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SPF-CellTracker: Tracking Multiple Cells
with Strongly-Correlated Moves Using
a Spatial Particle Filter
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Abstract—Tracking many cells in time-lapse 3D image sequences is an important challenging task of bioimage informatics. Motivated
by a study of brain-wide 4D imaging of neural activity in C. elegans, we present a new method of multi-cell tracking. Data types to which
the method is applicable are characterized as follows: (i) cells are imaged as globular-like objects, (ii) it is difficult to distinguish cells on
the basis of shape and size only, (iii) the number of imaged cells in the several-hundred range, (iv) movements of nearly-located cells
are strongly correlated, and (v) cells do not divide. We developed a tracking software suite that we call SPF-CellTracker. Incorporating
dependency on the cells’ movements into the prediction model is the key for reducing the tracking errors: the cell switching and the
coalescence of the tracked positions. We model the target cells’ correlated movements as a Markov random field and we also derive a
fast computation algorithm, which we call spatial particle filter. With the live-imaging data of the nuclei of C. elegans neurons in which
approximately 120 nuclei of neurons were imaged, the proposed method demonstrated improved accuracy compared to the standard

particle filter and the method developed by Tokunaga et al. (2014).

Index Terms—~Particle filter, Markov random field, automatic cell tracking, 4D live-cell imaging data

1 INTRODUCTION

EVELOPMENTS in imaging technologies such as confocal

microscopes and fluorescent proteins have increased
the demand for computational techniques to process live-
cell imaging data, including automatic cell tracking. Many
algorithms for cell-tracking tasks have been developed
owing to their variety in shape, motion and density [see [1],
[2], and [3] for comprehensive surveys]. In the review by
Maska et al., they classified these tracking algorithms into
two categories, namely, detection and linking and contour evo-
lution according to their algorithm designs. Methods in the
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first category track cells by using a two-step procedure: (1)
detection of cells in all frames of the video and (2) finding
the corresponding links of the cells in successive frames [4],
[5], [6]. In the second category, segmentation and tracking
of cells are simultaneously executed by predicting the cell
positions and evolving the contours of the cells in the previ-
ous frame to those in the current frame [8], [9]. In addition
to the categories, there is another category called particle fil-
ter. Tracking algorithms in this category track cells by evolv-
ing the probabilistic distribution of the cell positions based
on the Bayesian recursive formula, instead of estimating the
cell positions only [10]. All the three categories have their
own advantages. A major advantage of methods in the first
category is the capability to track new cells entering the field
of view since the cell positions are determined before the
tracking. In the second category, robustness for morphologi-
cal change of living cells is a main advantage. An advantage
of particle filters is the capability to handle nonlinear and
non-Gaussian motion of cells.

Our motivated datasets were 4D live-cell imaging data
that capture the nuclei of C. elegans. The locations and Ca®*
activity levels of the neurons can be visualized by incorpo-
rating various fluorescent proteins such as mCherry, CFP,
and YFP [11]. In order to study the information processing
in C. elegans, their neural activities must be measured accu-
rately. For accurate measurements, it is essential to track
multiple neurons since the neurons of a live nematode
move frame by frame according to the movements of the
nematode itself. In this study, we aim to track more than a
hundred neurons in brain-wide 4D live-cell imaging data of
C. elegans. Data types to which the method is applicable are
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characterized as follows: (i) cells are imaged as globular-like
objects, (ii) hundreds of cells are present, (iii) movements of
nearly located cells are strongly correlated with one
another, and (iv) cells do not divide. We employ the particle
filter as a basis of our tracking algorithm focusing on its
scalability to large datasets.

Many tracking methods have been developed on the basis of
the particle filter in the field of digital image processing. These
methods have succeeded in tracking various objects such as
human bodies [12], [13], human faces [14], [15], cars [16], [17],
and so forth. Applying methods directly to our data often
causes problems such as cell switching, i.e., mistaking a cell of
interest for one of the other cells. This is mainly due to the fol-
lowing reasons; (1) the neuronal nuclei to be imaged are usually
ellipsoidal shapes and it is difficult to distinguish them from
visual information only, (2) the neurons are severely jammed in
some areas of the image, and (3) the movements of a nematode
itself are irregular and sometimes sudden and rapid.

To improve the accuracy of multi-object tracking based on
particle filters, Khan et al. proposed a particle filter combined
with a Markov random field (MRF) that models the depen-
dency on targets’ movements [18]. Smal et al. proposed a
method specialized for tracking the multiple edges of micro-
tubules during polymerization based on an MRF to avoid
collisions of multiple edges [10]. The MRF-based tracking
framework is promising but needs to be designed according
to the characteristics of the dataset. The key feature of our
data is that many cells move rapidly, but the nearly located
cells” movements are strongly correlated since the change in
the cell positions occurs owing to the change in body posture
of a nematode. Properly modeling such covariation of cells
might be the key to reducing the tracking errors.

More recently, we proposed a novel multi-cell tracking
method which is based on an MRF model and an optimization
technique in order to address the task of tracking hundreds of
cells. The proposed method is a novel variant of our previous
method [19]. We employ a more sophisticated MRF and the
optimization technique is replaced by a sampling-based algo-
rithm motivated by the particle filter algorithm. The use of the
particle-based tracking combined with the MRF offers two
advantages; (i) a great reduction in computational time and
(ii) a significant improvement of tracking accuracy due to the
incorporation of more sophisticated spatial information into
the MRF. Through applications to synthetic data and 4D
images of the neuronal nuclei of C. elegans, we demonstrate
that the proposed method indeed outperforms our optimiza-
tion-based method in terms of tracking performance.

2 METHODS

Here, we review the existing tracking methods with the par-
ticle filter. We introduce the particle filter for single object-
tracking and its variants for the simultaneous tracking of
multiple objects. We then describe our tracking method.

2.1 Existing Tracking Methods with the
Particle Filter
2.1.1 Particle Filter

We begin with a brief introduction to the particle filter (PF),
commonly used as a standard object-tracking method. Let
y: be the observed image data at time ¢, and let z; denote the
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state of the target at time ¢. The state includes the target’s
information such as the location, velocity, volume and
shape. The unknown state variables are usually estimated
as the filtering distribution p(x;|y1.), where yi1.; = {y1, ..., ¥ }-
With the dynamics of the state p(x|z;—;) and the likelihood
p(yi|z;), the filtering distribution can be computed accord-
ing to the following Bayesian recursive formula:

p(xt\ylzt) O(P(yt|«77t)/p(wt‘xt—l)p(xt—l‘ylzt—l)dmt—l, (1

If the dynamics p(z;|z;—1) and the likelihood p(y;|z;) are lin-
ear and Gaussian, these distributions can be exactly calcu-
lated by the Kalman filter [20]. These assumptions, however,
are too restrictive and unrealistic for object-tracking from
video data. Therefore, particle approximation of the distribu-
tion is commonly used for dealing with the nonlinearity and
non-normality of the distribution. The particle filter approxi-
mates the filtering distribution by using a set of point masses,
ie, particles Suppose N is the number of particles, and
{ xt }” | is the set of particles which approximates the distri-
bution p(z|y;—1) for one-step-ahead prediction. The particle
weight w|") is defined as the probability proportional to the

likelihood p(y|z\"’) and can be intuitively interpreted as
how much a particle captures the target in the current frame.
We also suppose {w" 1| is the set of particle weights. The
filtering distribution is approximated as follows:

Zwt

where § denotes the Dirac delta measure with the mass at 0.
Under this particle approximation, object-tracking is con-
ducted by the following procedure:

p(xe|y14) xt*l”z )7

1)  Prediction: move particles according to the dynamics

p(@t|@i—1).

2)  Filtering: calculate particle weights according to the

likelihood p(y:|x+).

In Equation (1), the prediction and filtering steps corre-
spond to the calculation of the integral and to the multipli-
cation by the likelihood, respectively. We note that particles
are usually resampled according to the probabilities propor-
tional to the particle weights since the resampling proce-
dure often avoids the degeneracy of the algorithm [21],
meaning that the resampling procedure stabilizes the track-
ing quality. We therefore assume that resampling is always
conducted in the filtering step, and we refer to a set of
resampled particles as a filter ensemble, denoted by {z, z) W

n=1-

2.1.2 Joint Particle Filter

The standard particle filter has been extended to the tracking
of multiple targets. The most basic method is a joint particle
filter (JPF), also known as mixture tracking [22]. Suppose ;.
denotes the location of target k at time ¢. We hereafter denote
the set of locations for all targets by z;. In JPF, the dynamics
of the multiple targets is defined as follows:

Hp ﬂﬂtk|96t lk

keV

lf|$t 1

where V' is the index set of all targets. That is, the move-
ments of the targets are assumed to be independent of each
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other. Therefore, JPF can be computed by an independent
run of the standard PF for each target. JPF is a reasonable
option for the multi-object tracking if (1) the number of
objects to be tracked is moderate, and (2) the visual charac-
teristics of the targets are clearly different. Otherwise, JPF
easily fails by tracking an incorrect target located close to
the target of interest.

2.1.3 Motion Model with a Markov Random Field

Next, we introduce a framework of MRF-incorporated
motion models [18]. In many cases, the movements of a target
are dependent on those of other targets. For example, a fish
usually changes its direction when it is going to hit another
fish. In this approach, JPF is extended to model such depen-
dencies among the targets movements based on the MRF,
which is plugged into the dynamics of the JPF as follows:

p(xt|$t—l) X Hp(xt,kmt—l,k) H I/I(xtﬁk17xtﬁk2)7

kev (k1 k)€ E

where F is the set of edges in the MRF and v is the energy
function that represents the dependency on movements of
targets ky and k,. The filtering distribution p(z;|y;) can be
obtained by moving particles according to the dynamics
p(xir|zi—1) and computing the particle weights that is
defined as the product of the likelihood p(y|z;x) and the
energy function y/(zx, ;) for all k' such that (k,¥) € E.
This algorithm is called the joint MRF particle filter. The
tracking performance of the joint MRF particle filter, how-
ever, strongly depends on the number of particles NV, since
the generated particles based on the dynamics p(x|z;—1) do
not include any information about the energy function and
tend to be inaccurate. Instead, the filtering distribution
p(z¢|y:) can also be computed by Markov chain Monte Carlo
(MCMC) sampling. One issue of the motion model with
MRFs is the trade-off between tracking accuracy and
computational efficiency. MCMC sampling stabilizes the
tracking performance, but its computational cost can be pro-
hibitive due to iterative computation until convergence for
each frame. On the contrary, joint MRF-PF is computation-
ally efficient but less accurate. In the next section, we pro-
pose a novel sampling method that is a better compromise
between the joint MRF particle filter and MCMC sampling.

2.2 Spatial Particle Filter

We propose a novel tracking algorithm, which we call a spa-
tial particle filter (SPF). Our idea to address the sampling
issue of MRF-PF is to design a better proposal distribution
that shares information about cells” dynamics and depen-
dent movements. How do we construct such a better pro-
posal distribution? The sampling inefficiency in the
standard particle filter is due to the difficulty in predicting a
cell position based only on temporal information since the
movements of a nematode itself are sometimes sudden and
rapid. The key idea to overcome the sampling inefficiency is
to incorporate the spatial information such as the correlated
movements among cells into a proposal distribution. If we
already know the position of a cell near the target cell in
the current and previous frames and the cells’ movements
are strongly correlated, the position of the target cell can be
efficiently estimated from such correlated movements. We
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therefore construct a proposal distribution that predicts the
target cell position from spatial information, unlike the motion
models in the standard particle filter. The remaining issue is
how we determine positions of all cells since all the cell posi-
tions are unknown before the tracking. A solution is to deter-
mine the position of a cell from a nearly located cell,
sequentially. To this end, we transform the joint distribution
of the state variables for multiple targets at time ¢ into a recur-
sive formula in the spatial domain, as is similarly done in the
temporal domain for the standard PF. Suppose the graph
structure of an MRF is restricted to a tree. Let y, ;, be the region
of the kth target image at time ¢, u(k) the parent node of node
k, 1 — k the path from the root node to node k, and y;_.;, the
set of regions of target images corresponding to nodes on the
path 1 — k. Then, the conditional distribution p(z;x|y1—1) is
represented as the following recursive formula:

p(mz,k|yz‘1ﬂk)

O<p(yt,k’|xt7k)/p(wt,kmt,u(k))p(xt,u(k)|yt,1ﬂu(k))d$t,u(k)~

That is, a target can be tracked from the location of a corre-
sponding parent node by the standard PF-like computation
for each path for each frame, meaning that all targets except
for the root node can be tracked by a sweep of the MRF tree
as shown in Fig. 1c. In this formula, we design p( x|z )
as a proposal distribution that shares information about the
dynamics of the kth target and the energy function between
k and u(k). To deal with the nonlinearity and non-normal-

ity, we approximate the conditional distribution by a set of
N N
n=1 n=1

particles {mi?} and particle weights {wf(?} as follows:

N
p@lyiai) = > wls(w, — o).

’ ’

n=1

We note that the recursive formula is valid only when the
MREF is restricted to a tree. We therefore automatically con-
struct an MRF tree from the initial locations of the targets,
as described later. We also note that the target correspond-
ing to the root node in the MRF tree cannot be tracked by
this recursive formula, and, therefore, we track the root tar-
get by the standard PF.

2.2.1 Detection of the Initial Locations and Construction

of an MRF Tree

We detect the initial cell locations of by clustering the voxels
with local peaks and computing the centers of the clusters. In
order to reduce computational costs, we collect the voxels
with strong fluorescent intensities. Here, a strong intensity is
defined as a local maximum of the fluorescent intensities in a
region narrower than the size of a cell nucleus, assuming that
the local peaks of intensities concentrate on the center of a cell
nucleus. To cluster the voxels, we use the DP-means algorithm
[23], which is an extension of the k-means algorithm, which
does not need to specify the number of clusters k. The DP-
means algorithm is suitable for our data since (1) it automati-
cally counts the number of clusters, i.e., the number of cells;
(2) the computation is considerably fast; and (3) the parameter
A that controls the cluster radii is determined by prior knowl-
edge of the radii of a cell. To construct a graph structure of an
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Fig. 1. Outline of the spatial particle filter. (a) An illustrative example of a 4D image dataset for the nuclei of C. elegans neurons. (b) Preparation of the
algorithm using the initial frame of the dataset: (b1) Detection of the cell centroids by the DP-means algorithm. (b2) Construction of a Markov random
field that defines The correlated movements of the cells. Its graph structure is constructed by the minimum spanning tree that spans all the cell cent-
roids in the initial frame. (b3) Determination of the cell corresponding to the root node of the tree. (c) Tracking scheme at time ¢. (c1) Tracking of the
cell corresponding to the root node by the standard particle filter. (c2), (c3), and (c4) Sequential tracking of the remaining cells.

MREF that models the correlated movements among cells, we
construct a minimum spanning tree that spans all the detected
locations of the cell nuclei by using Kruskal’s algorithm [24].
The outline of the spatial particle filter is summarized in Fig. 1.

2.2.2 Particle Generation in the Spatial Domain

We here design a proposal distribution p(xy k|2, .u)) that
serves as both the dynamics of target k£ and the energy func-
tion between target k and target u(k). Our key ideas for con-
structing the proposal distribution are to (1) simulate the
covariation with neighboring cells, (2) maintain the relative
positions of cells in the initial frame, and (3) avoid collisions

with neighboring trackers. Let {glct(?‘k}flV , be the ensemble

set corresponding to the filtering distribution p(z|y1—),
and let Z, ;, be the mean vector averaged over the ensemble
set. We hereafter abbreviate the parent node u(k) simply to
u if no confusion is likely. One approach to taking the
covariation information into account is to generate particle
;z:t('i) such that the following approximation holds:

2 — By ol

tulu = Ti—l,us

i.e., the movement of target k& between two successive
frames is roughly the same as the movement of its parent
node u. In fact, this is equivalent to preserving the relative
position of & for  in the previous frame since transposition
of the second and third terms yields
9057}{ - fi u)‘ R Ti-1k — Tt—1u-

The covariation of the cells is utilized by this approach, but
the relative positions of the cells in the initial frame are not
conserved, i.e., the distance between a pair of cells can be
infinite in the long run. We therefore consider another con-
straint on particle z\), such that the relative positions of the
cells in the initial frame are roughly conserved.

(n) (n)

xtk - ulu N X1k~ Tlu-

We note that the relative positions to be conserved do not
have to be those in the initial frame and can be arbitrarily

chosen from those in all frames if the tracking is offline.
Therefore, if we find the frame when the movement of a
nematode itself is slower and more stable than that in the
initial frame, the frame is a better ch01ce for defining the rel-
ative positions of the cells. Let n =Ty, — Tk, We con-
struct a proposal distribution p(xm\mt,u(k)) such that the
above two constraints simultaneously hold:

+ (1= o)t o, @

where vg’}f is the noise vector that follows the normal distri-
bution with mean vector 0 and covariance matrix 3, and « is
a tuning parameter whose range is 0 < o < 1 and controls
the importance between the covariation and the relative
positions. By this construction, the relative positions of the
cells in the initial frame are conserved in the long run since
the time series generated from the proposal distribution is
stationary. We see this fact by taking the average of Equa-
tion (2) over the index set of particles {n|l---, N} to derive
the following autoregressive model:

k, k, k, _
(n; ‘- m Y) = a(m; “1 - ’71 ‘) + Utk

where T, is the average of the noise vectors over the index
set of particles. Smce the autoregressive coefficient o sat1s—
fiesO < a < 1, n" isa stationary process with mean 17
meaning that the relative positions of the cells in the 1n1t1a1
frame are conserved in the long run.

The remaining task to construct the procedure for gener-
ating particles is to avoid collisions with neighboring track-
ers. To this end, we combine a rejection sampling with the
proposal distribution. After generating a particle based on
the proposal distribution, we reject the particle if the dis-
tance between k and u is small compared with the radii of a
cell nucleus. Formally, we re]ect the particle with a probabil-
ity proportional to exp{—||n;"||*/A\?}, where A denotes the
predefined radius of the cell nuclei, and accept it otherwise.

2.2.3 Calculation of the Particle Weights

We next describe how we evaluate the importance of a par-
ticle that tracks a cell nucleus. The point-spread function
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(PSF) is typically used for evaluating the similarity of objects
with ellipsoidal shapes [2]. The cell nuclei in our motivated
datasets are roughly ellipsoidal but often slightly deformed.
To evaluate the similarity between cell nuclei in the pres-
ence of a deformation, we define the importance of a parti-
cle as a similarity between 3D subimages around the kth
cell centroid in the initial and current frames. Suppose
yiw) (z) is an augmented vector that corresponds to a 3D sub-
image at time ¢ with center x € R® and window width
parameter w = (wy, ws, w3) € Ng Here, the window is
defined as a set of voxels in the cuboid with a center voxel
including x and edge lengths 2w; + 1, 2wy + 1, and 2ws + 1.
We also suppose that Z; ; is the initial position of the kth cell
centroid detected by the DP-means algorithm. We then

define a likelihood function of particle xi’}g as follows:

) ot (7)) — 91" (@10 | P
P(Yrklwyy,) ox expq — 202 )

where o” is the parameter that controls the variance of the
3D-subimage similarity and W is the number of non-zero
elements for the vector defined as the element-wise sum of
yi"’)(mgT;)) and 7"/ (xff}f)) We note that the difference is aver-
aged over nonzero elements in the elementwise sum of the
subimages in order to avoid an unintended similarity
increase derived from the voxels within the window but
outside the nucleus region. We also note that the window
parameter w should be chosen to be larger than the maxi-
mum size of the cell nuclei so that all the information about
shapes and intensities are included in the window.

2.2.4 Dealing with the Disappearance of the Targets
to be Tracked

Another difficulty in tracking cells is that some neurons go
out of the image space because of the movement of the nem-
atode. We track the cells that are out of the image space by
the following scheme. If a generated particle in the predic-
tion step goes out of the image space, we add the particle to
a member of the filter ensemble without resampling. The
reason why we skip the filtering step for such a particle is
that the likelihood of the particle cannot be evaluated
whereas the particle should be kept considering the possi-
bility that the target truly goes out of the image space.

225 Software

We developed a software suite called SPF-CellTracker. Our
software is composed of three executables, namely, convert,
track, and view. The first software convert converts a set of 2D
images that comprise 4D live-cell imaging data into a single
file encoded as our original binary format. During the con-
version, the average subtraction and the 3D median filter can
be optionally applied for each 3D image in order to remove
background noise and salt-and-pepper noise. The second
software track is the main software for detecting and tracking
multiple cells based on the SPF algorithm from the converted
4D image file. This software was implemented purely in the
C language considering the running speed, which will be
presented in the following section. The third software view is
for visualizing the 4D image data with the tracking result.
An interesting feature of this visualization software is the

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO.6, NOVEMBER/DECEMBER 2018

capability to zoom in, zoom out, and rotate a 4D image dur-
ing playing the 4D image data. Our software is freely avail-
able at the supplementary website (51) listed in Appendix.

3 EXPERIMENTS

We here present the performance comparisons related to
cell tracking and detection using synthetic data and real
4D live-cell imaging data. All of the supplementary videos
described in this section are available at the supplementary
website (S2) listed in Appendix.

3.1 Comparison of the Tracking Performance
3.1.1 Application to Synthetic Data

We begin with how we generated the synthetic datasets. We
constructed a model that simulates real 4D imaging data with
the following characteristics: (1) the relative positions of the
cells obtained from the real 4D imaging data are preserved in
the long run, (2) the movements of the nearly located cells
strongly correlate, (3) the cells are imaged as globular-like
objects and it is difficult to discriminate the cells by shape and
size, and (4) the cells do not divide but occasionally disappear.
We assumed the use of confocal microscopes for imaging the
cell nuclei. Typical confocal microscopes generate 3D images
with a longer step size along the z-axis than the edge length of
a pixel in the zy-plane. We therefore set the step size along the
z-axis to be three times larger than those in the zy-plane. To be
reasonably consistent with our real 4D live-cell imaging data,
we set the resolution and the number of frames to
512 x 256 x 20 and 500, respectively. We used the results of
the cell detection by the DP-means algorithm as the initial
positions of cells for each of the three real 4D imaging data.
For the three datasets, 114, 120 and 115 cells were detected.
We used the prediction model in the SPF as a simulation
model of cells” correlated moves. The locations of the root
nucleus after the second frame were not changed in order to
stabilize the position of a simulated nematode itself. The
position of the remaining non-root nuclei after the second
frame were generated by Equation (2) with « =0.6 and
312 = diag(0.6,0.6,0.03) to simulate the correlated move-
ments of the nearly located cells and the preservation of the
relative positions among the cells. These parameters were
determined on the basis of the visual similarity between the
generated data and the real imaging data through trial and
error. Especially, we set the variance of the noise along the
z-axis to nearly zero since the movement of a nematode in the
dorsal-ventral axis is considerably small even if the move-
ment in the anteroposterior axis is relatively large. To generate
globular-like objects as images of cells, we used an anisotropic
PSF. Suppose d (x, w)? = (z—p)" A (@ — p)isthe square of
the Mahalanobis distance between z € R? and i € R? with
the covariance matrix A € R**3. We define a PSF with the
nucleus center 1 and the shape parameter A as follows:

1 2 i
s, A) = cexp{ —3da(z,n)"} if dA(x?u) <1
0 otherwise,

where ¢ denotes the intensity at the nucleus center . For all
the nuclei, we used the same intensity parameter ¢ and
shape parameter A, which led to the most severe condition
for tracking so that the cell nuclei were not distinguishable
from the intensity and shape information. We set the shape
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Fig. 2. Time series plots of the average tracking errors per cell nucleus
per trial of the standard PF (dotted line) and SPF (solid line) for synthetic
dataset 1. Errors were calculated as the root mean square error (RMSE)
from the true positions of the synthetic nuclei. The unit distance was
defined as the edge length of a voxel in the xy-plane. The error along the
z-axis was expanded to three times of that in the xy-plane considering the
difference in the physical length between the zy-plane and the z-axis.

parameter A = diag(9, 6,3), which corresponded to an ellip-
soid where its principal axes were parallel to the z, y, and =
axes and those lengths were 9,6, and 3 voxels. A nucleus
image was deleted with a probability of 0.03 for each nucleus
for each frame in order to simulate its disappearance. Sup-
plementary videos 1, 2 and 3 show the resulting synthetic
datasets. The videos show similar motions of the cell nuclei
in the real datasets although the large deformation of a nem-
atode body such as the S-curve is not reproduced.

Next, we proceed to the evaluation of the tracking perfor-
mance for the synthetic datasets described above. For the
three datasets, we conducted 20 trials for each PF and SPF.
We set the same parameters to those used for generating the
synthetic image data. We then computed the root-mean-
square errors (RMSEs) and counted the number of tracking
failures. In computing the RMSEs, the distance along z-axis
was expanded to three times its initial length since the physi-
cal length of a voxel along the z-axis was assumed to be three
times larger than that in the xy-plane in order to simulate the
anisotropy of the 3D imaging data. Fig. 2 shows the time
series plots of the average RMSE of the PF and SPF per
nucleus per trial for synthetic dataset 1. The error of the PF
gradually increased as time ¢ increased, whereas the error of
the SPF was considerably small and stable. Table 1 summa-
rizes the failure counts of the whole applications to the three
datasets. The tracking failure was defined as the case where
the distance between the true position and its estimate was
greater than the radius of the synthetic nucleus, i.e., 4.5 vox-
els. The failure count was not incremented if a tracking failure
was inherited by the next frame, but it was incremented if the
tracking failure occurred again after the recovery from the
tracking failure. As shown, the SPF drastically reduced the
number of tracking failures in comparison with those of PF.

3.1.2 Application to Real 4D Live-Cell Imaging Data

We evaluated the tracking performance of the SPF and the
state-of-the-art method reported by Tokunaga et al.[19]. The
data we used were D1, D2, and D3 in Data II reported by
them, i.e., is, 4D live-cell imaging data obtained by imaging
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TABLE 1
Average Number of Tracking Failures Per
Nucleus Per Trial in 500 Frames

Data PF SPF

1 37.36 (0.234) 1.43 (0.038)
2 41.60 (0.179) 0.78 (0.016)
3 37.22(0.218) 1.14 (0.013)

PF and SPF were applied to three synthetic datasets. The num-
bers of tracking failures were averaged over the number of nuclei
and the number of trials. The estimated standard errors are
shown in parentheses.

the nuclei of C. elegans neurons (Supplementary video 4-6).
Each of the datasets is composed of 500 frames of 3D images
with a resolution 512 x 256 x 20, i.e., 20 z-slices of 2D images
with a resolution 512 x 256. Since the background noise level
of the datasets changes according to the depth of the 3D
image, we approximately estimated the background noise
level as the average over the fluorescent intensities of a 2D
image and subtracted it from the 2D image. We then applied
the median filter a window size of 3 x 3 x 1 to remove the
salt-and-pepper noise. To obtain the tracking results indepen-
dent from the quality of the cell detection, we used the same
starting positions for both methods. The starting positions
were obtained by using the repulsive hill-climbing (RPHC)
algorithm [19]. All the parameters required for the SPF were
manually-tuned and the same parameters were used for all of
the three imaging datasets. The parameter set used for the
SPF and the resulting tracking animations of the SPF (Supple-
mentary video 7-9) and the method of Tokunaga et al. [19]
(Supplementary video 10-12) are available at the supplemen-
tary website. Fig. 3 shows tracking results of both methods in
the final frame of D3 in Data II. The top panel of the figure
shows the starting positions of the trackers. Five trackers that
did not track the cell centroids in the bottom of the image
space were derived from the false positives of the cell-detec-
tion in the initial frame. The middle and bottom panels in
Fig. 3 show the positions of trackers in the final frame for [19]
and SPF, respectively. The figure suggests that, at least, large
inconsistencies between the cell centroids and the positions of
the trackers for both methods did not exist.

We evaluated the tracking performance using the final
frame of the original datasets by manual verification. To
reduce the errors of manual verification as much as possi-
ble, we implemented the following features for our 4D
image viewer: (1) focusing only on one cell and on the corre-
sponding tracker, (2) starting and stopping at an arbitrary
frame, (3) rotation of the 4D image, and (4) adjustment of
the intensity threshold that determines whether or not a
voxel is displayed. These features of the 4D image viewer
are introduced in Supplementary video 13. By using the fea-
tures of our 4D image viewer, we calculated the success
rates of both methods according to the following principles:

e A tracker was counted as a success if the distance from
the corresponding cell centroid was within five voxels.

e A tracker was excluded from the calculation if it was an
incorrectly detected cell centroid in the initial frame.

e A tracker was also excluded from the calculation if
the corresponding cell centroid was out of view in
the final frame.
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Fig. 3. Comparison of the tracking performance for D3 in DATA II.
(Top) Starting positions of the trackers for both methods. The track-
ers are depicted by colored circles. (Middle) Tracking result of the
method of Tokunaga et al. [19] in the final frame. (Bottom) Tracking
result of the SPF in the final frame.

Table 2 shows the success rates of both methods based on
the manual verification. The SPF considerably improved the
tracking performance compared with the method of Tokunaga
etal. [19] for all the three datasets D1-D3 in Data II. Among the
three datasets, the tracking performance in D3 was noticeably
lower than that in the other datasets for both methods. This
was due to the differences of nematodes’ body postures and

TABLE 2
Rate of Trackers that Correctly Tracked
the Corresponding Cells in the Final Frame
t =500 for D1-D3 in Data Il

Data Tokunaga et al. (2014) SPF
D1 (120) 0.8000 0.9524
D2 (124) 0.6860 0.9669
D3 (111) 0.4467 0.8679

The number of cells in the initial frame detected by the RPHC
algorithm is shown in parentheses in the first column. The con-
sistency of the tracking between the initial and the final frames
was manually checked for each cell using our 4D image viewer.

VOL. 15,
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Fig. 4. A 3D still image in DATA | that captured the nuclei of C. elegans
neurons after the noise removal.

movements in the final frame. The body postures in the final
frame of D1 and D2 are roughly straight, and the movements
of the nematode are moderate (Supplementary video 4 and 5).
On the contrary, the nematode in the final frame of D3 is
largely shrunk along the anterior-posterior axis and the nem-
atode’s movement is rapid (Supplementary video 6).

3.2 Comparison of the Cell Detection Performance
Next, we evaluated the detection performance of the DP-
means algorithm by comparing it with that of the RPHC algo-
rithm [19]. The datasets we used was DATA I, which was
reported by them. DATA I was obtained by imaging the
nuclei of the nematode’s neurons, but it was different from
Data II in that (1) it is composed of distinct 3D still images
instead of 4D images and (2) the cell centroids were manually
annotated in order to obtain the ground truth of the cell detec-
tion problem. The resolution of the zy-plane of all the 10 data-
sets was 512 x 256, and the numbers of z-slices for the
datasets ranged from 119 to 203. A 3D image in Data I after
the noise removal is shown in Fig. 4. To evaluate the perfor-
mance of both algorithm, we counted the number of true posi-
tives (TP), the number of false positives (FP), and the number
of false negatives (FN). A position detected by an algorithm
was defined as a true positive if the position was within five
voxels from a manually identified position, and was defined
as a false positive otherwise. An annotated position that was
not detected by an algorithm was defined as a false negative.
We then computed the true positive rates and the false discov-
ery rates defined as TP/(TP+EN) and FP/(FP+TP), respec-
tively. Table 3 shows the false discovery rates and the true
positive rates of both algorithms. The radius parameter A of
the DP-means algorithm was set to eight voxels, which were
close to the maximum radius of the cells. The true positive
rate of the DP-means algorithm is roughly the same as RPHC
while its false discovery rate were higher than RPHC. Fig. 5
shows an effect of the radius parameter A on the cell detection
performance of the DP-means algorithm, suggesting that the
DP-means algorithm achieved the best for A =8 and A =9,
which were close to the maximum size of the cells.

TABLE 3
False Discovery Rate and True Positive Rate of the Cell Detection

RPHC DP-means (A = 8)
True positive rate 0.8041 (0.0362) 0.8004 (0.0710)
False discovery rate 0.0301 (0.0305) 0.1362 (0.1060)
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Fig. 5. The radius parameter A and the cell detection performance of the
DP-means algorithm. The accuracy was averaged over the results of ten
3D still images in DATA |. Ranges within 1 standard deviation are indi-
cated by shaded regions.

3.3 Computational Time

We computed the CPU time and real time for D1 in DATA
II, which was composed of 500 frames of 3D images with a
resolution 512 x 256 x 20. We used an iMac (27-inch, Late
2013, OS X 10.9.5) with a 3.2 GHz Intel Core i5 CPU and
8 GB of RAM as our computational environment. OpenMP
implemented in GCC 4.8 was used as a tool for paralleliza-
tion. We used the same parameter set as that used in the
evaluation of the tracking performance for the real 4D live-
cell imaging data. Especially, we set the number of particles
for tracking a cell to 1000, i.e., the total number of particles
for tracking 100 cells was 10°. To measure the scalability of
our method, we randomly selected 20, 40, 60, 80, and 100
cells without replacement among 114 cells. Fig. 6 shows the
CPU time and real time consumed for tracking 500 frames
in the dataset D1 in DATA II. The CPU time and real time
were averaged over 20 trials. The CPU time in the most
severe condition, i.e., KX = 100, was less than 120 seconds,
suggesting that our software is sufficiently of practical use.

3.3.1 Discussion

We here summarize the results suggested by the numerical
studies.

e The tracking performance of the standard PF was
substantially improved by the proposed method for
synthetic datasets (Table 1).

e The tracking errors of the PF were sequentially
inherited by the next frame, whereas those of the
SPF were not severely inherited. This result suggests
a recovery from tracking failures (Fig. 2).

e Tracking performance can be evaluated by using the
features implemented in our 4D image viewer (Sup-
plementary video 13).

e The SPF considerably outperformed the method of
Tokunaga et al. in terms of the success rates of the
tracking in the final frame for all the three datasets
D1-D3 in Data II (Table 2).

e The parameters of the SPF were set to the same ones
for all the three datasets D1-D3 in DATA 1I, suggest-
ing a robustness of the SPF (Section 3.1).

e For the method of Tokunaga et al., some trackers were
merged with other trackers and did not return to the
cells to be tracked again (Supplementary video 10-12).
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Fig. 6. Average time consumption of the SPF and its scalability to the
number of targets. The CPU time and real time were evaluated for com-
pleting the tracking of all 500 frames of the dataset D1 in DATA Il

e For the SPF, some trackers often recovered from
tracking failures and merged trackers were rarely
observed, probably due to the integration of the spa-
tial information such as the covariation, relative
positions, and collision avoidance among cells (Sup-
plementary videos 7-9).

e The true positive rates of the DP-means algorithm
and the RPHC algorithm for detecting cell centroids
were roughly the same, whereas the false positive
rate of the DP-means algorithm was higher than that
of the RPHC algorithm. This suggests an advantage
of the RPHC algorithm over the DP-means algorithm
for the detection of cell centroids (Table 3).

e The CPU times of the SPF were proportional to the
number of targets, suggesting a favorable property
in terms of the scalability to the data size. (Fig. 6).

4 CONCLUSION
In this study, we aimed at the tracking of more than a hun-
dred cells in 4D live-cell imaging data. One important char-
acteristic of live-cell imaging data is that the cells to be
tracked are densely scattered and visually similar. For these
imaging data, the particle filter often mistakes a cell of inter-
est for the other cells since the visual similarity among the
cell nuclei makes their discrimination difficult. Fortunately,
our 4D live-cell imaging data share a characteristic that is
useful for accurate tracking: cells’ movements in the 4D
live-cell imaging data are strongly correlated and the rela-
tive positions among the target cells are roughly conserved.
To address the tracking issue, we designed an MRF that
models the covariation and preservation of the relative posi-
tions among cells. To avoid the inefficiency of JPF and MCMC
sampling, we also proposed a novel sampling algorithm,
which we call spatial particle filter. The proposal distribution
in the prediction step draws more accurate particles than
those generated by dynamics since the proposal distribution
shares both temporal and spatial information about a cell’s
movements. The SPF tracks cells by a sweep of an MRF tree in
the spatial order for each frame; this allows for an effective
simultaneous tracking. The MRF tree is automatically con-
structed by computing an MST among the initial locations of
all targets. We applied the proposed method to synthetic data
and to our 4D live-cell imaging data of C. elegans. The results
showed that our algorithm required less computation yet
achieved higher accuracy than our previous algorithm.
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Future work includes performance comparisons with
tracking methods such as detection-and-linking and con-
tour-evolution methods. Another direction is to expand the
applicability of SPF to a wider class of 4D imaging data, for
example, 4D images of chromosome arrangements during
the cell division. Tracking chromosomes is a challenging
problem since they duplicate, split, and change their shapes
according to the state of cell division. We expect the pro-
posed method to be a reasonable candidate for tracking mul-
tiple targets in a wider class of 4D live-cell imaging data.

APPENDIX

The source codes of SPF-CellTracker are available at the fol-
lowing github repository (51). All the supplementary videos
(1-13) described in Experiments section are available at the
following supplementary website (S2).

(S1) https:/ /github.com/ohirose/spf
(S2) https:/ /sites.google.com/site/ webosamuhirose /spf
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