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Abstract—Modeling and simulation techniques have demonstrated success in studying biological systems. As the drive to better

capture biological complexity leads to more sophisticated simulators, it becomes challenging to perform statistical analyses that help

translate predictions into increased understanding. These analyses may require repeated executions and extensive sampling of

high-dimensional parameter spaces: analyses that may become intractable due to time and resource limitations. Significant reduction

in these requirements can be obtained using surrogate models, or emulators, that can rapidly and accurately predict the output of an

existing simulator. We apply emulation to evaluate and enrich understanding of a previously published agent-based simulator of

lymphoid tissue organogenesis, showing an ensemble of machine learning techniques can reproduce results obtained using a suite of

statistical analyses within seconds. This performance improvement permits incorporation of previously intractable analyses, including

multi-objective optimization to obtain parameter sets that yield a desired response, and Approximate Bayesian Computation to assess

parametric uncertainty. To facilitate exploitation of emulation in simulation-focused studies, we extend our open source statistical

package, spartan, to provide a suite of tools for emulator development, validation, and application. Overcoming resource limitations

permits enriched evaluation and refinement, easing translation of simulator insights into increased biological understanding.

Index Terms—Emulation, ensemble, mechanistic modeling, sensitivity analysis, multi-objective optimization, approximate Bayesian

computation, machine learning

Ç

1 INTRODUCTION

THE objective driving simulation-focused biological rese-
arch is to generate novel predictions that increase our

understanding of biological systems and inform laboratory
studies. As simulations become more sophisticated, captur-
ing complex diseases [1] and large-scale metabolic networks
[2], this objective becomes more challenging. In addition,
key research-led policy areas that exploit the benefits of sim-
ulation are seeing a focus shift, from a desire to understand
average population behaviors to appreciating the range
of behaviors observed within a population. This approach
benefits applications such as person-centered healthcare [3],

where a provision may be better suited to some individuals
than others. Capturing increased complexity and individual
heterogeneity can give rise to models that are time and
resource intensive, and thus difficult to parameterize and
evaluate. This in turn impacts the confidence one has in sim-
ulation-derived predictions, limiting the translation of these
insights into further laboratory or clinical studies.

1.1 Performance Issues in Analyzing Simulations

Significant insights are being generated fromnon-deterministic
models designed to incorporate stochasticity and heterogene-
ity observed in real life systems. In applications such as target
evaluation for drug discovery and understanding emergence
of disease dynamics from individual cellular interactions, the
incorporation of stochastic molecular, cellular, and environ-
mental processes is desired to ground the model in the
domain being explored [4], [5]. Although the composition of
non-deterministic models may themselves not be that com-
plex or computationally intensive, diverse sets of outputs
may be produced for a fixed parameter input [6]: a factor usu-
ally mitigated by summarizing replicate executions. Ensur-
ing enough replicates are performed such that this summary
is representative of the parameter input is critical for statisti-
cal analyses, specifically sensitivity analyses, that permit sys-
tematic exploration of the parameter spaceand elucidation of
the pathways impacting simulation response [7]. An increase
in model complexity gives rise to high-dimensional parame-
ter spaces, that require significant computational infrastr-
ucture to explore, especially if a large number of replicate
executions are required per parameter set. As it is common to
simulate biological systems for which our understanding
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remains incomplete, there may be significant uncertainty
around a subset of these parameters: their value range may
remain unknown or poorly constrained [8]. This parametric
uncertainty impacts the calibration process used to align
simulation behaviors to a desired or expected response, com-
plicating both the formation of a baseline state to which sub-
sequent perturbations are compared [9], and understanding
the range of parameter values that produce that desired
response. The latter is of critical importance when consider-
ing model selection, or in capturing individual heterogeneity
by performing executions where heterogeneous individuals
within a population are represented by simulation executions
of different parameter sets.

A range of statistical analysis techniques can be applied to
understand and mitigate the factors above. Yet as the execu-
tion time for a simulation increases, it becomes less tractable
to perform these analyses in a time-frame that can run parallel
to laboratory or clinical studies. We have previously desc-
ribed techniques that aid in quantifying the number of repli-
cate executions required to ensure a result is representative
of a specified parameter set [6], [10], mitigating aleatory uncer-
tainty. We have shown that agent-based simulations that
capture both stochasticity and heterogeneity can require hun-
dreds of replicates to generate a representative output for a
single parameter set [6], [10]. Sensitivity analyses may incor-
porate both a local parameter analysis that assesses the uncer-
tainty around the value of each parameter individually, and
global analyses that can reveal non-linear relationships
between model parameters. For the latter, adequate sampling
of the parameter space is crucial. Often a latin-hypercube
(LHC) sampling scheme is adopted [11], where a number of
model parameter sets are generated and a Partial Rank Corre-
lation Coefficient (PRCC) calculated to quantify any effect
between a parameter and model response [6]. However,
summarizing parameter sensitivities through a PRCC may
not capture the magnitude or non-monotonic relationships
between parameter inputs and emergent outputs of the simu-
lator. Alternative parameter sampling approaches include
the extended Fourier amplitude sampling test (eFAST) [12],
where parameter samples are selected from sinusoidal curves
through the parameter space, with each parameter taken in
turn as that of interest and sampled at a significantly different
frequency than its complementary set. Statistical analyses
of simulation executions under these conditions provides a
partition of the observed variance in response between the
parameters of interest, indicating those having significant
impact on behaviors. Although a powerful technique, the
characteristics of this sampling approach give rise to a signifi-
cant number of parameter sets. For a simulator of six parame-
ters, taking 65 samples from each sinusoidal curve, with three
curve phase shifts introduced to mitigate selection of near
identical parameter sets [12], a total of 1,170 parameter sets
is generated. In our previous application of this technique,
where a simulator required 500 executions to mitigate alea-
tory uncertainty, 585,000 simulation executions were required
[10]. Even with the availability of high-performance comput-
ing resources, such resource-intensive analysis become intrac-
table for simulators with a long execution time.

A range of additional techniques have shown similar prom-
ise in understanding parametric uncertainties and optimizing
parameter configurations with respect to a desired output,

automating the calibration process. Approximate Bayesian
Computation (ABC) techniques provide a means of under-
standing the uncertainty around each parameter value by gen-
erating posterior distributions for each [13], [14]. This makes it
possible to sample parameters from a distribution predicted to
replicate behaviors that alignwell to a desired response, rather
than calibrate parameters to an individual value. Such sam-
plingmay be a powerful approach to adopt in person-centered
studies where each patient can be represented as a parameter
configuration sampled from the posterior distributions. Simi-
larly, multi-objective evolutionary algorithms (MOEAs) have
shownpromise in addressing problems such as parameter cal-
ibration [9]. There may be several simulation responses that
should be matched against experimentally observed data: it
may be the case that the accuracy of one simulation response
to the observation cannot be improvedwithout compromising
other responses [15]. Whereas ABC gives a distribution of val-
ues in which a parameter may lie, MOEA techniques permit
identification of the optimal trade off between those simula-
tion responses and the associated parameter configurations
under which that outcome is achieved [16]. In optimization
routines, an MOEA approach could thus be used to find a set
of parameter configurations for an alternative desired out-
come. BothABC andMOEAadopt a heuristic approachwhere
parameter sets are iteratively generated, executed, and evalu-
ated until a convergence criterion is met. It is thus difficult to
be aware of the execution time required for both analyses prior
to execution, limiting the application of these analysis in time
and resource intensive projects.

1.2 Addressing Performance Issues Using
Machine Learning

A surrogate tool, or emulator, that is capable of converting a
set of parameter values into a prediction of the simulation
response that is representative of a high number of repli-
cates, is an attractive option for reducing resource require-
ments [17]. In saving resources, emulation can serve as a
useful adjunct to the original simulator, providing insights
where complex analyses were previously intractable. This
could have a significant impact on the outcomes of a model-
informed biological research project. We have previously
noted that for any simulation result to be meaningful in the
context of the real biological system, it is critical that the
relationship between the model and the real-world it cap-
tures is understood [18], [19]. We note that producing an
emulator that captures a simulation does add a further layer
of abstraction from the real biological system, and does not
make the simulator itself entirely redundant. However, if
the accuracy of that emulator can be quantified and under-
stood, a useful tool is be produced that provides a means of
complementing existing simulation analyses while enhanc-
ing the range of potential analyses that could be performed.
This approach could be applied at all phases of simulator
development, from highlighting potential coding errors
prior to running complex analyses, refining model design
by gaining an initial understanding of influential simulated
pathways, and informing analyses to be performed using
the simulator.

Emulation has primarily been achieved through aBayesian
approach where a statistical model, usually a Gaussian pro-
cess, is used to estimate simulator outputs. Such emulators
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have been applied to aid parameter estimation in a stochastic
model of mitochondrial DNA population dynamics [20], an
epidemic model of influenza [21], and models of hormonal
crosstalk in Arabidopsis root development [22]. Machine
learning approaches, powered by recent technical advances
in computation and increased availability of large datasets,
have also shown promise in identifying complex non-linear
relationships within multivariate datasets [23]. Using super-
vised learning approaches, a machine learning algorithm can
learn the behaviors of a simulator, to quickly and accurately
predict the simulation response for parameter sets the algo-
rithm has yet to observe. This attribute makes machine learn-
ing algorithmswell placed to emulate simulators of biological
systems, as illustrated by the use of support vector machines
to emulate models of haemorrhage and renal denervation,
resulting in a 6-fold decrease in computation time [24].

1.3 Emulation to Understand Models of Biological
Systems

Previously we developed an agent-based model of the pre-
natal development of Peyer’s Patches (PP), a secondary lym-
phoid tissue that triggers adaptive immune responses to
infection [10], [25], [26]. This simulator, described in the
cited works and introduced briefly in Fig. 1B and the Meth-
ods, was applied within a sensitivity analysis routine, to
determine the key biological mechanisms that influence cell
behavior during the process of tissue development. This
routine utilized our previously published sensitivity analy-
sis tool, spartan [5], [27], [28]. This published study utilized
local and global sensitivity analyses to: reveal how robust
parameters for which a value was unknown are to perturba-
tion; reveal non-linear interactions between parameters; and
to partition the variance between those parameters. These
analyses produced the hypothesis that lymphoid organ
development may be biphasic: one that has since been veri-
fied in the laboratory [25]. As this simulation captures the
emergent behaviors from interactions of hundreds of het-
erogeneous individual cells, there is a high level of stochas-
ticity. A substantial amount computer and time resources
(Table 1) (on the order of months) were required to perform
these sensitivity analyses, limiting application of additional
analysis techniques such as ABC and MOEA.

A range of different machine learning approaches have
been developed [29], [30], [31], [32], each with their own set of
advantages and limitations, with performance of each specific
to the data onwhich is is trained [33]. In this paper we explore
the relative performance of a range of these techniques in pre-
dicting outputs obtained from the agent-based model. We
show that one technique may have poorer predictive power
on a section of the parameter space than another, yet outper-
form other techniques for an alternative region. To mitigate
this effect, we combine different algorithms into a hybrid tool,
or ensemble, that is capable of outperforming each technique
in isolation. Using the ensemble, we replicate previously pub-
lished statistical analyses in the order of seconds rather than
months. With strong performance assured, additional analy-
sis routines that enrich our understanding of the simulator
yet were previously intractable have now been conducted
using the ensemble. These results provide a strong argument
for the use of machine learning approaches in supporting the
engineering and enriched analysis of simulations of biological

systems (Fig. 1A). To promote the adoption of emulation in
the systems biology community and aid others in evaluating
the approaches described herein, we extend existing function-
ality within spartan, to permit the generation, validation, and
application of emulators and ensembles. The extended tool is
available from the Comprehensive R Archive Network
(CRAN), and supported by tutorials and example simulation
data available from the spartanwebsite (http://www.york.ac.
uk/ycil/software).

In the description of our Results, gained using the addi-
tional functionality in spartan, sectionAdetails the application
of a range of supervisedmachine learning approaches to gen-
erate emulators of a simulation, each trained using a latin-
hypercube sample of the parameter space. Section B examines
the performance of each machine learning technique in isola-
tion. In Sections C and Dwe detail the generation and perfor-
mance of combining the emulators into an ensemble capable
of rapidly and accurately reproducing simulator behaviors.
Section E replicates the previously conducted sensitivity
analyses for multiple simulation time-points, with results
consistent with published simulator results. The significant
improvement in performance facilitated enriched analyses,
specifically Approximate Bayesian Computation and Multi-
Objective Optimization, detailed in Section F. A discussion
then follows on the role that machine learning techniques and
our extended spartan tool could have within a process of
developing and understandingmodels of biological systems.

2 METHODS

2.1 Case Study Simulation

Given PP emerge through interactions between two popula-
tions of hematopoietic and non-hematopoietic stromal cells,
mediated by expressed chemoattractant factors within the
developing tissue’s local environment and factors that aid cell
adhesion in that locality, our model adopts an agent-based
approach. Each cell involved in PP development is explicitly
captured in themodel as an individual entity, each possessing
their own attributes, and interactswith other cellular and envi-
ronmental actors in accordance with a specified set of rules
[10]. The total number of cellsmodelled is set tomatch the esti-
mated counts of each cell population estimated from flow
cytometry experiments. Expression and response to adhesion
factors and chemokines in the environment is modelled using
mathematical constructs, controlled by the parameters identi-
fied in Fig. 1A. In the laboratory cell velocity and displacement
behavior responses have been established by observing cells
using an ex vivo cell culture system [25] for a one-hour period,
providing a baseline throughwhich to parameterize the simu-
lation and suggest the values to which the mathematical con-
structs must be set in order to capture observed behaviors.
Thus the simulation outputs cell velocity and displacement
for all agents over the same one hour period and twelve-hour
intervals that follow, as well as a calculation of the size of the
cell aggregations that develop. Sensitivity analysis techniques
were applied that perturbed the values of these parameters in
order to examine how cell velocity and displacement alters
under different physiological conditions [5].

2.2 Spartan

Open source and supported by multiple publications and
tutorials, spartan comprises a suite of statistical analyses that
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aim to help understand how simulation-derived predictions
could be interpreted in the context of the biological system
being captured. The datasets originally released with spartan
have been used in this study, providing an accessible set of
data for demonstrating application of emulation and easing

reproduction of the presented analyses. spartan has been
extended to offer four additional techniques: (i) Generation
of emulations using five machine learning techniques;
(ii) Generation of an ensemble that combines these emulators
into one single predictive tool; (iii) Provision of a software

Fig. 1. A: A framework to emulate simulations of biological systems. The behavior of a systems biology model (i) is summarized by applying latin-
hypercube sampling (ii), with simulation results under those conditions generating a dataset used to inform the training and validation of an emulator
using machine learning techniques (iii). The emulator is then used in place of the systems biology model to accurately and rapidly predict responses
to conduct a suite of analyses that may be intractable using the original simulator (iv). Emulator development, validation, and analysis techniques
have all been incorporated within the spartan R package. B: Schematic overview of the case study model of Peyer’s Patch (PP) development. Full
implementation detail can be found in our previously published work [10]. (i) The model captures the migration and aggregation of Lymphoid Tissue
Initiator (LTin) and Lymphoid Tissue Inducer (LTi) cells into the developing gastrointestinal tract, and their interaction with Lymphoid Tissue Orga-
niser (LTo) cells, modeled using six key parameters. Both LTin and LTi cells express adhesion receptors, modelled using a mathematical construct
controlled by parameter maxProbabilityOfAdhesion, to model the probability the receptor binds to adhesion factors expressed by the LTo. LTi cells
express chemokine receptors that are controlled by the parameter chemokineExpressionThreshold to determine whether an LTi cell responds to
chemokine expression in it’s vicinity. Adhesion factor expression by an LTo cell is represented using a linear model function that is adjusted with
each stable cell contact by increasing the parameter adhesionFactorSlope. Chemokine expression across the environment is varied between initial-
ChemokineExpression and maxChemokineExpression. (ii) LTin and LTo cell contact causes LTo differentiation, increasing adhesion factor expres-
sion. Success of receptor binding is captured using probability parameter stableBindProbability. (iii) LTi and LTo contact causes further LTo
differentiation and increased expression of adhesion factors, in addition to increased expression of chemokines. (iv) This processes give rise to the
emergence of cell aggregates that become PP. The simulator outputs the area of this aggregation at hour 72.
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wrapper that permits the use of an ensemble for performing
Approximate Bayesian Computation; and (iv) Provision of
a software wrapper permitting the application of a multi-
objective optimization algorithm, through which the ensem-
ble is used to locate parameters that lead to a desired emu-
lated outcome. The latest version exploits the functionality in
a number of additional R packages, namely randomForest [34],
mlegp [35], neuralnet [36], e1071 [37],mco [38], and plotrix [39].

2.3 Specification of Computer Resources

The simulation runs were performed on the York Advanced
Research Computing Cluster, a resource of 70 nodes, 138 pro-
cessors, 1462 cores, and 10.2 TB RAM. The emulators and
ensembles were generated and used for experimentation on
anAppleMacBook Pro, 2.5 GHz Intel four core i7, 16GBRAM.

2.4 Emulator Creation

2.4.1 Generation of Training, Testing, and Validation

Datasets

The spartan tutorial dataset for demonstrating performance
of a sampling-based global sensitivity analysis using LHC
sampling consists of 500 parameter sets. Each set was exe-
cuted 500 times to mitigate aleatory uncertainty, and median
responses calculated to summarize simulator performance
under those conditions [26]. Spartan divided the data set
into training (75 percent), testing (15 percent) and validation
(10 percent) sets (percentages can be changed), which were
used to create and assess the performance of emulators gener-
ated using five machine learning algorithms. One emulation
was generated for each simulation response (cell velocity and
displacement), such that the performance of one response
does not bias another.

2.4.2 Neural Networks (ANN)

ANN’s are inspired by the neuronal circuits in the brain,
with computations structured in terms of an interconnected
group of artificial neurons. During the learning phase, the
weighting of connections between neurons are adjusted in
such a way that the network can convert a set of inputs
(simulation parameters) into a set of desired outputs (simu-
lation responses). Neural networks were developed in spar-
tan using the neuralnet package [36] with supervised
learning of the data achieved through backpropagation. To
determine optimal hyperparameters of the network we per-
formed ten-fold cross validation (default value, but can be
altered) on a selection of structures with five inputs (the
parameters) and two outputs (velocity and displacement),
with one to four hidden layers (the specific details are cov-
ered in the software tutorial). The number of generations
defaults to 800,000, but can be modified by the user. The
accuracy of each fold was determined to be the root mean
squared error (RMSE) between the predicted cell behavior
responses and those observed in the simulation, and the
accuracy of the network structure determined to be the
average of the ten fold RMSE. The network structure with
the minimum average RMSE was selected as the structure
that would be used in creation of the emulator.

2.4.3 Random Forest (RF)

A decision tree is structured to convert inputs (parameters)
into a set of predicted outputs, and comprises root, internal
and leaf nodes. Each internal node represents a decision
with two branches leading to stratification of the training
data, in this case for the purpose of regression. A RF is an
ensemble of decision trees, trained on different parts of the
same training set, with the goal of avoiding issues of overfit-
ting [29], [40]. The RF was generated within spartan using
the randomForest package [34] with supervised learning
achieved by creating a forest with 500 trees and no limita-
tion on tree depth or maximum number of terminal nodes
(as default in the randomForest package.

2.4.4 Gaussian Process (GP)

A GP model is a non-parametric approach that finds a distri-
bution over the possible functions that are consistent with the
observed data facilitating supervised learning of simulator
outputs. A Gaussian process model was created in spartan
using themlegp package [35]with default parameter settings.

2.4.5 Generalized Linear Model (GLM)

A GLM is a generalized form of ordinary linear regression,
allowing for predictions of simulator outputs without assum-
ing that the error distributions follow a normal distribution. A
GLM was created in spartan using the glm method in the base
R package,with default parameter settings.

2.4.6 Support Vector Machine (SVM)

A support vector machine constructs a hyperplane, or set of
hyperplanes within a feature space to facilitate classification
and regression predictions [30]. The svm model was gener-
ated within spartan using the e1071 package [37] using a
radial basis kernel. The parameter epsilon, which controls the

TABLE 1
Performance Statistics for Both Use of Simulator, Individual
Emulation, and Ensemble, Using the Computing Resources

Specified in Section C of the Methods

Simulator Performance

Calibrated Simulator Execution
Time (seconds)

94.265

Replicate executions Required Per
Parameter
Set to Mitigate Aleatory Uncertainty

500

Executions Required for 500 Sample
LHC

250,000

Executions Required for eFAST 682,500

Emulator Performance

Time (seconds)

Emulator Training Time 12Hr 72Hr

GLM 0.197 0.209
SVM 0.245 0.244
RF 0.693 0.651
NN 280.35 246.45
GP 484.357 500.704
Ensemble Generation Time 281.771 747.913
Emulated LHC Analysis 6.45 3.49
Emulated eFAST Analysis 14.67 6.00

Whereas one execution of the original simulator at calibrated values may take
94 seconds. Both sensitivity analyses were performed in a fraction of the time
taken to perform one execution of the original simulator.
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threshold error for fitting the hyperplane, and the cost param-
eter, the penalty for violating a constraint that can be adjusted
to deal with overfitting left at default values of 0.1 and 1
respectively.

2.4.7 Evaluating Emulator Performance

Emulator performance was evaluated by calculating the
RMSE between the set of emulator predictions for unseen
parameter values in the test data with simulator responses
observed under those parameter conditions.

2.5 Ensemble Creation

Each individual emulator is used to make predictions of the
simulator output responses for the parameter values in the
test set. The predictions from each emulator form input nodes
to a neural network, with the output nodes being the actual
observed responses from the test set. A network consisting of
one hidden layer with a single node is used to calculate
weightings of each algorithm’s performance. The relative
weighting of each algorithm is then used to combine emulator
responses to form an ensemble. It may not be the case that an
ensemble of all five machine learning techniques provides
better accuracy than by combining a subset of emulators. As
such, we assessed all combinations of emulators, determining
the optimal ensemble structure that provided the lowest
RMSE, averaged across all simulation responses, between
predicted values and those observed from the original simula-
tor. Consequently, the total time taken to generate an ensem-
ble (shown in Table 1) will be dependent on the emulators
which the ensemble includes.

2.6 Sensitivity Analysis Using Ensemble

2.6.1 Sampling-Based Sensitivity Analysis

A new list of 500 parameter sets was created for the parame-
ters identified in Fig. 1 using the LHC sampling method in
spartan. The generated CSV file of parameter values and the
optimal ensemble was specified as input to a new spartan
method designed to generate responses for each parameter
set using an ensemble. This produces a CSV file summariz-
ing ensemble response for each parameter set. Creation of
this file permits result analysis using the pre-existing techni-
ques within spartan [5], [27]. This analysis produces a Partial
Rank Correlation Coefficient (PRCC) for each parameter
value, that quantifies the relationship between a parameter
and an output response, providing an indication as to the
influence of that parameter, although the values of the com-
plementary set are also being perturbed. PRCC values were
generated for all parameter-measure pairings, for all simu-
lation time-points (hours 12-72, in 12 hour increments), per-
mitting direct comparison to analyses previously conducted
using the simulator [5], [25], [26].

2.6.2 Variance-Based Sensitivity Analysis

A new list of parameter value sets for performing an analysis
using eFAST were obtained using the parameter sampling
method in spartan. A dummy parameter was introduced to
the sampling, giving seven parameters. In accordance with
guidance concerning eFAST sampling frequency [7], 65 values
were sampled from the sinusoidal curves that cover the value
space for each parameter, generating 390 (65*7) value sets.

Due to the properties of sigmoidal sampling and a high
chance of repeated values, repeated sampling after a fre-
quency shift is suggested. Applying three frequency shifts
(curves) generated a total of 1,170 parameter sets for analysis.
Similarly to the sampling-based analysis above, a newmethod
has been included in spartan that processes the CSV value files
generated for each resampling curve, generating output pre-
dictions for each parameter set using the ensemble. Again
these can be analysedusing the pre-existing techniqueswithin
spartan. For each simulation response, variance in output was
attributed to each of the seven parameters (Si value). The Si
valueswere calculated for both cell velocity and displacement
at both hours 12 and 72, to permit comparisonwith previously
published eFAST results obtained using the simulator.

2.7 Enriched Analysis Using Ensemble

2.7.1 Approximate Bayesian Computation

The R package EasyABC [41] provides a number of algo-
rithms through which parameter posterior distributions can
be predicted. In the extended version of spartan we provide
a wrapper that normalizes the parameter sets generated by
the ABC algorithm and inputs these into the ensemble,
before re-scaling the predictions and returning those values
back for assessment of fit against a specified tolerance level.
In the analyses presented in this paper, we ran the Delmoral
implementation of the sequential ABC algorithm [42], with
the target summary statistics of cell velocity and displace-
ment being the medians of the cell behavior measures
observed in ex vivo culture and published previously. The
algorithm parameters were set at the default values given in
the EasyABC documentation.

2.7.2 Multi-Objective Optimization (MOO)

MOO was used to find parameter sets that met three objec-
tives at hour 72: minimize the RMSE between emulator and
simulator responses for cell velocity; minimize the RMSE
between emulator and simulator responses for cell displace-
ment; and maximize the area of the cell aggregation that
develops (the PP). These sets were derived using the non-
dominated sorting genetic algorithm II (NSGA-II) [43] using
the mco R package [38]. With a population size of 300,
values for generation number (400), mutation (0.8) and
crossover probabilities (0.4) (Table 2) were determined by
sensitivity analysis, choosing parameters that performed
well on all three objectives and maximized the variance
of the parameter inputs. As we wished to replicate the cell
behaviour responses, the parameter values were constrai-
ned to match the predicted posterior distributions observed
using the EasyABC package: distributions observed in
Figs. 6 and S6, available online.

3 RESULTS

3.1 Emulation Generation

Our approach utilized the spartan tutorial dataset as
described in the Methods to generate emulators using five
machine learning algorithms, with generation time of each
shown in Table 1. To indicate success of the training pro-
cess, and provide a comparison of performance with the
test set, the RMSE obtained in training each algorithm is
compared in Fig. S4, available online. To emulate and
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replicate previously published temporal sensitivity analyses
[5], [28], where simulation behaviors were assessed at
twelve-hour intervals, emulators were generated at twelve
hour intervals to hour 72.

3.2 Emulator Performance

Emulator performance data for cell velocity at hour 12 is
shown in Fig. 2A, with performance comparison of cell dis-
placement available in Supplementary Fig. S1, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2018.2843339.
The hour 12 dataset facilitated a comparison of how each
algorithm can learn a highly skewed dataset (kurtosis:
6.353, Fig. 2B) with fewer examples towards the lower end
of the distribution. This artifact impacted the performance
of the support vector machine, random forest, and general-
ized linear model algorithms, with less of an impact
observed for Gaussian process and neural network derived
predictions. Emulator performance on both cell velocity
and displacement responses at hour 72 can be seen in Sup-
plementary Figs. S2-S3, available online.

3.3 Ensemble Generation

From the respective emulators at each time-point and each
response, spartan was used to create ensemble models,
through combining emulators into one predictive tool.
Ensemble generation times for both hours 12 and 72 are
listed in Table 1.

3.4 Ensemble Performance

As the test subset of the partition data was used to weight
performance of each emulator and thus derive the best
performing ensemble, performance of the ensemble itself
was assessed by comparing response predictions for the

parameter values in the validation set with those observed
from the published simulator. This comparison is shown for
both cell velocity and displacement at hour 12 in Figs. 2C and
2D. We observed a decrease in the RMSE for both measures.
For velocity an RMSE of 0.331 mm/minute is observed, an
improvement of the lowest RMSE found when using a single
emulation approach: the 0.378 mm/minute obtained using a
neural network. For displacement, an RMSE of 4.051 mm,
again an improvement on the 5.223 mm observed using a
single machine learning approach. We present ensemble
performance results for both cell responses at hour 72 in
Supplementary Figs. S2-S3, available online. Our results sug-
gest that an ensemble of machine-learning approaches does
outperform each technique in isolation, and is capable ofmiti-
gating characteristics of the training dataset, such as the skew
mentioned previously.

3.5 Sensitivity Analysis

With the ensemble generated and performance assured, we
replicated the sensitivity analyses that had previously been
conducted at hours 12 and 72 [5], [10], [28], using the ensem-
ble in place of the original simulator. We contrast perfor-
mance both against the original analysis results and in
terms of time and resource requirements necessary to per-
form these analyses. The computing resources used, from
which the wall time statistics were generated, are specified
in section C of the Methods.

3.5.1 Sampling-Based Global Analysis (LHC)

Partial Rank Correlation Coefficients were calculated for
each parameter-response pairing using the latin-hypercube
sampling and analysis technique described in the Methods.
This analysis took 6.45 seconds for hour 12 and 3.49 seconds
for hour 72. Note that this analysis was conducted for a new

Fig. 2. Emulation performance, integration, and comparison. A: Performance of five machine learning techniques (stated in the graph header) in
predicting simulator responses, in this case cell velocity at the twelve-hour time-point of the case study simulation. B: The distribution of the training
dataset for the Velocity response at the twelve-hour timepoint. C-D: An ensemble approach that combines multiple machine learning techniques out-
performs each technique in isolation. Both responses at hour 72 are shown in Supplementary Material (Fig. S2-S3), available online.
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set of 500 parameter sets, derived using spartan, as the
ensemble had been trained on the parameter values used in
the published analyses. The results for two parameters, con-
trolling the probability of cell adhesion and response to che-
mokine expression, are shown for cell velocity in Fig. 3A,
the results obtained using the ensemble on the left against
the original simulator analysis on the right. For maxProbabi-
lityOfAdhesion, both results show a clear trend in the data,
supported by a high correlation coefficient. The ensemble
has replicated the original analysis hypothesis that the prob-
ability of cellular adhesion significantly influences cell
behavior, although another five parameters are also being
perturbed. This provided confidence that the emulator
could capture complex interactions between parameters.
For the parameter chemokineExpressionThreshold, the original
analysis found no correlation between parameter value and
output response [10], a finding supported by additional
local sensitivity analyses that suggested a perturbation in

this parameter had little impact on cell behaviour [5]. This
result is again replicated using the ensemble.

Figs. 3B and 3C ease comparison of results generated by the
ensemble with those of the original analysis by presenting the
PRCC values as a polar plot, one for each cell behavior
response. In the published simulator analysis, a significant
negative correlation is suggested between the probability of
cell adhesion and displacement, contradicting the accepted
hypothesis that chemokine expression is the critical pathway
in PP development [44]. The emulator replicates that sugges-
tion for both cell velocity and displacement. When consider-
ing velocity for hour 12 (Fig. 3B), the emulator produces
PRCC values that are quantitatively very similar to those in
the original time intensive analysis. For cell displacement, the
ensemble does suggest a stronger correlation between cell dis-
placement and both chemokine response and initial chemo-
kine expression parameters than that suggested by the
simulator analysis at hour 12. The analysis, constructed to

Fig. 3. Replicating simulator sensitivity analysis using an emulator. A: The emulator is capable of capturing the key behaviors observed in a global
sensitivity analysis, using latin-hypercube sampling and calculation of summary Partial Rank Correlation Coefficients (PRCC), illustrated here
for parameters maxProbabilityOfAdhesion and chemokineExpressionThreshold. B: Comparison of the PRCC values for all parameters at the
twelve-hour time-point obtained using both the simulator and emulator. C: Comparison of a the PRCC values obtained at the 72 hour time-point.
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mimic that conducted in the laboratory [25], examines cell
behaviors within 50mm of a developing PP. At this early time-
point, measures of displacement are sensitive to the number
of cells that are located in this vicinity: a number that can be

very low in some cases. A low number of examples impacts
the ability for the machine learning algorithm to predict this
response. As simulation time progresses and additional cells
migrate, a higher number of cells provides more data on
which to train the ensemble, and accuracy for the cell dis-
placementmeasure improves (Fig. 3C).

3.5.2 Variance-Based Global Analysis (eFAST)

The original application of the eFAST analysis using spartan,
described in detail in the Methods, required 682,500 execu-
tions of the simulator: an intensive analysis that is poten-
tially intractable for studies with a greater number of
parameters than that of the presented case study. This anal-
ysis was repeated using the ensemble, and the calculated
variance in simulation response that can be attributed to
each parameter (the Si value) presented in Fig. 4. This analy-
sis took 14.67 seconds for hour 12 and 6.00 seconds for hour
72. When considering cell displacement at hour 12, the orig-
inal simulator analysis found the maximum probability of
cell adhesion accounted for more variance than the comple-
mentary set (Figs. 4A and 4B). Again the emulator reprodu-
ces this finding, but assigns much more of the variance to
this one parameter. However the performance of the emula-
tor is much more comparable to that of the simulator analy-
sis at hour 72 (Figs. 4C and 4D). This difference supports
conclusions made previously when examining the PRCC
values, that predictive power may be impacted by a lower
number of examples at an early time-point in PP develop-
ment. This affect is also observed when contrasting the
amount of variance accounted for by each parameter and
higher-order interactions with others: a comparison made
in Supplementary Fig. S5, available online. Here it can be
observed that the ensemble is capable of predicting these
higher-order interactions, with predictive power again
increasing throughout the simulation timecourse.

3.5.3 Temporal Sensitivity Using the Ensemble

Previously we applied the case study simulator and sensi-
tivity analysis methods in spartan to suggest that PP devel-
opment may be biphasic: dependent on adhesion factor
expression at hour 12 yet highly influenced by chemoattrac-
tant expression and response at hour 72 [28]. By contrasting
PRCC values for the six parameters obtained at twelve hour
intervals, we were able to suggest that a change in the influ-
ence of a subset of the simulator parameters occurs between
hours 24 and 36. Using the approach described in the meth-
ods we created an ensemble for each twelve hour interval,
permitting a replication of this temporal analysis (Fig. 5).
Using each ensemble and spartan, PRCC values were calcu-
lated for each parameter-response pairing at each interval.
It is clear that the ensemble has captured the performance
of the simulator over the time-course for all parameters and
simulation responses. Some deviation is observed at hour
twelve (Figs. 5B, 5C, 5E), as observed for the previous sam-
pling and variance based sensitivity analyses.

3.6 Enriched Analyses

3.6.1 Approximate Bayesian Computation (ABC)

Todetermine posterior distributions for each of the case study
parameters, an ABC approach was adopted as described in

Fig. 4. Reproducing an extended Fourier amplitude sampling test, com-
paring the assigned partition of variance values (Si) obtained for the sim-
ulator with those obtained using the emulator. Si values for cell
displacement at 12 hours compared in A, 72 hours in C. The same com-
parison for cell velocity is shown in B and D.
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the Methods. Predicted posterior distributions for param-
eters chemokineExpressionThreshold (A), maxProbabilityOfAdhe-
sion (B), and adhesionFactorExpressionSlope (C) for hour 12
are presented in Fig. 6, with the remaining parameters pre-
sented in Supplementary Fig. S6, available online. For adhe-
sion factor expression, the posterior is positively skewed, only

including parameters that are less than 1.2. Conversely for
maximum probability of cellular adhesion, the distribution is
negatively skewed, suggesting larger values of the parameter
lead to cell responses that replicate those observed in the labo-
ratory. In both cases, the original simulator’s calibrated values
of 1.0 and 0.65 respectively fall within the predicted posterior

Fig. 5. Replicating a temporal sensitivity analysis of parameter influence, published in [28], using latin-hypercube sampling. Partial Rank Correlation
Coefficients for each parameter and measure pair were calculated at six discrete time-points, for both the simulator and emulator.
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distributions [10]. For chemokine expression threshold, the
posterior distribution is normally distributed across the
parameter value range, suggesting a high level of uncertainty
in the value that should be assigned to this parameter. This
supports our previously published sensitivity analyses for
this parameter [5], [10], that determined a perturbation in
parameter value to have no effect on simulated responses.

3.6.2 Multi-Objective Optimization (MOO)

To align cell behaviors to experimental data while maxi-
mizing the emergent area of produced PP, we performed
automated calibration using the MOEA, NSGA-II. To
ensure cell behaviours are preserved, the value space
for each parameter was restricted to that of the posterior
distribution predicted using ABC. Using NSGA-II in con-
junction with our emulator we found 100 parameter sets
that represent the optimal solutions evolved by the
NSGA-II algorithm. Fig. 6D is a Pareto optimal front
showing the optimal trade-off between the three objec-
tives. As patch area exceeds a value of 900 mm2, the accu-
racy of the cell behavior measures decreases, suggesting
900 mm2 is the largest patch area obtainable under base-
line conditions. To verify the accuracy of those Pareto
optimal solutions, parameter inputs were assessed using
the simulator, with no statistically significant difference

between emulator predictions and simulator observations
(Fig. 6E).

4 DISCUSSION

Sophisticated statistical analysis techniques are required to
facilitate translation of simulation outputs into increased
biological understanding. For many biomedical research
applications, simulators may require significant time and
computational infrastructure to evaluate. This resource
requirement not only limits the use of certain statistical
analysis techniques, but is also a significant obstacle in the
embedding of a simulation as a key decision making plat-
form to complement an ongoing laboratory or clinical study.

We illustrate the use of machine learning approaches to
construct emulator tools that rapidly and accurately repli-
cate previously published intensive statistical analyses of an
agent-based simulator of lymphoid tissue formation. To
ease wider application, we extended the functionality of
spartan [5], [28] to permit the emulation of biological simula-
tors. Using this extended tool and the computing resources
specified in the Methods, we replicated a sampling-based
sensitivity analysis that previously required 250,000 simula-
tion executions (each execution taking at least 94 seconds)
in 3.49 seconds, and a variance-based sensitivity analysis,
requiring 682,500 simulation executions, in 6 seconds.

Fig. 6. Enriched Analysis. A-C: Using the emulator to perform an ABC analysis to obtain posterior distributions for parameters chemokineExpression-
Threshold, maxProbabilityOfAdhesion, and adhesionFactorExpressionSlope, that align cell behaviors with laboratory measures. D: A Pareto front of
solutions representing the optimal trade off in performance between cell behaviors and patch area, using NSGA-II. E: Comparison of simulator obser-
vations and emulator predictions of patch area for parameter inputs from Pareto front in D. Wall times stated are using the resources detailed in the
Methods.
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Further, a temporal sensitivity analysis was reproduced that
is consistent with that published previously for all simu-
lated emergent cell behaviors [28].

Including five different machine learning algorithms per-
mits us to contrast performance for this specific case study
and demonstrate the benefits of combining these into an
ensemble. It can be noted in Figs. 2 and S1-S3, available online,
that in this case the neural network is the top performing algo-
rithm, for both velocity and displacement, yielding the lowest
RMSE in all cases. As such this algorithmwas given the high-
est weighting each time an ensemble was generated. Notable
fromFigs. 2 and S1, available online is that the neural network
and gaussian process models are more accurate over the
entire output range for both velocity and displacement, than
the general linearmodel, SVM, and random forest, where pre-
diction accuracy is decreased for lower output values.
Through combining the five algorithms into an ensemble, the
RMSE is lower for both output measures than the neural net-
work in isolation. The weighting of the stronger algorithms
corrects those that have made poorer predictions at the lower
end of the output scale, while better agreement increases the
accuracy at the upper end.

We note that emulator performance in comparison with
the previously published results was improved at hour 72
in comparison with hour 12. At each time-point, responses
are analyzed for cells that are located within 50 mm of a
developing PP. Early in development, at hour 12, there are
fewer immune cells within that vicinity than at hour 72,
skewing the output distributions. A comparison of the per-
formance at both time-points for displacement can be
drawn from Figs. 3, 4, S1 and S3, available online. The lower
number of examples at hour 12 can impact the machine
learning algorithm’s ability to learn the response for the
complete parameter range, in particular for the Generalised
Linear Model, Random Forest, and Support Vector Machine
algorithms. One of the key strengths of generating an
ensemble is that the predictions obtained using a combina-
tion of weighted emulators was found to mitigate this arti-
fact of the training dataset (Fig. 2C), without the need for an
increased number of training data points or adaptive sam-
pling schemes. As PP development progresses over time, a
greater number of cells fall within this range, providing a
larger training data set and a wider variety of behaviors,
improving accuracy of predicted cell displacement for the
aforementioned algorithms. Although mitigated in this
case, it remains important to be aware of how the training
data characteristics may impact predictive performance.

In this application, we generated emulators for each sim-
ulation output response, for each time-point of PP develop-
ment. Given the strong performance statistics in Table 1,
this was sensible, as each emulator could be generated rela-
tively efficiently while ensuring the prediction of one output
was not impacted by the other. Further work could consider
the accuracy of emulators that are trained to predict multi-
ple output responses, to determine if there is a balance
between the level of accuracy such an approach could
achieve and the time taken to generate an emulator for each
response. We also recognize the potential issue to overfit
each algorithm, and provide the user with training statistics
to aid assessment of the performance over both the training
and test sets (Fig. S4), available online, as well as apply cross

fold validation to aim to reduce that risk. It can be noted
from Fig. S4, available online that the RMSE observed in
training is lower for gaussian process models than the other
algorithms, which does suggest some overfitting, although
the performance on the test set is comparable to the algo-
rithm’s complementary set. In addition, we also recognize
there could be an interesting challenge in creating one emu-
lator that accurately predicts cellular responses across the
time period, rather than training one for each time-point.
Given the insights that can be gained from temporal sensi-
tivity analyses (Fig. 5), building one emulator/ensemble
rather than several may yield further performance benefits.

The generation of rapid predictions of simulator output
facilitated the use of heuristic approaches that sequentially
run, evaluate and adapt parameter inputs to yield a desired
set of simulation outputs. For complex models such as the
case study, traditional Bayesian approaches to generate likeli-
hood distributions for each parameter become intractable,
necessitating posterior prediction using approximate Bayes-
ian computation approaches. The generated posterior distri-
bution provides capacity to sample parameter values from a
distribution that leads to a desired response, rather than fix a
single value to each parameter. Such an approach could see
an ensemble used in place of an original simulator in assess-
ing what kind of variability might occur within a patient
cohort, informing the statistical design of a trial, or assessing
what proportion of patientsmay respond favorably to a thera-
peutic intervention. It may then be possible to infer summary
population characteristics and responses via the outputs of
several ensembles each representing one individual. Here our
ABC analysis highlighted a high level of uncertainty in the
parameter chemokine expression threshold, suggesting that
the parameter is poorly constrained. The distribution of the
parameter adhesion factor expression was tightly constrained
across a narrow range of values while the distribution for
maximum probability was positively skewed. All three
results are consistent with results from previously published
sensitivity analyses that suggested the influence of each
parameter value at this time-point [10], [25]. In those previous
analyses, only a local analysis indicated the extent to which a
parameter could be perturbed before simulator behavior was
significantly changed [10]. However a local analysis holds all
other parameters to a fixed value, failing to account for non-
linear interactions between a parameter and it’s complemen-
tary set. A posterior distribution now indicates the range over
which each parameter may exist, taking all other parameters
into account.

Through multi-objective optimization we obtained a
population of parameter configurations that gave rise to a
desired simulator output. In our previous studies we
focused on calibrating the simulator such that the emergent
cell behavior properties of velocity and displacement were
consistent with those observed in the laboratory [25]. The
ensemble provides capacity to address further interesting
research questions that may not have been possible previ-
ously. Here we were interested in determining features of
the parameter space that give rise to those cell behavior
responses, while maximizing the area of the PP that
develop. This reveals the optimal trade off between obtain-
ing a large patch area and decreasing the accuracy of simu-
lated cell motility. This method is useful in determining
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how well a simulation captures each output response, and
how it may be necessary to compromise on the accuracy of
some output responses to improve the accuracy of others.
Aside from calibration, MOEA can be employed evaluate
competing models, with the advantage that it can assess
several output metrics simultaneously, identifying the opti-
mal trade-off in performance against each [15].

Emulation can provide significant added value to
simulation-focused biomedical research programmes. Thro-
ugh rapid identification of key mechanisms and pathways,
emulators can inform experiments to quantify sensitive
parameters, and identify sections of the simulator that are
highly influential and may require refinement. In the pre-
sented case study presented, we examined cell behaviors in
ex vivo culture at hour 12 [25]. If an emulation approach had
been used to perform the temporal sensitivity analyses ear-
lier, this may have directed additional experiments towards
later time-points, where the analyses suggest a switch from
an adhesion driven to chemokine mediated process. The
application of emulation may expedite simulator develop-
ment by permitting rapid prototyping and identification of
errors in model design, parameterization, and software
infrastructure. Testing an emulation of a simulator avoids
identification of errors late in the development process that
could incur significant time penalties, especially when run-
ning time-intensive statistical analyses.

5 CONCLUSION

Issues of time and resource limitations incurred in simulator
analysis can be addressed by integrating machine learning
approaches within the process of simulator development,
analysis, refinement, and translation. We illustrate the
exploitation of five machine learning algorithms in develop-
ing emulators that rapidly and accurately replicate intensive
statistical analyses performed previously, and through gen-
eration of an ensemble permit enriched understanding of
behaviors through performance of additional analysis rou-
tines. An extended software tool, Spartan (https://www.
york.ac.uk/ycil/software/spartan/) is provided capable of
expediting the translation of simulator-derived insights into
a better understanding of the design, organization, dynam-
ics, and function of biological systems.
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