evaluate
the performance of our approach for reverse-engineering
transcriptional regulation for the expression networks
described in subsection 4.3. We compare our results with
respect to the ones obtained by using the approaches
proposed in [8], [18].

5.1 Toy examples

For the toy examples, we generate samples from a
zero-mean GP with a covariance function explained in
section 3. We implement several examples to evaluate
and discuss the performance of our model under different
conditions.

5.1.1 Toy experiment 1: covariance examples

In this experiment, we compute the covariance function
from a model with only one output D = 1, three segments
@ = 3, and one latent force acting in each segment R = 1.
The switching points are defined at ¢; = 1 and ¢5 = 3. For
the output, we fix the decay value to be 74 = 1. We also
restrict the latent forces to have the same inverse values for
the length-scale parameters {19 = ¢11 = {12 = 1, with
lrq = (2/0.4)"/?, and we fix the same values of sensitivity
parameters as S{?l) = Sﬁ) = Sﬁ) = 10. Figure 2 shows
both the resulting covariance function between the outputs,
and four samples from the zero-mean GP. Dashed lines
indicate the final values of each switching point. Figure 2(b)
evidences that output function remains continuous across
the switching points (as enforced by the definition of the
model in section 3.1).

Figure 3 shows similar results than Figure 2, but
one of the hyperparameters of the model is changed. In
each sub-caption, we specify the hyperparameter that is
modified. In each row, we show the ability of the model
to perform changes in the length-scales of the forces (first
row), sensitivity parameters (second row), and switching
points (third row). We are interested in highlighting the
flexibility of the covariance function to represent different
conditions for each interval. First, if we need to infer quick
time-varying outputs, it is possible to specify high values
of the inverse of the length-scale parameters to deal with
this requirement. Second, we can control the sensitivity

10 15
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0T 5 00

@) fia=5
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Fig. 3. Toy experiment 1. The first column shows the covariance
functions between the outputs of the model, with entries given by
k... (t,t"). The different figures in the column are obtained by changing
one parameter at the time in the covariance function from the example
in Figure 2(a). The hyperparameter which is changed in each example
is described in its corresponding sub-caption. The second column
shows some samples generated from the corresponding zero-mean
GP using the covariance functions from the first column, i.e. y(t) ~
GP(0, k2,2 (t,t')).

parameter to specify which outputs are being driven by
which latent forces (e.g. if the gene expression in a specific
interval is not regulated by a particular TF, it is possible
to fix the corresponding sensitivity parameter to be equal
to zero). Finally, according to the last row, the covariance
function has the ability to represent changes in the switching
time instants.

5.1.2 Toy experiment 2: inference examples

For the following two synthetic examples, that we refer
to as toy examples A and B, we generate output data by
sampling from the GP with the switched LFM covariance
function. We assume a zero-mean GP, i.e. {Bd}g):1 = 0.
We sample each output for 500 data points, and add some
noise with variance equal to ten percent of the variance
of each sampled output. We use 200 data-points (training
data) for estimating the hyperparameter of the model. The
remaining 300 data-points (testing data) are used to evaluate
the capacity of the model to fit the gene expression data.
Toy example A: we sample from a model with D = 2,
R =1, and () = 3, with switching points at t; = 5 and ¢, =
12. For the outputs, we fix y; = 2.0 and 7y, = 1.5. We restrict
the latent forces to have the same inverse of the length-scale
values EALO = él,l = gl’g =1 x 1073, but we change the
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Fig. 4. Toy experiment 2. Each column shows the results obtained
for both toy examples A and B from subsection 5.1.2. Prediction is
performed over: the latent forces (first row), and different output profiles
(second and third rows). Each figure shows the training data (dots), the
mean prediction (solid lines), and two standard deviations away from
the mean predictions corresponding to the grey interval. Dashed lines
indicate the estimated values of the switching points.

values of the sensitivity parameters as Si?l) =10, Sﬂ =1,
SP =10, 5% =5, 5{) = ~10 and S{°) = 1. Note that
terms Sﬁ?dfl) represent the sensitivity of gene d respect to
protein u, 4_1(t) at the interval ¢. In this experiment, we
want to show the ability of the model to detect changes in
the sensitivities of the forces, while keeping the length-scales
equal along the intervals.

Toy example B: we sample from a model with D = 3,
R =1, and Q = 2, with a switching point at ¢t; = 9.
For the outputs, we fix 73 = 0.7, Yo = 1.5, v3 = 0.5,
and inverse of length-scales equal to ¢; o = 1 x 1073, and
KAM = 1. The sensitive parameters in this case are given
by S\ =1, 5 =1,5° =555 =1, 5% =1 and
S g = 1. In this experiment we want to evaluate the ability
of the model to represent different oscillatory behaviours in
different segments of the outputs.

Figure 4 shows the results for both toy examples A and B.
The hyperparameters of the model are initialized to be equal
to 1, and they are estimated (including the switching points)
according to subsection 4.1. The values of the estimated
hyperparameters are similar to the ones that we employed
in each toy for generating the data. The inference for the toy
examples A and B is shown in the first and second column,

respectively. Inference results evidence that the model is
able to fit either flatter (toy A) or oscillatory (toy B) output
dynamics proposed in each toy example. Figures 4(a) and
4(b) also show the ability of the proposed framework to
represent sudden switching changes or discontinuities in the
input behaviour.

5.1.3 Toy experiment 3: methodology comparison

In [8], the authors proposed a toy experiment in which a
TF regulator transits from an active to an inactive state. The
artificial dataset is made of a single output z(t) driven by a
TF protein u(t). The synthetic TF is defined as

u(t) = 1, te[0,169] U [660,1000]
10, te[170,659] '

The parameters of the differential equation used for this
example were chosen by [8] as B = 8 x 10~* (basal
transcription), and v = 5 x 1073 (decay rate). According
to [8], the sensitivity parameter was fixed to be equal to
3.7 x 1073, which is the same during all the regimens [8].
In this experiment, we compare the results of applying the
approach from [8], and of our framework. Note that the
proposed TF activity presents two discontinuities at points
t = 169 and ¢ = 659. Because our proposed approach
can deal with discontinuities by switching the dynamics of
the input behaviour, we expect to outperform the results
from [8], in both fitting the output data and estimating the
artificial TF activity.

In this experiment, we fix the number of intervals Q = 3
at the beginning of the experiment aiming to represent
the three states of the TF behaviour u(t). However, we
evaluated the model with different number of intervals
Q = 1,2,3,4,5. We note that for ) = 1, our model
corresponds to the model proposed in [7], and it infers
smooth behaviours on both gene and TF inference which do
not correspond to ones generated synthetically. The results
are showed in [8]. We computed the log-likelihood for
each model to analyse which one provides the maximum
value. After the experiments, we obtained that the best
model was obtained when ) = 3. For both approaches,
the parameters B and 7 were initialized to be equal to
1 x 1072, Due to the flat behaviour of the TF protein, the
inverse of the length-scale parameters were initialized in the
order of 1 x 107¢. We initially set the sensitivity parameters
to be equal to one. After the initialization, we employed
the corresponding optimization modules for the estimation
of the hyperparameter: Bayes expectation maximisation
for the model from [8], and maximum log-likelihood for
our approach. Finally, because TF concentrations have to
be strictly positive, in this experiment we restricted the
sensitivity parameters to be positive.?

Figure 5 shows the inferred output profiles (first row),
and their corresponding TF activities (last row), using both
inference methods. Red and blue dashed lines indicate
the true output z(t) and the true input behaviours u(t),
respectively. Figures 5(a) and 5(b) show the performance of
both models to fit output data, evidencing that our approach

3. This assumption does not guarantee that the latent force u(t) will
be strictly a positive function. However, it was enough to obtain the
right results in this experiment.
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Fig. 5. Toy experiment 3. Mean and two standard deviations from
the predictions over the latent force and the output in the test set.
Vertical dashed lines indicate the real values of the switching points.
Dots indicate training data. Red and blue dashed lines indicate the
real output and TF behaviours, respectively. The reconstructed output
profiles (first row), and their corresponding scaled TF activities (last row),
are showed using Sanguinetti et al. [8] (first column), and employing our
framework (second column). The TF activities were scaled according to
their sensitivity parameters. For the inferred TF from (c), we omitted the
confidence intervals in order to not clutter the figure.

outperforms the inference of the gene expression profile
from [8]. Figures 5(c) and 5(d) show the scaled TF activity
in the same order as we made for the outputs. Figure 5(c)
shows that the framework from [8] exhibits a smoothed
behaviour of the sudden changes in the synthetic TF activity.
On the other hand, Figure 5(d) evidences how our model
estimates correctly the switching instants of the latent
process, outperforming the inference of the discontinuous
changes from the TF activity.

Finally, our model also estimates properly the
mechanistic hyperparameters. After hyperparameter
estimation, our framework estimated a decay rate equal
toy = 49 x 1073 against v = 4.0 x 1073 from [8]
(true value v = 5.0 x 1073), and a basal transcription
equal to B = 7.2 x 107* against B = 8.0 x 107 (true
value B = 8.0 x 107%). Respect to the inverse of the
length—scale parameters, we obtained 51 0 = 22 x 107 8,
€1 1 =4.8x%x1077, and El 9 =234x10"8, ]ustlfymg why our
inferred latent functlon is completely flat in each segment.

5.2 Real data examples

For the biological examples, we train a model for
each dataset according to the nature of the biological
applications. Because the convergence of the model strongly
depends on the initial set of the hyperparameters, they
are manually initialized in each experiment in order
to obtain the nearest possible approximation for fitting
the gene expression data. After the initialization, the
hyperparameters are optimized according to subsection 4.1.

5.2.1 Microaerobic shift in E. coli

In this experiment, we consider the five gene expressions
from the E. coli dataset (ompW, y3jiD, hypB, moad, and
aspAd) described in subsection 4.3. We are interested in
both the reconstruction of the five gene profiles and the
inference of FNR activity. Since the activity of the regulator
FNR is completely unknown in the dataset, we compare the
results of our approach with respect to the ones obtained
by [8]. For our framework, we implement a model with
D = 5 (each output represents a different gene activity).
We implement our model for different number of intervals
@, evaluating the log-likelihood as we did in the toy
example from subsection 5.1.3. Because there are no data
between 15 and 60 min, our framework for > 2 tends
to over-fit the data in the first 15 min, obtaining inaccurate
results. For () = 1 [7], the results that we got were not
satisfactory because of the different behaviours exhibited by
the gene expression data before and after the instant ~15
min. Since the amount of data available in this experiment
is small, predictions tended to be biologically unrealistic.
For these reason, we fix a number of intervals Q = 2.
We randomly initialize the switching point ¢, however we
expect to obtain an estimated switching point near to 15
min where measurements were no longer taken periodically.
To avoid over-parametrisation problems due to the small
number of time-point available from the dataset, we tie the
sensitivity parameters to be the same in each gene profile,
{S }d . 'y = {S1.a}E, for any interval ¢. It means we
only have one sensitivity parameter for all the regimens of
each output. Then, we initialize hyperparameters with the
same decay rate {74}2_,, the same sensitivity parameters
{54, a2 v and the same inverse of the length-scales
{035 il .. Finally, since the measurements represent the
change in concentration of mRNA relative to the initial
condition, we tie the basal transcription to be equal to the
decay rate, i.e. Bg = Aq [8].

Figure 6 and 7 show the results from [8], and the results
employing the switched dynamical LFM, respectively.
Figures from 6(a) to 6(e) show the reconstruction of
the expression profiles using [8]. Solid lines represent
the posterior mean, dotted lines represent two standard
deviations for the confidence interval, and the crosses are
the expression level values used as training data. Figure
6(f) shows the posterior mean for the normalized FNR
activity using [8]. Figure 7 follows a similar structure than
the one explained for Figure 6. Solid lines represent the
mean prediction, region in grey represents two standard
deviations for the confidence interval, and the dots are the
measured expression levels used as training data. Subfigure
7(f) shows the posterior mean and two standard deviations
for the normalized FNR activity. The dashed line indicate the
estimated value for the switching point.

According to Figures 6(f) and 7(f), we note the same
behaviour we detailed in the artificial experiment from
subsection 5.1.3: different magnitude in the FNR activities.
However, we observe that both profiles exhibit similar
saturation behaviours. Because oxygen is the source of
activation of regulator FNR, from Figure 7(f) it is possible
to note that in the first ~15 min the bacteria starts
to experiment absence of oxygen. The oxygen starvation
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Fig. 6. Microaerobic shift in E. coli using the model proposed in [8]. Solid
lines represent the mean prediction, dotted lines represent two standard
deviations for the confidence interval, and the crosses are the measured
expression levels used as training data. Subfigure (f) shows the posterior
mean for the normalized FNR activity.

produces a gradual growth in the concentration of regulator
FNR in order to switch from an aerobic (using oxygen) to
an anaerobic respiration (using different electron acceptors
than oxygen). After the 15 min, we observe that the
concentration of the mRNA decreases but it is different
to the initial concentration, concluding that the regulator
FNR remains active as long as there is no oxygen. Similar
regulator dynamics were obtained in [8], [28].

From Figures 7(a) to 7(e), we observe that our framework
is able to fit the expression activities of each gene. Once
again, due to the switching behaviour of our model,
we obtain accurate results representing changes in the
gene expression data due to the changes in the FNR
concentration at ~20 min. In terms of gene expression
data, our approach shows a better fit of the training data
for both hypB, yjiD, and moaA profiles with reasonable
uncertainties corresponding to the subfigures 6(b), 6(d) and
6(e), respectively.

5.2.2 Control of ribosomal production in yeast metabolism

In this experiment, we follow the same procedure as the one
proposed in [18]. We consider the gene expression profiles
YLRO30W, TKL2, YOR359W, PFK27, RPL13A, RPL17B, and
RPS16B, as outputs of our model, i.e. D = 8. Because the set
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Fig. 7. Microaerobic shift in E. coli employing our framework. Solid lines
represent the mean prediction, region in grey represents two standard
deviations for the confidence interval, and the dots are the measured
expression levels used as training data. Subfigure (f) shows the posterior
mean and two standard deviations for the normalized FNR activity.
Dashed line indicates the estimated value of the switching point.

of genes are regulated by two TF proteins, FHL1 and RAP1,
we assume that two independent latent forces are driven
the biological process in each interval (R = 2). We train
a model with three intervals () = 3, where each interval
describes one cycle of yeast respiration. In this experiment,
we also tie the sensitivity parameters per each expression
profile (output) and regulator (latent force), i.e. according to
the notation from the paper Sﬁqd_ V= Sp.q for any interval
¢ — 1. For the outputs that are not regulated either by FHL1
or RAP1, we fix the corresponding sensitivity parameters to
be equal to zero. We assume that the dynamical behaviour
in each interval has to be similar to the other ones because
they are describing the same phenomenon (one cycle of
yeast respiration). In that sense, we also tie the inverse of the
length-scale parameters per each latent force, i.e. £, , = £,
for any interval g, in order to reduce the complexity of the
model at the moment of estimating the hyperparameters.

Figure 8 shows the results of fitting the expression data.
We note that our approach tends to follow the dynamics of
the expression data, and that almost all the observed points
are inside the confidence interval (two times the standard
deviation). The results from Figure 8 are comparable to ones
given by the supplemental material from [18].
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Fig. 8. Control of ribosomal protein production in yeast metabolic cycle
employing our framework. Solid lines represent the mean prediction,
region in grey represents two standard deviations for the confidence
interval, and the dots are the measured expression levels used as
training data.

With respect to the TF profiles, Figure 9 shows the
inferred regulator from [18], and the inferred regulator
employing the switched dynamical LFM. Figures 9(a) and
9(b) show the posterior mean profiles for both regulators
FHL1 and RAP1 obtained by [18]. Figures 9(c) and 9(d) show
the mean and two standard deviations for the predictions
over the regulators using our proposed framework. We note
that both results exhibit similar quasi-periodic behaviours
in the inferred gene regulators. However, there are some
differences in terms of the magnitudes for the regulator in
the second interval FHL1. We believe that since each cycle
refers to a similar phenomenon (backed up by the same type
of behaviour observed in the actual gene expression data), it
seems plausible that the behaviour of the regulator should
also be similar across the cycles. Therefore, from our point
of view, it seems more likely that the regulator should have
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Fig. 9. Control of ribosomal protein production in yeast metabolic cycle
from [18], and employing our framework. Subfigures (a) and (b) show
the posterior mean profiles for both FHL1 and RAP1 regulators obtained
by [8]. Using our proposed framework, subfigures (c) and (d) show
the mean and two standard deviations for the predictions over the
regulators. Dashed lines indicate the estimated values of switching
points after the optimization. Dashed lines indicate the estimated values
of the switching points after optimization. Dots indicate training data.

the same magnitude ranges across the intervals.

We can also observe from Figure 9, that the result for
regulator FHL1 using [18] shows that the first and the
second cycle end at ~180 and ~400 min (respectively),
whereas that the cycles end at ~250 and ~500 min for the
regulator RAP1. Although that each interval of our approach
describes one cycle of yeast respiration for the regulator
FHL1 from Figure 9(c), the estimated switching points do
not necessary represent the end of each cycle for regulator
RAP1. This problem is produced because our proposed
model assumes that switching points for both TF profiles
have to be the same, forcing the regulators to switch their
corresponding transcription at the same time. The above
assumption cannot be considered entirely true because the
activity of the TF regulators in gene expressions commonly
presents different delays for their transcription [18], [20].

Finally, according to the estimated sensitivity
parameters, our framework estimates that the expressions
which are being jointly regulated (RPL13A, RPL17B,
and RPS16B) are more sensible to the regulator RAP1
(approximately five times greater than the contribution
from FHL1). This result is consistent with the results
obtained by [18], where their model predicted a minor
effect of regulator FHL1 over the genes RPL13A, RPL17B,
and RPS16B.

6 CONCLUSIONS AND FUTURE WORK

We have introduced a switched dynamical latent force
model for reverse-engineering transcriptional regulation
which allows the exact inference over latent transcription
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factors (TFs) driving some observed gene expression
data through a linear ordinary differential equations. The
model allows the representation of sudden changes (also
discontinuities) in TF activities.

We have tested our framework in both artificial examples
and real-world biological problems. According to the
experimental results, the proposed approach is able to
properly fit the gene expression data while also inferring
TF profiles that make sense from a biological point of view.
The results obtained are consistent with the previous ones
obtained in the state-of-the-art. The proposed approach is
also flexible to consider several assumptions a priori, e.g.
to analyse the change in concentration of mRNA relative
to the initial concentration, to assume different TF prior
in each interval according to the biological application, to
control which genes are being regulated by which TFs, etc.
As we exhibited in results section, taking into account these
assumptions a priori provides more accurate models that
may describe the biological properties in a suitable manner.

The framework presented here could be improved in
different ways. We consider that it would be interesting,
for example, treating the number of intervals ) and the
number of latent forces R as additional hyperparameters
to be estimated. We would also like to generalize our
approach for studying more complex biological networks,
e.g. in modelling non-stationary transcriptional regulation
processes where the mechanistic hyperparameters are
changing in each interval, or in describing gap-gene
networks dynamics where the system is driven by a
non-linear combination of latent forces. Including the ability
to deal with delays (as discussed in the yeast example), or
to deal with large datasets in genome-wide studies, would
also be some venues worth exploring.
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APPENDIX A
COVARIANCE FOR THE OUTPUTS

We have to analyse three regimes: ¢ > ¢/, ¢ = ¢’ and ¢ < ¢'.
We compute the first two cases, ¢ > ¢ and ¢ = ¢. The
solution for ¢ < ¢ is given by ¢ > ¢, when the roles
between ¢ and ¢’ are interchanged. For simplicity, in this
appendix we assume that only one latent function u,(¢) is
acting in each interval, i.e. R = 1. Note that if we assume
that R = 1, there are as many intervals [t,_1, tq}qul as total

latent forces {uq—1(t) }?:1 .

Covariance for the interval (t,_1,1,)

Let z4(t) = pa(t,tg—1,tq, ug—1), wWith pg(t,tg—1,tq Ug—1)
given by Equation (10) with R = 1, and ¢ = ¢/, the
covariance k, ., (t,t') = cov{zq(t), za (t')} is given by

kzd,zd/ (tvt/)
= ca(t —tq—1)ca (t' — tg—1) cov{za(te—1), za (tg—1)}
+ calt — tg—1) cov{za(tg—1), far (¢, tg—1, tq: tg—1)}
+car(t' —tg-1) cov{fa(t,tg—1,tq, ug—1), zar (tg—1)}
+cov{fa(t,tg—1,tg, ug-1), far(t'stg—1,tq,uq-1)},
(14)

where covariances cov{zq(tq—1), far (', tq—1,tq, uqg—1)} and
cov{fa(t,tg—1,tq, uqg—1), zar (t4—1)} are zero, assuming
independence between initial conditions z}, and latent
forces u,_1(t). Finally, k., ., (t,t') follows

kzd7zd’ (t, ﬁ/) = Cd(t - tqfl)cd’ (t/ - tqfl)kzd,zd/ (tqfla tqfl)
(9) /
+ kfd7fd/ (t,t ),

where the covariance k., ., (t;—1,t4—1) depend on
pa(tg—1,tg—2,tq—1,uq—2) and pa(tg—1,t5-2,tq—1,uq—2)}
(considering outputs should be continuous across switching
points), and the covariance k}‘i) 7, (1) is given by
cov{ fa(t,tg—1,tq, ug—1), far (t',tg—1,tq, uq—1)}. Note that
expression obtained above is similar than the expression
obtained in Equation (6) for the standard LFM when R = 1.

Covariance for the interval (¢,_1,t,) and (t,_1,%,)

When ¢ > ¢/, we have to take into account the
correlation between the initial condition z4(t,—1) and
the latent force wg_1(t'). This correlation appears due
to the contribution of wup_1(¢') for generating the
initial conditions, zg(ty—1). The resulting covariance
cov{zq(t), z¢ (t')} is given by Equation (14), but in this case
covariance cov{ fy(t,tq—1,tq ug—1), far (' tgr—1, g, ug—1)}
is equal to zero, because there is not correlation
between forces wu,—; and wug_;. The covariance
cov{ fa(t,tg—1,tq, ug—1), zar (ty—1)} is zero, since ¢ > ¢/,
there is not correlation between force u,_; and any force
ug—1, for k < ¢’ — 2. We can rewrite k., ., (t,t) as

Fegoy (1)
= ca(t — tg—1)Ca (t/ - tq’71>kzd,zd/ (tg—1,tq—1)
+ calt —tg—1) cov{za(ty-1), far (t/7 ty—1,tg s ugr—1)}-

According to the Equation (10), the term
keyzp(tq-1,tg—1) is given by the covariance
of the previous interval and is equal to

cov{pa(tg—1,tq—2,tq—1,Ug—2),Pa(ty—1.tgr—2, tq—1,uq—2)}.
Now, we need cov{zq(ty—1), far(t',tg—1,ty, uqg—1)}. This
term is equal to
COV{Zd(tq—l)a far (t/, ty—1,tq, uq’—l)}
= Cd(tq—l - tq—2) COV{Zd(tq—2)7 fd’ (tlv tq’—la tq’auq’—l)}
A
+ COV{fd(tqflv tq727 tqfla uqu)a fd’ (t/> tq’flv tq’v uq/fl)}“

Term COV{fd(tq—lv tg—2,tq—1, uq—2), far (¥, ty—1,1q, Uq'—l)}
is only different from zero for ¢ = ¢’ + 1 and it would be

reduced to k;f;:;j) (tg—1,t'). The term A, if ¢ < ¢’ + 1, is
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equal to zero because there is no correlation between the
force and the initial condition. For ¢ > ¢’ + 1, the term in A
is equal to

—tg—3) coviza(ty—3), fa (t'stg—1, g, ug—1)}
A/
+ COV{fd(tq727 tg—3,tq—2, ’U,q,3), fa (t/7 ty—1,tq, uq’fl)}'

Term COV{fd(tq—27 tg—3,tq—2, uq—3)> Jar (tl7 ty—1,tq, uq'—l)}
is (/iifferent to zero for ¢ = ¢ + 2, it would reduce to
kg’;dl/) (tg—2,t'). Again, if ¢ < ¢’ + 2, then the term A is
equal to zero. The term A’ follows the same form that the
term A. If ¢ > ¢’ + 2, the recursion is repeated until the
most inner term in cov{zq(tq—n), for (t'stg—1,tq, ug—1)} =
COV{p(tq—n» tq—n—17 tq—na uq—n—l)a fd’ (t/7 tq’—la tq’7 uq’—l)}

is such that ¢ = ¢’+n. For ¢ = ¢'+n, we obtain the following
recursive equation for cov{z4(tq—1), far (t', tgr—1, g, ug—1)}

COV{Zd(tq—l)a fd’ (t/, tq’—lv tq’v uq’—l)}

= [H Cd(tq—i - tq—i—l)
i=1
(¢'-1)

with the covariance function ki, ; '(tq—n,t’) given by

Cd(tq_g

K (b, t),

Cov{fd(tq—ny tq—n—la tq—ny uq—n—1>7 fd’ (t/a tq’—l, tq’ 5 uq’—l)}-

APPENDIX B
COVARIANCES BETWEEN OUTPUTS AND LATENT
FUNCTIONS

If ¢ < ¢, then the covariance between outputs and latent
functions is zero. We are left with the cases ¢ = ¢’ and ¢ > ¢'.
As well as we did in the appendix A, we will assume that
only one latent function u,(¢) is acting in each interval.

Covariances for the interval (¢,_;.t,)

Let z4(t) = palt,tg—1,tq, uq—1), with pg(t,t4—1,tq, uq—1)
given by Equation (10) with R = 1, and ¢ = ¢’. The resulting
covariance cov{zq(t,tq_1,tq), ug—1(t')} is given by

cov{za(t, tg—1,tq), ug-1(t')}
= ca(t — tg—1) cov{za(tg—1), uq—1(t')}
+ cov{ fa(t, tg—1,tq, ug—1), uq—1(t")},
where cov{zq(ts—1),uq—1(t')} = 0, because there is no
correlation between the initial condition and the latent force.

Note that the expression obtained above is similar than the
expression obtained in Equation (9) for the standard LEM.

(15)

Covariance for the interval (¢,_1,t,) and (t;_1,ty)

For g > ¢/, covariance cov{zq(t,tq—1,t4), ug—1(t')} is given
by Equation (15) with cov{fa(t,tq—1,tq, uq—1),ug—1(t')}
equal to zero for ¢ strictly greater than ¢'. Now,
we have to compute the term cov{zq(tq—1),uqy—1(t')}.
This term follows a similar sequential routine than
the one used for the computation of the covariance
cov{zq(ty—1), far(t', ty—1,ty,ugy—1)} from appendix A.
Then, for ¢ = ¢ + n, we obtain a solution for
cov{zq(ty—1),uqg—1(t')} equal to

cov{zq(tg—1), Uq’—l(t/)}

= |:H Cd(tqfi — tq,ifl) k(q _1)
=1

dyUgl 1 (tqfn’ tl)’

with the covariance function k}i;j)ﬂ(t%mt/) given by

Cov{fd(tq—na tq—n—la tq—na Uq—n—l)v Ug'—1 (t,)}'
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