Universiteit
Antwerpen

This item is the archived peer-reviewed author-version of:

A robust simulator for physiologically structured population models

Reference:

Van Dyck Michiel, Woot De Trixhe Xavier, Vermeulen An, Vanroose Wim.- A robust simulator for physiologically structured population models
IEEE/ACM transactions on computational biology and bioinformatics / Institute of Hectrical and Hectronics Engineers [New York, N.Y.] - ISSN 1545-5963 - 99(2018)14

p.
Full text (Publisher's DOI): https://doi.org/10.1109/TCBB.2018.2810077

e uantwerpen.be
. ——

Institutional repository IRUA

http://anet.uantwerpen.be/irua

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 1

A robust simulator for physiologically structured
population models

Michiel Van Dyck, Xavier Woot de Trixhe, An Vermeulen and Wim Vanroose

Abstract—A framework to simulate physiologically structured population (PSP) models on high performance compute (HPC)
infrastructure is built. Based on the model of a single cell, billions of cells can be simulated in an efficient way, allowing fast simulation
of the interaction of an entire organ with other body parts. Through combination of three state-of-the-art algorithms, the simulation time
is decreased with multiple orders of magnitude. First: PSP modelling exploits the fact that a lot of the cells behave identically at the
same time which results in multiple orders of magnitude speed-up. The second speed-up is achieved by using an unconditionally
stable, partial differential equation solver which allows big time-stepping by trading off speed with precision. The third speed-up is due
to the fact that the framework is designed with HPC cluster use in mind. The PSP simulator is mathematically derived to have maximal
stability. Simulation results are validated and simulation speed and accuracy are measured.

1 INTRODUCTION
1.1 Computation

Simulation of an entire organ within the human body
remains a computational challenge. Even more, when we
simulate the organ behaviour based on the accumulated
response of a few billion cells, with each cell response
described by a biological model. PSP modelling allows an
accelerated simulation of these multi-scale models by repre-
senting a number of cells by a representative state variable.
Simulation of billions of cells can (in some cases) be speeded
up by a few orders of magnitude.

1.2 Simulator result

The simulator constructed in this paper is designed to allow
the simulation of a large range of PSP models without any
parameter tuning. To achieve this, emphasis was put on the
stability of the simulator. The accuracy of the simulation
depends mainly on the discretisation level, which in turn
is proportional with the number of calculations, and so the
computation time. By emphasizing stability, the simulator
can return for a very wide range of discretisation levels/
computation time, a stable estimate of the organ simulation.

1.3 Paper outline

First we introduce the PSP model of [4] which will be used
to illustrate the different mathematical equations of the PSP
model.

In section 3, the method is implemented and the main
PSP-solver with its different sub-solvers are analysed. We
illustrate the difficulties of using typical ordinary differen-
tial equation (ODE) and partial differential equation (PDE)
solvers. In 3.2, we explain how these problems are tackled

o M. Van Dyck and W. Vanroose are with the Department of Mathematics
- Computer Science, University of Antwerp, Antwerpen, BE 2000.
E-mail: see https://www.uantwerpen.be/en/staff/michiel-vandyck/

o X. Woot de Trixhe and A. Vermeulen are with Janssen Pharmaceutica,
Beerse, BE 2340.

Manuscript received September 21, 2016; revised August 26, 2016.

by using implicit ODE solvers and an unconditionally sta-
ble PDE solver. For the ODE system, emphasis is put on
the different algorithms to solve the system of non-linear
equations. For the PDE solver, we explain in 3.5 thoroughly
the semi-Lagrangian discretisation method of [12] which we
converted here to cope with PSP models. Also boundary
conditions, and conservation laws are handled briefly.

In section 4, the numerical simulations results are com-
pared to the solution derived in [4]. We analyse the error
in function of the discretisation size. In section 5 we look at
some applications. In section 6 we discuss the method. To
conclude the paper in section 7.

1.4 Reference PSP Example

To illustrate different properties of a PSP model and the PSP
simulator, the PSP model from [4] is used as a reference. In
[4], a PSP model is used to study the dynamics of negative
viral RNA (-vRNA) within Hepatitis C patients. The model
describes the infection of healthy liver cells(Hepatocytes) by
Hepatitis C virions. This infection results in the presence of
-viral RNA strands in the cell. The cell then produces +viral
RNA strands which results in the production of new virions.
In turn these virions spread in the liver to infect other cells.
The model also simulates the influence of a drug, which
interferes with this virion production process. This way, a
simulation can be done of how an infected liver can respond
on a drug injection. The model describes the liver based on
cellular mechanisms (drug-cell-virion interaction) combined
with macroscopic models e.g. the injection of a drug in the
patient.

The parameters for the mathematical model are: The
number of viruses V, the number of healthy cells T, the
number of infected cells I, the total amount of viral RNA
in the liver R and a drug concentration C. New healthy
cells are created at a rate s, but are infected by an infection
rate SVT. A term which will return as a source in the
distribution of infected cells on the bound. The healthy cells
die at a rate d - T'. Virions are produced by a production
factor ¢ multiplied by the total amount of viral RNA in the
liver R. The virions die with virion death rate c.

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 2

The drug concentration C in the body will, from inser-
tion, gradually increase up to a steady state concentration
C,s with a rate k.

ar — s_B.V-T—d-T
17

O "
at == k’(CSS—C>

The total amount of viral RNA in the liver R and the total
amount of infected cells [is calculated by:

R(n) = [r-n(r,t)dr

®(n) = I(n)=[1-n(rt)dr @)

Each individual cell in the liver is characterised by r:
the number of negative viral RNA strands in the cell. The
rate of change of the number of viral RNA strands in the
cell is defined by the function g which consist of a term
with a production rate o and a term with a risk rate ;. Both
quantities change with the drug concentration C' in the body.

g(z) = [§ = a(C) = u(C) - 7] ®

A last parameter n(r,t), represents the amount of cells
with r -vRNA strands in the liver, at time-point ¢. The PDE
(eg. 4) models the frequencies of the different types of cells
and how they will change over time.

The 0 factor describes the death rate of the infected cells.
The newly infected cells BVT" are cells with no viral RNA
yet and are added to the distribution at n(0, ¢). The initial
population of the cells at start is defined by ng(r).

on(r,t) N A(g(C,r) -n(rt))

ot or =—0- ’I’L(T, t) (4)

with
g(0)n(0,t)=5-V-T ®)
774(7", O) = no(’l") (6)

More details of this particular example can be found in

[4].

1.5

In general, a PSP model describes a multi-scale model in
which, equations modelling the individual level, are cou-
pled with equations modelling the environment level. The
interaction between the individual level and the environ-
ment level is calculated by means of a distribution. To
update this distribution a PDE has to be solved. So the PSP
model consists of 3 levels, each defined by its own state:

Introducing a generalised PSP model

1.5.1 PSP state variables

1.5.1.1 i-state: The i-state describes the state of an
individual, by which the state, in general, is denoted by
z. A set of ODE’s, g, describe the dynamic behaviour of
these state variables (eq. 7). In the reference example, the
individual is a cell and the state is characterised by the -
vRNA variable r.

x =r]

Function g() models the production of viral RNA and incor-
porates the cellular effects of the drug (eq. 3).

15.1.2 p-state: The p-state vector n describes the
population of individuals over all possible i-states z. A
set of PDE’s describe the change of the distribution in i-
state and time. The advection term with advection speed
g(), models the state changes of all the individuals. A risk
function A(Y, z) typically represents the birth/death rate of
the individuals (eq. 8a).

Boundary conditions of the PDE (eq. 8b) describe the
border 0 of the (PDE) domain). Here we can define for
instance the in/out flux off the population along the border.
In the example, this represents the infection rate. Newly
infected cells are added from the border into the population
distribution. % is the inward-pointing normal vector on the
border 012 [4], [8].

To simulate a PDE, an initial distribution ng(z) should
be defined to start (eq. 8c). When discretised, this can be a
set of (z,n) values, with = gridpoints sampling the domain
2 and n the amount of cells in that particular state.

When the vector = has size 1, the distribution of the
population over the different i-states can be represented
with a vector n. When x has size > 1, n becomes a matrix or
tensor with dimension the number of i-state variables. The
size of each dimension equals the number of discretisation
points used to represent each i-state variable. In the refer-
ence example, x has 1 i-state variable [r], so n is a vector
and each entry n; encodes the amount of cells in the liver
which have z; viral RNA strands in them.

1.5.1.3 e-state: The e-state Y describes the environ-
ment. The environment dynamics are described by a
set of ODE’s f which depend on Y and ® (eq. 9a). ®
represents the accumulated/macroscopic state of all cells
(eq. 9b). To simulate the equations, we also need a set
of initial values Y; (eq. 9¢). The function f describes the
interaction between multiple macroscopic variables and
the accumulated microscopic responses. But the function
f can also describe the interaction of the organ with
e.g. another macroscopic entity. The macroscopic state ®
is not calculated by summing all individuals but instead
derived from the p-state distribution integrated over all the
different i-states (eq. 9b). In the reference example, the total
amount of viral RNA in the liver is calculated by integrating
the product of the RNA per cell, times, the number of cells
that are in that particular i-state (eq. 2, 29a). In the general
case, each individual is weighted with a factor ¢(x) which
is a function of its i-state x (eq. 9b).

1.5.2 PSP equations

In this section we describe the mathematical equations of a
standard PSP model. These equations are used throughout
the paper to explain the PSP solver. The arguments of
some of the functions are sometimes removed to keep the
equations condensed but they should be clear from the
context.

o Cell/individual (i-state):

dz

En =g(Y,) (7)

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 3

o Tissue/population (p-state):
dn _ On(z,t)

= -\Y,z)n(z,t) (8a)
B.C.: Vz € 002 : g(z) n(z,t) x = b(Y,x) (8b)
Initial values: n(z,0) = no(x) (8¢c)
o Host/environment (e-state):
v _ Y, ® t 9
H;—ﬂ (n(. 1)) (%a)
/ o(x)n(x,t)dz (9b)
Initial values: Y(t =0) (9¢)

2 CONSTRUCTING THE PSP SOLVER

The PSP state vector p concatenates the 3 state vari-
ables/vectors Y, n,x (eq. 10). To simulate the PSP model,
we have to update the different states of the PSP model
over time. We are able to formulate the PSP simulation as
an ODE system R (eq. 11). We chose to update n at fixed
gridpoints z, for this we use the partial derivative a” from
eq. 8a: in the ODE system R.

Env Y
p= |Pop| = |n (10
Ind T
p=R(p) = a
v d% (Y, 2(n))
i‘ rTf g(Y7 [L‘)

A lot of techniques exist to solve an ODE. A wide range
of them can be described by the General linear Method

(GLM) [2].
R

. T
With p, = [Py Pn_1r Pp_o P,_n] a vector
containing a number of psp states at 7prev1ous time-steps
and P = [p*', p%2, p®, pn|" avector containing
different stage vectors (psp states between 2 time-steps). For
example, when choosing A = 0,U = 1,B =dt,V =1 we
get the explicit Euler ODE solver:

Pn =DPn-1+ dt §R(pn—l) (13)

when A = dt,U = 1,B = dt,V = 1 we get the implicit
Euler ODE solver:

12)

The implicit solver has a much wider area of stability
than the explicit Euler ODE solver [14]. So to build a PSP
simulator with great stability we start from the implicit
Euler ODE solver (eq. 14).

Y, Y, 1 dt f (Y, ®(ny))
Tn Tn—1 dtg(yn; xn))

From this, we get a system of non-linear equations to
solve (eq. 15). To solve this, we use an iterative solver.
Different iterative solvers exist, an easy one to implement is
the fixed point (f.p.) iteration. Each variable is depicted by a
*i to indicate the solver iteration, the time step is indicated
with the ,, subscript. An S matrix is introduced to deal with
the partial differential equations. For now we just assume
that Sn is the solution of the advection part of the PDE
of eq. 8a. The construction of this S matrix is explained
in Section 3.5.1. Each fixed point iteration, we evaluate the
following expression:

v, Vo1 dt f(Y,'71, @())
n;@ _ S*z 1() Np_1| + dt()*i—l) ;«Lz'—l
xkt Tp—1 dt (Y51,

1
2)

(16)

Each time step, the f.p. iteration is initialised with the

solution of the previous time step: p:0 = p,,_1. The iteration:

Py = Pno1 +dtR(p; ") 17)
is done until convergence is reached: i.e.
Clon' —pn ™) <er (18)

With C a multivariate function: e.g. >, maz, abs, 2-norm, ...
and cr a certain convergence accuracy threshold.

2.1 Exploiting the PSP structure for solving the non-
linear PSP system

Some steps can be performed to increase the convergence
speed of the solver. Instead of iterating over the entire
system each iteration, we can accelerate the solver by block
Jacobian preconditioning [5], [10]: i.e. solving each of the 3
entries of p uncoupled from each other. The convergence
rate CR then becomes:

CRjoe = (1 —dt Jp)~tdt Jpus (19)

instead of

CRyp = dt Jy (20)

for the fixed point case. With Jx the Jacobian of ® and Jy =
Jp + Jruy with Jp the block diagonal elements of Jy and
Jru the lower and upper elements of Jg. In almost all cases
the convergence rate will become much better. We should
note that each iteration, 3 systems have to be solved, so each
iteration is more costly.

3 GENERAL SOLUTION SCHEME

Implementing the previous solver scheme, we arrive at the
next solver layout consisting of 5 iteration loops.

e Solve the ODE system g for a number of physio-
logically relevant individuals: i.e. simulate (all) the
different cell states x for time-step dt.

Solve the PDE system for dt.

Solve the environment ODE system f for dt.

Repeat previous steps until convergence of R
Repeat previous steps for each time step

For each step in the solver, different algorithms exist: To
solve the ODE systems g, f and R, different ODE solvers can

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 4

Newton

implicit<v£c
Quasi-Newton

PSP solver

explicit Newton
implicit <pgc
RK45 Quasi-Newton

CVODE

Esolver Lax 4
Psolver Upwin
Isolver MUSCL_stable

I <(nnnnnnnnn

Characteristic
Curve

Fig. 1. Schematic of the PSP solver layout.

be used which are reviewed in section 3.1.2. An empirical
analysis of these different solvers is made in section 4. For
now we chose to solve:

o ¢g:with RK4,
o f:with implicit Euler.
o ¥ with implicit Euler.

For the PDE system, also a number of PDE solvers exist.
A review of these are made in section 3.1.1.

We chose to use the the Jos Stam modified method of
characteristics (JS-MMC) [12], but implemented also other
ones for comparison.

In fig. 2 a more detailed schematic overview of the PSP
solver is shown, showing the choices in PDE solvers.

A lot of options exist, a trade-off has to be made between
speed, accuracy and stability.

Speed and solution accuracy are analysed numerically
in section 4. Stability issues of the different solvers are
illustrated in the next section.

3.1 Standard solver stability issues
3.1.1 Standard PDE Solver Stability issues

As mentioned before, a lot of PDE solvers exist: e.g. Eu-
lerian discretisation with explicit or implicit Euler update
[9], different upwind schemes [9], the Lax method [3]
and Monotonic Upstream-Centred Scheme for Conservation
Laws (MUSCL) [7]. Also total Variation Diminishing flux
limiters [13] can be used to filter numerical oscillations.
Another family of PDE solvers is based on the Lagrangian
discretisation of the field, e.g. particle methods [6] and
smoothed particle hydrodynamics (for flow simulation).
There are also PDE solvers based on both ie. the semi-
Lagrangian methods: e.g. the Arbitrary Lagrangian and
Eulerian (ALE) methods and the JS-MMC.

The PDE problem the PSP simulator must solve appears
to be almost entirely advective. Advection is notoriously
difficult to stabilize with common/Eulerian discretised PDE
solvers. With these PDE solvers, the maximal d¢ time step
size is bounded by the Courant Friederich Levinson (CFL)
number. This constraint states that the CFL should be kept
< 1 for most PDE solvers and ~ 1 for some more advanced
solvers.

CFL :g(ﬂz:)ﬂ <1

dx @D

P2 = PSPupdate(pO-, t)

Loop while: ¢; <t PSPupdate
t=t; +dt
P2 = PSPgiep (p1, dt, t)
Loop while: ﬁ > O PSPgtep
Yz*i—l — Y; ?
g2 = g(Y3' ! w, t + di)
ng = Prun(n, Ya, dt, t)
P,
Loop: ng = Pgtep(n, Yz, dt, t) mun
Pstep

switch:
Explicit ny =mny +dt K gyny
Lax ny = Laz(n) + dt K g,
First order upwind ny =ny +dt(K* g, + K~ g)gina

Implicit ng = ny + dt Kgano
Crank-Nicholson no =mny +dt/2 Kginy + dt/2K gans
MUSCL ny = ny +dt M(dz,n, g,)
MUSCL-Runge Kutta

ki = M(dz,n,g,z))

ko = M(dz,n+dt/2k, g,z))
ks = M(dz,n+ dt/2ks, g,x)
kq = M(dx,n + dtks, g, x)

ne =ny +dt M(dz,n, g,z)

ng = Sny

Stam-MMC

Ny = Ny — ANy

® = calcP(ns)
Y‘zﬂ = Epun(Yz, dt, Y1, t, @)

while: Y“YEY“ > Cy Erun
Y=Y

Y =Y +dt f(Ya, t + dt)

Fig. 2. Schematic of the PSP solver layout: M is the Kurganov and
Tadmor (KT)-MUSCL scheme update matrix [7], K is a central differ-
ence advection discretisation matrix, K~ and (K) are the left and
right first order upwind finite difference discretisation matrices g;; and
gn are max(gn,0) and min(gn,0), S is the sum of 2 interpolation
weight matrices constructed by the Jos Stam - modified method of
characteristics (JS-MMC) [12].

With g(z) the advection speed, dt the time- , and dx the
space-discretisation size.

Even when these constraints are met, some typical issues
arise which are shown in fig. 3. In this figure different PDE
solvers are used to solve the PDE of the reference example
[4], (4). In fig. 3.a an Eulerian discretisation scheme is used
with explicit Euler resulting in uncontrolled oscillations.
Implicit Euler updates result in controlled oscillations as
shown in fig. 3.b. The Lax method (fig. 3.c) averages out
these spatial oscillations resulting in a stable method, but
these results are too smooth to accurately represent the
moving front. These dispersion effects are also present in
different upwind schemes (not shown). More advanced
smoothing is done by using flux limiters: higher order
methods are used on smooth parts and lower order / more
stable methods at the complex parts. In fig. 3.d we see
the MUSCL method with flux limiters doing a good job
of simulating the PDE in an accurate way without any
numerical oscillations. The CFL conditions should be met or
the method becomes unstable. To retain stability when using
bigger time step-sizes, a Lagrangian or semi-Lagrangian
method can be used. The JS-MMCC we chose is described
in great detail in section 3.5.1.

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 5
Day 1 Day 2
Lo #10° Y Lo #10° Y a) 1o dt=0.01 10 dt=0.3 dt=0.5
- Reference
8 8 9 LBk
W 6 W 6 8
2 2 6
5
0 0
4
2 -2
0 10 20 30 40 0 10 20 30 40 3
1 #10° RNA strands per cell 10 #10° RNA strands per cell b) i -60
8 8
. . % 1 2 3 8% 1 2 3
T 4 T 4
s, =, Fig. 4. Implicit vs explicit ODE solver approximation of the real solution.
. . We see that the explicit approximation diverges when the step-size is in-
-2 -2

0 10 20 30 40 0 10 20 30 40
#10° RNA strands per cell #10° RNA strands per cell C)

AN

0 10 20 30 40 0 10 20 30 40
RNA strands per cell RNA strands per cell

a
1o #10° 10#10 d)

#cells

N O N A O ®
#cells

N O N A& O ®

#cells
N O N A O ®

#cells
N O N A O ©

0 10 20 30 40 0 10 20 30 40
RNA strands per cell RNA strands per cell

Fig. 3. Different simulation issues while solving an advection problem
with different types of PDE solvers. a) Euler, b) implicit Euler c) Lax
method d) MUSCL with flux limiters

3.1.2 Standard ODE solver issues

Also for ODE solvers there is a lot of choice: Explicit,
implicit or semi-implicit methods. Higher order methods
using multiple-stages, multiple-steps or a combination. Also
adaptive time-step algorithms can be used with different
error estimation algorithms.

When using an explicit ODE solver, the number of calcu-
lations for each iteration is fixed and so, when the step-size
becomes bigger, the system will return an increasingly more
inaccurate value. This results in a divergence/failure of the
ODE solver. This is illustrated in (fig. 4: dotted line) for a
classic ODE example: y = —4y. Instead, when the step-size
increases, the implicit method loses fidelity but still manages
to produces a stable approximation of the real solution. (fig.
4: striped line)

Implicit Euler algorithms are the most stable choice.
When accuracy is needed, explicit higher order Runge-Kutta
(RK) method might be preferable. For relative stiff ODE
equations, higher order implicit solvers can be used e.g.
Backward differentiation formula (BDF), Adams-Moulton,
singly diagonal implicit Runge Kutta (SDIRK) or IMEX (im-
plicit explicit) methods. For more info, we refer the reader to
the ODE solver literature regarding initial value problems.
(1], [14]

When using an implicit system, a stable method to solve
the non-linear system of equations must be found. For this a
fixed point iteration can be used. When the Jacobian can be

creased. The implicit method loses fidelity when the step-size increases
but manages to produce a stable approximation of the real solution.

approximated, a quasi-Newton method can be used, which
will typically converge faster. These two methods to solve
a system of non-linear equations are evaluated in the next
section.

3.2 PSP solver

For solving the PSP system with a block Jacobi solver, at
each iteration, the different sub-problems: solving environ-
ment y, solving tissue n and solving cellstate = should be
solved. Next, we will explain the solver for each of these
sub-problems.

3.3 Environment ODE solver

The environment model Y can be solved with any solver
which can solve an initial value problem. For stability im-
plicit solvers are preferred. To solve the non-linear system
of implicit ODE solvers, a fixed point iteration or quasi-
Newton solver can be used.

3.3.1 Implicit Euler with Fixed point iteration
Yn' =Yn1+ dtf (Y1) (22a)
Y2 =y + dtf(ysh) (22b)
Uit =yn—1 +dtf(y;?) (22¢)
(22d)
Until: (™! — 4y < Cp (22e)

With C7 a user defined threshold value. We note here
that the number of iterations does not directly increase the
accuracy of the solution (As opposed to Runge-Kutta (RK)
methods where each sub-step, the order of the quadrature
approximation is increased.), but these iterations guarantee
the stability of the algorithm. We start the iteration with the
1st order explicit Euler update rule 22a (which has minimal
stability), each iteration we converge more towards the
implicit Euler approximation (which has maximal stability).
We clearly trade speed for stability here.

3.3.2 Implicit Euler with Newton method

We can also use a quasi-Newton solver which in general will
converge faster. Starting from eq. 22a and 22b, we want to
find the roots of h.

h(yn) =Yn —Yn—-1 — dtf(yn) (23)

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 6

To get an approximation of the gradient, when y is a vector,
we need to solve G from the following equation:

G- Ay = Ah (24)

But this system is under-determined, so a regularisation
constraint needs to be placed to be able to solve it. Broyden’s
constraint is to minimize the change with the previous
estimate of G (in Frobenius norm). The Broyden update
function for G is:

Ah — G*i-1 Ay

gu=gr T2
1Ay]?

Ay (25)
When G is known, we solve the linear eq. 26 for (y, —

yn—l)*i-
G (Yn = Yn—1)"" = h(y; =) — h(yn-1)

Then we update y: ¥ = yn—1 + (Yn — Yn—-1)*
We repeat until the residual is smaller than some user
defined threshold value cy:

(26)

*i—1

(il =y ™Y <er 27)

Other quasi-Newton methods can be used as well e.g.
Broyden-Fletcher-Goldfarb-Shanno (BFGS), which has a
direct update scheme to update G~! avoiding the linear
system solve in eq. 26.

3.4 The O state

The ® variables are the macroscopic/environment values
representing the combined effect of all the individual cells
together. They are defined as:

= /qu(x)n(x t)dx

We approximate the integration numerically by a finite sum-
mation. In the reference example of [4], the 2 macroscopic
variables to evaluate the environment dynamics are: the
total amount of -viral RNA strands, R, and the total amount
of infected cells, I. These values are calculated as:

(28)

Tmax Tmax

R= r(z)n(z,t)de ~ Z ren (29a)
Tmax Im’lzmyln
I= / In(z,t)dz~ > n (29b)

Other quadrature methods exist. A first order approxima-
tion has the advantage that it makes sure that the conserva-
tion laws are respected.

3.5 Population state PDE solver

The PDE we have to solve to calculate the distribution of the
p-state over the different i-states is :
Tissue (p-state):

ML) 9, (g, (e 1)) = ~AY,2)n(z. 1) (30a)
Boundary conditions: g(z) n(z,t) % = b(Y, z) (30b)
Initial conditions: n(z,0) = ng(x) (30¢)

3.5.1 Semi-Lagrangian method

We solve the PDE as described by Stam [12], this PDE
solver is unconditionally stable, fully conservative, and uses
a semi-Lagrangian discretisation scheme. It is also known as
the modified method of characteristics. This method results
in an interpolation matrix S which is used to update the
distribution n for the advection part by multiplying it with
the previous distribution.

Np = S(T) - Np—1 (31)

3.5.2 The S matrix

The S matrix is built by combining two interpolation ma-
trices (eq. 32). The interpolation matrices are built by cal-
culating the forward and backward characteristic curves at
all the different spatial discretisation points x. (fig. 5) The
characteristic curve for each of these points is constructed by
integrating the intra-cellular model g with an ODE solver.

S~ Wy+ Wy (32)
(1 —w) (w1) iy ,1) 0
W, ~ (1= wr)ip—10) (W) (i)
0 0 WK
(33)
(1 — ’Ul) .
(v1) (1 — vk (kyix—1)
Wy~ (V) (in) (34)
0 0 VK

The W}, matrix stores the interpolation weights from the
backward characteristic curves. i.e. the characteristic curves
which arrive at all the grid points x (fig.5.1). The W; matrix
stores the interpolation weights from the forward character-
istic curves: i.e. the characteristic curves which start at all
the grid points x. (See fig.5.3)

Calculation of the characteristic curves for each grid
point z(k) can be done with any ODE solver. Depending
the stiffness and desired accuracy, one ODE solver is better
suited than the other. For an explicit Euler solver this
becomes:

Vk € [1,K] : xzp(k) = (k) —
Vk € [1, K] ap(k) =

dtg(Y)
(k) +dtg(Y)

The General linear method allows to generalise over a
broad family of ODE solvers.

(35)
(36)

wenons[3)-[3 0] e
wennr[][4 P e

with K the number of grid-points and dx = FmaxFmin

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 7

For all endpoints of all the characteristic curves, we
calculate the relative distance wy, to the 2 nearest grid points:
x(i) and z(iy + 1). i denoting the grid index. When the
grid is monotone and uniform, i;, can be calculated with eq.
39: i.e. flooring the division of the distance by the grid-size.

-Tb(k) - xminJ
dx

In case of a non-uniform but monotone grid the index
can be looked up by a binary search algorithm in ~
O(log, (# grid-points)) steps. i; Defines the position of wy,
in W}, the interpolation value of wy, is calculated by:

_ ay(k) — 2(in)
dx

To resolve problems at the boundaries we set: (assuming 1
the first array index)

Vke 1, K] ip=| +1, (39)

(40)

Left bound: Vi, < 1 => i, = Lland xp(k) = z(1) (41)
Right bound: Vi, > K => i;, = K and (k) = 2(K) + dz
(42)

We do the same for the forward integrated grid points.

k min

Vk e [1,K]: i L%J +1, 43)
Vipg <1=>14,=1,25(k) = x(1) (44)
Vig > K => i = K, z5(k) = 2(K) + dz (45)
b 2108) = (i) »

dxr

As denoted in 33 and 34, wy and v, define the weights
in the W, and W matrix. i, defines the column or row
position respectively. We have to make sure the conservation
laws in the PDE are respected. For this, 2 corrections are
added.

If s, the sum of the elements of a column of W}, is bigger
than 1, the entries for that column are normalized to sum to
1. In the other case, if s, <= 1, no correction is made to wy.

se=[1,1,

AW, 47)

Wy =W, x diag(1/ max(1, s.)) (48)

The second correction is to make sure all points are
advected. For each column in W, when s. < 1, all elements
in the column are multiplied with 1 — s.. In the other case,
if s >= 1, the elements of that column in W is set zero.

Wi =Wy x diag(max(1 — s.,0)) (49)

The S matrix, solving the PDE, is created by accumulat-
ing these 2 matrices together:

S=W;+W; (50)

As long as Y does not change, also ¢g(Y,z), i.e. the
characteristic curve functions don’t change and so the S
matrix can be reused. To solve the PDE again we just have
to multiply this S matrix with the previous cell distribution
again. In most cases, Y will change and the matrix will have
to be rebuilt.

n(t,)
/N
L Wwdx X}M (I-wy)dx
N T !
;
B Z
c
=
1 i
X;
I
|
I
| :
| gy, x)1 l’] A
| | g(vx)
! :
I)
|)
| |
! :
! |
4 ;
X
u\l\ |
S~ ___Z|
@
- I
|
|
l wedx)?'(1‘Wr Ydx W, dx lrxf (1- Wf)dxl
wn(t,) I 1 1 T

Fig. 5. Schematic representation of the different steps to construct the
interpolation matrix to solve the PDE based on the modified method of
characteristics. [12] [15].

3.5.3 Sources, sinks and boundaries

While the advection term gives a change in the shape of
the distribution, there are also source and sinks terms which
change the amount of cells in the distribution. These are
captured in the A(Y, z)n term. The A term is solved with an
ODE solver: e.g. explicit Euler

*i4+1 _ *i *1
Ny, =N, — A(K ‘T) Ny,

(6D

In the example model, A is a constant —¢ and accounts
for the death of infected cells (eq. 4). But this A(Y, x) also
allows for a very wide range of other models with dynamic
sources and sinks on different places in the domain. To
guarantee stability of the solver in these more difficult cases,
an implicit Euler solver is advised.

n:li—H _ ’I’L*)\(Y JI) *141

(52)

Sources and sinks at the bounds are typically integrated
within the boundary conditions, but work the same. In
case of the Hepatitis C example from [4], we can also see
how it also allows to model the exchange from cells from
the environment level to the distribution. The boundary
conditions at = 0 models the amount of cells that become
infected each time step: i.e. the flux at the boundary is
defined. The influx is integrated over the time step dt (eq.
53): In the example this result is the number of newly
infected hepatocytes (eq. 5) and these are accumulated onto
the first point of the physiologically structured population

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 8

distribution. Because these cells are in the model also sub-
tracted from the healthy cells environment variable T (eq.
1), mass balance is achieved. Next the PDE update is done.
Due to the Lagrangian update and the conservation law
corrections, these new cells are advected correctly towards
their new physiological state.

dt
b(Y, xz)dt
0

1(0)n+1 = n(0), + (53)

3.6 The intra cellular model

The intra cellular ODE model is solved when construct-
ing the characteristic curves. For each intra cellular ODE
variable, one dimension in the PDE domain is needed. (In
some cases the increase of variables can be simplified so that
we do not need to increase the dimensionality of the PDE
problem.)

Since these ODE’s need to be calculated for all grid
points, these operations represent the main workload of the
algorithm. For this, the implementation of these operations
are heavily tuned for performance. The equations are pre-
compiled and optimised for faster evaluation and are exe-
cuted in parallel by use of the CPU vectorisation units and
distributed over multiple cores.

4 NUMERICAL EXPERIMENTS
4.1 Comparison with analytical results

In [4] a solution for a Hepatitis C simulation of 14 days was
derived. This solution is used as a reference to analyse the
accuracy of the constructed numeric PSP solver.

4.2 Accuracy of the solution
4.2.1 Time step size

In table 1 we see how the solution becomes more accurate
in function of the number of time steps. The stepsize = 14
days / #Time-Steps.

TABLE 1
CFL number, number of time-steps, spatial discretisation size, relative
error, computation time and speed-up for decreasing number of time
steps, with implicit Euler with f.p. iteration for 32, implicit Euler with
(Broyden’s quasi-) Newton solver for the environment, JS-MMCC for
the PDE and Implicit Euler for the characteristic curve.

CFL | Time-steps | dx | Rel. Error | Time (s) | speed-up
1 40000 0.01 0.01% 1949 x1
10 4000 0.01 0.03% 287 x7
100 400 0.01 0.2% 24 x81
1000 40 0.01 2% 3 x650
10000 4 0.01 40% 0.3 x6496

We see we get a pretty good approximation of the solu-
tion when we use 40000 time-steps. To get a CFL number
smaller than 1, 40000 time-steps of equal size are needed.
When we decrease the number of time steps, the error with
the reference solution increases, but not dramatically. We
can still get a suitable approximation of the solution (+2%)
with only 40 time steps, resulting in a 650 times speed-
up over traditional Eulerian PDE solvers. Or 1949 seconds
versus 3 seconds. Simulation results are plotted in figure 6.
As explained in section 3.1, only when the CFL is smaller

than 1, Eulerian PDE solvers can be used. Comparing the
error change for low with high CFL, we do see that, we
need more and more time steps to get the same increase
of accuracy. This is partially due to the fact we have a
first order method. Another part is that other discretisations
become more important: e.g. the spatial discretisation.

4.2.2 Spatial step size

When we decrease the spatial discretisation dx of the PDE,
we record the simulation errors of table 2.

TABLE 2
CFL number, spatial discretisation size, number of time-steps, relative
error, computation time and speed-up for decreasing spatial resolution,
with implicit Euler with PEC solver

CFL dx Time-steps | Rel. Error | Time (s) | speed-up
1600 | 0.001 250 0.57% 82.693 x1
160 | 0.01 250 0.57% 7.9789 x10
16 0.1 250 0.60% 1.831 x46
8 0.2 250 0.62% 1.5424 x53
4 0.4 250 0.66% 1.4061 x59
1.6 1.0 250 0.79% 1.302 x63
5 1 80 1.2% 0.48272 x171
2.5 2 80 1.4% 0.4558 x182
1 5 80 1.6% 0.48089 x172

The decrease of spatial resolution results in an increasing
error. The change is not in the same proportion as with
the time step size. We also note that due to the use of
vectorisation in the algorithm, the increase in calculation
time for increasing the number of spatial grid-points is not
drastic for grids with dx= 1 to 0.1, respectively 50 to 500
grid-points (in the domain 0-50), 1.3 => 1.8 sec. When com-
paring dx= 0.01 and 0.001 (5000 and 50000 grid-points) we
do see a proportional computation time increase 7.9 => 82
sec. = x10. Since these operations can be done in parallel,
more compute cores/nodes can be used to decrease the
computation time again. We see there is a linear relationship
between the number of grid-points and the CPU workload.
But the CPU workload can be done in parallel.

4.3 Non-linear intra cellular models

For non-linear intra-cellular models, it is non-trivial some-
times impossible to derive a solution as was done in [4].
The big advantage of the numerical PSP solver constructed
here, is that it is equally capable of approximating these less
trivial to find solutions.

In fig.7.1c, the linear case, we clearly see that the intra-
cellular model: i.e. the viral RNA growth rate, is linear
in function of the intracellular state z: e.g. the number of
virions in the cell. The different lines represent how this rate
changes over time due to the modelled addition of a drug.
(Each line is 1 day)

In 7.2c we see the relation between the number of virions
and the production of new viral RNA strands modelled with
a non-linear cellular model and see how this rate changes
over time due to the addition of the curing drug. In 7.1b and
7.2b we see the distribution of the number of cells in each of
the different characteristic states, plotted for each day. 7.1a
and 7.2a show the simulation results of the environment
variables: i.e. the total number of cells T and the total
amount of virions V and I and R are the total number of

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 9

14 days simulation
n
a 10000[1 v CFL=1
I 1
= B V (sim)|
L2 E V (ref)
s000f [la |
B N .
B W
B ”n
X o 14t
n
b 10000[] v CFL=10
I] 2100
o |l V (sim)|
Flle V (ref)
s5000[|l f_
B 3 5| 4
o -
n
X % i
n
¢ 10000[= v . CFL=100
i JRat
ol V (sim)
ClE ——V (ref)
Efelele] o | I
B 2 5| 4
L N -
N L
- i
X 14
n
d 10000[v CFL=1000
I~ et
[olf V (sim)
F s V (ref)
sooof flof,
L 3 5| 4
B > -
N W
n X % i
€ 10000 T CFL=10000
L& 1 o
ol |z b V (sim)
r 1 V (ref;
5000 I . i (ref)
B Z 1 44 4
L < El]
L _ w 4
o - t
(o] 5 10 15 20 25 30 35 40 45 50 14

Fig. 6. Comparison of the solution of the PDE (left) and environment
variable (Viral Load) (right) of the PSP model solved with a) CFL 1 b)
CFL 10 ¢) CFL 100 d) CFL 1000 e) CFL 10000. The distribution of the
P-state is shown for time-step 3.5, 7, 10.5 and 14.

infected cells and total number of viral RNA strands in the
liver.

In fig. 7.3 we see a simulation where the drug is inserted
after 4 days instead of day 0. The first 3 days we see in
fig. 7.3b the progression towards the steady state without a
drug (x=7). Then, due to simulation of the drug injection, we
see the distribution change and converge towards another
steady state point (x=2).

So, we see here that the PSP simulator is capable of sim-
ulating a wide variety of models and experiments: Linear,
non-linear intra-cellular models, time varying parameters,
non-steady state initial conditions. These examples illustrate
that all these models can be simulated in a stable way.

4.4 Time steps vs implicit iterations

In table 3, we use an implicit method to solve the env. ODE
i.e. Crank Nicholson, with 3 different number of time-steps.
We see that the solver does not fail for a very wide range
of the times-steps solver parameter. But we do see that
the computation time does not decrease linearly with the
number of time-steps and in this case even increases when
lesser time-steps are used. This can be explained by looking
at the number of iterations the fixed point solver needs to
do to converge.

#JSCN is the number of times the intracellular model
g is calculated. This number divided by the number of
characteristic curves and the number of time-steps results
in the average number of iterations per characteristic curve.
We see that the fixed point solver needs, on average 5960
iterations for the 65 time-steps case vs only 77 iterations for
the 265 time-steps case, to solve the implicit system.

TABLE 3
Error and detailed overview of the number of function evaluations in the
PSP solver for 3 cases with different time-step-size.

#lime-steps: 65 265 2650
Rel. Error: 13.8654% 3.5199% 0.2977%
CPU time [s]: 1644.7 944 310.62
#PSPUpdates: 65 265 2650
#Eruns: 17898 1400 5949
#PSPSteps: 65 265 2650
#]SCN: 1.937E8 1.019E7 2.964E7
#JSCN/char: 5960 77 22.3

So the version with the least time-steps needs ~ 20 times
more rhs evaluations resulting in an ~ 20 times longer
simulation time. (*times are for non vectorised/optimized
code)

For this model we see that it is sometimes better to use
more/smaller time-steps than to try to reduce the number
of time-steps to a bare minimum, to speed things up. When
we increase the number of time-steps too far, the total
computation time increases again. This is illustrated by
the last example, where 2650 time-steps are used and the
computation time increases again.

Another important conclusion from this table is that the
implicit method allows to make rough but stable predictions
when the system becomes more difficult. By reducing the
number of time-steps, we converted the easy problem into
a much harder/ more stiff system. We see that then, the
stability of the implicit solvers is really necessary to keep
the overall solver stable.

At last, it should be noted that in this example a fixed
point iteration was used to solve the implicit equations.
When using e.g. quasi-Newton solvers, this effect is less pro-
nounced, since for these methods the number of iterations to
solve the system is much smaller so quasi-Newton solvers
allow even bigger step-sizes, with still a clear compute
benefit. As an example, in table 2 we used the Broyden
method for the same problem, and we see almost no effect of
the increased compute-times for bigger time-steps and see
an almost linear speed-up from 40000 up to 4 time-steps.

So this example also illustrates the importance of a
good equation solver. When the equations can be solved
quickly, the number of time-steps is proportional with the
computation time.

4.5 The order of the method

For the different ODE’s, i.e. ®, f and g, multiple solvers
can be used. We investigate here the influence of the order
of the method for solving f and g. The ODE solver for i
is fixed to implicit Euler to maintain maximum stability. In
the first three results of table 4, (exp. 1, 2, 3), we explore
the order of the explicit ODE solvers (respectively order 1,
2 and 4). The experiments confirm that for the same spatial
and time discretisation the error is significantly lower when
using higher order methods.

When using implicit methods, experiment 4 and 5,
i.e. Crank-Nicholson and implicit Euler, we see a reduction
of the error compared to the explicit methods. This indicates
that the step-size is still large and that the larger stability of
these implicit methods here also translate to a more accurate
simulation. The implicit Euler method reduces the error

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 10
alm:tmﬁ v) P2 (A) 210,#10" v P A I 1 S 17410 T
1.8} 1.6/ { 1.6
5t 1 vet 5t 1.5 s 1.5
1.4} 1 1.4} { 1.4
t t t t t
00 5 10 15 1'20 5 10 15 O0 5 10 15 1'30 5 10 15 00 5 10 15 1'30 5 10 15
#107 R , #10° I #10" R , #10f I #107 R 5 #10° I

o
o G ~
L N
o ~N
°
o in =~
-

0 t 0 t t t
0 5 10 15 0 5 10 15 15 0 5 10 15 0 5 10 15 0 5 10 15
b 3,104 14 days 14 days 7,105 14 days
!
14
6
5
4
4
3
3
14 6
13
2 }.2
}887 2
1
1 1
- | o — x
20 25 30 35 40 45 S50 0 5 10 15 20 25 30 35 40 45 50
a(r)
5 50

0 5 10 15 20 25 30 35 40 45 50

Fig. 7. Solution of a 14 day PSP simulation for the 1) linear and 2) non-linear intra-cellular model. 3) non-linear model with treatment started after
4 days instead of day 0 in the previous cases, and a non-steady-state initial value. a) Shows the environment variables: V-Total number of virions,
T-Total number of cells, R-Total amount of viral RNA in the liver, I-Total amount of infected cells; b) the distribution of the cells for 14 days c) the
production of viral RNA in a cell i.f.o. the amount of viral RNA in the cell. Plotted for each day 14 days of simulation.

even more than the second order implicit method: C.N.. The
increase of stability of the implicit Euler method over the
second order C.N. method translates itself again in a more
accurate simulation result. In experiment 6, we use 4 times
as much time steps to compare the explicit Euler method
with RK4 again. This time, we take into account that RK4
does 4 rhs evaluations at 4 intermediate stage points. The
error of the RK4 method is still clearly the smallest one,
showing the benefit of the Chebyshev interpolation used in
the RK4 method over the piecewise linear interpolation in
the explicit Euler method. Also, the RK4 method is more
stable than explicit Euler.

In experiment 7 we try to compare the impact of the ODE
solver used for the characteristic curves versus the impact
of the ODE solver used for the environment f.

We see that the error in 7 is = equal to the Euler/Euler
solver configuration in 1. So increasing the order of the
characteristic curve in this PSP problem has little to no
influence on the error. Experiment 8 and 9 are examples
where the time-steps are 10 times increased in size. Using

the Heun/Heun method, this results in a completely wrong
solution, but due to the Implicit Euler outer loop, the
method did not crash totally. Looking at the computation
time: 70 seconds, we can conclude that a lot of implicit iter-
ations had to be done to stabilise the Heun/Heun method.
When using RK4/RK4 we get a very fast method with an
error of =~ 1.6%. In experiment 10 we show the influence of
vectorisation and pre-compilation of the code. Comparing
with the non-vectorised version from experiment 3 we see
that this result has a clear 10 fold increase in speed.

In experiment 11, we confirm that for this problem, the
error is mostly dependent on the ODE solver of the environ-
ment and much less on the ODE solver of the characteristic
curve. By using the Heun method for the characteristic
curve, we get almost the same accuracy as with CN/CN
in exp. 4, but in a lot less time.

The last experiment was an attempt to get a very ac-
curate solver with only 600 time steps. And so we used
Implicit Euler for the environment and a second order
implicit method for the characteristic curve. But this resulted

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 11

in slightly less accurate solution than IE/IE, in exp. 5. This
also points towards the need for stability when building
the characteristic curves. Leaving the implicit Euler /Implicit
Euler as the most accurate solver when discretising this
particular problem in 600 time-steps.

TABLE 4
Some experiments with different solver combinations. (Times are of the
non-vectorised code, except when noted otherwise)

Exp. method nSteps Rel. error time(s)
1 IE/Euler/Euler 600 1.96% 119.9
2 IE/Heun/Heun 600 0.97% 101.8
3 IE/rk4/rk4 600 0.27% 56.3
4 IE/CN/CN 600 0.47% 216.8
5 IE/ImpL.E./Impl.E 600 0.19% 297.2
6 IE/Euler/Euler 2400 0.45% 259.2
7 IE/Euler/Heun 600 1.94% 149.7
8 IE/Heun/Heun 60 249.21% 70.1
9 IE/rk4/rk4 60 1.62% 7.1
10 1IE/rk4/rk4(vectorised) 600 0.27% 52
11 IE/CN/Heun 600 0.47% 379
12 IE/ImpLE./CN 600 0.21% 284.0

5 APPLICATIONS
5.1 Adaptive time stepping
5.1.1 Motivation

In the previous section the time step was held fixed. A big
speed-up can be achieved by using variable time-stepping.
For this we need an error estimating function to control the
step-size. Different approaches exist, and a combination of
approaches is used.

5.1.2 Controlling the PSP step-size
p2(t2) = p1(t1) + dtR(p)

This step-size dt can be adjusted automatically based on
a number of criteria. Depending on the problem and the
user requirements, other criteria are relevant. Currently we
monitor 4 variables to define criteria.

(54)

e maxFa: The maximum absolute change of the envi-
ronment variables per time-step

o maxFEr: The maximum relative change of the envi-
ronment variables per time-step

e tss: The time-step-size

o nSolve: The number of iterations to solve the implicit
system

Based on these values, different constraints can be
set, triggering different actions. Currently three values are
checked, to adjust the time step-size ().

e maxFa > PSP.ABS_ERROR => t,, = 0.9%,

e mazFa < 0.7PSP.ABS_ERROR => t,, = 1.13t4,
e mazEr > PSPREL_ERROR => t,, = 0.9%,

e mazEr < 0.7PSPREL_ERROR => t,, = 1.13t,,
e nSolve > 0.7PSPMAXITER => t,, = 0.9t

e nSolve < 0.5 PSPMAXITER => t,, = 1.13t,,

Two other criteria have to be met to confirm convergence
of the solver: If one of the constraints is not met, the solver

will discard the solution of this time-step and will do the
computation again with a smaller time-step.

e marFa < PSPMAX_ERROR and
e nSolve < PSPMAXITER .

When all time-step size modifications are done, a check
is done if t,, is inside the interval [PSP.dt_min, PSP.dt_max]

o tgs > PSPdAt_max => t,, = PSP.dt_max
o tgs < PSPdAt_min => t,; = PSP.dt_min

The way dt is adjusted, each time a constraint is not met,
can be tuned for the problem at hand. We note that the time
steps used in the sub-solvers for environment, tissue and cell
can be different and more refined than the overall PSP time-
step-size. The PSP solver step-size, defines the interaction
between the different sub-solver results.

After simulation at variable time-steps, the results are
interpolated to generate the numbers at the requested points
in time. For this we need to buffer the intermediate results.
Due to the adaptive time-steps, the size of the buffer is
unknown at compile time and should be adjusted during
execution. This is a time consuming operation. Doubling the
reserved memory space, each time the buffer becomes too
small is a heuristic which makes a good balance between
size and speed.

5.1.3 Error estimation

By setting the PSP max error we also constrain the limit of
the expected numerical error.

error > nTimesteps x PSPMAX.ERROR (55)

5.2 Simulating a clinical trial

Simulation of a clinical trial can be interesting for trial
optimisation and/or evaluating the efficacy of a certain trial
run for validating an hypothesis.

A trivial implementation would be to simulate from
one event to the next, but setting the simulation step-size
based on the mathematical complexity, followed by a linear
interpolation, is a more computationally efficient approach.
The next sequence can be followed to simulate a clinical trial
of multiple persons: The computational load is distributed
over the different cores and nodes of a super cluster as
follows:

5.2.1 A clinical trial simulation

1. Separate the entire trial into trials, of just one in-
dividual and distribute the work over compute
core/nodes. fig. 8 (Remark: When two or more trials
are mathematically equivalent, this approach is not
maximal efficient; since the same simulation is done
twice.)

2. Separate data entries based on event ID: i.e. invasive
dose events and non-invasive measurement events.

3. Start the simulation of the model up to the first
invasive event. Store the intermediate results in a
matrix T}qce.

4. Simulate the invasive event. Append the simulation
results to T ce.

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 12

> Time

ind. 1

W .-
IR e
W e«

$3103/SapoN
91ndwo)

&
<

Fig. 8. Distribution of the workload over the different cores/nodes of the
compute cluster

5. (Re)Set the PSP solver in high resolution mode, to
cope efficiently with the discontinuous behaviour of
the event.

6. Simulate from this invasive event to the next in-
vasive event with the (variable time stepping) PSP
solver.

7. Repeat step 4, 5, 6 for all invasive events.

8. Simulate from the last invasive event towards the
last measurement event.

9. Interpolate the intermediate PSP results in the T},
to get the values of the variables at the points in time
recorded in the clinical trial.

10. .. (In case of parameter fitting: Calculate the differ-
ence between simulation and measurements, adjust
the model-parameters and start again)

A simulation of a patient receiving multiple doses of
treatment is shown in figure 9.

D (3

100 200 300) 100 200 300

x107 v x107 T

ocaNwWbOON®

Fig. 9. Simulation of 1 patient in a clinical trial receiving multiple doses
of medication over a certain period of time. D: Drug dose, C: Drug
concentration, V: number of viral cells, T: number of Total Cells i.f.o.
time

5.3 Fitting the model

To show another application of the PSP simulator, we show
how it can be used in a parameter estimation set-up:

5.3.1 Fitting a model to an individual

In fig. 10 it is shown how the PSP solver was used in
combination with the Levenberg Marquardt algorithm [11]

model: file.psp
data: file.csv

pre—— PSP simulator —

Parameter

estimator:
Q SAEM
Gauss-Newton

Levenberg-Marquardt
Gradient Descent

Fig. 10. Schematic overview of usage of the PSP simulator in a param-
eter estimation setting.

to estimate a model-parameter c (see eq. 1) based on artificial
environment-data with noise. The original model, data and
result are shown in fig. 11 and confirm a good parameter
estimate.

%10 \
12 :

. Fitted curve

TR * Data
10 "'Q\\ Real

N
. LS

| |
4
2
0 13 2 75 3 35 i 75 5t

Fig. 11. Use case of the solver for estimating a parameter based on
artificial data with normally distributed noise.

5.3.2 Fitting a non-linear mixed effects (NLME) model
using stochastic approximation expectation maximisation
(SAEM):

In a medical trial, multiple patients are observed. Some-
times, based on the distribution of the parameter over all
patients, some assumptions can be made on the value of
the parameter for a single person. If we incorporate this
information in the model fit function, we get a (non-linear)
mixed effect model.

y=f(z,XB+Zb)+¢ (56)

Here y denotes the observation vector, 5 is the fixed
effect vector with X the fixed effect design matrix and b the
random effect vector with Z the random effect design ma-
trix. € is the observation error vector. b and ¢ are ~ A(0, V)
and ~ N(0,02). with ¥ the covariance matrix and o2 the
variance of the error. f a function and z a data matrix of
individual-specific predictor values.

If we want to fit parameters of this non-linear mixed
effects model, a commonly used, robust, parameter fitting

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 13

TABLE 5
NLME estimates for different clinical trial set-ups on artificial data

#pers. # meas. est. est. Init CPU
p- person mean var. est. Time
4 5 51391 2e-16 8.63 20min
14 10 49706 0.1170 8.63 2h30
140 30 5.055 0.1242 8.63 19h30

algorithm is the SAEM algorithm. Based on artificially cre-
ated data, polluted with normally distributed noise, we
show in table 5, that we were able to fit the parameter ¢
(see eq. 1) based on data from 4, 14 and 140 patients, each
patient having between 5 and 30 measurements. The mean
and standard deviation was set to be 5 and 0.3. We see in
table 5 that the algorithm converged each time to a less or
more accurate prediction depending on the amount of data
given. Since SAEM requires a lot of iterations to converge,
it takes a long time to compute. When a lot of data is
available of different individuals, the user can get a clear
benefit from using multiple cores on a multi-core machine
or multiple nodes on a cluster to simulate the parameter
values in parallel.

6 DiscussioN

Since a lot of mathematical approaches can be used to
simulate an entire organ, or a mathematically equivalent
multi-scale model, we want to discuss the performance
improvement of the PSP framework as formulated here:
i.e. the PSP framework with the PDE formulation and the
PDE solved with the semi-Lagrangian method.

We want to point out that the best method to use,
is based on the number of unique cells there are in the
simulated organ. The semi-Langrangian method allows for
adaptive approximation of these differences, at different
levels of detail (see Figure 12).

For example, when we have 2 billion cells in the liver,
we can calculate 2 billions cell ODE’s. But when the state
of the cell can be described by a linear combination of a
few characteristic cells, we can simplify the simulation of 2
billion ODE’s by solving one PDE.

When the different states can be described by one pa-
rameter, this becomes a 1 dimensional PDE. When more
parameters are needed, this becomes a higher dimensional
PDE to solve.

The downside is that solving higher dimensional PDE’s
becomes, very fast, a very difficult problem to solve when
using the classical Eulerian methods. The number of PDE
discretisation points blows up exponentially and also the
time step should be kept very small satisfying the CFL
constraint. As long as there are fewer cells than possible
states, it remains more efficient to simulate each cell in-
dividually than to solve the PDE. Alternatively, we could
use the Lagrangian method for solving the PDE. i.e. The
Lagrangian method will solve the PDE by simulating each
particle individually, which is computationally equivalent
to solving the 2 billion ODE’s.

The nice thing about the semi-Lagrangian method is that
it combines the Eulerian and the Lagrangian approaches

and allows to solve the PDE in the PSP model by solving
it in a more Eulerian or more Lagrangian fashion by using
more or fewer PDE grid-points. This includes the spatial
grid-points but also the temporal grid-points, i.e. the time
step size.

When using many grid-points and small time-steps,
we approach the Eulerian PDE solvers. When using big
time-steps and no (fixed) grid-points, we approach the
Lagrangian PDE solvers.

Regarding the number of points which should be used
in the semi-Lagrangian approach, we must understand that
we approximate the behaviour of each cell by a linear
combination of characteristic cells. (These characteristic cells
are the ones for which we calculate the characteristic curves
for: i.e. the discretisation points of the PDE.) The more
‘diverse’/non-linear the possible states a cell can be in, the
more characteristic cells that should be simulated. In turn,
the more computationally intensive it becomes to solve the
PDE for all these characteristic cells.

Conclusions regarding the optimal number of grid-
points versus the number of different states are also appli-
cable for the number of different inputs. When each cell
has a unique input, it might not make sense to simulate
characteristic cells, since each characteristic cell, should be
simulated for all possible inputs. Again when the amount
of different inputs is limited or can be derived from a linear
combination of ‘characteristic’ inputs, the PSP approach
makes sense again.

In the reference example, we assume that the input for
each cell is the same, i.e. the environment the cells are in, is
the same for all cells.

Due to the linear interpolation, in some cases, the num-
ber of grid-points can be reduced down to 1: i.e. As in
[4].A. the mean field assumption is valid, so the aver-
age grow rate equals the grow rate of the average cell
avg(g(x)) = g(avg(z)).

This also means that the total increase (of viral RNA
strands in the liver) equals the increase in the average cell,
times the number of cells. This in turn means we can model
the organ in this case by simulating only 1 characteristic
cell. In this case the PDE simplifies to an ODE and the
computational benefit is maximal: i.e. calculating 1 easy
PDE(=ODE) vs 2 billion (liver cell) ODE’s. Here the PSP
model equals a macroscopic model of the entire organ: i.e
a set of macroscopic ODE equations. (This allowed [4] to
simulate a PSP model with a standard ODE solver and we
can use these results for validation)

The big advantage of the PSP model is that it allows the
organ to be modelled by its macroscopic behaviour, or by its
individual cell behaviour, or by a combination of both, in the
same framework. The advantage of the current PSP solver is
that it can turn from an Eulerian towards a Lagrangian PDE
solver or combination.

So being able to gradually move from one extreme to
the other, we can tune the method and get the best of both
methods allowing optimal performance along a wide range
of models.

7 CONCLUSION

The PSP modelling framework allows the model complexity
to be increased, from the organ scale up to a detailed

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2810077, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, NOVEMBER 2016 14

PDE Semi-lagrangian ODE
EN:“N %g@n
Cells with“the same state ch cell is simulated ind.
b, | are simulatedeqly ence.
= ~ 4 ;
g N ;/
o=
g v
&= /
b Ve
= .
g PDE
D
ope—~ #states
#cells

Fig. 12. Representation of the efficiency of different PDE solvers in
function of the ratio number of states over number of cells.

simulation of each single cell. This way, gradually more
information from the cellular level can be incorporated
in the organ/environment model. The increase in detail
does not necessary induce longer computation times since
the numerical method derived in this paper uses a semi-
Lagrangian PDE solver which allows to adjust the compu-
tation times and still maintain stability in almost all of its
cases. The accuracy of the solution is of course depended
on the computation time, but it is illustrated that good
approximations can be found in exponentially less time.
It is up to the user to set his preferred balance between
computation time and accuracy. The coupling between the
ODE solver for the environment model and the ODE solver
for the individual model is maximally stabilised by the
implicit Euler approach. This results in a stable PSP solver
which can be used for exploration of a wide variety of
models. Furthermore, the solver was proven to be capable
of simulating all the models generated by the Levenberg-
Marquardt algorithm for parameter fitting.

REFERENCES

[1] John Butcher. General linear methods for ordinary differential
equations. Mathematics and Computers in Simulation, 79(6):1834—
1845, 2009.

[2] John C Butcher, Zdzislaw Jackiewicz, and WM Wright. Error
propagation of general linear methods for ordinary differential
equations. Journal of Complexity, 23(4):560-580, 2007.

[3] C. K. Chu. Numerical methods in fluid mechanics. Advances in
Applied Mechanics 18, 1978.

[4] X Woot de Trixhe, W Krzyzanski, F De Ridder, and A Vermeulen.
vrna structured population model for hepatitis ¢ virus dynamics.
Journal of theoretical biology, 378:1-11, 2015.

[5] Markus Hegland and Paul E Saylor. Block jacobi preconditioning
of the conjugate gradient method on a vector processor. Interna-
tional journal of computer mathematics, 44(1-4):71-89, 1992.

[6] R. W. Hockney and J. W. Eastwood. Computer Simulation Using
Particles. Taylor & Francis, Inc., Bristol, PA, USA, 1988.

[7] Alexander Kurganov and Eitan Tadmor. New high-resolution
central schemes for nonlinear conservation laws and convection—
diffusion equations. Journal of Computational Physics, 160(1):241—
282, 2000.

[8] Johan A Metz and Odo Diekmann. The dynamics of physiologically
structured populations, volume 68. Springer, 2014.

[9] David Potter. Computational physics. John Wiley and Sons Ltd,
1973.

[10] Yousef Saad and Maria Sosonkina. Distributed schur complement
techniques for general sparse linear systems. SIAM Journal of
Scientific Computing, 21(4):1337-1356, 12 1999.

[11] G. A. F. Seber and C. J. Wild. Nonlinear Regression. NJ: Wiley-
Interscience, 2003.

[12] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, pages 121-128. ACM
Press/Addison-Wesley Publishing Co., 1999.

[13] P. K. Sweby. High Resolution Schemes Using Flux Limiters
for Hyperbolic Conservation Laws. SIAM Journal on Numerical
Analysis, 21:995-1011, October 1984.

[14] Morris. Tenenbaum and Harry Pollard. Ordinary differential equa-
tions: an elementary textbook for students of mathematics, engineering,
and the sciences. Dover Publications, 1963.

[15] Michiel Van Dyck and Herbert Peremans. Realtime 3d sensor
based air flow reconstruction. In Eurographics 2012-Posters, pages
41-42. The Eurographics Association, 2012.

Michiel Van Dyck Dr. ir. ing. Michiel Van Dyck
is currently researcher at the Department of
Mathematics - Computer Sciences, investigat-
ing computer aided medicine construction and
validation. Received his PhD in 2012 for his re-
search on biomimetic air flow sensors. Received
a master degree in engineering science: elec-
tronics, data processing and automation in 2006
and a masters degree in applied engineering:
electronics hardware design in 2004.

Xavier Woot de Trixhe Ir. Xavier Woot de Trixhe
is currently a senior scientist at Janssen Phar-
maceutica and doctoral researcher at the KUL.
Previously he worked as a scientist at Exprimo
NV (2008 -2011) doing PK-PD Modelling. He
has received his master degree in Engineering,
Electronics: Medical Devices at the University of
Leuven in 2006.

An Vermeulen Prof. dr. apr. An Vermeulen grad-
uated as a pharmacist from the UGhent in 1989,
and received her PhD from the same university
in 1994, with a thesis entitled: The influence
of ageing on the enantioselective pharmacoki-
netics of beta-blockers in the rat. In May 1992,
she joined Janssen Pharmaceutica NV where
she consecutively worked in the Preclinical &
Clinical Pharmacokinetic departments, and the
Advanced Modelling and Simulation group. Cur-
rently, she is a Clinical Pharmacology and Phar-
macometrics consultant of the QS Consulting group within Quantitative
Sciences (80% assignment). She also works as a visiting professor in
Pharmacokinetics at the UGhent (20% assignment).

Wim Vanroose Prof. Wim Vanroose is - since
2006 - a Faculty member of the department
of Mathematics and Computers Science at the
University of Antwerp. After his PhD in 2001
in computational physics he has spent three
years as a computational scientist at the Com-
puting Sciences Division of the Lawrence Berke-
ley National Lab where he developed solvers
. > for physics simulations that run on the NERSC
N supercomputers. Between 2004 and 2006 he

worked on numerical multiscale methods for ki-
netic models at the K.U.Leuven. He currently leads research in PDE
solvers for complex systems in various areas of science.

vin Nd

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

