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IsoTree: A New Framework for De novo
Transcriptome Assembly from RNA-seq Reads

Jin Zhao, Haodi Feng*, Daming Zhu, Chi Zhang, and Ying Xu

Abstract—High-throughput sequencing of mRNA has made the deep and efficient probing of transcriptome more affordable. However,
the vast amounts of short RNA-seq reads make de novo transcriptome assembly an algorithmic challenge. In this work, we present
IsoTree, a novel framework for transcripts reconstruction in the absence of reference genomes. Unlike most of de novo assembly
methods that build de Bruijn graph or splicing graph by connecting k-mers which are sets of overlapping substrings generated from
reads, IsoTree constructs splicing graph by connecting reads directly. For each splicing graph, IsoTree applies an iterative scheme of
mixed integer linear program to build a prefix tree, called isoform tree. Each path from the root node of the isoform tree to a leaf node
represents a plausible transcript candidate which will be pruned based on the information of paired-end reads. Experiments showed
that in most cases IsoTree performs better than other leading transcriptome assembly programs.
IsoTree is available at https://github.com/Jane110111107/IsoTree.

Index Terms—RNA-seq, de novo assembly, alternative splicing, transcriptome.
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1 INTRODUCTION

A LTERNATIVE splicing occurs as a normal phenomenon
in eukaryotes, where it greatly increases the diversity

of proteins that can be encoded by the genome [1]. A
recent study estimated that more than 95% of all multi-
exon genes are alternatively spliced [2]. Besides that, nu-
merous researches have revealed that a great deal of human
diseases, especially cancer, are related to abnormal splicing
[3], [4]. Advances in RNA-seq have opened the door to
efficient probing of full-length transcripts. RNA-seq tech-
nology can generate hundreds of millions of short reads
(50− 250bp) from sequenced transcripts (complete and con-
tiguous mRNA sequence from the transcription start site to
the transcription end site, for multiple alternatively spliced
isoforms). Despite the opportunities for transcriptome as-
sembly, great challenge emerges of how to subtly recover as
many expressed transcripts as possible at lowest cost from
massive short reads. Many obstacles remain in trancriptome
reconstruction such as sequencing bias or sequencing error,
variable sequence coverage, alternative transcripts from the
same locus sharing the same exons, and the existence of
paralogs genes. A successful method should address these
issues, and apply a suitable data structure to accommodate
multiple transcripts per locus.

A growing number of strategies have been developed
to solve the transcriptome assembly problem based on
RNA-seq. They can be generally divided into two cate-
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gories: genome-based and de novo assembly approaches.
Genome-based approaches, such as Cufflinks [5], Scripture
[6], Bayesember [7], IsoInfer [8], IsoLasso [9], Traph [10],
iReckon [11], CIDANE [12], StringTie [13], TransComb [14],
and Scallop [15] usually first align the reads to a reference
genome with alignment tools such as TopHat [16], TopHat2
[17], GSNAP [18], STAR [19], and SpliceMap [20], and then
merge sequences from the same gene locus according to
overlapping alignments and splicing junctions to build a
graph representing all possible isoform transcripts. Finally,
different models are adopted to recover full-length tran-
scripts from the graph. For example, Cufflinks applies the
minimum-cost path cover model, StringTie employs a net-
work flow algorithm originally developed in optimization
theory, and Traph uses minimum-cost flow model combined
with a greedy algorithm. However, the reference genome
especially a cancer genome is not always available. In these
situations, de novo assembly is required. In theory, a de
novo assembler can reconstruct transcripts even on regions
that are missing a reference.

The field of de novo assembly developed from pioneer-
ing work on de Bruijn graphs [21], [22], in which a vertex
is a k-mer and an edge exists between two vertices u and
v if and only if u and v appear consecutively in a read.
Simple paths in such graphs usually represent fragments
of transcripts. However, de Bruijn graphs may be very
tanglesome and therefore hard to deal with. Splicing graphs
emerged at the right moment, which are more tractable than
de Bruijn graphs. A splicing graph of a locus is a directed
acyclic graph, whose vertices represent exons while edges
correspond to splicing junctions. To summarize, Trinity [23],
ABySS [22], and IDBA-Tran [24] take the advantage of de
Bruijn graphs approach, while Bridger [25] and BinPacker
[26] apply the splicing graphs strategy.

Trinity [23] plays a milestone role in de novo transcrip-
tome assembly. It assembles transcripts by first extending
contigs greedily, then building de Bruijn graphs from these

This is the author's manuscript of the article published in final edited form as:
Zhao, J., Feng, H., Zhu, D., Zhang, C., & Xu, Y. (2018). IsoTree: A New Framework for De novo Transcriptome Assembly from RNA-seq Reads. IEEE/ACM 
Transactions on Computational Biology and Bioinformatics, 1–1. https://doi.org/10.1109/TCBB.2018.2808350

https://doi.org/10.1109/TCBB.2018.2808350


1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2808350, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

2

contigs, and then extracting sufficiently covered paths from
these graphs to construct splicing variants based on a brute-
force enumeration strategy. BinPacker is a recently devel-
oped method, which searches for an optimal edge-path-
cover over the splicing graphs by iteratively solving a series
of bin packing problems. In this scheme, it uses a heuristic
algorithm to update trajectories of items (edge-path-cover),
and the iteration will terminate within O(|V |) times (where
V is the node set of the splicing graph).

So far, all the existing de novo assemblers usually ex-
tend the contigs by connecting k-mers (a set of k-length
substrings arising from read sequences). The k-mer-based
contig extending strategy benefits from the speed of finding
(k−1) overlapping candidate k-mers, with the cost of losing
information of the whole nucleotides arrangement in a read.
Given that larger k values tend to perform better on higher
expressed transcripts or on longer transcripts while smaller
values are more suitable for reconstructing lower expressed
transcripts and shorter transcripts, some assemblers apply a
multiple-k strategy, such as ABySS [22], Oases-M [27], and
IDBA-Tran [24].

In this paper, we present IsoTree, a de novo transcrip-
tome assembler. The central idea behind IsoTree is to sub-
tly extract transcript-representing paths from the splicing
graph. The splicing graph is constructed with contigs that
are extended by reads directly. Each vertex as well as each
edge in the splicing graph is weighted by reads per base.
IsoTree converts the splicing graph to a prefix tree by calling
(|V | − 2) times of a variant mixed integer linear program
model with the objective to seek as few transcripts in the
prediction as possible under the coverage constraints (see
Methods for details).

We tested the performance of IsoTree on both simulated
datasets and real datasets. On simulated datasets, we not
only compared IsoTree to state-of-the-art de novo assem-
blers including Trinity [23], BinPacker [26], SOAPdenovo-
Trans [28], IDBA-Tran [24], Oases [27], and Velvet [21],
we also compared IsoTree with two widely used genome-
based assemblers Cufflinks [5] and StringTie [13]. Scallop
[15] is a newly developed genome-based strategy. Although
the source code of Scallop is online, its guideline is not
available and the software is hard to execute. Hence, we
did not compare IsoTree with Scallop. For the real datasets,
we compared IsoTree to de novo assemblers Trinity, Bin-
Packer, SOAPdenovo-Trans, IDBA-Tran, Oases, and Velvet.
Since accurate reference genomes were not available, we
would not be able to compare the performance of IsoTree
to genome-based assemblers. We employed blast+ [29] to e-
valuate the performance of each assembler. Our experiments
demonstrated the superior performance of IsoTree on both
simulated datasets and real datasets.

2 METHODS

Splicing graph is originally put forward by Heber et al
in 2002 [30]. Theoretically, each splicing graph constructed
by IsoTree corresponds to an expressed gene: the vertices
represent exons, the edges represent splicing junctions, and
some paths correspond to isoforms generated by the gene.
IsoTree applies a heuristic algorithm to convert the splicing
graph into a prefix tree where each path from the root node

Fig. 1. General work flow of IsoTree. (a) Input single-end or paired-
end reads. (b) Splicing graphs construction (c) Topological ordering of
splicing graphs and balancing splicing graphs. (d) Constructing isoform
trees based on an iterative scheme of mixed integer linear program and
recovering transcripts.

to a leaf node represents a transcript. The expression level
of a transcript relates to the weight of the leaf node in
the corresponding isoform path. The general work flow of
IsoTree algorithm is given in Figure 1.

2.1 Constructing splicing graph

IsoTree modified BinPacker’s splicing graph construction
method [26]. Specifically, IsoTree extends contigs by reads
while BinPacker extends them by k-mers.

In BinPacker’s contig extending strategy, the contig is
extended by repeatedly selecting the most frequent k-mer
that overlaps with the current contig terminus by its k − 1-
character prefix. However, the most frequent k-mer is not
necessarily the most suitable k-mer. For example, suppose
the contig sequence is “CCACTGTT”, and there are two k-
mers (“GTTC” and “GTTA”) whose k − 1-length prefix are
exactly the k − 1-length suffix of the contig. The frequency
of “GTTC” is 3 that is contributed by reads “TTGTTCG”,
“CGAGTTC”, and “CGTTCAG”. The frequency of “GTTA”
is 2 that is contributed by reads “ACTGTTA” and “TGT-
TACG”. Obviously, “GTTA” is the better choice to extend
the contig, because the connection is well supported by
reads “ACTGTTA” and “TGTTACG”. However, BinPacker
will choose “GTTC” to extend the contig with no read sup-
porting the connection. By contrast, IsoTree extends contigs
directly by reads that hold the longest overlaps to current
contig terminuses.

IsoTree applies a hash table of k-mers to quickly deter-
mine reads that hold x-length overlaps to current contig. It
decomposes each Lbp-length read sequence into L − k + 1
overlapping k-mers. For each k-mer, the hash table takes
the k-mer sequence as key and the set of reads that contain
this k-mer as value. The k-mer sequence is stored as a 64-
bit unsigned integer with 2-bit nucleotide encoding. In the
process of building a hash table, if the k-mer composed
by the first k nucleotides of a read appears at the first
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time, the read is seen as a seed read. In order to get rid
of sequencing errors, IsoTree excludes k-mers with low
frequency following the criteria used by Trinity [23]. The
read that contains the excluded k-mer is deleted.

IsoTree builds the splicing graphs following the next five
steps.

step 1: Select an unused seed read as the main contig of
the initial splicing graph.

step 2: Extend the main contig in two directions by re-
peatedly selecting an unused read with the highest priority
from the candidate read set. If a candidate read has x-length
(a ≤ x ≤ b, default a = k, b = L − 1) overlaps with the
current contig terminus, then its priority is x.

The candidate reads that hold x-length overlaps to cur-
rent contig terminus can be found quickly according to
two k-mers in the current contig terminus. For forward
extension (from 5’ to 3’), set k-mer1 as the k-length suffix
of the current contig. Suppose the value of k-mer1 in hash
table is stored in an N -dimensional incremental vector R1

with component Ri
1(i = 1, 2, · · · , N) representing the ith

read ID. In contrast, set k-mer2 as the k-mer that contains
exactly the last xth to the last (x − k + 1)th letters of
the current contig. Denote the M -dimensional incremental
vector R2 as the value of k-mer2 in hash table. If a read’s ID
both belongs to R1 and R2, then IsoTree further checks if it
has x-length overlaps with the current contig terminus. The
algorithm to get the candidate reads for forward extension
from sets R1 and R2 is described as Algorithm 1. Similarly,
the candidate reads for reverse extension (from 3’ to 5’) can
be found by another two k-mers. When a contig cannot be
extended in either direction, it is used as the trunk node of
a splicing graph to be constructed.

Algorithm 1 Algorithm to get candidate reads for forward
extension

1: int r1 = 1;
2: int r2 = 1;
3: while r1 <= N and r2 <= M do
4: if Rr1

1 == Rr2
2 then

5: if the x-length suffix of contig == the x-length prefix
of read Rr1

1 then
6: put Rr1

1 to candidate read set
7: end if
8: r1 = r1 + 1
9: r2 = r2 + 1

10: else
11: if Rr1

1 > Rr2
2 then

12: r2 = r2 + 1
13: else
14: r1 = r1 + 1
15: end if
16: end if
17: end while

step 3: For each read in the current splicing graph, check
if it could be extended by unused reads. Such a read is called
a junction read. Once IsoTree finds a junction read, IsoTree
keeps extending it until encountering an already used read
that exactly lies in the downstream of the junction read
or it can make no further extension by using steps 1 to 2
(Figure 2). If the former occurs, then a new junction read

Fig. 2. Branch extension. (a) Reverse branch extension. The reverse
branch extension from the junction read of “ATTTGCG” does not en-
counter any used reads that exactly located upstream of the junction
read. In this case, IsoTree divides the trunk node into two nodes and
adds a branch node into the graph. (b) Forward branch extension. The
junction read of “TGCGCGT” is extended in forward direction, and the
extension does not encounter any used reads that lie in the downstream
of the junction read. IsoTree splits the trunk node into two nodes and
adds a branch node. (c) Solid bubble extension. The forward branch ex-
tension from the junction read of “TAATCTA” encounters an already used
read of “CCGCTGG”. IsoTree splits the trunk node into three nodes and
adds a bubble node. (d) Hollow bubble extension. The forward branch
extension from the junction read of “CGCTCTA” encounters a used read
of “CTATTGC” that intersects to “CGCTCTA” in the trunk sequence.
IsoTree splits the trunk node into two nodes and adds a bubble node.
(e) Vacuoles extension. The branch extension from the junction read of
“TAATCTA” encounters an already used read of “ATCTAGC” located on
the trunk, and the current branch is shorter than a read. IsoTree splits
the trunk node into three nodes.

is identified, and the current splicing graph is updated by
merging their matched x nucleotides. For the latter case,
IsoTree applies the following criteria to determine whether
to add the new branch to the current splicing graph: (a)
the branch is long enough (≥ 80 bp) to be an exon; (b)
the branch is not similar with the corresponding part of the
trunk; (c) there are at least two reads supporting this branch.
Repeat step 3 until all junction reads have been processed.

step 4: The graph is then trimmed with the similar idea
in Trinity: (a) for each edge, there must be a minimal number
of reads (default 2) matched on each side of the junction; (b)
the coverage of each edge must exceed 0.04 times the av-
erage coverage of two flanking nodes (twice the sequencing
error rate in a read, the upper bound is about 2%); (c) if there
is a node with several outgoing edges, the coverage of each
of them should be more than 5% of the total outgoing edge
coverage; (d) the coverage of any outgoing edge should be
more than 2% of the total incoming edge coverage. Edges
that violate any of these criteria are removed. Each isolated
vertex in the current graph will be removed if its length
is smaller than the pre-defined minimum transcript length.
Until now, a splicing graph is constructed.

step 5: If there are remaining unused seed reads, repeat
steps 1 to 4.

2.2 Balancing splicing graph
Let G(V,E) represent the splicing graph. Each vertex in the
graph corresponds to an exon sequence. The sequence of
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edge (u, v) consists of L − 1-length suffix of node u and
L− 1-length prefix of node v. In order to facilitate building
isoform tree steps, IsoTree adds a source vertex s and a sink
vertex t into the splicing graph, connects s to vertices with-
out incoming edges, and connects vertices without outgoing
edges to t. IsoTree weights each node or edge sequence as
the number of reads per base [13]. Specially, IsoTree assigns
the weight of the new edge connecting s and v to be the
sum of weights of the edges leaving v. The new edges
entering t can be weighted similarly. Considering that exons
are linearly arranged in a gene, IsoTree topologically orders
the vertices.

Considering that if an exon is both the end part of
a transcript and a middle part of another transcript, its
incoming weights and outgoing weights may differ greatly.
IsoTree balances this type of exon node with the following
rules.

For each vertex v (vϵV -{s, t}), check whether its incident
edges satisfy the following conditions:

(1− ε)Win(v) ≤ (1 + ε)Wout(v), (1)

(1 + ε)Win(v) ≥ (1− ε)Wout(v), (2)

where ε is an empirical value (default 0.3), Win(v) and
Wout(v) represent the weight sum of all the edges entering
vertex v and the weight sum of all the edges leaving v,
respectively.

If edges incident with v do not meet the above conditions
at the same time, it means that there is a huge gap between
the weights of the incoming and outgoing edges of v, and
the balancing process is needed. The approach to balance
vertex v is as follows:
if condition (1) is violated, then

E = E
∪
(v, t),W (v, t) = Win(v)−Wout(v);

if condition (2) is violated, then
E = E

∪
(s, v),W (s, v) = Wout(v)−Win(v);

where W (v, t) is the weight of edge (v, t), and W (s, v) is
the weight of edge (s, v).

2.3 Building isoform tree and recovering transcripts

IsoTree iteratively calls a variant of mixed integer linear
program model to comb all the transcripts encoded in a
splicing graph to a prefix tree, called isoform tree. A splicing
graph is transformed to an isoform tree by the following
steps.

step 1: IsoTree first sets source vertex s in the splicing
graph G(V,E) as the root node of isoform tree T , and set
v = s. Each vertex u (uϵV, (v, u)ϵE) in the graph G is set as a
child node of v in the Tree T , with weight WT (u) = W (v, u).

For example, a splicing graph with eight nodes is shown
in Figure 3.a. IsoTree first sets the source vertex s of the
splicing graph as the root node of isoform tree T , and sets
vertex A as the child node of s. (Figure 3.b).

step 2: For splicing graph G, set v as vR (where vR is the
right node of v in topological order). Suppose that there are
total of N edges leaving vertex v. Let βj denote the weight
of edge (v, yj)ϵE (1 ≤ j ≤ N).

In the above example, the v is updated by A. As shown
in Figure 3.a, there are total of two edges leaving vertex A,

Fig. 3. An example to convert a splicing graph to an isoform tree. (a) A
splicing graph. (b) The initial isoform tree. (c) For vertex A, assign (A,
6.97) to (B, 4.0) and (C, 3.01), and add the assignment to the isoform
tree. (d) For vertex B, assign (B, 4.0) to (C, 2.0) and (D, 1.98), and add
the assignment to the isoform tree. (e) For vertex C, assign (C, 3.01)
and (C, 2.0) to (D, 5.0), and add the assignment to the isoform tree. (f)
For vertex D, assign (D,1.99), (D, 1.98), and (D, 3.01) to (E, 3.02) and
(F, 3.99), and add the assignment to the isoform tree. (g) For vertex E,
assign (E,3.02) to (t, 3.01), and add the assignment to the isoform tree
(h) For vertex F , assign (F, 2.01) and (F, 1.98) to (t, 4.0), and add the
assignment to the isoform tree.

i.e., (A,B) and (A,C). Let y1 = B, y2 = C . Then β1 = 4.0,
β2 = 3.01, and N = 2.

step 3: For isoform tree T , search leaf nodes with label
v and mark them as x1, x2, · · · , xM (where M is the total
number of leaf nodes with label v). Let αi (1 ≤ i ≤ M )
denote the weight of node xi in the isoform tree. Obviously,
αi must be the weight of an incoming edge of v in splicing
graph G or the splitting weight of an incoming edge.

As shown in Figure 3.b, there is only one leaf node
labeled v, that is (A, 6.97). Hence, x1 = A, α1 = 6.97, and
M = 1.

step 4: Expand each leaf node xi (1 ≤ i ≤ M ) by yj (1 ≤
j ≤ N ). IsoTree formalizes it into an optimization problem:
assign α1, α2, · · · , αM to β1, β2, · · · , βN with the parsimony
objective. Let M × N matrix C be the assignments matrix,
with component cij representing the value of αi assigned to
βj (1 ≤ i ≤ M, 1 ≤ j ≤ N ). If cij > 0, vertex yj will be
added to the isoform tree T as a child of xi. The weight of

node yj in the isoform tree T is βjcij/
M∑
t=1

ctj . The value of

cij must satisfy the following constraints:

0 ≤ cij ≤ (1 + ε)αi 1 ≤ i ≤ M, 1 ≤ j ≤ N, (3)

0 ≤ cij ≤ (1 + ε)βj 1 ≤ i ≤ M, 1 ≤ j ≤ N, (4)

Here, IsoTree introduces a binary integer variable zij
specifying whether a child is added by the following con-
straints:
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zij ≤ λcij 1 ≤ i ≤ M, 1 ≤ j ≤ N, (5)

cij ≤ λzij 1 ≤ i ≤ M, 1 ≤ j ≤ N, (6)

where λ is a large positive number. If cij = 0, from (5), we
have zij = 0 indicating that node yj is not a child of node xi

in T . On the other hand, if cij > 0, from (6), we have zij = 1
indicating that node yj is a child of node xi.

In order to avoid bias assignments and make sure that
each node in x1, · · · , xM has at least one child node and each
vertex in y1, · · · , yN has been added to the isoform tree, we
have:

(1− ε)αi ≤
N∑
j=1

cij ≤ (1 + ε)αi 1 ≤ i ≤ M, and (7)

(1− ε)βj ≤
M∑
i=1

cij ≤ (1 + ε)βj 1 ≤ j ≤ N. (8)

We minimize the sum of zij(1 ≤ i ≤ M, 1 ≤ j ≤ N)
following the parsimony principle to seek as few transcripts
in the prediction as possible:

minf =
M∑
i=1

N∑
j=1

zij . (9)

Equations (3)-(9) form a mixed integer linear program
(MILP). We adopt the branch-and-bound algorithm to solve
the mixed integer linear programming problems (a few
softwares are available for solving MILP by using this
strategy). Since the transcript sequence only contains ’A’,
’C’, ’G’, and ’T’ four kinds of nucleotides, in most cases the
number of outgoing (or incoming) edges of an exon node
is less than 3. Besides, the sum of nodes in a splicing graph
corresponding to one locus is less than 10 in most cases.
Hence, the variables in our MILP model are usually less
than 20 and the MILP can be solved by the branch-and-
bound algorithm fast.

Following the above example, IsoTree puts α1 = 6.97,
β1 = 4.0 and β2 = 3.01 into the mixed integer linear
program model. Through solving this mixed integer linear
program model, IsoTree obtains the value of cij (i = 1, j =
1, 2), i.e., c11 = 4.0, c12 = 3.01. Then, IsoTree sets y1 (that is
B) and y2 (that is C) as child nodes of x1 (that is A) in the
isoform tree (Figure 3.c), and weights nodes y1 and y2 with

β1c11/
1∑

t=1
ct1 = 4.0 and β2c12/

1∑
t=1

ct2 = 3.01, respectively.

step 5: Repeat steps 2 to 4 until v = t.
The isoform tree is built after calling (|V | − 2) times

MILP in splicing graph G(V,E). Each path from the root
node to a leaf node in the isoform tree represents a potential
transcript, and the weight of a leaf node can be seen as an
approximation of the transcript expression level. If paired-
end information is available, IsoTree will map the reads to
potential transcripts, and a transcript will be discarded if the
transcript is not well covered by the paired-end reads.

3 RESULTS

We compared IsoTree with the state-of-the-art assembly pro-
grams including six de novo assemblers BinPacker(version
1.0), Trinity (version 2.3.2), SOAPdenovo-Trans (version
1.03), IDBA-Tran (version 1.1.1), Oases (version 0.2.8), Vel-
vet(version 1.2.10), and two genome-based assemblers Cuf-
flinks (version 2.1.1) and StringTie (version 1.3.1) on both
simulated and real datasets.

On simulated datasets, we run IsoTree and the oth-
er eight compared assemblers on samples with different
read lengths to investigate the impact of read length on
assemblers’ performances. We run the de novo assemblers
with different k-mer lengths to detect the most suitable k
value. We also evaluated assemblers for different transcript
expression levels. All the simulated datasets and assembly
results are available at https://pan.baidu.com/s/1dG1f90t.

On real datasets, we compared IsoTree with the other six
de novo assemblers. We did not compare IsoTree to the two
genome-based assemblers Cufflinks and StringTie, since we
could not get accurate reference genomes of the real dataset-
s. On real datasets, we first run the de novo assemblers with
different lengths of k-mers, and then compare the perfor-
mances of the de novo assemblers with their favorite k-mer
lengths. We also evaluated the computational demands of
the de novo assemblers for runtime time and memory.

All assemblers were run on a server with 256GB of RAM
and E5-2620V3*2 CPU processor.

3.1 Datasets

Mimicking the characteristic of real RNA-seq data, we gen-
erated total of 21 datasets of simulated pair-end reads from
100 isoform transcripts originated from 41 different genes
in chromosome 1 (CRCh38.83, NCBI) using FluxSimulator
[31]. Each simulated dataset contains 0.1 million paired-end
reads. All the simulated samples were generated from the
same library. The only difference between these samples is
the read length. The lengths of reads in these 21 samples fall
in the scope of 50bp ∼ 150bp.

We collected dog dataset and human dataset from NCBI
SRA database (https://www.ncbi.nlm.nih.gov/) as the real
datasets. There are total of 30968059 paired-end reads in
dog dataset (Accession Code: SRX295047). The length of
reads in dog dataset is 50bp. The human dataset (Accession
Code: SRR3692633) contains 43675886 paired-end reads
with length of 75bp. Both the dog dataset and the human
dataset were sequenced under Illumina HiSeq system. The
annotation transcripts (referred to as ”reference transcript-
s”) for these two samples were downloaded from UC-
SC (https://genome.ucsc.edu/). Note that, the annotation
transcripts are not the ground truth expressed transcripts.
Usually for a given sample, only a small number of anno-
tation transcripts are expressed, and some novel predicted
transcripts may not be included in the annotation [15].

3.2 Evaluation criteria

In this paper, all assembled transcripts were aligned to
reference transcripts by blast+ [29]. We applied identity
(the extent to which two sequences have the same residues
at the same positions in an alignment, often expressed as
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Fig. 4. Impact of the length of read on the performance of assemblers. (a) Impact of read length on recall. (b) Impact of read length on precision.

a percentage) to evaluate the similarity of two transcript
sequences. Here, the full-length reconstructed transcript is
defined as an assembled transcript that holds at least 95%
identity to a reference transcript. The full-length identified
transcript is a reference transcript with at least 95% sequence
covered by an assembled transcript.

On simulated datasets, we applied recall (the ratio be-
tween the number of full-length identified reference tran-
scripts and the total number of reference transcripts) and
precision (the ratio between the number of full-length re-
constructed transcripts and the number of assembled tran-
scripts) as the measures of prediction quality.

For real datasets, there are usually only a small number
of annotation transcripts expressed, and some novel tran-
scripts may not be included in the annotation. Therefore,
the evaluations of recall and precision based on the above
definition are not accurate for real datasets. To evaluate
the recall, we counted the number of reference transcripts
that are full-length identified. To evaluate the precision, we
counted the number of full-length reconstructed transcripts
with comparison to the number of candidate transcripts.

3.3 Simulated data

We constructed a thorough and detailed analysis of the per-
formances of IsoTree and the other assemblers on simulated
datasets. The benefit of using the simulated data is that we
can set up the length of sequenced reads and expression
level of sequenced transcripts according to our needs. Be-
sides, it is easy to obtain the exactly reference transcripts. In
this section, we compared the performances of IsoTree and
the other assemblers on 21 simulated datasets with different
read lengths. We found the most suitable k-mer length for
each assembler by experimenting with different values of k.
Finally, we evaluated the best performance of assemblers on
transcripts with different expression levels.

With the development of RNA sequencing technology,
the sequenced reads become longer and longer. We run all
the assemblers on 21 simulated samples whose read lengths
fall in the scope of 50bp ∼ 150bp (Figure 4).

From Figure 4, we conclude that IsoTree is more competi-
tive than the other assemblers both with recall and precision
measurements. We observed an interesting phenomenon
that IsoTree, Trinity, and BinPacker always performed better
than Cufflinks and StringTie on all simulated datasets. It is
worth to mention that IsoTree, Trinity, and BinPacker are
all de novo assemblers while Cufflinks and StringTie are
genome-based approaches. This is beyond our expectation
that genome-based approaches should perform better than
de novo approaches. We speculate that the reason is that the
reference genome (chromosome 1) is usually far longer than
even the superstring of the sequenced transcripts, which
increases the uncertainty of alignments. The de novo assem-
blers’ excellent performances confirmed the importance of
developing de novo assembly method since genome-based
approaches do not apply for all assembly situations even
though the reference genome is given.

For the recall measure, IsoTree outperformed all the
other assemblers on all simulated samples (Figure 4a). Av-
eraged over the 21 simulated samples, IsoTree recovered
26.6%, 42.1%, 99.7%, 115.6%, 86.3%, 216.1%, 183.3%, and
209.8% more full-length identified transcripts than Trinity,
BinPacker, SOAPdenovo-Trans, IDBA-Tran, Oases, Velvet,
Cufflinks, and StringTie, respectively. Of all the other as-
semblers except IsoTree, Trinity obtained the highest recall
on the simulated datasets whose read lengths fall in the
scope of 60bp ∼ 150bp. As the length of reads grew from
50bp to 150bp, the recalls of all the assemblers improved.
The improvements of IsoTree, Trinity, and BinPacker were
particularly obvious. While the read length increased from
50bp to 150bp, the recalls of IsoTree, Trinity, and BinPacker
improved from 0.41, 0.22, and 0.29 to 0.60, 0.47, and 0.44,
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TABLE 1
Performance of de novo assemblers on different k values

Assembler k= 15 k = 20 k = 25 k = 30

Recall Precision Recall Precision Recall Precision Recall Precision

IsoTree 0.58 0.64 0.58 0.66 0.57 0.65 0.57 0.63

Trinity 0.19 0.21 0.29 0.38 0.49 0.42 0.50 0.49

BinPacker 0.24 0.24 0.35 0.39 0.41 0.49 0.49 0.62

IDBA-Tran 0.17 0.22 0.20 0.27 0.27 0.39 0.29 0.44

SOAPdenovo-Trans 0.21 0.24 0.27 0.31 0.32 0.41 0.36 0.52

Oases 0.28 0.21 0.29 0.24 0.31 0.24 0.37 0.29

Velvet 0.11 0.12 0.12 0.14 0.21 0.24 0.20 0.24

respectively. Because IDBA-Tran was designed especially for
short reads, it could not work while the read length is larger
than 130bp.

For the precision measure, IsoTree always held the high-
est precision among all the assemblers on all simulated
samples (Figure 4b). The average precision held by IsoTree
on these 21 samples was 0.62, which had 37.8%, 31.9%,
67.6%, 72.2%, 138.5%, 181.8%, 106.7%, and 93.8% increase
over Trinity (0.45), BinPacker (0.47), SOAPdenovo-Trans
(0.37), IDBA-Tran (0.36), Oases (0.26), Velvet (0.22), Cufflinks
(0.30), and StringTie (0.32), respectively. The outstanding
performance of IsoTree on precision measurement benefits
from its special prune transcript method. IsoTree pruned
the candidate transcripts by checking if the candidate tran-
scripts are fully covered by paired-end mapped reads.

Considering that the length of k-mers plays an impor-
tant role in de novo assemblers, we evaluated IsoTree, Trin-
ity, BinPacker, SOAPdenovo-Trans, IDBA-Tran, Oases, and
Velvet with different k values on the sample that contains
0.1 million 100bp paired-end reads (Table 1).

The experiments on different k values (Table 1) showed
that the k value had a great influence on all the assem-
blers but IsoTree. This maybe result from IsoTree’s special
extension strategy. IsoTree extends the contigs by reads
directly while the other de novo assemblers mainly use
k-mers. The read extension strategy can make full use of
the information of nucleotides arrangement in reads. In
most cases, the assemblers’ performance improved with
the increase of k value. For example, Trinity, BinPacker,
IDBA-Tran, SOAPdenovo-Trans, and Oases reached their
best performances when k = 30. Velvet reached its best
performance in the case of k = 25. It is interesting to find
that IsoTree always held its superior position against all the
other assemblers, even with their most favorite k values.
The highest recalls of IsoTree, Trinity, BinPacker, IDBA-
Tran, SOAPdenovo-Trans, Oases, and Velvet were 0.58, 0.50,
0.49, 0.29, 0.36, 0.37, and 0.21, respectively. The optimal
precision of IsoTree was 0.66, which had 34.7% increase to
Trinity’s highest precision (0.49), 6.5% increase to BinPcker’s
best precision (0.62), 50.0% increase to IDBA-Tran’s optimal
precision (0.44), 29.4% increase to SOAPdenovo-Trans’s best
precision (0.51), 69.2% increase to Oases’s optimal precision
(0.39), and 175.0% increase to Velvet’s highest precision
(0.24).

For each assembler, we counted the number of full-
length identified transcripts (that were produced under the
optimal k-mer value) falling in each expression level region
(Figure 5). We applied FPKM (the expected number of
fragments per kilobase of transcript per million fragments
sequenced) to measure the expression level of sequenced
transcripts. We divided the transcripts abundance to 11
scopes: (0, 1000], (1000, 3000], (3000, 5000], (5000, 10000],
(10000, 15000], (15000,20000], (20000, 25000], (25000, 30000],
(30000, 35000], (35000, 40000] and (40000, max(transcript
abundance)], and counted the number of full-length iden-
tified transcripts in each scope. Note that the length of reads
involved in this experiment was 100bp.
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(FPKM), and the vertical axis corresponds to assemble method. The
area of each circle represents the number of full-length identified tran-
scripts. The “Simulated” corresponds to the real number of sequenced
transcripts falls in each expression scope in simulated experiments.

From Figure 5, we observed that about a quarter of
sequenced transcripts fell in the scope of 5000 ∼ 10000,
and Trinity obtained the most number of full-length iden-
tified transcripts in this scope, followed by IsoTree and
SOAPdenovo-Trans. We found that both the low expressed
transcripts and high expressed transcripts were difficult to
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TABLE 2
Comparison of de novo assemblers with different k values on dog dataset

k-mer Transcripts IsoTree Trinity BinPacker IDBA-Tran SOAPdenovo-Trans Oases Velvet

k=20 full-length 1354 1017 1149 399 1005 512 21

candidate 81597 96018 73419 61429 85028 151856 36107

k=25 full-length 1158 992 1085 462 939 530 225

candidate 76067 84984 52956 67585 81681 113361 74530

k=30 full-length 867 808 990 598 800 416 221

candidate 65357 75081 46148 69757 85590 110179 71747

recover. For example, there were 12 expressed transcripts
falling in the scope of 0 ∼ 1000, but only one transcript was
recovered. For the scope of 35000 ∼ 40000, there were total
of four expressed transcripts, but no one was reconstruct-
ed. Surprisingly, IsoTree, Trinity, BinPacker, and IDBA-Tran
reconstructed all the transcripts whose expression level fell
in the scope of 25000 ∼ 30000. We attribute the excellent
performances of assemblers on this scope to the appropriate
transcript expression level and to the specific sequence
structure. It is worth mentioning that IsoTree recovered at
least 50% of expressed transcripts in all the scopes except
0 ∼ 1000 and 35000 ∼ 40000. Trinity performed best
when the transcript expression level fell in the scope of
5000 ∼ 10000. BinPacker recovered the largest number
of transcripts whose expression level fell in the scope of
15000 ∼ 20000.

3.4 Real data

Instead of just running the de novo assemblers with all the
default parameters, we tested the parameter of k-mer length
with different values on the dog dataset and the human
dataset, while keeping all the other parameters as default.
We chose the best length of k-mer for each program, and
compared their performances on both the dog dataset and
the human dataset. We evaluated the de novo assemblers by
the number of full-length reconstructed transcripts and the
number of full-length identified transcripts on real datasets.
We also examined their running times and memory usages
on the dog dataset as a reference of their resources require-
ments.

We evaluated the performances of the assemblers with
different lengths of k-mers by the number of full-length
identified transcripts in Table 2.

On the dog dataset, most of the de novo assemblers
achieved their best performances when the length of k-
mer was 20bp. For two adjacent reads that were sequenced
from the same transcript, the overlap length between them
may be very long or short due to sequencing techniques.
The k-mer-based extension strategy guarantees k−1-length
overlaps while our read-based extension strategy ensures
at least k-length overlaps. The smaller k value, the high-
er probability that two adjacent reads can be connected.
However, it will also lead to an increase in the number
of error connection. As shown in Table 2, the number of
candidate transcripts increased with the reduction of k-mer

length. Trinity, BinPacker, and SOAPdenovo-Trans achieved
their best performance with k = 20bp on the dog dataset,
while their most suitable k values in the 100bp-length sim-
ulated sample were 30bp. We attribute this phenomenon
to the differences in transcript expression levels between
the dog dataset and the 100bp-length simulated dataset. As
described in Introduction, longer k-mers tend to perform
better on higher expressed transcripts, and shorter k-mers
are more suitable for lower expressed transcripts. Further,
in sequencing lower expressed transcripts, the overlap be-
tween two adjacent reads is usually shorter.

From Table 2, we drew the most suitable k-mer lengths
for IsoTree, Trinity, BinPacker, IDBA-Tran, SOAPdenovo-
Trans, Oases, and Velvet as 20bp, 20bp, 20bp, 30bp, 20bp,
25bp, and 30bp, respectively. In what follows, we evaluat-
ed these assemblers on the dog dataset under their most
favorite k values.

With the most suitable lengths of k-mer, we compared
the performances of these de novo assemblers by the num-
ber of transcripts with various identities as shown in Table 3.
The 80%-length identified transcript is a reference transcript
that is recovered by assemblers with at least 80% identity.
The 80%-length reconstructed transcript is an assembled
transcript that is at least 80% identical to a reference tran-
script. Identified transcripts and reconstructed transcripts
with other identities are defined similarly.

On the dog dataset, IsoTree outperformed all the other
de novo assemblers in terms of recovering both identified
transcripts and reconstructed transcripts of all kinds of
identities (Table 3). For example, IsoTree recovered 1354 full-
length identified transcripts, a more than 17.8% increase
over the number of full-length identified transcripts ob-
tained by BinPacker (1149), Trinity (1017), SOAPdenovo-
Trans (1005), IDBA-Tran (598), Oases (530), and Velvet (221).
This means that IsoTree held the biggest recall among all
these assemblers on the dog dataset. Besides, IsoTree not on-
ly assembled the most number of full-length reconstructed
transcripts, and it also suggested less candidates than most
of the other de novo assemblers. IsoTree, Trinity, BinPacker,
IDBA-Tran, SOAPdenovo-Trans, Oases, and Velvet recov-
ered 2974, 1663, 2601, 1011, 1006, 957, and 211 full-length
reconstructed transcripts out of 81597, 96018, 73419, 69757,
85028, 113361, and 74530 candidates, respectively. From
these numbers we can figure out that among all these assem-
blers, IsoTree is the most accurate. Except IsoTree, BinPacker
outperformed all the other assemblers both with recall and
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TABLE 3
Performance of de novo assemblers on dog dataset

Assembler full-length 90%-length 85%-length 80%-length

identified reconstructed identified reconstructed identified reconstructed identified reconstructed

IsoTree 1354 2974 1510 3357 1616 3730 1713 4130

Trinity 1017 1663 1147 1881 1274 2084 1424 2310

BinPacker 1149 2601 1304 2918 1434 3203 1569 3472

IDBA-Tran 598 1011 669 1135 744 1267 841 1405

SOAPdenovo-Trans 1005 1006 1120 1121 1213 1216 1309 1312

Oases 530 957 608 1137 679 1249 776 1391

Velvet 221 221 267 267 331 332 412 414

TABLE 4
Performance of de novo assemblers on human dataset

Assembler full-length 90%-length 85%-length 80%-length

identified reconstructed identified reconstructed identified reconstructed identified reconstructed

IsoTree 2015 3821 2422 4645 2928 5551 4134 6753

Trinity 1913 3039 2305 3850 2682 4560 3135 5614

BinPacker 1491 3449 1805 4234 2127 5008 2463 5860

IDBA-Tran 1376 2196 1666 2692 1990 3245 2351 3881

Oases 1762 3126 2139 3975 2521 4808 2968 5785

Velvet 151 151 194 194 269 269 349 349

precision since it reconstructed the second most (1149) full-
length identified transcripts and reconstructed the second
most full-length reconstructed transcripts with contrast to
its candidates (2601 to 73419). IDBA-Tran was complemen-
tary to SOAPdenovo-Trans. IDBA-Tran obtained a larg-
er number of full-length reconstructed transcripts, 90%-
length reconstructed transcripts, 85%-length reconstructed
transcripts, and 80%-length reconstructed transcripts than
SOAPdenovo-Trans did (1011, 1135, 1267, and 1405 vs 1006,
1121, 1216, and 1312, respectively). However, the numbers of
full-length identified transcripts, 90%-length identified tran-
scripts, 85%-length identified transcripts, and 80%-length
identified transcripts obtained by SOAPdenvo-Trans were
obviously larger than the numbers of identified transcripts
recovered by IDBA-Tran (1005, 1120, 1214, and 1309 vs 598,
669, 744, and 841, respectively).

We also run the above seven de novo assemblers on the
human dataset with the above k-mer lengths, i.e., IsoTree
with 20bp, Trinity with 20bp, BinPacker with 20bp, IDBA-
Tran with 30bp, Oases with 25bp, and Velvet with 30bp,
respectively. All software finished their works within a week
except SOAPdenovo-Trans. Since SOAPdenovo-Trans was
still in the state of reading reads from the second reads file
after two weeks of running, we excluded it from our experi-
ments on the human datasets. The numbers of reconstructed
transcripts and identified transcripts with identities of 95%
(full-length), 90%, 85%, and 80% are shown in Table 4.

On the human dataset, IsoTree maintained its superior

performance on recovering identified transcripts with all
kinds of identities (Table 4). For example, IsoTree reported
2015 full-length identified transcripts and improved Trinity
(1913), BinPacker (1491), IDBA-Tran (1376), and Oases (1762)
with 5.3%, 35.1%, 46.4%, and 14.4%, respectively. IsoTree,
Trinity, BinPacker, IDBA-Tran, and Oases collected 3821,
3039, 3449, 2196, and 3126 full-length reconstructed tran-
scripts out of 218269, 437730, 192674, 182651, and 439865
candidates, respectively. From these numbers we can figure
out that IsoTree in general outperformed all the other as-
semblers. BinPacker is a litter more accurate than IsoTree
since BinPacker assembled 3449 full-length reconstructed
transcripts out of 192674 candidates while the numbers for
IsoTree are 3821 to 218269. However, IsoTree constructed
much more full-length identified transcripts than BinPacker,
i.e., 2015 to 1491, which suggests a much higher recall.
IsoTree outperformed all the other assemblers except Bin-
Packer with both recall and precision. For the other identi-
ties, we can draw the same conclusion.

Assemblers usually behave differently on different
datasets. For example, Trinity recovered more full-length
identified transcripts and full-length reconstructed tran-
scripts than BinPacker did on the human dataset. However,
Trinity reported fewer full-length identified transcripts and
full-length reconstructed transcripts than BinPacker did on
the dog dataset. Oases collected more full-length identified
transcripts from the human dataset, whereas BinPacker
obtained more full-length identified transcripts than Oases
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on the dog dataset. Besides, Oases performed better on the
human dataset than on the dog dataset.

a       

 p
ea

k 
m

em
or

y 
(G

)

0
20

40
60

Iso
Tre

e
Tri

nity

BinPacke
r

IDBA−Tra
n

Oase
s

SOAPdenovo
−Tra

ns
Velve

t

b      

 r
un

ni
ng

 ti
m

e 
(m

in
)

0
40

0
10

00
Iso

Tre
e

Tri
nity

BinPacke
r

IDBA−Tra
n

Oase
s

SOAPdenovo
−Tra

ns
Velve

t

Fig. 6. Computational requirements. (a) Peak memory for each de novo
assembler on dog dataset. (b) running time for each de novo assembler
on dog dataset.

We also assessed the computational demands of these
de novo assemblers with regard to running time and peak
memory (Figure 6). There was an obvious phenomenon that
the assemblers that performed outstandingly usually cost
more time and memory, e.g., Trinity, IsoTree and BinPacker.
Fortunately, the time and memory spent by these assemblers
are acceptable. IsoTree took less time than Trinity and con-
sumed almost the same amount of memory as BinPacker.
Velvet cost the shortest time, while IDBA-Tran consumed
the least memory.

4 CONCLUSION

We presented a novel de novo method IsoTree for transcrip-
tome reconstruction from RNA-seq reads. We constructed
the splicing graph by drawing the advantages of the state-
of-the-art methods and adding our own consideration of
expanding contigs by reads directly. We applied a mixed
integer linear program model subtly to build the isoform
tree which could express the potential transcripts in a gene.
Since the computation is carried on one splicing graph after
another, and the size of the splicing graph differs not much
for different gene, Isotree is scalable for most simulated and
real data. In addition, the process of pruning transcripts
with help of read information has greatly improved the
precision. The experiments on simulated samples showed
that IsoTree always held the highest recall and precision
than the other assemblers. The experiments on real datasets
also proved the outstanding performance of IsoTree. Except
that on the human dataset BinPacker got a little bigger
precision while under the sacrifice of a much smaller re-
call, IsoTree in general outperformed all the compared de
novo assemblers on recovering the full-length reconstructed
transcripts and the full-length identified transcripts with
an acceptable computational demand. The evaluation of de
novo assemblers with different k-mer lengths showed that
the length of k-mers plays an important role on de novo
assemblers’ performances. The small k value is suitable for
lower expressed transcripts, whereas the high expressed
transcripts favor longer k-mers. Besides, the large-scale
of RNA-seq reads increased the difficulty of transcripts
assembly. The advent of single-cell sequencing technology

reduced the scale of the data. However, single-cell sequenc-
ing will result in uneven sequencing. Some fragments of
a transcript may be sequenced many times, while some
fragments of the transcript may not be sequenced at all [32].
A novel strategy specially designed for processing single-
cell sequencing reads is required.
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