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Organisation-Oriented Coarse Graining and
Refinement of Stochastic Reaction Networks

Chunyan Mu, Peter Dittrich, David Parker, Jonathan E. Rowe

Abstract—Chemical organisation theory is a framework developed to simplify the analysis of long-term behaviour of chemical systems.
In this work, we build on these ideas to develop novel techniques for formal quantitative analysis of chemical reaction networks, using
discrete stochastic models represented as continuous-time Markov chains. We propose methods to identify organisations, and to study
quantitative properties regarding movements between these organisations. We then construct and formalise a coarse-grained Markov
chain model of hierarchic organisations for a given reaction network, which can be used to approximate the behaviour of the original
reaction network. As an application of the coarse-grained model, we predict the behaviour of the reaction network systems over time
via the master equation. Experiments show that our predictions can mimic the main pattern of the concrete behaviour in the long run,
but the precision varies for different models and reaction rule rates. Finally, we propose an algorithm to selectively refine the
coarse-grained models and show experiments demonstrating that the precision of the prediction has been improved.

Index Terms—stochastic reaction networks, probabilistic model checking, organisation theory, coarse-graining, refinement.
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1 INTRODUCTION

IN this paper, we study reaction networks and chemical
organisation theory, in particular, investigating the ap-

plicability of formal verification to their analysis. Reaction
networks are widely used in modelling chemical and biolog-
ical phenomena. For example, the BioModels Database [18]
contains more than one hundred thousand reaction network
models of bio-molecular systems [5]; additionally, large-
scale processes like infection dynamics, evolutionary pop-
ulation dynamics [22], or social systems [24] can be mod-
elled by reaction networks. A reaction network describes
the structure of interactions between system elements in a
formal and intuitively clear way. However, as a consequence
of non-linear interactions, feedback loops, and large state
spaces the implied overall dynamics can be difficult to
understand and to analyse.

Chemical organisation theory [7], [10] provides a way
to analyse complex dynamical networks and reason about
the long-term behaviour of chemical systems. The complex
network is decomposed into a set of sub-networks called
“organisations”. An organisation is a set of objects (for exam-
ple, the species or molecules in a reaction system) which are
closed and self-maintaining. Informally, closed means that
no new object can be produced by the interactions within
the set, and self-maintaining means that no object of the
set disappears from the system, i.e., every consumed object
of the set can be generated within the set. The concept of
organisation allows us to lift the complex reaction network
to a hierarchic structure including all stable states and states
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depicting accumulating molecules regarding to the organ-
isations. The dynamics of the complex state space of the
reaction network can then be mapped to movements among
the set of organisations. Building a chemical organisation-
based model thus helps us to model the structure and
behaviour of complex reaction networks, and to simplify
the dynamical analysis of the overall system.

In order to study the evolution of reaction networks,
we apply probabilistic model checking, a formal verifica-
tion technique for modelling and analysis of systems with
stochastic behaviour. It has been used to study models
across a wide range of application domains, including
chemical and biological systems. Probabilistic model check-
ing is based on the exhaustive construction and analysis of
a state-based probabilistic model, typically a Markov chain
or variant. In this work, we model the reaction networks as
continuous-time Markov chains. Quantitative properties of
interest about the system being analysed are formally spec-
ified using temporal logic. Here we use CSL (Continuous
Stochastic Logic) [2] with rewards, a quantitative extension
of the temporal logic CTL.

Specifically, we apply CSL model checking of
continuous-time Markov chains to investigate connections
between chemical organisations using model decomposi-
tions into strongly connected components (SCCs). We de-
velop an algorithm to automatically find organisations, and
then perform a quantitative dynamical analysis in terms of
organisations, asking, for example, “what is the probability
of moving from one organisation to another?” or “what is
the expected time to leave an organisation?” We implement
our techniques as an extension of the probabilistic model
checking tool PRISM [17], and illustrate the approaches on
a set of example reaction networks.

A coarse grained Markov chain model of hierarchical
organisations for a given reaction network is then con-
structed as a result, and we prove that this yields safe
approximations to the dynamical properties of the original
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concrete model. Approximating and predicting the system
behaviour over time is another direct application of our
coarse grained model, which can save significant time and
space comparing with doing prediction by using the original
concrete model. Specifically, we study the following ques-
tion: “Given a coarse-grained model and a fixed volume of
the chemical species, what is the probability distribution of
the molecular population after t time units?”. Our experi-
ments show that our prediction can mimic the main pattern
of concrete behaviour in the long run, but the precision
varies for different models and rates of their reaction rules.
In order to improve the precision of the approximation and
prediction, we develop an algorithm to selectively refine the
coarse-grained models. The basic idea is that we partition
the abstract states of the coarse-grained model using k-
means clustering techniques. Our experiments show that the
precision of the prediction is improved as a result.

This paper is an extended version of [21]. It also contains
extra examples, experiments for performance comparisons
and, in particular, the method for refinement of the coarse-
grained models.

Related work. There are various approaches to modelling the
dynamics of reaction networks. Feinberg and Horn [9] pro-
posed methods to identify positive stationary states in which
all molecular species are present in a network. Heinrich
and Schuster [13] study network structure based on flux
modes, each of which specifies a set of reaction rules that
can take place at a steady state and thus implies a set of
species participating in those reactions. Species relating to a
flux mode were not required to be self-maintaining or closed
however. We are more interested in the stationary states in
which a subset of species are present, which is formalised in
organisation theory [7]. In that area, the focus was typically
on qualitative properties, and ODEs [8], approximating the
evolution of reaction networks in continuous dynamical sys-
tems. Kreyssig et. al [15] studied the effects of small particle
numbers on long-term behaviours in discrete biochemical
systems. We build on their notion of discrete organisation
but focus on quantitative analysis of the transitive dynamics
among the organisations, which was not considered in [15].
Other approaches for approximate analysis of discrete mod-
els of reaction networks include the use of Linear Noise
Approximation [4], the Central Limit Approximation [3] and
“sliding window” abstractions [25].

Outline. This paper is organised as follows. Section 2 gives
an overview of probabilistic model checking. Sections 3 and
4 present the details of modelling chemical reaction net-
works as CTMCs and introduce definitions for building con-
nections with chemical organisation theory. Section 5 pro-
poses methods for a quantitative organisation-based analy-
sis. Section 6 formalises the definition of the organisation-
based interval coarse-grained model, which safely approx-
imates the probabilistic behaviours of the system, but may
suffer from over-estimation. Section 7 demonstrates how to
use our organisation-oriented coarse-grained model to pre-
dict system behaviour over time evolution. For the purpose
of improving the precision of the approximation and pre-
diction, Section 8 proposes an algorithm to selectively refine
the the coarse-grained models, and shows how precision of

the analysis is improved by the refinement. Section 9 draws
conclusions.

2 PROBABILISTIC MODEL CHECKING

Probabilistic model checking is a variant of model checking [6], a
well-established formal method to automatically verify the
correctness of real-life systems. Classical model checking
answers the question of whether the behaviour of a given
system satisfies a property or not. It thus requires two
inputs: a description of the system and a specification of
one or more required properties of that system, normally in
temporal logic (such as CTL or LTL).

In probabilistic model checking, the models are extended
with information about the likelihood that transitions take
place. In practice, these models are usually Markov chains
or Markov decision processes. In this work, we model
the reaction systems as continuous-time Markov chains
(CTMCs). Properties expressed in temporal logic are also
of a quantitative nature. For instance, instead of verifying
that “species A eventually vanishes”, we ask that “what
is the probability of species A eventually vanishing?”. In
this work, we use the temporal logic Continuous Stochastic
Logic (CSL) [1], [2].

The remainder of this section reviews some preliminary
definitions for the probabilistic model checking techniques
that we use in this paper.

2.1 Continuous-Time Markov Chains
Continuous-Time Markov Chains are widely used in fields
such as performance analysis or systems biology to model
systems with stochastic real-time behaviour. Formally, we
define them as follows.
Definition 1 (CTMC). A CTMC is a tupleA = (Q,Q0,∆, L),

where: Q is a finite set of states; Q0 ⊆ Q is the set of
initial states; ∆ : Q × Q → R≥0 is the transition rate
matrix; L : Q→ 2AP is a labelling function assigning, to
each state q ∈ Q, a set of atomic propositions, from a set
AP , that are true in q.

The transition rate matrix ∆ assigns a rate to each pair of
states in the CTMC, which is used as the parameter of an
exponential distribution.

2.2 Continuous Stochastic Logic
In this work, the probabilistic temporal logic CSL (Contin-
uous Stochastic Logic) is used to formally represent prop-
erties of reaction networks. It was originally introduced
by Aziz et al. [1] and extended by Baier et al. [2]. The
extended version allows for the specification of reward (or
cost) properties, to reason about rewards (or costs) that have
been attached to a CTMC. The extended version of CSL
that we use allows us to represent properties such as “the
probability of all of species A degrading within t time units
is at most 0.1” or “the expected time elapsed before a B
molecule first appears is at most 10”.
Definition 2 (CSL syntax). An (extended) CSL formula is an

expression Ψ derived from the grammar:

Ψ ::= true | p | ¬Ψ | Ψ ∧Ψ | P./λ(Ψ U I Ψ) |
S./λ(Ψ) | R./r[♦Ψ]
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where p ∈ AP is an atomic proposition, λ ∈ [0, 1] is
a probability threshold, r ∈ R≥0 is a reward threshold,
./∈ {<,≤,≥, >} and I is an interval of R≥0.

CSL formulas are evaluated over the states of a Markov
chain. A state q satisfies P./λ(ψ) if the probability of taking
a path from q satisfying ψ is in the interval specified by
./ λ. Here, the path formula ψ is an “until” operator:
Ψ U I Ψ′ asserts that Ψ′ is satisfied at some future time
point within interval I , and that Ψ is true up until that
point. Common derived operators include: “eventually”
♦IΨ := true U I Ψ and “always” �IΨ := ¬♦I¬Ψ. For
example, P≤λ(�IΨ) ≡ P≥1−λ(♦I¬Ψ).

The S operator describes the steady state (long-run) be-
haviour of the CTMC. The formula S./λ(ψ) specifies that the
steady-state probability of being in a state satisfying ψ meets
the bound ./ λ. The R operator is used for reward proper-
ties: R./r[♦Ψ] is true from state q if the expected reward
cumulated before a state satisfying Ψ is reached meets the
bound ./ r. Rewards and costs are treated identically: here,
we will use the R operator to formalise properties about the
expected time elapsing before an event’s occurrence.

We omit a full definition of the semantics of CSL with
respect to a Markov chain. Full details can be found in, for
example, [2].

3 MODELLING REACTION NETWORKS WITH
CTMCS

A reaction network consists of a set of molecules (or, molec-
ular species to be more precise) and a set of reaction rules.

Definition 3. A reaction network is a pair (M,R) consisting
of a set of possible molecular species M, and a set
R ⊆ PM (M) × PM (M) of possible reactions among
those species, where PM (M) denotes the set of all
multisets of elements over the set M. For a reaction
(R,P ) ∈ R, the multisets R and P denote the reactants
and products of the reaction, respectively, and we write
R(s) and P (s) for the number of molecules of species s
consumed by (reactants) and produced by (products) the
reaction, respectively.

For simplicity, we write s1+s2+· · ·+sn → s′1+s′2+· · ·+s′n′
instead of ({s1, s2, . . . , sn}, {s′1, s′2, . . . , s′n′}) ∈ R to denote
the existence of a reaction.

There are multiple ways in which we can obtain a
dynamical model given a reaction network. One way is
to consider (real-valued) concentrations of each molecular
species and then represent the (deterministic) behaviour of
the reactions as a set of ordinary differential equations. Here,
we take a discrete, stochastic view of the network, modelling
the (integer-valued) population count of each species and
considering its evolution as a stochastic process, and in
particular as a continuous-time Markov chain [12]. The latter
is particularly appropriate when the numbers of molecules
can be assumed to be relatively small in practice, and is the
approach that we take in this work.

Furthermore, we will also assume that the reaction net-
work is executing within a finite volume, which is modelled
by limiting the total number Nmax ∈ N of molecules that can
be present at any given time [15]. We also need to define

the rates at which reaction events occur in the CTMC. To
retain a general approach, we allow an arbitrary function
rater from reactant populations to rate values for each
reaction r. A typical default, which we use in some, but
not all, of our examples, is the law of mass-action, multi-
plying the number of molecules of each reactant by a fixed
kinetic rate associated with the reaction (and assuming the
stoichimetric coefficient of each reactant is at most one). This
gives rater(q) = λr ·

∏
s∈R q(s) with λr being a kinetic rate

constant for reaction r.
Definition 4 (CTMC for reaction network). Given a reaction

network (M,R), a volume limit Nmax ∈ N and a rate
function rater : NM → R≥0 for each r ∈ R, we define
the corresponding CTMC A = (Q,Q0,∆, L) where:

• Q = {q :M→ N |
∑
s∈M q(s) ≤ Nmax}

is the set of population counts of M and ∆ is defined

as follows. For states q, q′ ∈ Q, we write q
(R,P )−−−−→ q′ if

and only if, for each species s ∈M, we have q(s) ≥ R(s)
and q′(s) = q(s)−R(s)+P (s), and

∑
s∈M q′(s) ≤ Nmax.

Then, for any q, q′ ∈ Q, we have:

• ∆(q, q′) =
∑
{| rater(q) | r ∈ R and q r−→ q′}, and

we call r the transition label of q r−→ q′.

Q0 can be any subset of Q representing initial configu-
rations of interest, and L can be any labelling function
over Q that identifies states with relevant properties.

Each state q ∈ Q of the CTMC gives the number q(s) of
molecules of each species s ∈ M currently present. For a
state q, we also write φ(q) for the set of molecular species
that are present, i.e., φ(q) = {s | q(s) > 0}, and define
φ(Q′) = ∪q∈Q′ φ(q) for a set of states Q′ ⊆ Q. We let
Acc(q) ⊆ Q denote the states that are reachable from q.

Example 1. Consider the reaction network A with species
M = {a, b} and reactions R = {a + b → a + 2b, a →
2a, b → 2b, a → ∅, b → ∅}. Assume the volume of the
system is Nmax = 4, and that the rate of each reaction rule is
the multiplication of the number of the reactants. We obtain
a CTMC with 15 states (see Fig. 1).

4 CHEMICAL ORGANISATION THEORY AND SCC
DECOMPOSITION

Chemical organisation theory [7] provides a way to cope
with the complex “constructive” dynamics of a reaction
network by deriving a set of organisations [11], and then
mapping the movement through a state space to a move-
ment between organisations. Such an abstract view allows
us to analyse and predict the dynamical behaviour of a
complex reaction network more easily.

An organisation is a set of molecules that is algebraically
closed and self-maintaining. A subset C ⊆ M is called
“closed” if no molecules outside C can be produced by
applying any reaction that uses only reactants from C ; a
subset S ⊆ M is “self-maintaining” if all reactions that are
able to fire in S can occur at certain strictly positive rates
without reducing the amount of any species of S.
Definition 5 (Organisation [7]). A subset of O ⊆ M is a

chemical organisation if it is closed and self-maintaining,
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11:2a2b
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2.(a→)

3.(b→)

3.(a→)

2.(b→ 2b)

2.(a→)

2.(a→ 2a)

3.(a→)

3.(b→)
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1.(b→)

2.(b→)

2.(b→ 2b)

3.(b→)
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2.(a→)
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3.(a→)

3.(a→ 2a)

4.(a→)

1

Fig. 1: State transition graph of the CTMC for Example 1. State labels show index and population count, e.g., 11 : 2a2b denotes
that there are 2a and 2b in state 11.

that is, if for all (R,P ) ∈ R, R ⊆ O implies P ⊆ O (clo-
sure), and there exists a strictly positive flux vector v > 0
such that NO · v ≥ 0 with NO being the stoichiometric
matrix of the reactions that use only reactants from O
(self-maintenance).

As discussed above, we model the dynamics of a reaction
network as a Markov chain. A state is defined by a dis-
crete number for each molecular species. With a limited
total amount of molecules, both cases of too few and too
many molecules can prevent reaction rules being fired. As
a consequence, we need to define discrete organisations, and
the states contributing to generate them. In the following,
given a state q, Rq denotes the reactions firing in any of the
reachable states of q.

Definition 6 (Discrete organisation and internal genera-
tor [15]). Let (M,R) be a reaction network. A subset
of species D ⊆ M is called a discrete organisation if
there is a state q ∈ Q such that: (i) φ(Acc(q)) = D
(closure); and (ii) there is sequence of transition labels
(r1, . . . , rk) where ri ∈ R such that ∪ki=1{ri} = Rq and
q′ = (rk ◦ · · · ◦ r1)(q) satisfies ∀s ∈ D : q′(s) ≥ q(s) (self-
maintenance). Such a state q is called an internal generator
of the discrete organisation.

Definition 7 (Generator). A state q′ ∈ Q is called a generator
of organisation D iff ∃q ∈ Acc(q′) such that q is an
internal generator of D.

Note that, in general, the organisation D generated by a
state q′ is not unique. However, if q is an internal gen-
erator, there is only one organisation it generates. Unless
specifically stated otherwise, we say organisation rather than
discrete organisation in the rest of the paper.

Example 2. The discrete organisations for Example 1 are:
{a, b}, {a}, {b}, {} and the corresponding generators are,
respectively (cf. Fig 1):

• {6, 7, 8, 10, 11, 13},
• {5, 6, 7, 8, 9, 10, 11, 12, 13, 14},
• {1, 2, 3, 4, 6, 7, 8, 10, 11, 13},
• {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.

In order to analyse the system behaviour and perform
an organisation-based quantitative analysis of the reaction
network, we study the connections between chemical or-
ganisations and the decompositions into strongly connected
components (SCCs) of the Markov chain.

Definition 8 (SCC [14]). A strongly connected component (SCC)
is a maximal set of states T such that, for every pair of
states q, q′ ∈ T , there is a path from q to q′.

Intuitively, in the Markov chain for a reaction network, SCCs
are important for an organisation-based analysis. However,
some but not all SCCs correspond to organisations. In
the next section, we will describe an algorithm to find
organisations based on a decomposition into SCCs and then
identifying those self-maintaining a set of species. We first
note that bottom strongly connected components do relate to
organisations.

Definition 9 (BSCC). A bottom strongly connected compo-
nent (BSCC) is an SCC T from which no state outside T
is reachable from T .

Proposition 1. Each BSCC corresponds to a (unique) organi-
sation, which is generated (uniquely) by any state of that
BSCC.

However, there are organisations whose internal generators
are not contained in any BSCC. In order to also include
such organisations, we call SCCs that correspond to an
organisation good SCCs.

Definition 10 (Good SCC). An SCC T is called good if it
contains a cycle of the firing of every “possible” reaction
rule, i.e., those whose reactants R appear in the SCC
(R ⊆ {φ(q) | q ∈ T}).

Example 3. All SCCs are good in Example 1.

Clearly, some generators can contribute to multiple organ-
isations. This makes it more difficult to decompose the
Markov into its sets of generators. However, internal gen-
erators located in good SCCs contribute uniquely to an
organisation.
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Proposition 2. A generator g is an internal generator of
organisation D iff it is located in a good SCC T such
that: g ∈ T ∧

⋃
q∈T φ(q) = D.

Proposition 3. Given a good SCC T , let A = φ(T ), if A is
closed, then A is a discrete organisation, then {q | q ∈ T}
is the set of internal generators of A.

Example 4. In Example 1, the internal generators of or-
ganisations {a, b}, {a}, {b} and {} are {6, 7, 8, 10, 11, 13},
{5, 9, 12, 14}, {1, 2, 3, 4} and {0}, respectively.

5 ORGANISATION-BASED ANALYSIS OF REAC-
TION NETWORKS

In this section, we propose techniques for quantitative
organisation-based analysis of reaction networks. We first
introduce an algorithm to find the set of organisations for a
specific reaction network. We then use probabilistic model
checking to analyse quantitative properties regarding the
dynamics of the network with respect to its organisations.
Such organisation-based quantitative analyses can be used
to construct the structure of organisation-based coarse-
grained model, and provide a framework to approximate
the complex dynamical behaviours of the original reaction
networks in our next step.

5.1 Finding Organisations
Computing the organisations of a reaction network requires
an analysis of the strongly-connected components of its
Markov chain’s underlying transition graph. Since every
state in a good SCC is an internal generator of an organisa-
tion, we identify good SCCs to find the organisations of the
reaction network. Algorithm 1 presents the procedure for
finding organisations of a given reaction network modelled
as a CTMC. It is based on the following procedures:

• Tarjan(A) returns the set of strongly-connected
components of the Markov chain A, using Tarjan’s
SCC algorithm [23] on the underlying digraph;

• findGoodSCCs(SCC) returns the “good” part SCCG
ofA in which each possible reaction rule is able to be
fired;

• find a set of closed molecules appearing in each scc ∈
SCCG, and its relevant internal generators i.e., states
in scc which generate the organisation.

5.2 Organisation-Based Probabilistic Analysis
We now illustrate, via several examples, how we derive
quantitative organisation-based properties of reaction net-
works. We implemented the organisation and generator
detection process described above in the PRISM model
checker, along with a translator that converts descriptions of
reaction networks into the PRISM modelling language to al-
low construction of the corresponding CTMC. Organisation-
based properties of the network, such as probabilities
(bounds or average) of the movements among organisa-
tions, or the expected time to leave or stay at an organi-
sation, are computed using CSL formulae.

Example 5. Consider the reaction network with molecular
species M = {a, b} and reactions rules include: {a + b →

Algorithm 1: Finding organisations of a reaction net-
work

Data: CTMC A of reaction network (M,R)
Result: O as a set of organisations, G : O → P(Q) as a

mapping from organisations to sets of internal
generators

O = {};
G = {};
SCC← Tarjan(A);
SCCG ← findGoodSCCs(SCC) ∪ BSCC;
for scc ∈ SCCG do

Mg ← {φ(q) | q ∈ scc} ;
if Mg is closed then

if Mg 6∈ O then
O ← O ∪Mg /* add new
organisation */ ;
G(Mg)← {q|q ∈ scc} /* add new
internal generators */ ;

else
G(Mg)← G(Mg) ∪ {q|q ∈ scc} /* update
generators */ ;

end
end

end
return O, G.

a, a → 2a, b → 2b, a → ∅, b → ∅} with stochastic rates:
]a ·]b, α ·]a, β ·]b, (]a)2, (]b)2 respectively, where ]a denotes
the number of molecules of species a (note that this example
does not assume the law of mass action).

The resulting model is described in the PRISM modelling
language. It consists of a keyword describing the model
type (ctmc), a set of constants, and a single module whose
state is represented by a set of finite-ranging variables. Each
variable stores the number of each molecular species. The
behaviour of the module is specified by a set of guarded
commands of the form []g → r : u. This command is
interpreted as: if the predicate g is true, then the system
is updated by command u. Command u comprises one or
more statements of the form x′ = . . . indicating how the
value of variable x is updated. The rate at which this occurs
is given by r, which will be attached to the corresponding
transition label in the underlying CTMC.

We show the PRISM language model for the example in
Fig. 2. The resulting CTMC has 66 states and 201 transitions,
and there are 4 SCCs ({a > 0, b > 0}, {a > 0, b = 0}, {a =
0, b > 0}, {a = b = 0}) with 1 BSCC ({a = b = 0}).

The first property we consider is the probability of
moving between organisations. Specifically, the probability
of moving from O1 to O2 can be specified in CSL as
P=?[ o1 U o2 ], where o1 and o2 are atomic propositions
labelling states which represent internal generators of or-
ganisations O1 and O2. This refers to the probability of the
event where O2 is reached for the first time after leaving O1,
and is supported directly by PRISM.

In this example, all SCCs are good and each (good)
SCC generates exactly one organisation. To visualise the
movement between organisation, we analyse the property
above for each pair of organisations and construct the ab-
stract transition graph shown in Fig. 3. Blocks are labelled
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//translation reaction network to PRISM model
ctmc

const int N_MAX = 10;
const double rA = N_MAX; // rA
const double rB = N_MAX; // rB
formula total = a + b;
init total <= N_MAX endinit

module RN
a : [0..N_MAX]; // range value of specie a
b : [0..N_MAX]; // range value of specie b

// r1: a+b -> a
[r1] (a*b > 0) & (a > 0) & (b > 0) & (total<= N_MAX)

-> a*b : (a’=a) & (b’=b-1);

// r2: a -> 2a
[r2] (rA*a > 0) & (a > 0) & (total+1<= N_MAX)

-> rA*a : (a’=a+1) ;

// r3: b -> 2b
[r3] (rB*b > 0) & (b > 0) & (total+1<= N_MAX)

-> rB*b : (b’=b+1) ;

// r4: a -> 0
[r4] (a*a > 0) & (total<= N_MAX) -> a*a : (a’=a-1);

// r5: b -> 0
[r5] (a*b > 0) & (total<= N_MAX) -> b*b : (b’=b-1);

endmodule

Fig. 2: Example 5 in the PRISM modelling language

with organisations and, for each possible transition between
organisations, we show the range of probabilities (over all
states in the source organisation) and the average value
(over the same set of states).

We also consider the expected time to leave (the gen-
erators of) each organisation. The CSL property to specify
this, for some organisation Oi, is: R=?[♦¬oi ], where oi is an
atomic proposition as above and we use a reward that is
accumulated at a rate of 1 per time unit in each state. This
means that the property gives the expected time before a
state not in Oi is reached for the first time. This value is also
shown for each organisation in Fig. 3, inside the block for
the corresponding organisation.

{a, b} 0.5959

{a} 196.433 {b} 196.433

{}, ∞

[0.8267, 0.9979], 0.956 [0.0021, 0.1733], 0.044

1 1

1

Fig. 3: Organisation movement for Example 5: transition prob-
abilities (in bounds and averages of possible values) between
generators of organisations, and the expected time to leave
them. For instance, the generators of [a, b] are left about every
0.5959 time steps on average, in which it visits generators of
[a] with probability 0.956 in average and [0.8267, 0.9979] in
bounds, and visits generators of [b] with probability 0.044 in
average and [0.0021, 0.1733] in bounds.

Finally, we consider the effect of making some construc-
tive perturbation to the reaction network, by adding rules
to create species with a small rate. Fig. 4 shows the results

of the same analysis described above for the following con-
structive perturbation: {∅ → a, ∅ → b} both with reaction
rate γ = 0.01. The result shows that, generating a and
b with a small rate can cause an upward movement and
slightly affect the system’s behaviour. The expected time to
stay in each organisation decreases since the movement flow
becomes slightly faster. This meets our intuition: the upward
flow introduced by the constructive perturbation leads to a
smoother flow of the system.

{a, b} 0.596

{a} 73.35 {b} 73.35

{}, 50.0

[0.8268, 0.9979], 0.956
[0.56, 0.63], 0.619

[0.0021, 0.1732], 0.044

[0.37, 0.44], 0.38 [0.37, 0.44], 0.38

[0.5, 0.5], 0.5

Fig. 4: Organisation-based transition model of Example 5 with
constructive perturbation.

Example 6. Consider now the reaction network with M =
{a, b, c, d} andR = {a+b→ a+2b, a+d→ a+2d, b+c→
2c, c→ b, b+ d→ c, b→ ∅, c→ ∅, d→ ∅} and rates (say
R1) as: ]a∗ ]b, ]a∗ ]d, ]b∗ ]c, ]c, ]b∗ ]d, ]b, ]c, ]d respectively.

Fig. 5 shows the structure of the CTMC for Nmax = 5.
Even for a small volume Nmax = 5, the structure is quite
complex: 126 states, 386 transitions, 28 SCCs and 6 BSCCs.

Fig. 6 illustrates, in the same fashion as above, the tran-
sition probabilities between all SCCs of the CTMC, and the
expected time to leave them. Note that not all SCCs are good
SCCs in this example: we highlight good SCCs in colour in
Fig. 6. For instance, the SCC labelled as (99, 105; 0.25) is
not a good one. There are two states in this SCC: state 99
(a = 2, b = 0, c = 1, d = 1) and state 105 (a = 2, b = 1, c =
1, d = 1). The set of molecules appearing in this node is
closed, but reaction rules such as c→ ∅ and d→ ∅ cannot be
fired within the SCC and it is therefore not good. In addition,
the SCC labelled as (12, 27; 0.25) is also not a good one. It
contains state 12 (a = 0, b = 0, c = 2, d = 1) and state 27
(a = 0, b = 1, c = 1, d = 1). The set of molecules appeared
in this node is closed, but reaction rule c→ ∅ is unable to be
fired locally, i.e., this decay will only introduce transitions to
other SCCs. Similar cases can happen for some of the other
reaction rules.

Fig. 7 presents the transition probabilities between good
SCCs only, and the expected time to leave them. Note that
multiple good SCCs can contribute to the generation of
one organisation. For instance, both good SCCs labelled
65 . . . and 98 . . . contribute to organisation {a, b, c}. Based
on this graph, we can build up the transition graph over
organisations.

Fig. 8 presents the transition probabilities between (in-
ternal generators of) organisations, and the expected time to
leave each of them. It helps us to understand the movement
between organisations and can be viewed as an abstract
model capturing the behaviour of the reaction network at
the level of organisations.
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Fig. 5: CTMC for the reaction network from Example 6, with 28 SCCs and 6 BSCCs.

62 . . . 88; 0.59

65 . . . 89; 0.708 98 . . . 109; 0.574

71 . . . 90; 3.25

101 . . . 110; 4.22

117, 120; 2.75

57 . . . 60; 3.25

92 . . . 94; 4.22

112, 113; 2.75

56; ∞ 91; ∞ 111; ∞

121; ∞ 125; ∞

0; ∞

99, 105; 0.25

96 . . . 108; 0.52

14, 29; 0.147

13, 28; 0.185

12, 27; 0.25

17, 32, 42;
0.143

16, 31, 41;
0.192

11, 26;
0.786

19, 34, 44, 50;
0.154

15, 30, 40;
0.302

20, 35, 45, 51, 54
0.195

18, 33, 43, 49
0.238

116, 119; 0.393

[0.04, 0.72], 0.34
[0.125, 0.416], 0.217 [0.056, 0.73], 0.356

[0.02, 0.19], 0.087

[0.65, 0.88], 0.78

[0.12, 0.35], 0.22
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1
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1

1
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[0.357, 0.393], 0.375
[0.607, 0.643], 0.625

[0.045, 0.462], 0.159

[0.192, 0.39], 0.29 [0.135, 0.65], 0.439

[0.047, 0.169], 0.112

Fig. 6: Transition probabilities (bounds and averages) between all SCCs of the CTMC for Example 6 and the expected times to
leave them. Probabilities annotate edges as “[l, u], a” for lower/upper bounds l, b and average a; states are labelled first with a list
of the states in the SCC and then with the expected time to leave.

In addition, we also present transition graphs over the
lattice of molecules (states in which a set of molecules in
the lattice with positive numbers) for a quantitative analysis
for organisations from a different point of view, see Fig. 9.
The transition probabilities are given in bound. Specifically,
the probability of movement from {a, b, c} to {a, b} can be
specified as: P=?[(a > 0 ∧ b > 0 ∧ c > 0) U (a > 0 ∧ b >
0 ∧ c = 0)]. Note that Fig. 8, Fig. 9 can be used to build a

coarse-grained model from a different perspective.

6 ORGANISATION-ORIENTED INTERVAL MARKOV
CHAIN

The organisation-oriented transition graph generated by the
quantitative analysis can be used to build a coarse-grained
model (with either interval based or average based proba-
bilistic transitions). Such a coarse-grained model can mimic
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Fig. 7: Transition probabilities (bounds and average) between good SCCs for Example 6 and the expected time to leave them.

{a, b, c, d} 0.59

{a, b, c} 0.66

{a, b} 3.46 {a, d} 3.46
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1 1
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Fig. 8: Transition probabilities (bounds and average) between
generators of organisations for Example 6 with Nmax = 5 and
the expected time to leave them.

the complex reaction behaviours of the reaction network in
an abstract way, whose state space and movement structure
are much smaller. We can then perform approximation, pre-
diction, and quantitative analysis upon the coarse-grained
model in stead of the complex concrete model. This sec-
tion focuses on formalising the interval-based organisation
coarse-grained model. Specifically, our quantitative analysis
computes an organisation-oriented interval Markov chain,
in which each abstract state is specified by a set of internal
generators of an organisation, and the abstract transition
provides the information about the uncertainty of the ab-
stract behaviours of the system. Probabilities of moving
from one abstract state to another are given by the lower
and upper bounds, which provides the under and over
approximation of the concrete probabilities.
Definition 11 (Organisation-oriented interval Markov

chain). An organisation-oriented interval Markov chain is
a tuple A]I = (Q], Q]0,∆

], L), where

• Q] is a finite set of abstract states, each of which q] ∈

Q] is a set of internal generators of an organisation
o: q] ⊆ GI(o);

• Q]0 ⊆ Q] is the set of initial abstract states;
• ∆] : Q] × Q] → [lb, ub] is the abstract transition

matrix, s.t. ∆](q], q]′) = [lb, ub], where lb and ub
are the lower and upper bound of a set of concrete
probabilistic transitions: {∆(q, q′) | q ∈ q], q′ ∈ q]′}
specified in the relevant concrete model A respec-
tively;

• L : Q] → 2AP is a labelling function over Q] that
identifies properties of interest.

An abstract path is an execution of the organisation-oriented
interval Markov chain.

Definition 12 (Abstract path). An abstract path ω] is a non-
empty sequence of states q]0q

]
1 . . . , where q]i ∈ Q] and

∀i.∆](q]i , q
]
i+1) ⊆ (0, k] where 0 < k ≤ 1. The set of

all finite and infinite paths of A]I starting in state q] are

denoted as: PathA
]
I

fin(q
]) and PathA

]
I (q]) respectively.

Definition 13 (Probability bounds of abstract paths). The
lower (Prob−) and upper bound (Prob+) of the proba-
bility of a finite abstract path ω]fin starting from state q]
are respectively:

Prob
−
q]

(ω
]
fin) ,

{
1 if n = 0

Prob−
q]

(ω]
0, ω

]
1) . . . Prob−

q]
(ω]

n−1, ω
]
n) otherwise

Prob
+

q]
(ω

]
fin) ,

{
1 if n = 0

Prob+
q]

(ω]
0, ω

]
1) . . . Prob+

q]
(ω]

n−1, ω
]
n) otherwise

where n denotes the length of the abstract path, ω]i
denotes the ith element of ω].

We focus on the reachability properties, for instance, the
probability bounds of reaching or moving to an organisation
of interests from another.

Definition 14 (Reachability properties). Let A]I be an
organisation-based interval Markov chain. The lower
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Fig. 9: Example 6: transition probabilities in bounds among the lattice of molecules

and upper bound of the probability of reaching an ab-
stract state q]′ from q] are computed by:

Reach−
A]

I

(q], q]′) , min(
∑

ω]∈Path
A]

I
fin (q])

Prob−
q]

(ω]) |

ω]0 = q] ∧ ∃i ≥ 0.ω]i = q]′, 1)

Reach+

A]
I

(q], q]′) , min(
∑

ω]∈Path
A]

I
fin (q])

Prob+
q]

(ω]) |

ω]0 = q] ∧ ∃i ≥ 0.ω]i = q]′, 1).

Our organisation-oriented interval Markov chain should
safely approximate the concrete CTMC describing the prob-
abilistic behaviours of the system.

Theorem 1 (Soundness of the abstract semantics). Let
A]I and A be the coarse-grained model and the rele-
vant concrete model of a reaction network respectively,
∀q] = Q, q]′ = Q′ ∈ Q] ⊆ Q, we have:

Reach−
A]

I

(q]1, q
]
2) ≤ Reach−A(Q,Q′),

Reach+

A]
I

(q]1, q
]
2) ≥ Reach+

A(Q,Q′).

Proof: Let ω] denote an abstract path starting from
q] and reaching q]′. For any ω] ∈ PathA]

I
(q], q]′), such as

ω]0 = q], ω]|ω]| = q]′, assume |ω]| = n ∈ N, and let ω ∈
PathA(q, q′) denote a concrete path starting from a state in
Q and reaching a state Q′, we have:

Reach−(q], q]′) =
∑
ω]

Prob−
q]

(ω])

=
∑
ω]

(
Prob−(ω]0, ω

]
1)× · · · × Prob−(ω]n−1, ω

]
n)
)

=
∑
ω]

(
n−1∏
i=0

inf{Prob(qi, qi+1)|qi ∈ ω]i , qi+1 ∈ ω]i+1}
)

≤
∑
ω]

inf{Prob(q0, qn)|q0 ∈ ω]0, qn ∈ ω]n}

=
∑
ω

inf{Prob(ω0, ωn)|ω0 ∈ Q,ωn ∈ Q′}

= Reach−(Q,Q′).

Similarly, we have Reach+(q], q]′) ≥ Reach+(Q,Q′).

Example 7. Consider again the reaction network described
in Example 6:

• by applying the coarse-grained model shown in
Fig. 8, we can calculate the probability of movement
from q]{a,b,c,d} to q]{a,b} is: [0.1506, 1]; the probability

of movement from q]{a,b,c,d} to q]{a} is: [0.2314, 1];
• by applying the concrete model shown in Fig. 5, we

obtain the probability of movement from Q{a,b,c,d}
to Q{a,b} is: [0.1776, 0.8268]; the probability of move-
ment from Q{a,b,c,d} to Q{a} is: [1, 1].

Note that our interval coarse-grained model safely approxi-
mates the concrete one, but may suffer from over-estimation.

7 PREDICTING SYSTEM BEHAVIOUR OVER TIME

This section presents an application of our organisation-
oriented coarse grained model. We address the following
problem: given a reaction network and a fixed number of the
maximum population of the system, construct the average-
based organisation coarse-grained model Ā] (focus on the
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average transition probabilities between abstract states for
simplicity and intuition, this can be replaced by interval-
based transitions directly), can we predict the behaviour of
the system at any future time using Ā]? Fig. 10 captures the

¯A]t
¯A]′t+4t

At At+4t

f ]

go go

f

Fig. 10: Coarse graining and time evolution

idea of using an organisation-based coarse grained model to
approximate the concrete one. In the concrete world, At de-
notes the concrete model at time t, f denotes the dynamical
transition function over At, and At+∆t denotes the concrete
model after ∆t time units; go denotes the organisation based
coarse graining function, which maps the concrete model
At (c.f. At+∆t) to the average coarse-grained model ¯A]t (c.f.

¯A]t+∆t); f
] denotes the coarse-graining dynamical transition

function on ¯A]t.

7.1 Time evolution of the reaction networks via master
equations

We apply the traditional “master equation” approach to cal-
culate the stochastic time evolution of the reaction network.
We briefly review the main features of the master equation
formalism for our purpose of calculating the prediction
of a reaction network at any future time. The probability
function P (X1, X2, . . . , Xn; t) defines the probability of a
number Xi of molecules of species Si for i ∈ {1, . . . , n}
at time t. This function thus describes the “stochastic
state” of the system at time t. The master equation is the
time-evolution equation for the function P (t). Function
P (X1, . . . , Xn; t + dt) can be viewed as the sum of the
probabilities of different ways that the system can reach the
state X1, . . . , Xn at time t+ dt:

P (X1, . . . , Xn; t+ dt) (1)

= P (X1, . . . , Xn; t)(1−
m∑
i=1

αidt) +
n∑
j=1

βjdt, (2)

where the quantity βjdt denotes the probability that the
system is entering the state (X1, . . . , Xn) at time t + dt,
and the quantity αidt denotes the probability that is leaving
(X1, . . . , Xn) at time t. Without introducing any confusion,
we use P (t) as an abbreviation of P (X1, . . . , Xn; t). Con-
sider a coarse-grained model Ā], and any abstract state q]i .
Letting αi denote the average rate of leaving state q]i , i.e.,
dPi(t)
dt = −αPi(t), and Ei denote the expected time to leave

state q]i , we have:

Ei =

∫ ∞
0

Pi(t)dt =

∫ ∞
0

e−αitdt =
1

αi
,

i.e., αi = 1
Ei

is the rate of leaving q]i . In addition, for any
j 6= i and ∆](q]j , q

]
i ) > 0, similarly, βj = 1

Ej
is the rate of

coming to q]i from q]j . Therefore, for all i ∈ {1, . . . , n}:

dPi(t)

dt
= − 1

Ei
Pi(t) +

n∑
j=0,j 6=i,∆](q]j ,q

]
i )>0

1

Ej
Pj(t).

Sometimes, we use P{o|o∈Oi} to denote Pi for readability.
We therefore build a set of equations for all i. By solving
the set of equations, we can obtain the distributions of the
system at any future time.

Example 8. Consider again Example 6. M = {a, b, c, d},
R = {a + b → a + 2b, a + d → a + 2d, b + c → 2c, c →
b, b + d → c, b → ∅, c → ∅, d → ∅}. From the coarse-
grained model shown in Fig. 8 (Nmax = 5), we construct the
master equations as follows:

dP{a,b,c,d}(t)

dt
= − 1

0.59
P{a,b,c,d}(t)

dP{a,b,c}(t)

dt
= − 1

0.66
P{a,b,c}(t) + 0.34 ∗ 1

0.59
P{a,b,c,d}(t)

dP{a,b}(t)

dt
= − 1

3.46
P{a,b}(t) + 0.217 ∗ 1

0.59
P{a,b,c,d}(t)

+0.78 ∗ 1
0.66

P{a,b,c}(t)
dP{a,d}(t)

dt
= − 1

3.46
P{a,d}(t) + 0.356 ∗ 1

0.59
P{a,b,c,d}(t)

dP{a}(t)

dt
= 0.087

0.59
P{a,b,c,d}(t) +

0.22
0.66

P{a,b,c}(t)
+ 1

3.46
P{a,b}(t) +

1
3.46

P{a,d}(t)

We solve the above equations and show in Fig. 11 a com-
parison between the time evolution of the reaction network
via master equation simulation on (a) the organisation-
based average coarse-grained model (see Fig. 8); and (b) the
original concrete model (see Fig. 5). The former (6 states)
takes less than a second, whereas the latter (126 states) takes
approximately 1.5 minutes.

Similarly, Fig. 12 and 13 present experimental results for
the case of Nmax = 10 with different reaction rates. The
relevant master equations are:

dP{a,b,c,d}(t)

dt = − 1
0.99P{a,b,c,d}(t)

dP{a,b,c}(t)

dt = − 1
1.47P{a,b,c}(t) + 0.4936

0.09 P{a,b,c,d}(t)
dP{a,b}(t)

dt = − 1
125.73P{a,b}(t)+

0.071 ∗ 1
0.99P{a,b,c,d}(t)+

0.816 ∗ 1
1.47P{a,b,c}(t)

dP{a,d}(t)

dt = − 1
125.73P{a,d}(t) + 0.409

0.99 P{a,b,c,d}(t)
dP{a}(t)

dt = 0.0264
0.99 P{a,b,c,d}(t) + 0.184

1.47 P{a,b,c}(t)+
1

125.73P{a,b}(t) + 1
125.73P{a,d}(t)

and

dP{a,b,c,d}(t)

dt = − 1
0.6726P{a,b,c,d}(t)

dP{a,b,c}(t)

dt = − 1
0.633752P{a,b,c}(t)+

0.4865 ∗ 1
0.6726P{a,b,c,d}(t)

dP{a,b}(t)

dt = − 1
4.11P{a,b}(t) + 0.1523

0.6726P{a,b,c,d}(t)+
0.8469

0.633752P{a,b,c}(t)
dP{a,d}(t)

dt = − 1
4.11P{a,d}(t)+

0.2995 ∗ 1
0.6726P{a,b,c,d}(t)

dP{a}(t)

dt = 0.0617 ∗ 1
0.6726P{a,b,c,d}(t)

+ 0.1531 ∗ 1
0.633752P{a,b,c}(t)

+ 1
4.11P{a,b}(t) + 1

4.11P{a,d}(t)

for rates R1: ]a ∗ ]b, ]b ∗ ]c, ]c, ]b ∗ ]d, ]b ∗ ]b, ]c, ]d and R2:
]a∗ ]b, ]b∗ ]c, ]c∗ ]c, ]b∗ ]d, ]b∗ ]b, ]c∗ ]c, ]d∗ ]d respectively.
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Fig. 11: Organisation dynamics predication via the average
coarse-grained model (a) and the concrete model (b) of Exam-
ple 6, for Nmax = 5.
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Fig. 12: Organisation dynamics predication via master equation
simulation over the average coarse-grained model (a) and the
concrete analysis over the original model(b) of Example 6, with
Nmax = 10 and rates R1 for each reaction rule respectively.
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Fig. 13: Organisation dynamics predication via master equation
simulation over the average coarse-grained model (a) and the
concrete analysis over the original model (b) of Example 6, with
Nmax = 10 and rates R2 for each reaction rule respectively.

Note that the prediction by applying the abstract model
produces a similar pattern of the concrete behaviour over
time for this case. The precision of the results varies regard-
ing to different models and rates of reaction rules, however
the basic pattern of behaviours can be captured but the time
and space spent is much smaller.

8 REFINING THE COARSE GRAINING

Our organisation-based coarse-grained model helps us to
scale the complex model but may lose some precision for
analysis and prediction of its time evolution (see the com-
parison presented in Fig. 12). To address this concern, in this
section, we propose a method to refine our coarse-grained
model for the purpose of improving the precision of the
analysis and the prediction. The idea is that we split each
abstract state with respect to the time to reach a stable state
from it, since the speed to reach a stable state also heavily
affects the behaviours of the reaction network system in the
long term. Note that a bottom abstract state is an abstract
state of the coarse-grained model without outgoing abstract
transitions, which is stable and will stay there forever. A
bottom abstract state is essentially a set of bottom SCCs
regarding to the internal generators of an organisation,
which is called “bottom SCC class”.
Definition 15 (Bottom SCC class). An organisation-based

abstract state q] is called a bottom SCC class if it consists
of a set of bottom SCCs.

We propose an algorithm to refine the organisation-
based coarse-grained model. Specifically, we make a parti-
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tion over the abstract state into a pair, one of which reaches
a bottom SCC class quickly while the other reaches it slowly.
Thus each abstract state is split into 2n states if there is
a path to reach n bottom SCC class. Specifically, we use
the k-means (K = 2) refinement techniques to make the
partitions.

We briefly review the basic concept of k-means clus-
tering [20] here for our purpose of refining the abstract
states. Given a set of observations (x1, x2, . . . , xn), each of
which is a d-dimensional real vector, k-means clustering
proposes to partition the n observations into k(≤ n) sets
S = {S1, S2, . . . , Sk} such that the sum of distance func-
tions of each point in the cluster to the K center is min-
imised, i.e., it aims to find: arg min

S

∑k
i=1

∑
x∈Si

‖x− µi‖
2
,

where µi is the mean of points in Si. The basic procedure of
the standard k-means algorithm [19] alternatively proceeds
between two steps until the assignments in the first step
no longer change: i) assign each observation to the cluster
whose mean produces the least squared Euclidean distance;
and ii) calculate the new means to be the centroids of the
observations in the new clusters.

In our scenario, for all concrete states in an abstract
state q] ∈ Q], we calculate the expected time to reach a
bottom SCC class, say q]B , and get a set of observations
S = {t1, t2, . . . , tn}. k-means clustering partitions the set
of observations S into K = 2 sets: S = {S1, S2}, such that
the sum of distance functions of each point in the cluster
to the K center is minimised. The algorithm is formalised
in Algorithm 3 and 2. The basic procedure is that, for any
bottom SCC class q]B , we partition each abstract state into a
pair of states if it can reach q]B within a finite time, otherwise
keep it unchanged. We then make predictions with time
evolution via our refined modelA]P to see how the precision
of the analysis and prediction is improved through our
running example.

Example 9. Consider again the reaction network studied in
Example 6:M = {a, b, c, d}, R = {a+ b→ a+ 2b, a+ d→
a+2d, b+c→ 2c, c→ b, b+d→ c, b→ ∅, c→ ∅, d→ ∅}.
For Nmax = 10, the refined model is presented in Fig. 14
(the coarser model, but for N = 5 was shown previously
in Fig. 8). To perform a prediction using our refined

{a, b, c, d}1 1.0292 {a, b, c, d}2 0.9064

{a, b, c}1 1.494 {a, b, c}1 1.411

{a, b}1 165.4176 {a, b}2 6.6818 {a, d}1 165.4176 {a, d}2 6.6818

{a}, ∞

{}, ∞

0.4706

0.0567
0.4545

0.097

0.3258

0.0182

0.097
0.824

0.796
0.176 0.204

1 1 1 1

1

1

Fig. 14: Example 6: Nmax = 10, refined coarse-grained model

model, we construct the master equations as follows:

Algorithm 2: Partitioning the abstract states:
partitionAbsState

Data: q], q]B ∈ Q]
Result: Refined abstract states pair (q]P1

, q]P2
)

ResT ← computeTimeToReach (q] → q]B);
if ResT is either infinite or 0 then

/* if the result is infinite or 0,
keep the abstract state */

q]P1
← q] ;

end
else

/* otherwise partition q] into two
part via KMeans clustering, two
clusters are created: ResT1 and ResT2

*/
ResT1, ResT2 ← KMeansCluster (ResT, 2) ;
for each concrete state q ∈ q] do

if ResT (q → q]B) is closer to ResT1 then
/* if the time to reach q]B from

q is closer to ResT1, add q to
q]P1 */

q]P1
.add(q);

end
else

/* otherwise add q to q]P2 */

q]P2
.add(q);

end
end

end
return (q]P1

, q]P2
).



dP{a,b,c,d}1 (t)

dt = − 1
1.0292P{a,b,c,d}1(t)

dP{a,b,c,d}2 (t)

dt = − 1
0.9064P{a,b,c,d}2(t)

dP{a,b,c}1 (t)

dt = − 1
1.494P{a,b,c}1(t) + 0.4706

1.0292P{a,b,c,d}1(t)
dP{a,b,c}2 (t)

dt = − 1
1.411P{a,b,c}2(t) + 0.5357

0.9064P{a,b,c,d}2(t)
dP{a,b}1 (t)

dt = − 1
165.4176P{a,b}1(t)+

0.0567
1.0292P{a,b,c,d}1(t) + 0.824

1.494P{a,b,c}1(t)
dP{a,b}2 (t)

dt = − 1
6.6818P{a,b}2(t)+

0.097
0.9064P{a,b,c,d}2(t) + 0.796

1.411P{a,b,c}2(t)
dP{a,d}1 (t)

dt = − 1
165.4176P{a,d}1(t) + 0.4545

1.0292P{a,b,c,d}1(t)
dP{a,d}2 (t)

dt = − 1
6.6818P{a,d}2(t) + 0.3258

0.9064P{a,b,c,d}2(t)
dP{a}(t)

dt = 0.0182
1.0292P{a,b,c,d}1(t) + 0.0142

0.9064P{a,b,c,d}2(t)
+ 0.176

1.494P{a,b,c}1(t) + 0.204
1.411P{a,b,c}2(t)

+ 1
165.4176P{a,b}1(t) + 1

6.6818P{a,b}2(t)
+ 1

165.4176P{a,d}1(t) + 1
6.6818P{a,d}2(t)

Fig. 15 presents a comparison between the time evolution
of the reaction network via master equation simulation
using the refined coarse-grained model (a) and the exact
evolution of the system using the original concrete model
(b). The precision of the prediction has been improved,
comparing with the results presented in Fig. 12.

9 CONCLUSIONS

This work investigates the combination of chemical or-
ganisation theory and probabilistic model checking for the
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Algorithm 3: Refining the coarse-grained model
Data: Organisation-based coarse-grained model

A](Q], Q]0,∆], L)
Result: Refined model A]P (Q]P , Q

]
P0
,∆]

P , LP )

Q]P = Q]P0
= {};

∆]
P = {};

LP = {};
for each bottom scc class q]B ∈ Q] do

for each abstract state q] ∈ (Q] \ q]B) do
(q]P1

, q]P2
)← partitionAbsState (q], q]B);

Q]P ∪ {q
]
P1
} ∪ {q]P2

};
L](q]P1

) = {L(q) | q ∈ q]P1
};

L](q]P2
) = {L(q) | q ∈ q]P2

};
if (q]P1

⊆ Q]0) ∧ (q]P1
6= {}) then

Q]P0
∪ q]P1

;
end
if (q]P2

⊆ Q]0) ∧ (q]P2
6= {}) then

Q]P0
∪ q]P2

;
end

end
end
∆]
P ← computeProbBetOrgs (Q]P );

return A]P .
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Fig. 15: Organisation k-means clustering dynamics predication
via master equation simulation over the average coarse-grained
model (a) and the concrete analysis over the original model (b)
of Example 6, Nmax = 10.

analysis of reaction networks modelled as continuous-time
Markov chains. We use model decompositions into strongly
connected components (SCCs), and study the problem of
how to analyse the model in terms of organisations.

We have presented an algorithm to compute a coarse-
grained Markov chain model of hierarchical organisations
for a given reaction network. The algorithm computes chem-

ical organisations by identifying a set of good SCCs which
can contribute to generating organisations, and building
an interval Markov chain based on the organisation-based
quantitative analysis. We have implemented this approach
as an extension of the PRISM model checking tool and
illustrate the resulting abstractions constructed for some
example networks. The organisation-based coarse-grained
model helps to summarise and reason about the structure
and behaviour of the complex model by focusing on stable
states featuring accumulating species.

In order to demonstrate the effectiveness of our ap-
proach, we show how the coarse grained model can be
used to approximate the dynamic behaviour of the system
over time. We apply an average-based organisation coarse-
graining and compute its stochastic time evolution. The
experiments show that our prediction can mimic the main
pattern of concrete behaviour in the long run, but that it is
possible for the interval-based organisation coarse graining
to suffer from over-estimation, the extent of which varies for
different models and reaction rates. Finally, to improve the
precision of the approximation and predictions, we develop
an algorithm to selectively refine the the coarse-grained
models. The experiments demonstrate that the precision of
the prediction can been improved.

In this work, we have focused on the definition and
formal properties of the coarse-grained model, algorithms
to construct it, and the gains it can yield when numerically
solved. An important topic for further study is the overall
practical performance and scalability of the approach, par-
ticularly regarding the construction of the coarse grained
model. Currently, an important limitation is that the algo-
rithm to build the abstraction is based on a decomposition
into SCCs of the continuous-time Markov chain for the full
concrete system. Although the basic method to compute
SCCs is linear in the size of the model, as usual with such
approaches, it is the large size of the state space of the model
that is problematic. Furthermore, currently, the calculation
of the probabilities to move between organisations is done
using numerical solution of the full model. These steps, in
our prototype implementation, currently represent a bottle-
neck for applying the techniques to very large networks.

Future work will involve adapting some of the efficient
symbolic approaches [16] within the PRISM tool to the
problem of building coarse grainings. In particular, SCC
computation only requires the underlying graph structure
of the Markov chains, for which a symbolic (binary decision
diagram based) representation and manipulation could be
significantly more efficient. We also believe that the com-
putation of inter-organisation transition probabilities could
then be done in a more localised fashion for each organ-
isation, without building the full model, e.g. by adapting
PRISM’s “hybrid” symbolic engine [16]. This could help
scale up the approach to larger, more complex networks.
We also plan to investigate the differences between the
’average’ and ’interval’ approaches to coarse graining, and
the effectiveness of different approaches to refinement.
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