
Secure Wavelet Matrix:
Alphabet-Friendly Privacy-Preserving

String Search for Bioinformatics
Hiroki Sudo , Masanobu Jimbo , Koji Nuida , and Kana Shimizu

Abstract—Biomedical data often includes personal information, and the technology is demanded that enables the searching of such

sensitive data while protecting privacy. We consider a case in which a server has a text database and a user searches the database to

find substring matches. The user wants to conceal his/her query and the server wants to conceal the database except for the search

results. The previous approach for this problem is based on a linear-time algorithm in terms of alphabet size jSj, and it cannot search on

the database of large alphabet such as biomedical documents. We present a novel algorithm that can search a string in logarithmic

time of jSj. In our algorithm, named secure wavelet matrix (sWM), we use an additively homomorphic encryption to build an efficient

data structure called a wavelet matrix. In an experiment using a simulated string of length 10,000 whose alphabet size ranges from 4 to

1024, the run time of the sWM was up to around two orders of magnitude faster than that of the previous method. sWM enables the

searching of a private database efficiently and thus it will facilitate utilizing sensitive biomedical information.

Index Terms—String search, privacy, wavelet matrix, FM-index, homomorphic encryption

Ç

1 INTRODUCTION

PRIVACY protection is an emerging problem in the field of
life science where many data are private, such as clinical

documents, health records, personal genomes and protein
sequences. Currently, the most common approach for pro-
tecting such data is to limit access by segregating the data,
which eventually deteriorates their value. To overcome this
problem, a technology is eagerly demanded that enables
such sensitive data to be searched while maintaining indi-
vidual privacy. Such a technology is considered as one of
privacy-preserving data mining technologies. (See related
books and survey papers such as: [1], [2], [3] for more
details about privacy-preserving data mining).

In this study, we consider a typical scenariowhere the user
wants to search on a text database but does not wish to show
his/her query to the server, and the server wants to return
only the search result and does not want the user to obtain
any other information. In a previous study aiming to achieve
such a scenario, Freedman et al. introduced a keyword
search [4], in which both the server and the user have a set of
keywords and only the user knows common keywords.
Bruekers et al. also developed a similar approach and applied
it to a genetic test [5]. There is another line of studies aiming to
evaluate similarity of a query and each database entry by
computing a Jaccard Index of two keyword lists. Applications
have been developed for a DNA sequence search [6], [7] and a
chemical compound search [8]. In addition to those keyword-
based searches, a privacy-preserving substring search is also
an important problem in bioinformatics. In a substring search,
the server has a long text and the user has a query (a relatively
shorter text), and only the user knows the positions where the
query matches the server’s text. In previous work [9], a DNA
sequence search that mainly targets an exact match was dem-
onstrated using garbled circuit [10] which is a relatively time
and communication-size consuming approach. Series of
recent studies by Hazay et al. [11], Vergnaud et al. [12], Baron
et al. [13] and Yasuda et al. [14] presentedmore efficientmeth-
ods to find matches that have a small fixed Hamming dis-
tance. While those studies aimed to evaluate similarity
between an entire query and a server’s text, another study [15]
aimed for a variable-length prefix/suffix match either on a
regular text or a set of aligned texts such as SNP sequences
(e.g., it enables the user to find only occurrences of the longest
prefix/suffixmatch), which is also useful for various practical
settings. In this study, we also tackle the same pattern match-
ing problem. In principle, the method in this previous study

� H. Sudo and M. Jimbo are with the the Department of Computer Science
and Communications Engineering, Faculty of Science and Engineering,
Waseda University, Tokyo 169-8050, Japan, and the AIST-Waseda
University Computational Bio Big-Data Open Innovation Laboratory
(CBBD-OIL), Tokyo 169-0072, Japan.
E-mail: hsudo108@ruri.waseda.jp, jimwase@asagi.waseda.jp.

� K. Nuida is with Information Technology Research Institute (ITRI),
National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo 100-8921, Japan, and the Japan Science and Technology Agency,
Kawaguchi-shi 332-0012, Japan. E-mail: k.nuida@aist.go.jp.

� K. Shimizu is with the the Department of Computer Science and
Communications Engineering, Faculty of Science and Engineering,
Waseda University, Tokyo 169-8050, Japan, the AIST-Waseda University
Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL),
Tokyo 169-0072, Japan, and the Information Technology Research Insti-
tute (ITRI), National Institute of Advanced Industrial Science and Tech-
nology (AIST), Tokyo 100-8921, Japan.
E-mail: shimizu.kana@waseda.jp.

Manuscript received 4 Dec. 2017; accepted 3 Mar. 2018. Date of publication
8 Mar. 2018; date of current version 7 Oct. 2019.
(Corresponding author: Kana Shimizu.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2018.2814039

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019 1675

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
_

https://orcid.org/0000-0003-2222-3371
https://orcid.org/0000-0003-2222-3371
https://orcid.org/0000-0003-2222-3371
https://orcid.org/0000-0003-2222-3371
https://orcid.org/0000-0003-2222-3371
https://orcid.org/0000-0002-7526-7434
https://orcid.org/0000-0002-7526-7434
https://orcid.org/0000-0002-7526-7434
https://orcid.org/0000-0002-7526-7434
https://orcid.org/0000-0002-7526-7434
https://orcid.org/0000-0001-8259-9958
https://orcid.org/0000-0001-8259-9958
https://orcid.org/0000-0001-8259-9958
https://orcid.org/0000-0001-8259-9958
https://orcid.org/0000-0001-8259-9958
https://orcid.org/0000-0001-6452-9091
https://orcid.org/0000-0001-6452-9091
https://orcid.org/0000-0001-6452-9091
https://orcid.org/0000-0001-6452-9091
https://orcid.org/0000-0001-6452-9091
mailto:
mailto:
mailto:
mailto:

(called PBWT-sec) can be applied for any type of text data.
However, it does not perform sufficiently for practical prob-
lemswhen it is used for searching on a textwith a large alpha-
bet size jSj, such as a protein sequence (jSj ¼ 21) and clinical
documents (e.g., jSj ¼ 36 for Roman alphabet and Arabic
numerals, jSj ¼ 83 for Japanese alphabet), because the algo-
rithm was originally designed for haploid genome sequences
(jSj ¼ 2) and its time complexity is linear to jSj. To overcome
this critical drawback, here we present an efficient algorithm
named the secure Wavelet Matrix (sWM) that searches on an
efficient data structure called a wavelet matrix [16], [17], [18]
by using additively homomorphic encryption [19]. Aswewill
discuss in Section 3.5, sWMsignificantly improves asymptotic
performance compared to PBWT-sec (see Table 1). As a result,
the sWM is up to several orders of magnitude faster than the
PBWT-sec in experimental results with a large alphabet size
as shown in Section 4, with slight increase of communication
rounds and, thus it can practically deal with various types of
text data even over networks with high latency. Moreover,
our new method even improves communication complexity
despite the previous approach requires only sublinear com-
munication size in terms of database length. We will also
describe a detailed algorithm to use sWM for a full-text search
based on FM-Index [20].

The rest of the paper is organized as follows. In Section 2,
we describe the main idea of our approach, which is followed
by Section 3 where the detailed algorithms of sWM and its
application to full-text search are provided. We also describe
the complexity of the algorithms and compare it with that of
previous methods. In Section 4, we evaluate the performance
of our method both on a simulated dataset and two real data-
sets (protein sequences and clinical texts) and compare our
method with a previous approach and a baseline approach.
Finally, we conclude our study in Section 5.

2 APPROACH

2.1 Problem Setting

In this study, we assume a case in which a user has a query
text qq and a database holder has a long text S, and the user
wants to know only the longest prefix of qq that matches a sub-
string of S. As explained in Section S1 in the supplementary
material, the proposed method is easily modified to find the
longest prefix that matches more than � different positions in
S given the threshold �, which may fit more practical applica-
tions. For ease of explanation, we describe a series of algo-
rithms specialized for searching on a single long text, but the
same approach is able to search on other types of text data
such as a set of aligned texts bymodifying it slightly.

2.2 Overview

To explain the central idea of our approach, we will first
briefly describe PBWT-sec [15]. PBWT-sec is designed to
search on an iteratively queriable data structure such as
FM-Index, in which a database text is efficiently indexed.
During the search using such a data structure, a match
between a query and a database text is reported as a left-
closed and right-open interval ½f; gÞ on the auxiliary data
structure, that is, BWT of the original text as shown in Fig. 1.

We do not provide a detailed mechanism of the data
structure. However, to understand the key idea, two points

are sufficient to know. (1) The lower bound f and upper
bound g of the interval are computed by a function called
RankCF. (2) An interval ½fkþ1; gkþ1Þ for a prefix match of
length kþ 1 between a query text qq and a database text S is
computed in the form of:

fkþ1 ¼ RankCFðŜ; fk; q½kþ 1�Þ;
gkþ1 ¼ RankCFðŜ; gk; q½kþ 1�Þ;

(1)

where Ŝ is an auxiliary text such as BWT of S, and qq½kþ 1� is
the ðkþ 1Þth letter of qq.

As we explain in detail later in this section, RankCF is
pre-computable and stored in a long lookup table vv, and
thus ½f; gÞ can be obtained by referring to vv:

fkþ1 ¼ vv½fk þ ok �; gkþ1 ¼ vv½gk þ ok�;
where ok is proper offsets necessary for storing all pre-com-
puted values. Therefore, the interval for a prefix match of
length kþ 1 can be obtained by referring to the same table vv
recursively as follows.

fkþ1 ¼ vv½vv½vv½. . . vv½f0 þ o0� . . .� þ ok�1� þ ok�;
gkþ1 ¼ vv½vv½vv½. . . vv½g0 þ o0� . . .� þ ok�1� þ ok�:

To enable the user to refer the lookup table held by the
server, a cryptographic technique called a Recursive Oblivi-
ous Transfer (ROT) protocol [21] is used, by which
vv½vv½. . . vv½i� . . .�� is returned to the user when the user inputs
an index i and the server inputs a vector vv to the protocol.
In the process of the ROT protocol, the user and the server
repeat communication, and in each round, the user obtains
ðvv½x� þ rÞmod N where x is the user’s input, r is the server’s
input (a random factor) and N is the length of vv. All the
user’s inputs are encrypted by the user’s secret key before
it is sent to the server, and the server computes return val-
ues on the basis of the user’s encrypted values without
decryption. Since the server does not have the secret key,
the user’s inputs are not leaked to the server. On the other
hand, the user decrypts the returned values, but cannot
see vv½x� because it is randomized by the server’s private
value r. The key feature of ROT is that when the user
inputs previously returned value ðvv½x� þ rÞmod N , the server

Fig. 1. Schematic view of search on recursive data structure such as FM-
Index. Each match is represented by interval ½f; gÞ, and interval is
updated by previously computed interval.

1676 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

properly removes r from the user’s input and returns
ðvv½vv½x�� þ r0Þmod N where r0 is another random factor. At the
end of the protocol, the user can obtain a non-randomized
result if the server does not input a random factor. In this
way, ROT enables the user to refer to vv without leaking
any intermediate information. (See Section 3.2 for more
details about the algorithm of ROT.) By using this prop-
erty and an additional cryptographic technique, the
PBWT-sec can safely compute f and g until it finds the lon-
gest prefix (i.e., g� f becomes 0). Fig. 2 illustrates how the
user and the server communicate when computing the
interval.

The ROT task is a computational bottleneck of the
PBWT-sec, and the time complexity is linear to the
length of vv. The goal of this study is to improve the time
complexity of the ROT task. Let us give more details
about vv and RankCF, which are key building blocks of
ROT. Given an index p, a character c and a sorted text Ŝ
(such as BWT) of length N , RankCFðŜ; p; cÞ is defined as
follows.

RankCFðŜ; p; cÞ ¼ jf i j Ŝ½i� ¼ c ; 0 � i < p gj
þ jf i j Ŝ½i� < c ; 0 � i < N gj:

We denote Ŝ½i� < c, when a letter Ŝ½i� is lexicographically
smaller than a letter c. For example, if Ŝ ¼ “MDGGIPQAGG”,
p ¼ 5 and c ¼ ‘G’, RankCFðŜ; 5; ‘G’Þ becomes 4 because the
two leftmost ‘G’s are within the first five letters, and ‘D’ and
‘A’ are lexicographically smaller than ‘G’.

The straightforward method to store all outputs of
RankCF for the Ŝ of lengthN , 0 � p � N , and c 2 S is to cre-
ate a lookup table of length ðN þ 1Þ � jSj. In fact, PBWT-sec
designs vv in this simple way, and thus its computational
complexity is linear to jSj.

To reduce the total cost for the ROT task, we propose a
novel approach using wavelet matrix [16] to design vv very
efficiently.

2.3 Wavelet Matrix

Awavelet matrix (WM) is an efficient data structure that sup-
ports a wide range of query operations such as RankCF. It
achieves logarithmic-time complexity in terms of alphabet size
jSj while keeping space complexity close to information-theo-
retic lower bound. Given a text T0, the key feature of WM is to
encode each letter in a binary form and to compute RankCF
bit by bit from the least to the most significant bit in order to
compute final RankCF for T0. Let us describe this process in
more detail. A WM algorithm creates a bit array B0 ¼ b0

ðT0½0�Þ; . . . ; b0ðT0½N � 1�Þ, where biðcÞ denotes ith bit of the
binary encoding of c. The algorithm obtains new text T1 by sta-
bly sorting characters in T0 by the most significant bit, and
another bit array B1 ¼ b1ðT1½0�Þ; . . . ; b1ðT1½N � 1�Þ is created in
the next step.Bi is created fromBi�1 in a similar manner until
i reaches �� 1 when a bit length � ¼ dlog 2jSje. There is the
recursion relationship between an index pi for the ith round
and an index piþ1 for the iþ 1th round: piþ1 ¼ RankCF ðBi;
pi; b

iðcÞÞ which leads to RankCFðT0; p0; cÞ ¼ RankCFðB��1;
p��1; b��1ðcÞÞ. Fig. 3 illustrates an example of a search onWM.

2.4 Efficient Design Principle of Lookup Table vv

Here, we explain how to design the lookup table vv effi-
ciently. As described in Section 2.3, RankCFðT0; p0; cÞ is
computed by repeating RankCF on auxiliary bit-arrays
B0; . . . ; B��1. In our approach, we create a set of sub-lookup
tables vvi for i ¼ 0; . . . ; �� 1, each of which corresponds to a
bit-array Bi as follows, and use ROT to refer to vvi.

vvi½ pþ x� ðN þ 1Þ� ¼ RankCFðBi; p; xÞ ðx 2 f0; 1gÞ:
The outline of our method sWM is as follows. Note that

the goal of sWM is to compute RankCFðT0; p0; cÞ.
Step 1 The server creates vv0; . . . ; vv��1 from B0; . . . ; B��1.
Step 2 The user’s initial input to ROT is an encrypted p0 þ o0.

The offset is o0 ¼ 0when 0th bit of user’s character c is
0, otherwise o0 ¼ N þ 1.

Step 3 The server’s initial inputs to ROT are an encrypted vv0

and a random factor r0.
Step 4 The user obtains p̂1 ¼ ðvv0½p0 þ o0� þ r0Þmod Nþ1 from

ROT.
Step 5 for i ¼ 1; . . . ; �� 1

� The user inputs encrypted p̂i þ oi to ROT.
� The server inputs ri�1 and a new random factor ri

and vvi to compute p̂iþ1 ¼ ðvvi½pi þ oi� þ riÞmod Nþ1
in an encrypted form.

� The user obtains p̂iþ1.
By the above protocol, only the user can safely obtains

ðRankCFðT0; p0; cÞ þ r��1Þmod Nþ1. Note that the user can

obtain RankCFðT0; p0; cÞ if the server sets r��1 ¼ 0. Since the
length of each sub-lookup table is 2ðN þ 1Þ and sWM
repeats ROT for � times, the total time complexity becomes
OðN log jSjÞ, which is up to several orders of magnitude
better than the previous approach’s time complexity
OðNjSjÞ. Fig. 4 illustrates the design principle of vv for sWM
and that for PBWT-sec. We will describe the sWM algorithm
in more detail in Section 3.3.

Fig. 2. Schematic view of communication between user and server for
computation of interval ½f; gÞ. Lower bound fk and upper bound gk are
obtained by fkþ1 ¼ vv½fk þ ok� and gkþ1 ¼ vv½gk þ ok�, respectively. All
intermediates f0; . . . ; fk and g0; . . . ; gk are concealed by using ROT
protocol.

SUDO ET AL.: SECURE WAVELET MATRIX: ALPHABET-FRIENDLY PRIVACY-PRESERVING STRING SEARCH FOR BIOINFORMATICS 1677

Note that we intentionally employ WM instead of the
wavelet tree [22] to avoid information leakage from the
server’s database. If the lookup table is constructed based
on the wavelet tree in a straight forward manner, we need
to create 2i sub-lookup tables for the ith significant bit of a
character, and the length of each sub-lookup table becomes
the number of characters in the database that corresponds
to top i bits. Since the length of each sub-lookup table
should be common information between the user and the
server when conducting ROT, the server cannot protect
such information.

3 METHOD

As described in Section 2, the sWM is designed on the basis
of the ROT, which we implemented by using additively
homomorphic encryption. In this section, we describe those
cryptographic building blocks and provide more details
about the sWM algorithm.

3.1 Additively Homomorphic Encryption

Additively homomorphic encryption is a kind of public-
key encryption scheme that enables addition of encrypted

Fig. 3. Example of search on wavelet matrix. RankCFðT0; 8; ‘g’Þ is obtained by RankCFðB0; 8; b
0ð ‘g’ÞÞ, which returns 5; RankCFðB1; 5; b

1ð ‘g’ÞÞ, which
returns 9; and RankCFðB2; 9; b

2ð ‘g’ÞÞ, which returns 11.

Fig. 4. Schematic view of updating each bound of interval in (a) PBWT-sec (previous method) and (b) secure wavelet matrix (proposed method). In
PBWT-sec, user sends c; p in such a way that only single communication occurs. Server returns vvc½p� in encrypted form by scanning lookup table of
length NjSj. Therefore, the time complexity of this task becomes OðNjSjÞ. In sWM, dlog 2jSje communications occur to obtain the same information.
For each communication, server returns pkþ1 ¼ vvk½p0k� by scanning sub-lookup table of length 2ðN þ 1Þ. Therefore, time complexity of total communi-
cations becomesOðN log jSjÞ.

1678 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

values to be computed. A public-key encryption scheme
consists of three algorithms: the key generation algorithm
KeyGen generates a public key pk and a secret key sk; the
encryption algorithm Enc generates a ciphertext EncðmÞ of
message m under the given pk; and the decryption algo-
rithm Dec computes the decryption result of a ciphertext
under the given sk. An additively homomorphic encryp-
tion scheme also has the following additively homomor-
phic functionalities:

� An operation Encðm1Þ � Encðm2Þ to generate Enc
ðm1 þm2Þ from two given ciphertexts Encðm1Þ and
Encðm2Þ of integer messages m1 and m2, without
knowingm1,m2, or the secret key.

� An operation e� EncðmÞ to generate Encðe 	mÞ from
a given ciphertext EncðmÞ and an integer e, without
knowing m or the secret key (in particular, Encð�mÞ
can be computed by the operation).

We suppose that the scheme used in this study is
semantically secure; that is, no information in the original
message can be learned from a ciphertext [23]. A more
precise description of the security property for encryption
schemes is given in Section S2 in the supplementary
material. Examples of other such schemes are the Paillier
cryptosystem [24] and the “lifted” version of the ElGamal
cryptosystem [25], where the second operation � can be
achieved by iteration of the first operation �.

3.2 Recursive Oblivious Transfer

The ROT protocol consists of three sub-modules.

� PrepQueryðt̂Þ is a user-side sub-module. It takes an
index t̂ and returns an encrypted query. (We note
that the privacy for the user’s secret input is pro-
tected by the semantic security of the underlying
encryption scheme assumed in this paper; while the
privacy for the server’s secret input is protected
without such cryptographic assumptions on the
encryption scheme. See Section S2 in the supplemen-
tary material, for a more precise description of the
security property for our protocol and a proof of the
security.) In fact, the query is in the form of a vector
of ciphertexts for the further process of ROT. How-
ever, we do not go into detail about the specifications
of ROT and we abuse ~Encðt̂Þ to denote an encrypted
query.

� RecQueryð ~Encðt̂Þ; r0Þ is a server-side sub-module. It
takes a user’s input ~Encðt̂Þ and a random factor r0

that was used to compute t̂ ¼ ðtþ r0Þmod N in the pre-

vious round and removes r0 to return ~EncðtÞ.
� RanOTð ~EncðtÞ; vv; rÞ is a server-side sub-module. It is a

computationally dominant part and computes an
encrypted and randomized result Encððvv½t� þ rÞmod NÞ
from ~EncðtÞ, the server’s lookup table vv and a random
factor r.

Those sub-modules are executed in the following order,
and all steps are repeated until a condition predefined by
the main algorithm calling ROT is satisfied.

Step 1 The user conducts PrepQueryðt̂Þ and sends ~Encðt̂Þ to
the server.

Step 2 The server conducts RecQueryð ~Encðt̂Þ; r0Þ to obtain an

encryption of a correct index ~EncðtÞ.
Step 3 The server conductsRanOTð ~EncðtÞ; vv; rÞ to compute an

encrypted and randomized resultEncððvv½t� þ rÞmod NÞ.
Step 4 The user obtains t̂ ¼ ðvv½t� þ rÞmod N by DecðEncðvv½t� þ

rÞmod NÞ, and goes back to Step 1.

ROT returns randomized results as long as the server
uses r 6¼ 0 in Step 3. For a full-text search, we use a trick for
returning a proper flag to the user only when the longest
prefix match is found, which is described in Section 3.4. See
our previous work [15] for more details about the ROT algo-
rithm. The similar protocol is also introduced as a primitive
for searching with a finite automata [26], [27].

3.3 Secure Wavelet Matrix

Here, we describe the algorithm of sWM in detail. A pseudo-
code of sWM is written in Algorithm 1. The protocol starts
with the initialization task, in which the server prepares sub-
lookup tables vv0; . . . ; vv��1 (Step 1), and the user sets an initial
index p0 (Step 2). p denotes true RankCF, which should be
held by the user at the end of the protocol, and p̂ is the corre-
sponding randomized RankCF, to which the server adds a
random factor r. Analogously, we denote t̂ ¼ p̂þ ok and
t ¼ pþ ok, where ok is an offset for searching for vvk. In the
recursive search task (Step 3), the user and the server collabo-

ratively compute p̂k ¼ ðvvk½t� þ rÞmod Nþ1. On the server side,

the user’s input ~Encðt̂Þ is not decrypted, and the result is com-
puted by those ciphertexts. On the other hand, the user
obtains a plaintext ðvv½t� þ rÞmod Nþ1. However, this is random-
ized by r, and the user cannot see vv½t� that includes the server’s
private information. The random factor r is added by theROT
task in the third item of Step 3b. Therefore, the protocol is
secure for both the user and the server sides. Though Algo-
rithm 1 returns randomized results for all communication
rounds, the user can obtain a true RankCF at the end of the
protocol if the server uses r ¼ 0 only at the final round of the
protocol. In Step 4, the user sends an additional query to let
the server hold an encrypted result Encðp�Þ. This is an unnec-
essary task for computing RankCFðT0; p0; cÞ, however, it is
often convenient to hold an encrypted result Encðp�Þ by the
server when the sWM is used as a building block of other
search algorithm. We will introduce such a search algorithm
in Section 3.4, andwill show how the encrypted result held by
the server is used in the algorithm.

3.4 Secure FM-Index

In this study, we apply the sWM to the problem of full-text
search by using the FM-Index algorithm, in which BWT of an
original text is created for indexing a database string [20]. As
we mentioned in Section 2.2, a substring match is reported as
an interval ½f; gÞ on the BWT, and there is a recursion relation-
ship described in Equation (1). (For the case of FM-Index, Ŝ in
Equation (1) is BWT.) Themain idea of our algorithm is to use
sWM to compute RankCF. It repeats sWM until the longest
match is found (e.g., g ¼ f). Algorithm 2 is the detailed algo-
rithm of the secure FM-Index (sFMI). Note that some of the
steps in Algorithm 1 are slightly modified to fit it to the FM-
Index algorithm. The key part of the sFMI is in Step 3b, in
which the server computes an encrypted flag by using the

SUDO ET AL.: SECURE WAVELET MATRIX: ALPHABET-FRIENDLY PRIVACY-PRESERVING STRING SEARCH FOR BIOINFORMATICS 1679

function isLongest. This flag becomes an encrypted 0 only
when the match is longest, and becomes an encryption of a
random value otherwise. Therefore, only the user knows
whether or not each substring match is the longest by check-
ing the flag in Step 3c. The algorithm is scalable for different
search options if the function isLongest is replaced by another
function holding a different end condition. For example, it
enables searching for a longest substring match whose occur-
rence is at least �, just by computing encrypted flags
xi ðEncðgÞ � Encð�fÞ � Encð�� iÞÞ � r for i ¼ 0; . . . ; �� 1
and checking whether or not it includes an encrypted 0. (The
algorithm is detailed in Section S1 in the supplementarymate-
rial) Since the algorithm repeats sWM ‘ times for the query of
length ‘, total time complexity becomes Oð‘N log jSjÞ. We
will discuss the complexity inmore detail in Section 3.5.

Algorithm 1. Detailed Description of Secure Wavelet
Matrix

� Public input: Problem size N ; alphabet S; public key
pk

� Private input of user: An index p0, a query character
c 2 S, private key sk

� Private input of server: A database text T0

1) (Server initialization)

a) Create auxiliary bit-arraysB0; . . . ;B��1 from T0

for ðk ¼ 0; . . . ; �� 1Þ do " bkðcÞ: kth bit of c
� Bk ¼ bkðTk½0�Þ; . . . ; bkðTk½N � 1�Þ
� Stably sort characters of Tk by kth

significant bit
end for

b) Create sub-lookup tables vv0; vv1; . . . ; vv��1

vvk½iþ x� ðN þ 1Þ� ¼ RankCFðBk; i; xÞ
ð0 � k < �; 0 � i � N; x 2 f0; 1gÞ

2) (User initialization)
Set initial index: p̂0 p0

3) (Recursive operation) Set initial bit position: k ¼ 0
while (k < �) do " Computing from 0th to

ð�� 1Þth bit

a) (Query entry) The user performs the following
steps:
� Set an offset ok:

if (bkðcÞ ¼ 0) ok 0
else ok N þ 1

� Calculate next index:
t̂ ¼ p̂k þ ok " p̂k ¼ pk þ r ðk 6¼ 0Þ

� Prepare next query:
~Encðt̂Þ PrepQueryðt̂Þ

� Send ~Encðt̂Þ to the server.
b) (Operate) The server performs the following

steps:
� Generate a random value r

� Set r0 0 iff. k ¼ 0

� Compute the next index:
EncðtÞ RecQueryð ~Encðt̂Þ; r0Þ

" t ¼ pk þ ok
Encððvvk½t� þ rÞmod Nþ1Þ
 RanOT

�
~EncðtÞ; vvk; r�

� Store a random value r0 r

� Send Encððvvk½t� þ rÞmod Nþ1Þ to the user

c) (Receive randomized index) The user obtains:
p̂kþ1 DecðEncðvvk½t� þ rÞmod Nþ1Þ

" p̂kþ1 ¼ ðvvk½pk þ ok� þ rÞmod Nþ1
k kþ 1

end while
4) The user sends the last query:

~Encðp̂�Þ PrepQueryðp̂�Þ
Send ~Encðp̂�Þ to the server.

5) The server obtains encrypted p�:
Encðp�Þ RecQueryð ~Encðp̂�Þ; rÞ

At the end of the protocol:

� The user holds: p̂� ¼ ðRankCFðT0; p0; cÞ þ rÞmod Nþ1
� The server holds: Encðp�Þ ¼ EncðRankCFðT0; p0; cÞÞ

and r

Our method also enables to report a count of matches at
the end of the protocol (or even in each iteration) with small
modification. This apparently gives additional information
about the database to the user, however, it may be useful
for some applications if revealing the additional informa-
tion is acceptable.

The original FM-Index algorithm provides a backward
search where a search direction starts from the tail to the
head of a query. This can be easily converted into a forward
search by querying in the reverse direction. For simplicity,
we described the algorithm in such a way that the query is
searched in a forward direction.

3.5 Complexity

In this section, we compare the theoretical complexity of
sFMI and PBWT-sec. The computational obstacle of both
algorithms is a ROT task. Given a lookup-table of length N ,
the time complexity of the ROT isOðNÞ and the communica-
tion complexity is Oð ffiffiffiffiffi

N
p Þ. It might not be intuitive that the

communication complexity is not linear to the size of the
lookup-table. However, there is an efficient algorithm for
reducing query length to

ffiffiffiffiffi
N
p

. The key idea is to describe a
lookup table as a matrix M

ffiffiffi
N
p � ffiffiffi

N
p

, and user tries to receive
the element of d1th column of d2th row. To this end, the user
creates an encrypted vector of length

ffiffiffiffiffi
N
p

in which only d1th
element is Encð1Þ and others are Encð0Þ, and the server com-
putes inner products of the query and rows of M to send
back

ffiffiffiffiffi
N
p

ciphertexts. We do not describe details, however,
there is an efficient method to return only d2th element and
hide rest of all, and to enable to hide intermediate results dur-
ing the recursive search. See our previous work [15] for more
detailed information. The similar approach is also taken for
standard OT [28], and we will describe more detailed infor-
mation in Section S3 in the supplementarymaterial.

The sWM used in sFMI repeats ROT for all sub-lookup
tables, and thus the time and communication complexities
become OðN log jSjÞ and Oð ffiffiffiffiffi

N
p

log jSjÞ, respectively. On
the other hand, PBWT-sec performs a single ROT task for a
lookup-table of lengthNjSj. Therefore, its time complexity is

OðNjSjÞ and the communication complexity is Oð ffiffiffiffiffiffiffiffiffiffiffi
NjSjp Þ.

Apparently, time complexity is up to several orders of mag-
nitude better for sFMI, while the communication complexity
is comparable as long as the S is not very large. Since the
communication complexity is already sub-linear to the size

1680 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

of N , the improvement in time complexity is much more
important for practical problems. Regarding round complex-
ity, sWM requires dlog 2jSje dependent communications
while PBWT-sec requires a single communication. Consider-
ing the improvement in time complexity, we expect that
sWM still has a large advantage in total run time when N is
not too small and network latency is not too high. We will
discuss this point inmore details in Section 4.

Table 1 summarizes time and communication complexi-
ties of both sFMI and PBWT-sec. Note that both time and
communication complexities are multiplied by the query
length ‘. In addition to those two algorithms using a clever
data structure, for comparison, we also describe complexity
of a Na€ıve method, in which all occurrences of substrings
appearing in a database text are stored in a lookup table
and the user uses ROT to search for a substring match.

Algorithm 2. Detailed Description of Secure FM-Index

protocol sWM(p̂, pk, sk, c, V , ’) " p̂, pk, sk and c are
the user’s input, V and ’ are the server’s input

Perform Algorithm 1 with the following
modifications

� Use pk and sk for a public key and a private
key

� Omit Step1 and use input V as sub-lookup
tables

� Initialize p̂0 p̂ in Step2

� Initialize r0 ’ in the second item of Step 3b

return (only to user) ðRankCFðT̂ ; p; cÞ þ rÞmod Nþ1
" T̂ is a text from which V is created, p̂ ¼ ðpþ ’Þmod Nþ1.

return (only to server)EncðRankCFðT̂ ; p; cÞÞ and r
" r is the last randomvalue generated inAlgorithm1

end protocol

function isLongest(EncðfÞ;EncðgÞ)
Generate random value r
x ðEncðgÞ � Encð�fÞÞ � r
return x " x ¼ Encð0Þ iff. match is the longest

end function

� Public input: Problem size N ; alphabet S
� Private input of user: A query sequence qq of length ‘
� Private input of server: A database text T

0. (Key setup of cryptosystem) The user generates key pair
ðpk; skÞ by using key generation algorithm KeyGen for
additive-homomorphic cryptosystem and sends public
key pk to server

1) (Server initialization)

� The server creates BWT of T and stores it as T̂

� The server creates a set of sub-lookup tables
for T̂ :
V ¼ fvv0; vv1; . . . ; vv��1g, by using the same pro-
cess described in Step 1 of Algorithm 1

2) (User initialization) Set initial interval ½f̂0 ¼ 0; ĝ0 ¼ NÞ
3) (Recursive search)

Initialize an index: i 0 and random factors: rf 0,
rg 0
while (i < ‘) do

a) (Update interval)

� The user and server execute:

f̂iþ1;Encðfiþ1Þ; rf
 sWMðf̂i; pk; sk; q½i�; V; rfÞ
ĝiþ1;Encðgiþ1Þ; rg
 sWMðĝi; pk; sk; q½i�; V; rgÞ

to obtain:
f̂iþ1, ĝiþ1 for the user
Encðfiþ1Þ, Encðgiþ1Þ, rf , rg for the server

b) (Operate) The server performs the following
steps:

� Compute an encrypted flag showing if
the match is longest
x isLongestðEncðfiþ1Þ;Encðgiþ1ÞÞ

� Send x to the user

c) (Decryption of the encrypted flag) The user per-
forms the following steps:
d DecðxÞ
if d ¼ 0

if i ¼ 0 Report that no prefix matches T
else Report that q½0; . . . ; i� 1� is the longest
match
Send decoy queries to server until i ¼ ‘� 1

i iþ 1
end while
The user reports that q½0; . . . ; ‘� 1� is the longest
match, if d 6¼ 0 for i ¼ 0; . . . ; ‘� 1.

3.6 Security Notion

In our method, all the user’s inputs are sent to the server by
using the recursive oblivious transfer protocol (ROT).
Therefore, the security of the proposed method depends on
that of ROT. ROT assumes the security model called Semi-
honest model where both parties follow the protocol, but an
adversarial one is allowed to infer additional information
about the other party’s secret input from the legally
obtained information. Due to the semantic security of the
encryption scheme used in ROT (i.e., additively homomor-
phic encryption described in Section 3.1), the server cannot
infer any information about the user’s query during the pro-
tocol. Also, the user cannot infer any information about the
database except for the result. In fact, the ROT is easily

TABLE 1
Summary of Time and Communication Complexities of sFMI

(Proposed Method), PBWT-Sec (Previous Method),
and Na€ıve Approach

Time Total
communication
size

Communication
round

sFMI (User) O ‘
ffiffiffiffiffi
N
p

log jSj� �
O ‘

ffiffiffiffiffi
N
p

log jSj� �
‘d log 2jSje

sFMI (Server) O ‘N log jSjð Þ
PBWT-sec (User) O ‘

ffiffiffiffiffiffiffiffiffiffiffi
N jSjp� �

O ‘
ffiffiffiffiffiffiffiffiffiffiffi
NjSjp� �

‘

PBWT-sec (Server) O ‘NjSjð Þ

Na€ıve (User)
O

ffiffiffiffiffiffiffiffi
jSj‘

q� �
O

ffiffiffiffiffiffiffiffi
jSj‘

q� �
1

Na€ıve (Server) O jSj‘
� �

Note that the communication complexities of both user-to-server and server-to-
user is the same.

SUDO ET AL.: SECURE WAVELET MATRIX: ALPHABET-FRIENDLY PRIVACY-PRESERVING STRING SEARCH FOR BIOINFORMATICS 1681

modified to stronger security model called Malicious model
where an adversarial party is allowed to input maliciously
chosen invalid values in order to illegally obtain additional
information about the secret. In the ROT designed for the
malicious model, a cryptographic method called Non-Inter-
active Zero Knowledge Proofs is used to detect an illegal
query. See the previous work [8] for more detailed informa-
tion. The entire protocol is also modified to Malicious model
by replacing ROT by the ROT using the Zero Knowledge
Proofs with a slight additional computing cost.

4 EXPERIMENTS

To evaluate the efficiency of the proposedmethod (sFMI), we
performed experiments on both a simulated dataset and two
different real datasets. For the simulated dataset, we simply
generated random strings each ofwhich has a length of 10,000
with jSj ¼ 4; 8; 16; . . . ; 1024. For the real datasets, we used all
the protein sequences included in Ribosomal_S4Pg Family of
Pfam [29] and all clinical study titles (879 titles, in Japanese,
53,560 characters in total excluding punctuation) stored in
JAPIC Clinical Trials Information [30]. For each real dataset,
all the sequences are concatenated into a long single sequence
with a delimiter symbol. The Japanese text is usually written
in a combination of a Japanese alphabet (Hiragana, jSj ¼ 83
including sound marks) and Chinese ideographs (jSj >
10;000). However, Chinese ideographs can be spelled out into
Hiragana, though this is generally very unnatural. Therefore,
we prepared two datasets for the clinical text: one is the con-
verted text written in Hiragana (Clinical DB1), and the other
is the original text (Clinical DB2). Those texts also include
words written in Arabic numerals (jSj ¼ 10) and Roman
(case-sensitive) and Greek (case-insensitive) alphabets
(jSj ¼ 26, 50 respectively), because numbers and technical
terms including Roman/Greek letters are usually written in
their original form. Clinical DB1 consists of the alphabet of
jSj ¼ 170, and Clinical DB2 consists of the alphabet of
jSj ¼ 21;207 including the delimiter symbol. (Since one Chi-
nese ideograph is usually spelled out by more than one Hira-
gana character, Clinical DB1 and DB2 have exactly the same
meaning but different lengths.) See Section S4 in the supple-
mentarymaterial formore details about the character sets.

We implemented the proposed algorithm in C++ based on
an open source C++ library of elliptic curve ElGamal encryp-
tion [31]. We used the same implementation ofROT for all the

threemethods,which is provided by another C++ library [21].
For the security parameters,we used a standard configuration
called secp192k1 (SECG curve over a 192-bit prime field) in
accordance with the recommendation by The Standards for
Efficient Cryptography Group. We used a laptop computer
equippedwithCorei7 3.00 GHz (2 physical cores) for the user,
and a standard desktop PC equippedwith Xeon 3.40 GHz (12
physical cores) for the server for all of the experiments.

4.1 Results on the Simulated Dataset

For the simulated dataset, the program was run with a sin-
gle thread both for the user and the server. Fig. 5 shows total
run time and communication size for the simulated dataset
when query length is 10. To show the performance on an
ideal situation, the program was run on the same network
with almost no latency. As shown in panel (a), an observed
run time (including data-transfer time) of sFMI is up to
orders of magnitude faster than PBWT-sec, which is concor-
dant with the theoretical complexity. Communication size
of the proposed method is also better than that of PBWT-sec
when jSj is sufficiently large.

4.2 Results on the Real Datasets

Influence of Network Latency. To investigate the performance
of sFMI on a practical situation, we also conducted an
experiment on the networks with different latencies ranging
from 10 ms to 300 ms, taking into account that the average
latency in domestic network in Japan is below 10 ms and
that in Trans-Pacific network is below 120 ms [32]. The
latency was controlled by tc command of Linux OS. We
used the three real datasets as summarized in Table 2 and
the program was run with a single thread both for the user
and the server. The query length was 10 for all of the

Fig. 5. (a) Run time and (b) Communication size of sFMI, PBWT-sec, and Naiv
̎
e method for random string of 10,000 with alphabet size

jSj ¼ 4; 8; 16; . . . ; 1024, when query length is 10. Both user and server used a single thread and the program was run on the network with almost no
latency. Run time includes communication overhead.

TABLE 2
Summary of the Three Real Datasets: Protein Sequence
Database (Protein DB), Clinical Study Results Database

Described in Reduced Set of Hiragana Alphabet
(Clinical DB1) and That in Original Form (Clinical DB2)

Protein
DB

Clinical
DB1

Clinical
DB2

DB Length 9,826 77,712 53,560
Alphabet Size 21 170 21,207

1682 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

http://www.secg.org
http://www.secg.org

experiments. As shown in Table 3, sFMI was faster for all of
the configurations except for the case when searching on a
text with relatively small alphabet size (the protein
sequence database) with the latency of 300 ms. As discussed
in Section 3.5, the time complexity of sFMI is OðjSj=log jSjÞ
times better than that of PBWT-sec while round complexity
is dlog 2jSje times greater. Since the computation required
for each round is heavy, we consider that sFMI algorithm,
which improves CPU time, outweighs previous algorithms
even it has a slightly larger round complexity.

Performance Using Parallelization. We also investigated the
performance of sFMI when the program was parallelized.
As discussed in Section 3.5, ROT task on the server side is a
computational bottleneck both for sFMI and PBWT-sec, in
which Encðvv½i�Þ for i ¼ 0; . . . ; N is computed and only the
target element Encðvv½t�Þ is safely selected. Since each ele-
ment Encðvv½i�Þ can be calculated independently, the server
can compute them in parallel. e.g., If the server has m CPU
cores, the ideal CPU time for this task is reduced to 1=m.
For the user side, encryption of each element of a query vec-
tor is parallelized. In our implementation, we used openMP
to parallelize those tasks.

Table 4 shows run time when the server used 8 or 16
threads and the user used 2 or 4 threads. The query length
was 10 for all of the experiments and the program was run
on the network with 10 ms latency. For the search on Clini-
cal DB1 described by the Hiragana alphabet, run time of the
proposed method was 7 to 9 times faster than that of the
previous method. For the search on Clinical DB2 with 16
CPU cores for the server, run time of the proposed method
was only 103.34 although jSj is huge, which is more than

470 times faster than the previous approach. The results
show that our method is practical even for real datasets.

5 CONCLUSION

We have developed an efficient algorithm for a secure string
search on the basis of a novel technique combining wavelet
matrix and homomorphic encryption. It can search any type
of string while still protecting privacy as strongly as the pre-
vious approach. We implemented the proposed method
and tested it on both a simulated dataset and real datasets.
The results show that the proposed method is up to orders
of magnitude more efficient than the previous approach in
terms of alphabet size and that its computational cost is
acceptable for practical use. As the proposed method poten-
tially scales to various types of data such as two-dimen-
sional data and tree data, it is expected to be used for an
even wider range of life science data and contribute to
secure data sharing.

A supplementary material for this work is available
from: https://github.com/cBioLab/sWM_doc

ACKNOWLEDGMENTS

This study was supported by the Japan-Finland Coopera-
tive Scientific Research Program of AMED (to K.S.) and JST
PRESTO grant number JPMJPR14E8 (to K.N.). A part of this
work is also supported by JST CREST grant number
JPMJCR1688. Hiroki Sudo and Masanobu Jimbo contributed
equally to this work.

REFERENCES

[1] M. Akg€un, A. O. Bayrak, B. Ozer, and M. S. Sagiroglu, “Privacy
preserving processing of genomic data: A survey,” J. Biomed. Infor-
mat., vol. 56, pp. 103–111, 2015.

[2] F. Bonchi and E. Ferrari, Privacy-Aware Knowledge Discovery: Novel
Applications and New Techniques, 1st ed. Boca Raton, FL, USA: CRC
Press, 2010.

[3] C. C. Aggarwal and P. S. Yu, Privacy-Preserving Data Mining: Mod-
els and Algorithms, 1st ed. Berlin, Germany: Springer, 2008.

[4] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword
search and oblivious pseudorandom functions,” in Proc. 2nd
Annu. Theory Cryptography Conf., 2005, pp. 303–324.

[5] F. Bruekers, S. Katzenbeisser, K. Kursawe, and P. Tuyls, “Privacy-
preserving matching of DNA profiles,” IACR Cryptology ePrint
Archive, 2008. [Online]. Available: http://eprint.iacr.org/2008/203

[6] P. Baldi, R. Baronio, E. D. Cristofaro, P. Gasti, and G. Tsudik,
“Countering GATTACA: Efficient and secure testing of fully-
sequenced human genomes,” in Proc. 18th ACM Conf. Comput.
Commun. Secur., 2011, pp. 691–702.

[7] E. D. Cristofaro, S. Faber, and G. Tsudik, “Secure genomic testing
with size- and position-hiding private substring matching,” in
Proc. 12th Annu. ACM Workshop Privacy Electron. Soc., 2013,
pp. 107–118.

TABLE 3
Run Time of sFMI (Proposed Method) and PBWT-Sec (Previous Method) for Searching on the

Three Real Datasets on the Networks with Different Latencies

Network latency (ms) 10 30 45 90 150 300

Protein DB sFMI (s) 52.51 57.92 61.85 73.09 88.42 126.79
PBWT-sec (s) 92.31 93.79 94.90 98.28 102.72 113.84

Clinical DB1 sFMI (s) 563.49 574.59 583.54 609.43 641.99 727.07
PBWT-sec (s) 6170.02 6162.70 6167.92 6184.81 6215.71 6263.55

Clinical DB2 sFMI (s) 747.23 766.38 781.53 829.89 892.37 1051.24
PBWT-sec (s) - - - - - -

TABLE 4
Run Time of sFMI (Proposed Method) and PBWT-Sec (Previous
Method) for Searching on Protein Sequence Database (Protein
DB) and Clinical Study Results Database Described in Reduced
Set of Hiragana Alphabet (Clinical DB1) and That in Original

Form (Clinical DB2) with the Latency of 10 ms

Protein DB Clinical DB1 Clinical DB2

Server run time (s):
Num. of threads 8 16 8 16 8 16
sFMI 7.47 6.77 76.65 59.71 101.33 80.11
PBWT-sec 12.39 9.74 873.58 553.13 77589.3 48876.9
User run time (s):
Num. of threads 2 4 2 4 2 4
sFMI 2.37 1.89 8.14 8.22 12.80 12.89
PBWT-sec 1.82 1.96 10.75 9.90 71.43 71.89
Total time (s):
sFMI 12.80 10.98 90.54 73.93 125.75 103.34
PBWT-sec 15.07 12.53 886.90 565.69 77661.7 48950.3

SUDO ET AL.: SECURE WAVELET MATRIX: ALPHABET-FRIENDLY PRIVACY-PRESERVING STRING SEARCH FOR BIOINFORMATICS 1683

https://github.com/cBioLab/sWM_doc
http://eprint.iacr.org/2008/203

[8] K. Shimizu, K. Nuida, H. Arai, S. Mitsunari, N. Attrapadung,
M. Hamada, K. Tsuda, T. Hirokawa, J. Sakuma, G. Hanaoka, et
al., “Privacy-preserving search for chemical compound data-
bases,” BMC Bioinf., vol. 16, no. Suppl 18, 2015, Art. no. S6.

[9] J. Katz and L. Malka, “Secure text processing with applications to
private DNA matching,” in Proc. 17th ACM Conf. Comput. Com-
mun. Secur., 2010, pp. 485–492.

[10] A. C.-C. Yao, “How to generate and exchange secrets,” in Proc.
27th Annu. Symp. Found. Comput. Sci., 1986, pp. 162–167.

[11] C. Hazay and T. Toft, “Computationally secure pattern matching
in the presence of malicious adversaries,” in Proc. Int. Conf. Theory
Appl. Cryptology Inf. Secur., vol. 10, pp. 195–212, 2010.

[12] D. Vergnaud, “Efficient and secure generalized pattern matching
via fast fourier transform,” in Proc. 4th Int. Conf. Cryptology Africa,
2011, pp. 41–58.

[13] J. Baron, K. E. Defrawy, K.Minkovich, R.Ostrovsky, andE. Tressler,
“5PM: Secure pattern matching,” J. Comput. Secur., vol. 21, no. 5,
pp. 601–625, 2013.

[14] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, andT. Koshiba,
“Privacy-preserving wildcards pattern matching using symmetric
somewhat homomorphic encryption,” in Proc. Australasian Conf.
Inf. Secur. Privacy, 2014, pp. 338–353.

[15] K. Shimizu, K. Nuida, and G. R€atsch, “Efficient privacy-preserv-
ing string search and an application in genomics,” Bioinf., vol. 32,
no. 11, pp. 1652–1661, 2016.

[16] F. Claude and G. Navarro, “The wavelet matrix,” in Proc. 19th Int.
Symp. String Process. Inf. Retrieval, 2012, pp. 167–179.

[17] V. M€akinen, D. Belazzougui, F. Cunial, and A. I. Tomescu,
Genome-Scale Algorithm Design. Cambridge, U.K.: Cambridge
Univ. Press, 2015.

[18] G. Navarro, Compact Data Structures: A Practical Approach. Cam-
bridge, U.K.: Cambridge Univ. Press, 2016.

[19] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2014.

[20] P. Ferragina and G. Manzini, “Opportunistic data structures with
applications,” in Proc. 41st Annu. Symp. Found. Comput. Sci., 2000,
pp. 390–398.

[21] K. Shimizu, “C++ Library implementing the recursive oblivious
transfer [15],” 2016. [Online]. Available: https://github.com/
iskana/PBWT-sec, Accessed: Sep. 1, 2016.

[22] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-
compressed text indexes,” in Proc. 14th Annu. ACM-SIAM Symp.
Discrete Algorithms, 2003, pp. 841–850.

[23] S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comput.
Syst. Sci., vol. 28, no. 2, pp. 270–299, 1984.

[24] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. 17th Int. Conf. Theory Appl. Crypto-
graphic Techn., 1999, pp. 223–238.

[25] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE Trans. Inf. Theory, vol. IT-31,
no. 4, pp. 469–472, Jul. 1985.

[26] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. U. Celik,
“Privacy preserving error resilient DNA searching through oblivi-
ous automata,” in Proc. ACM Conf. Comput. Commun. Secur., 2007,
pp. 519–528.

[27] M. Blanton and M. Aliasgari, “Secure outsourcing of DNA search-
ing via finite automata,” in Proc. Data Appl. Secur. Privacy XXIV,
2010, pp. 49–64.

[28] B. Zhang, H. Lipmaa, C. Wang, and K. Ren, “Practical fully simu-
latable oblivious transfer with sublinear communication,” in Proc.
Int. Conf. Financial Cryptography Data Secur., 2013, pp. 78–95.

[29] R. D. Finn, P. Coggill, R. Y. Eberhardt, S. R. Eddy, J. Mistry, A. L.
Mitchell, S. C. Potter, M. Punta, M. Qureshi, A. Sangrador-Vegas,
G. A. Salazar, J. G. Tate, and A. Bateman, “The Pfam protein fami-
lies database: Towards a more sustainable future,” Nucleic Acids
Res., vol. 44, no. Database-Issue, pp. 279–285, 2016.

[30] JAPIC, “Japan Pharmaceutical Information Center (JAPIC) Clini-
cal Trials Information,” 2008. [Online]. Available: http://www.
clinicaltrials.jp/user/ctrSearch.jsp, Accessed: Sep. 15, 2016.

[31] S. Mitsunari, “C++ Library implementing elliptic curve ElGamal
crypto system [25],” 2016. [Online]. Available: https://github.
com/herumi/mcl, Accessed: Sep. 1, 2016.

[32] Verizon, “IP Latency Statistics,” 2017. [Online]. Available:
http://www.verizonenterprise.com/about/network/latency/,
Accessed: Apr. 10, 2017.

Hiroki Sudo received the BSc degree in computer
science from Waseda University, in 2017. Cur-
rently, he is working toward the MSc degree at
Waseda University. He is also a research assistant
with the AIST-Waseda University Computational
Bio Big-Data Open Innovation Laboratory (CBBD-
OIL). His research interest includes privacy-pre-
serving datamining andmachine learning.

Masanobu Jimbo received the bachelor’s
degree in computer science from Waseda Uni-
versity, in 2017. He is working toward the mas-
ter’s degree in the Department of Computer
Science and Communications Engineering of the
Faculty of Science and Engineering, Waseda
University. He is also a research assistant with
the AIST-Waseda University Computational Bio
Big-Data Open Innovation Laboratory (CBBD-
OIL). His research interest includes privacy-pre-
serving data mining and machine learning.

Koji Nuida received the PhD degree in mathe-
matical sciences from The University of Tokyo, in
2006. Currently, he is a senior researcher with
the Information Technology Research Institute
(ITRI), National Institute of Advanced Industrial
Science and Technology (AIST), in Japan, and is
also supported as PRESTO Researcher by the
Japan Science and Technology Agency (JST).
His research interest mainly includes the theory
and applications of public key cryptography as
well as fundamental mathematics.

Kana Shimizu received the PhD degree in com-
puter science from Waseda University, in 2006.
Currently, she is an associate professor with the
Department of Computer Science and Engineer-
ing of the Faculty of Science and Engineering,
Waseda University. Her research interest mainly
centers on algorithms for biological sequence
analysis. Her recent interest also includes pri-
vacy-preserving data mining for biological/bio-
medical data analysis.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1684 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

https://github.com/iskana/PBWT-sec
https://github.com/iskana/PBWT-sec
http://www.clinicaltrials.jp/user/ctrSearch.jsp
http://www.clinicaltrials.jp/user/ctrSearch.jsp
https://github.com/herumi/mcl
https://github.com/herumi/mcl
http://www.verizonenterprise.com/about/network/latency/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

