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Abstract—An increasing number of studies have indicated that long-non-coding

RNAs (lncRNAs) play critical roles in many important biological processes.

Predicting potential lncRNA-disease associations can improve our understanding

of themolecular mechanisms of human diseases and aid in finding biomarkers for

disease diagnosis, treatment, and prevention. In this paper, we constructed a

bipartite network based on known lncRNA-disease associations; based on this

work, we proposed a novel model for inferring potential lncRNA-disease

associations. Specifically, we analyzed the properties of the bipartite network

and found that it closely followed a power-law distribution. Moreover, to evaluate

the performance of our model, a leave-one-out cross-validation (LOOCV)

framework was implemented, and the simulation results showed that our

computational model significantly outperformed previous state-of-the-art models,

with AUCs of 0.8825, 0.9004, and 0.9292 for known lncRNA-disease associations

obtained from the LncRNADisease database, Lnc2Cancer database, andMNDR

database, respectively. Thus, our approachmay be an excellent addition to the

biomedical research field in the future.

Index Terms—LncRNA-disease associations, bipartite network, computational

model
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1 INTRODUCTION

LARGE numbers of studies have shown that protein-coding genes
account for only a small fraction of the human genome (�2 per-
cent), and the remaining �98 percent of the human genome does
not encode protein sequences [1], [2], [3], [4], [5]. These non-coding
genes were long regarded as transcriptional noise. However, in
recent years, more evidence has shown that non-coding RNAs
(ncRNAs), especially long non-coding RNAs (lncRNAs), ncRNAs
with lengths > 200 nucleotides, play significant roles in various
biological processes, such as transcription, translation, epigenetic
regulation, splicing, differentiation, immune responses, and cell
cycle control [6], [7], [8], [9]. Mutations in and dysregulation of
lncRNAs have been proven to be correlated with a broad range of
human diseases. For example, the lncRNA HOTAIR is considered
a potential biomarker of hepatocellular cancer recurrence for
patients after liver transplantation [10] and the lncRNA UCA1 is
regarded as a potential biomarker for bladder cancer diagnosis
[11]. The lncRNA PCA3 is a well-known example of a potential
cancer diagnostic biomarker because its increased expression level
is greatly increased (approximately 60-fold) in prostate tumors
compared with normal tissues [12], [13]. Therefore, it is necessary

to discover additional potential lncRNA-disease associations to
help understand the molecular mechanisms of human diseases at
the lncRNA level and facilitate the identification of biomarkers for
disease diagnosis, treatment, and prevention.

In the past few years, many computational models have been
proposed to predict lncRNA-disease associations for further experi-
mental validation. Such studies are becoming increasingly impor-
tant because they can decrease the time and cost of biological
experiments. For example, Chen et al. proposed a Laplacian regular-
ized least squares method to predict novel human lncRNA-disease
associations based on lncRNA expression profiles and the assump-
tion that similar diseaseswill tend to be associatedwith functionally
similar lncRNAs [14]. Based on the above work and assumption,
two years later, Chen et al developed two novel lncRNA functional
similarity calculation models and evaluated these new models by
introducing similarity scores into the previous lncRNA-disease
association predictionmodel [15]. Chen et al. also developed several
other models to predict potential lncRNA-disease relationships.
For instance, they developed a hypergeometric distribution model
for lncRNA-disease relationship inference based on available
miRNA-disease association and miRNA-lncRNA association infor-
mationwithout any positive lncRNA-disease interactions [16]. They
integrated disease similarity and lncRNA similarity through disease
semantic similarity, lncRNA expression and function similarities,
and diseases and lncRNAs Gaussian interaction profile kernel simi-
larity; they also took the integrated similarity into account through
the Katz measure to forecast probable interactions between diseases
and lncRNAs [17]. The group also developed a fuzzy measure-
based lncRNA functional similarity calculation model by combing
information from known lncRNA-disease associations and diseases
directed acyclic graphs (DAGs)with their previously proposed Lap-
lacian regularized least squares model for predicting lncRNA-
disease associations [18]; they later developed an improved lncRNA
functional similarity calculation model that was combined with
the previously proposed Laplacian regularized least squares model
to further predict lncRNA-disease associations [19]. They also
presented a model called Improved Random Walk with Restart for
LncRNA-Disease Association prediction (IRWRLDA) to predict
novel lncRNA-disease associations by integrating known lncRNA-
disease associations, disease semantic similarity, and various
lncRNA similarity measures [20]. In addition to the above works,
they also summarized several computational models for identifying
disease-related lncRNAs on a large scale and selecting promising
disease-related lncRNAs for experimental validation [21]. Aside
from the methods proposed by Chen et al., Yang et al. constructed a
coding-non-coding gene-disease bipartite network based on known
associations between diseases and disease-causing genes and then
applied an algorithm to uncover possible lncRNA-disease interac-
tions in that network [22]. Liu et al. built a protein-coding gene
(PCG)-lncRNA bipartite network based on lncRNAs and PCG
expression profiles and protein interaction datasets to predict
cancer-related lncRNAs using a random walk method [23]. Zhou
et al. proposed a rank-basedmodel (RWRHLD) to identify potential
lncRNA-disease associations by combing the miRNA-associated
lncRNA-lncRNA crosstalk network, disease-disease similarity net-
work and known lncRNA-disease association network into a het-
erogeneous network and applying a random walk with restart to
the heterogeneous network [24].

As many computational models have been proposed over the
years, several databases of experimentally verified lncRNA-disease
interactions have been constructed and provided for free on the
internet. For example, Chen et al. built the LncRNA and Disease
Database (LncRNADisease), which integrates nearly 3,000 lncRNA-
disease entries, including 914 lncRNA entries and 329 disease
entries, from �2000 publications. LncRNADisease also provided
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1,564 predicted human disease-related lncRNAs [25]. Ning et al.
constructed the Lnc2Cancer database, a manually curated database
including 1,488 experimentally supported associations between 666
human lncRNAs and 97 human cancers collected from more than
2,000 published papers [26].Wang et al. developed a comprehensive
mammalian ncRNA-disease database (MNDR) that provided over
1,100 relationships between diseases and a variety of ncRNAs such
as long non-coding (lncRNAs), microRNAs (miRNAs), PIWI-inter-
acting RNAs (piRNAs) and small nucleolar RNAs (snoRNAs),
derived from a review of more than 370 published papers [27].

As described above, all of these existing computational models
for identifying novel associations between lncRNAs and diseases
were designed by integrating lncRNA similarity and disease
similarity information based on different lncRNA-related data and

disease-related resources, such as lncRNA expression profiles,
gene-disease interactions and lncRNA-miRNA interactions.
In contrast, in this article, we constructed a bipartite network to
predict potential lncRNA-disease interactions based on known
lncRNA-disease associations only. In addition, we considered the
following assumption in our method: two nodes are similar if they
have common neighbors or are connected to similar nodes. To
illustrate the above assumption more intuitively, we provide an
example in Fig. 1. Our newly proposed model relies only on topo-
logical information from known lncRNA-disease association net-
works for identifying potential disease-related lncRNAs. The flow
chart of our method for predicting lncRNA-disease associations is
shown in Fig. 2, where the blocks and circles represent diseases
and lncRNAs, respectively. To evaluate the performance of our
method, the Leave-one-out cross-validation (LOOCV) framework
was implemented, and a series of experiments were performed
based on the experimentally verified lncRNA-disease associations
downloaded from the LncRNADisease database, Lnc2Cancer data-
base and MNDR database. The simulation results demonstrated
that our approach can achieve much better predictive performance
than other state-of-the-art models. Moreover, our model can feasi-
bly and efficiently predict lncRNA-disease associations on a large
scale because it must consider only the topology information from
known lncRNA-disease interaction networks.

2 MATERIALS

To evaluate the performance of our newly proposed method, we
collected three datasets from the LncRNADisease database,
Lnc2Cancer database and MNDR database.

The first dataset is the set of known lncRNA-disease associa-
tions downloaded from the LncRNADisease database in June 2015.
After eliminating duplicate samples that describe the same
lncRNA-disease relationships based on evidence from different

Fig. 1. (a) Original bipartite network. (b) l1 and l2, l1 and l4 are similar nodes since l1
and l2 have a common neighboring node d1, l1, and l4 have a common neighboring
node d4. (c) d1 and d2, d1 and d4 are similar nodes since d1 and d2 have a common
neighboring node l2, d1 and d4 have a common neighboring node l1. (d) l2 and l4 are
similar nodes since their neighboring nodes d1 and d4 are similar nodes. (e) d2 and
d4 are similar nodes since their neighboring nodes l1 and l2 are similar nodes.

Fig. 2. The flowchart of our method.
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experiments, we obtained 554 human lncRNA-disease interactions
involving 267 lncRNAs and 208 diseases (see Supplementary
Table 1, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2018.2827373).

The second dataset is the set of experimentally supported
lncRNA-cancer associations downloaded from the Lnc2Cancer
database in July 2016. After removing the duplicate lncRNA-cancer
associations based on different pieces of evidence, we obtained
1,103 distinct interactions involving 98 human cancers and 668
lncRNAs (see Supplementary Table 2, available online).

The third datastet is the assemblage of lncRNA-disease relation-
ships obtained from the MNDR database in March 2015. In accor-
dance with the data processing practices described above, we
obtained 471 relationships involving 241 lncRNAs and 127 diseases
(see Supplementary Table 3, available online).

3 METHODS

Inspired by the concepts of complex networks [28], [29], [30] and
bipartite networks [31], [32], we proposed a novel computational
model for calculating the functional similarity of lncRNAs and dis-
eases by using only the information from known lncRNA-disease
associations. Barabasi et al. demonstrated that large networks are
governed by robust self-organizing phenomena that surpass the par-
ticular details of individual systems [33]. Obviously, the similarity
measure is a useful tool for determing the degree of similarity
between objects and can be utilized in various fields. For example,
Newman measured the probability of collaboration between scien-
tists in two collaboration networks as a function of their number of
mutual acquaintances in the network, their number of previous col-
laborations, and their number of previous collaborators [28]. Alaimo
et al. proposed a technique for the prediction of new drug-target
interaction via the similarity measure and resource transfer [32]. Dis-
tinct from these methods, our newly constructed bipartite network
contains two different types of nodes, namely, lncRNAs anddiseases,
and similar nodes are assumed to exist only among nodes of the same
type, whereas in these previous methods, all nodes were assumed to
be the same. In addition, while computing the similarity measure
between a pair of nodes in the newly constructed bipartite network,

according to the assumption described above, we considered only
those node pairs that have at least one path with length no larger
than 4 hops because we can easily assume that the similarity of two
nodes is inversely proportional to the length of path between them.
For instance, in a social network, the degree of familiarity between
two people is inversely proportional to the number of intermediaries
that they need to establish a connection. Therefore, for the sake of
time and resources, those node pairs with path lengths greater than 4
hops were not considered in our model. Moreover, it is easily
assumed that two nodes will be more similar if they have more com-
mon neighboring nodes or similar nodes, just as in social networks,
two people will be more familiar if they have more common friends
or social circles. Therefore, in addition to the length of the path, we
also considered only those paths with lengths no larger than 4 hops
when computing the similaritymeasure between a pair of nodes.

3.1 Bipartite Network

Let L ¼ fl1; l2; . . . ; lng be a set of lncRNAs and D ¼ fd1; d2; . . . ; dmg
be a set of diseases; then, the L-D network can be described as a
bipartite graph GðL;D;EÞ, where E ¼ feij; li 2 L; dj 2 Dg. In addi-
tion, in GðL;D;EÞ, 8 li 2 L, dj 2 D, the edge eij 2 E () li is associ-
ated with dj. Additionally, according to GðL;D;EÞ, an adjacency
matrix A ¼ faijgn�m can be constructed, where aij ¼ 1 if li is con-
nected to dj; otherwise, aij ¼ 0.

3.2 Similarities of lncRNAs and Diseases Based on
Common Neighbors

InGðL;D;EÞ, 8 l 2 L, let uðlÞ denote the set of neighboring nodes of
l, and dðlÞ denote the degree of l (i.e., the number of neighboring
nodes of l ). For any two nodes li and lj in L, we reasonably con-
sider there to be some degree of similarity between them if they
have common neighboring nodes, and their similarity score
between them can be defined as follows:

SL1ij ¼ SL1ðli; ljÞ ¼ expð�S1LijÞ (1)

S1Lij ¼
1

dðliÞ � dðljÞ
X

dz2ðuðliÞ\uðljÞÞ

1

dðdzÞ

¼ 1

dðliÞ � dðljÞ
Xm

r¼1

air � ajr
dðdrÞ :

(2)

Specifically, if i ¼ j, we set SL1ij ¼ 1. In other words, if li and lj
are the same node, then their similarity value is 1.

Similar to the above method for computing the similarity mea-
sure of lncRNA nodes, for any two nodes di and dj in D, their simi-
larity score can also be defined as follows:

SD1ij ¼ SD1ðdi; djÞ ¼ expð�S1DijÞ (3)

S1Dij ¼
1

dðdiÞ � dðdjÞ
X

lt2ðuðdiÞ\uðdjÞÞ

1

dðltÞ

¼ 1

dðdiÞ � dðdjÞ
Xn

t¼1

ati � atj
dðltÞ :

(4)

TABLE 1
The Comparison Results of AUC Achieved by Our Model Based

on Three Different Datasets While the Parameter a
was Set to Different Values

lncRNADisease Lnc2Cancer MNDR

a AUC a AUC a AUC

0.2 0.8364 0.2 0.9004 0.2 0.9035
0.4 0.8720 0.4 0.8994 0.4 0.9248
0.5 0.8793 0.5 0.8983 0.5 0.9284
0.6 0.8825 0.6 0.8965 0.6 0.9292
0.8 0.8784 0.8 0.8933 0.8 0.9276

TABLE 2
Performance Comparisons between Our Model and Seven

State-of-the-Art of Models in Terms of AUC Based on Global LOOCV

Methods AUC References

Our model 0.8535
LRLSLDA 0.7760 [14]
LNLSIM1-LRLSLDA 0.8130 [15]
LNLSIM2-LRLSLDA 0.8198 [15]
HGLDA 0.7621 [16]
KATZLDA 0.7886 [17]
LRLSLDA-FMLNCSIM 0.8266 [18]
IRWRLDA 0.7242 [20]

TABLE 3
Performance Comparisons between Our Model and Four

State-of-the-Art of Models in Terms of AUC Based on Global LOOCV

Methods AUC References

Our Method 0.9292
LRLSLDA 0.8850 [14]
LRLSLDA-ILNCSIM 0.9316 [19]
LRLSLDA-LNCSIM1 0.9135 [15], [19]
LRLSLDA-LNCSIM2 0.9169 [15], [19]
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In particular, if i ¼ j, we set SD1ij ¼ 1. In other words, if di and
dj are the same node, their similarity value is 1.

3.3 Similarities of lncRNAs and Diseases Based on
SimRank Measure

According to the assumption that two nodes are similar if they are
connected to similar nodes, inGðL;D;EÞ, if the two nodes li and lj in
L do not have common neighboring nodes but are connected to simi-
lar nodes, then we also consider that there is a degree of similarity
between them. The similarity score between the two nodes li and lj
can be defined as follows, based on SimRankmethod [29], [30], [34].

SL2ij ¼ SL2ðli; ljÞ ¼ expð�S2LijÞ (5)

S2Lij ¼
1

dðliÞ � dðljÞ
Xn

p¼1

Xn

q¼1

api � aqj � SD1pq
dðdpÞ � dðdqÞ : (6)

In particular, if i ¼ j, we set SL2ij ¼ 1. In other words, if li and lj
are the same node, their similarity value is 1.

As in the above methods, if the two nodes di and dj in D, do not
have common neighboring nodes but are connected to similar
nodes, we consider there to be a degree of similarity between
them, and the similarity score between these two nodes di and dj
can be defined as follows:

SD2ij ¼ SD2ðdi; djÞ ¼ expð�S2DijÞ (7)

S2Dij ¼
1

dðdiÞ � dðdjÞ
Xn

p¼1

Xn

q¼1

api � aqj � SL1pq
dðlpÞ � dðlqÞ : (8)

In particular, if i ¼ j, we set SD2ij ¼ 1. In other words, if di and
dj are the same node, their similarity value is 1.

Furthermore, to integrate the similarity scores computed above,
we defined a new similarity measurement between two lncRNA
nodes, li and lj as follows,

SLij ¼ SLðli; ljÞ ¼ SL1ij � SL2ij: (9)

Correspindingly, a new similarity measurement between two
disease nodes, di and dj was defined as follows:

SDij ¼ SDðdi; djÞ ¼ SD1ij � SD2ij: (10)

Therefore, based on matrices SL and A proposed above, we can
construct a recommendation matrix R1 ¼ fr1ijgn�m as follows:

R1 ¼ SL�A: (11)

Here, SL ¼ fSLijgn�n is the similarity of two lncRNAs.
Likewise, we can also construct a recommendation matrix

R2 ¼ fr2ijgn�m as follows:

R2 ¼ A� SD: (12)

Here, SD ¼ fSDijgm�m is the similarity of two diseases.
Thus, by integrating the above two recommendation matrices,

we can construct a new similarity measurement between lncRNAs
and diseases as follows:

R ¼ a�R1þ ð1� aÞ �R2: (13)

Here, a 2 ð0; 1Þ is a parameter utilized to tune the relative
importance between the similarity of lncRNAs and the similarity
of diseases [35].

4 EXPERIMENTAL RESULTS

4.1 Analysis of the Bipartite Network Based on
lncRNA-Disease Associations

In this work, the available relationships between lncRNAs and dis-
eases were utilized to construct a bipartite network. A sub-network
of this bipartite network is shown in Fig. 2a. There were two types
of nodes in the constructed bipartite network: one class node
corresponded to lncRNAs, the other class node corresponded
to diseases. A link was constructed between one lncRNA and one
disease if the lncRNA was associated with the disease. We ana-
lyzed the bipartite network constructed based on 554 human
lncRNA-disease interactions, which included 267 lncRNAs and
208 diseases. We found that the degree distribution of the bipartite
network closely followed a power-law distribution (see Supple-
mentary Figure S1(a), available online). The degree value of each
lncRNA node, that is, the number of diseases associated with the
lncRNA, had a broad distribution (see Supplementary Figure S1
(b), available online). Many lncRNAs were connected to only a few
diseases, whereas a small number of lncRNAs were connected to
many diseases. For example, H19 was related to 47 diseases,
including esophageal squamous cell cancer, bladder cancer and
cervical cancer; HOTAIR was associated with 24 diseases, includ-
ing lung cancer, gastric cancer and colorectal cancer. Similarly,
the degree value of each disease node, that is, the number of
lncRNAs associated with the disease, also had a broad distribution
(see Supplementary Figure S1(c), available online). This indicated
that many diseases were connected to a few lncRNAs, whereas
a small number of diseases were related to many lncRNAs. For
example, breast cancer was associated with 16 lncRNAs including
LSINCT5, MALAT1 and MIR31HG; prostate cancer was related to
22 lncRNAs including ANRIL, GAS5 and MALAT1.

4.2 Leave-One-Out Cross-Validation Tests

To evaluate the performance of our newly proposed method for
predicting the similarity between lncRNAs and diseases, a LOOCV
framework was adopted based on the experimentally verified
lncRNA-disease associations downloaded from the LncRNADi-
sease database, Lnc2Cancer database and MNDR database. For the
LOOCV, in each round, a known lncRNA-disease association is
left out as a test sample and the remaining known lncRNA-disease
associations are used as the training samples for model learning.
All lncRNA-disease association pairs not supported by relevant
evidence were also tested as candidate samples. Then, the rank of
each candidate sample is obtained. The tested samples with a pre-
dicted rank higher than the given thresholds were considered true
positives prediction. By setting different thresholds, we were able
to obtain the corresponding true positive rates (TPR, sensitivity,
recall) and false positive rates (FPR, 1-specificity). Sensitivity meas-
ures the proportion of positives that are correctly identified, while
1-specificity is the percentage of negative samples correctly identi-
fied to rank lower than the threshold. By plotting TPR versus FPR
at different thresholds, receiver operating characteristics (ROC)
curves can be obtained, and the areas under ROC curve (AUCs)
are calculated. An AUC value of 1 indicates a perfect prediction,
while an AUC value of 0.5 demonstrates a random performance. If
an AUC value is much closer to 1 than to 0.5, then we can say that
the prediction performance is much better than random.

As described in Section 3, the value of the parameter amay influ-
ence the prediction performance of our model, therefore, we imple-
mented a series of experiments to evaluate the impact of a. By
setting different values to a, different values of AUC are obtained in
the framework of LOOCV, and simulation results were shown in
Table 1 and Figure S2 (see Supplementary Figure, available online).

To further assess our method, we also compared the perfor-
mance of our model to that of several other state-of-the-art models
[14], [15], [16], [17], [18], [20] using a dataset of 293 known lncRNA-

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 16, NO. 2, MARCH/APRIL 2019 691



disease associations collected from the LncRNADisease database
(see Supplementary Table 4, available online) that has been used as
a gold standard dataset in the evaluation of several other models.
The simulation results, shown in Figure S3 (see Supplementary
Figure, available online) and Table 2 clearly indicate that our model
can achieve better performance in LOOCV than other state-of-the-
art models, with AUC of 0.8535 (a ¼ 0:8). Furthermore, we com-
pared the performance of our model to that of other methods pro-
posed in [14], [15], [19] using a dataset of 471 lncRNA-disease
interactions (see Supplementary Table 3, available online) down-
loaded from the MNDR database in, March 2015. The simulation
results are illustrated in Table 3 and Figure S2(c) (see Supplemen-
tary Figure, available online) and show that ourmethod achieve bet-
ter performance in the framework of global LOOCV than previously
developed models, with an AUC of 0.9292 ða ¼ 0:6Þ. Finally, we
compared our model with RWRHLD [24] based on a data set of 352
lncRNA-disease relationships (see Supplementary Table 5, available
online) downloaded from LncRNADisease database. The simula-
tion results are shown in Figure S4 (see Supplementary Figure,
available online) and indicates that our method, with AUC of 0.8732
(a ¼ 0:8), achieved better performance than RWRHLD, which
achieved an AUC of 0.77. We also compared our model with Yang
et al.’s method [22] based on a data set of 554 lncRNA-disease rela-
tionships including 267 lncRNAs and 208 diseases (see Supplemen-
tary Table 1, available online). According to the description of Yang
et al.’s method, we removed the nodes whose degree was one in
LOOCV. Finally, we obtained 232 lncRNA-disease associations
between 50 lncRNAs and 59 diseases that were to be utilized in
LOOCV. The comparison results are shown in Figure S5 (see Sup-
plementary Figure, available online) and indicates that our method,
with AUC of 0.7678, achieved better performance than Yang et al.’s
method, which achieved an AUC of 0.6773.

5 CASE STUDIES

To further validate the effectiveness of our model, we applied it to
predict three deadly types of cancer-related lncRNAs based on the
dataset downloaded from the LncRNADisease databased. This
approach is similar to the evaluation method adopted by most of
the current prediction computational models. The 20 prediction
results with the highest ranks were illustrated in Table 4 and veri-
fied based on the Lnc2Cancer database and MNDR database.
Importantly, the predicted new associations presented in Table 4
do not exist in the training set.

Colon cancer is the third most commonly diagnosed cancer and
the second leading cause of cancer deaths in men and women [36],
[37]. With the development of cancer research, lncRNA has served
as a promising target for cancer diagnosis and therapy [38], [39]. In
this section, we applied our prediction method to identify potential

lncRNAs related to colon cancer based on the dataset collected
from the LncRNADisease database. As illustrated in Table 4, four
of the top 20 predictions were proven to be related to colon cancer
according to the Lnc2Cancer and MNDR databases. Furthermore,
the experiments revealed that GAS5 overexpression significantly
repressed cell proliferation both in vitro and in vivo, and GAS5
may therefore be a candidate prognostic biomarker in human colo-
rectal cancer [40]. Other experiments revealed that the inhibition of
TUG1 expression significantly blocked the cell migration ability of
colon cancer cells, and TUG1 overexpression may contribute to
enhanced cell proliferation and migration in colon cancer cells [41].

Osteosarcoma is the most prevalent primary malignant tumor
in adolescents and is associated with poor prognosis and a high
rate of disability in youth [42]. LncRNAs have received increasing
attention due to their roles in many diseases, including osteosar-
coma [43], [44]. Hence, we implemented our prediction method to
identify potential osteosarcoma-related lncRNAs. As illustrated in
Table 4, seven of the top 20 predictions were proven to be related
to osteosarcoma according to Lnc2Cancer and MNDR databases.
One study reported that H19 promoted metastasis through upre-
gulation of ZEB1 and ZEB2 by competitively binding microRNAs
in the miR-200 family, which suggests important roles for H19 in
osteosarcoma metastasis and therapy [45]. The present study
showed that HOTAIR silencing inhibited the growth, adhesion,
migration and invasion of MG63 osteosarcoma cells, indicating
that HOTAIR may serve as a potential tool for osteosarcoma ther-
apy [46]. MEG3 has also been shown to have low expression in
osteosarcoma cells, while its up-regulation of MEG3 can induce
apoptosis in MG63 cells and inhibit cell proliferation, invasion and
migration [47]. The study revealed that UCA1 was upregulated in
osteosarcoma cells and promoted cell growth and caused cell cycle
arrest through inactivation of the PTEN/AKT signaling pathway,
indicating that UCA1 may be a potential prognostic marker and
therapeutic target for osteosarcoma [48].

Cervical cancer contributed the second highest number of female
cancer deaths, exceeded only by breast cancer. Many lncRNAs are
considered pivotal regulators in various biological processes and
play vital roles in the oncogenesis and progression of cervical cancer
[49]. Hence, we applied our method to predict possible lncRNAs
associated with cervical cancer. As illustrated in Table 4, five of the
top 20 predictions were proven to be related to cervical cancer
according to the Lnc2Cancer and MNDR databases. Specifically,
most of these lncRNAs (CDKN2B-AS1, GAS5, MEG3 and PVT1)
were recorded in the Lnc2Cancer database, and one lncRNA
(UCA1)was recorded in theMNDR database. PVT1 is considered to
play an oncogenic role in cervical cancer, and the overexpression of
PVT1 can drive cervical carcinogenesis [50]. Moreover, MEG3 is a
powerful tool for diagnosis and prognosis of patients with cervical
cancer, and low expression of MEG3 is likely to be related to pro-
moter hypermethylation in cervical cancer [51].

According to the above description, it is clear that our model can
achieve reliable performance for predicting potential associations
between lncRNAs and diseases. Therefore, our approach can be
applied to prioritize all candidate lncRNA-disease pairs based on
the lncRNA-disease associations recorded in the LncRNADisease,
Lnc2Cancer and MNDR databases, and the obtained prediction
results can be used for further research and experimental validation.

6 DISCUSSION

Accumulating evidence has shown that identifying novel potential
associations between lncRNAs and diseases can improve the under-
standing of disease pathogenesis at the lncRNA level, which is help-
ful for the prognosis, diagnosis, treatment and prevention of human
diseases. Such studies have become greatly significant because
they can decrease the time and cost of biological experiments.
In this paper, we constructed a bipartite network based on known
lncRNA-disease associations only. Based on assumptions about
similar nodes, a novel prediction model is proposed to infer

TABLE 4
Prediction and Evaluation Results of lncRNA Associated with Colon
Cancer, Osteosarcoma, and Cervical Cancer in top 20 Ranking Lists

Disease lncRNA Evidence(Database) Rank

Colon cancer GAS5 Lnc2cancer 4

Colon cancer UCA1 MNDR 6

Colon cancer TUG1 Lnc2cancer 12

Colon cancer ANRIL Lnc2cancer 13

Osteosarcoma H19 MNDR/Lnc2cancer 1

Osteosarcoma CDKN2B-AS1 MNDR/Lnc2cancer 2

Osteosarcoma HOTAIR Lnc2cancer 3

Osteosarcoma MEG3 MNDR/Lnc2cancer 4

Osteosarcoma UCA1 MNDR/Lnc2cancer 8

Osteosarcoma ANRIL MNDR/Lnc2cancer 13

Osteosarcoma TUG1 MNDR/Lnc2cancer 14

Cervical cancer CDKN2B-AS1 Lnc2cancer 1

Cervical cancer MEG3 Lnc2cancer 2

Cervical cancer PVT1 Lnc2cancer 3

Cervical cancer UCA1 MNDR 5

Cervical cancer GAS5 Lnc2cancer 9
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potential lncRNA-disease associations by integrating two similarity
calculation methods for lncRNAs and diseases. To evaluate the pre-
dictive performance of our method, LOOCV was implemented
based on known lncRNA-disease associations collected from three
databases. The validation results demonstrated the effectiveness of
our model. Furthermore, we also compared the outcomes our
method with those of several state-of-the-art models and found that
our model was able to achieve better performance. Of course, there
are still some deficiencies and limitations of our method. For exam-
ple, currently, there is no effective way to choose the best value for
parameter a to achieve the best predictive performance. Moreover,
only known lncRNA-disease associations were considered in
our method. There are many other known associations, such as
miRNA-lncRNA associations and miRNA-disease associations; if
we can integrate these different associations, then the predictive
performance of ourmodel may be improved significantly.
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