
Simulating the Large-Scale Erosion
of Genomic Privacy Over Time

Michael Backes, Pascal Berrang , Mathias Humbert , Xiaoyu Shen , and Verena Wolf

Abstract—The dramatically decreasing costs of DNA sequencing have triggeredmore than amillion humans to have their genotypes

sequenced. Moreover, these individuals increasinglymake their genomic data publicly available, thereby creating privacy threats for

themselves and their relatives because of their DNA similarities. More generally, an entity that gains access to a significant fraction of

sequenced genotypesmight be able to infer even the genomes of unsequenced individuals. In this paper, we propose a simulation-based

model for quantifying the impact of continuously sequencing and publicizing personal genomic data on a population’s genomic privacy.

Our simulation probabilistically models data sharing and takes into account events such asmigration and interracial mating.We

exemplarily instantiate our simulation with a sample population of 1,000 individuals and evaluate the privacy under multiple settings over

6,000 genomic variants and a subset of phenotype-related variants. Our findings demonstrate that an increasing sharing rate in the future

entails a substantial negative effect on the privacy of all older generations. Moreover, we find that mixed populations face a less severe

erosion of privacy over time thanmore homogeneous populations. Finally, we demonstrate that genomic-data sharing can bemuchmore

detrimental for the privacy of the phenotype-related variants.

Index Terms—Genomic privacy, simulations, inference, graphical models

Ç

1 INTRODUCTION

SINCE the first sequencing of the human genome in 2001, at
least a million humans have had their DNA genotypes

sequenced [1]. The rapidly decreasing costs of DNA
sequencing will ensure that this number keeps rising, pre-
sumably at a much higher pace than ever before. Moreover,
individuals increasingly share their genomic data publicly,
e.g., to help medical research. For example, there are already
thousands of genotypes available on the OpenSNP plat-
form [2]. In addition to such open platforms, popular geno-
typing service providers such as 23andMe already possess
millions of individuals’ genotypic data and are sharing them
with third parties such as pharmaceutical companies [3], [4].
Furtermore, portable sequencing sensors such as minION
promise to pioneer fast and pervasive DNA sequencing [5],
[6]. Finally, the whole genomes of significant subsets of indi-
viduals from specific populations are now available [7].

This increasingly comprehensive, widely available geno-
mic information bears great promise for medical research
and for becoming the key enabler for highly personalized
medical treatments. But it also comes with unprecedented
privacy risks not only for the individuals that sequenced

their DNA [8], [9], [10], but also for their relatives because
of their DNA similarities [11]. Hence, we, in particular,
encounter the problem that even the privacy of those indi-
viduals who decide not to sequence their DNA is affected
by other sequencings, and that an entity that gains access to
a significant fraction of genomes from a given population
might be able to probabilistically infer the unsequenced
genomes from publicly available data.

The goal of this paper is to simulate the erosion of geno-
mic privacy over time. More precisely, we aim at quantify-
ing the effect of continuous large-scale sequencing of
genotypes on the privacy of a population under various
realistic scenarios. First of all, we evaluate the impact of
individuals sharing their genomes on the privacy of others
based on a probabilistic population model. Second, we
assess the influence on the genomic privacy of geopolitical
events, such as migration, and of sociological parameters
such as the fraction of interracial mating. To the best of our
knowledge, this is the first work to assess the large-scale
erosion of genomic privacy over time.

We run our simulations on a sample population of 1,000
individuals distributed over five generations. First, we eval-
uate the evolution of genomic privacy on 6,000 genomic var-
iants located on chromosome 19. We note that the global
population’s genomic privacy erodes superlinearly in the
sharing rate, i.e., the sharing behavior of others has a detri-
mental effect on the privacy of everyone. We also observe
that an increasing sharing rate of genomic data in the future
can also have a substantial negative effect on the privacy of
all previous generations. Moreover, we find that mixed pop-
ulations, due to their large genomic diversity, face a less
severe erosion of genomic privacy over time than more
homogeneous populations. However, the average genomic
privacy level is already quite low without any observed
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data (baseline). This can be explained by the fact that most
of the population carries the same variants in general.
Finally, focusing on a subset of sensitive variants (e.g., cor-
related with a disease), we observe that, for most of these
variants, the baseline genomic privacy is much higher–
success rate is lower–than the one with all variants of chro-
mosome 19. As a consequence, the decrease in privacy
induced by genomic-data sharing is much more significant
in the case of these very sensitive variants, calling for a
more cautious behavior regarding individual data sharing.

The paper is organized as follows. In Section 2, we intro-
duce the various population parameters used throughout
the paper, as well as the adversarial model. In Section 3, we
describe how we simulate a large population, and how we
efficiently infer hidden genomic data in this population. In
Section 4, we present different realistic instantiations of our
population model and their corresponding results. We
review the related literature in Section 5 before concluding
in Section 6.

2 POPULATION AND THREAT MODELS

We consider a probabilistic population model over a vari-
able number of k generations. Starting with generation 0,
which consists of nf individuals–so called founders–, the
individuals then mate, have children and share their
genome with a certain probability. We introduce, hereafter,
all parameters used in our simulations.

Birthrate. The number of children of a couple in our pop-
ulation is randomly determined based on a Poisson distri-
bution with mean � (known as the birthrate). The Poisson
distribution is used rather than the Gaussian distribution
because it generates discrete and positive values only.

Sharing Genomic Data. gðiÞ represents the proportion of
individuals in the ith generation of the population who
have their DNA sequenced and who share it online or with
strong attackers such as prominent direct-to-consumer com-
panies having access to millions of genotypes in their data-
base (e.g., Ancestry). Since it is most likely that this
proportion will increase in future generations, we allow
instantiations of this parameter to depend on the actual gen-
eration. The proportion may range from gðiÞ ¼ 0 if no indi-
vidual has his/her DNA sequenced and shared to gðiÞ ¼ 1
if everyone in this generation shares his/her genomic data.

Mating Behavior. Our model forbids mating between indi-
viduals up to kinship degree 2, including sisters, brothers,
and cousins. To account for interracial mating, a represents
the probability of an individual mating an individual from
a different ethnical group. So, a ¼ 0 means there is no inter-
racial mating, whereas a ¼ 0:5 means that chances are
equally high that the partner is either randomly chosen
from the individuals of the same ethnicity or from the indi-
viduals of any other ethnicity. As we focus in this work on
autosomal chromosomes (non-sexual chromosomes), we do
not distinguish males and females when selecting partners,
for simplicity. This does not have any impact on the privacy
of all non-sexual chromosomes.

Immigration. The last but not least relevant population
parameter we explore is the degree of population diversity
stemming from immigration. d represents the immigration
rate, that we define as the proportion of immigrants per
generation (relative to the current generation’s population).

Adversarial Model. We assume the adversary can gain
access to a significant fraction of sequenced genomes, be it
because they are publicly available or because of access to
the databases of direct-to-consumer testing companies such
as 23andMe or Ancestry (which own millions of genotypes
already). Moreover, we assume the adversary can gather
background knowledge on the family relationships, e.g.,
from genealogical databases or online social networks.

3 COMPUTATIONAL MODEL

In order to assess the genomic privacy erosion at large, we
rely on simulations, since this is the standard approach for
complex models of population dynamics. It ensures scal-
ability and easy adaption and extension. The simulations
are split into two separate steps, namely (1) generating the
population and (2) calculating the extent to which the unob-
served genomes of the population can be inferred from the
observed genomic data.

3.1 Generating Populations

The first step aims at generating a realistic population and
its genomes, based on the mating, birthrate, and immigra-
tion parameters presented in the previous section. To this
end, we construct a large pedigree of k generations based
on nf founders in the 0th generation by successively gener-
ating future generations. For each generation except the first
(i.e., i > 0), we add immigrants to our population accord-
ing to the immigration rate d.

Then, we choose partners for as many individuals as pos-
sible. The partner is randomly chosen from the set of individ-
uals from the same origin (excluding those up to relationship
degree 2) with probability 1� a and from the set of individu-
als of other ethnicities with probability a. Each pair of indi-
viduals has c children, where c is randomly sampled from
the Poisson distribution with mean �. Following the Mende-
lian inheritance laws, we sample the genome of each child
independently from the genomes of the parents. More pre-
cisely, we first randomly pick one of the two alleles at a given
position of themother, thenwe repeat this uniform sampling
for the father, and finally merge the two resulting alleles
together to derive the child’s base pair at this position. We
repeat this process over the whole varying (i.e., polymor-
phic) positions in the genome, independently from any other
position. We do not take into account the linkage disequilib-
rium structure when creating the next generation’s off-
springs. This modeling assumption allows us to generate
populations of thousands of individuals very efficiently.

Fig. 1 shows a sample pedigree of k ¼ 5 generations
based on nf ¼ 200 founders. If we assume that the founders
are of different ethnicities than the immigrants, it can be eas-
ily recognized that a > 0, because there are immigrants
mating with descendants of the founders. Note that, since
the illustration only shows a subset of all individuals, some
arrows have been omitted.

3.2 Inferring Hidden Genomes

In the second step, we assume that a certain percentage of
people in the whole population get their genomes sequenced,
and that they release them according to the parameter gðiÞ.
We thus randomly select a fraction of gðiÞ � jYij individuals
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from the population Yi at the ith generation. These selected
genomes are then assumed to be observed by the adversary.
We represent these observed genomic data with the random
variableXobs.

In order to efficiently infer the rest of the population’s
genomes (assumed to not be disclosed) based on the
observed genomes, we rely upon the belief propagation algo-
rithm (also called message-passing or sum-product algo-
rithm). This algorithm propagates evidence (i.e., observed
genomes) to other variables (i.e., unobserved genomes) in a
Bayesian network encompassing the dependencies between
the individuals’ genomes [12], [13], [14]. Bayesian networks
are probabilistic graphical models that allow to represent
conditional (in)dependencies between random variables.
These models are especially well suited for pedigrees as
inheritance laws induce conditional independencies between
someone’s genome and all his ancestors given his parents’
genome [15], [16].

Assuming P ðXÞ represents the joint probability distribu-
tion of all them genomic variants of n individuals (where n is
the size of the population) in our simulation, inference is in
general exponential in n�m, which is computationally
intractablewhen n andm are large. However, due to theMen-
delian inheritance laws, and under the assumption that the
variants are independent of each other,we can split this global
joint distribution into smaller local probability functions

P ðXÞ ¼
Y

gi2G

Y

rj2founders
P ðXi

jÞ
Y

rk2Rnfounders
P ðXi

k jXi
mðkÞ;X

i
fðkÞÞ; (1)

where G is the set of genomic variants, R is the set of indi-
viduals in the population, andmðkÞ and fðkÞ are the mother
and the father of individual rk.

This factorization allows us to deal with much smaller
probability distributions, represented by n nodes in m inde-
pendent Bayesian networks. As shown in Fig. 2a, in every
Bayesian network, the n (equal to 9 in the figure) nodes are
connected to each other by directed edges representing the
conditional probability P ðXi

k jXi
mðkÞ;X

i
fðkÞÞ given by Mende-

lian laws. The concrete values of this conditional probability
are depicted in Table 1. Each child node in the graph has
two parent nodes, exactly like in real biological life. Only
the founders have no parent in the Bayesian network. For
those, the probability of each variant is given by the prior
probability P ðXi

jÞ. If the value Xi
j is not observed (i.e.,

shared) this probability is typically given by the minor allele
frequencies. Concretely, assuming the minor allele fre-
quency of SNP gi in a given population is equal to fi,

the prior probability is defined as: P ðXi
j ¼ 0Þ ¼ ð1� fiÞ2,

P ðXi
j ¼ 1Þ ¼ 2fið1� fiÞ, and P ðXi

j ¼ 2Þ ¼ f2i .

Because of the sibling relationships, the Bayesian net-
work representing the general population contains undi-
rected cycles. In order to remove these loops, we transform
the original Bayesian network into a junction tree, or clique
tree, as shown in Fig. 2. It is worth noting that, although the
step from the moral graph to the clique graph is in general
computationally hard, in our case, the cliques are straight-
forwardly created by merging each child node with its two

Fig. 1. A sample population annotated with the different parameters of our model.

Fig. 2. Transformation of a Bayesian network into a junction tree: Exam-
ple with a three-generation pedigree containing four grandparents, two
parents, and three children. (a) Original Bayesian network and its nodes’
probabilities (whose product is equal to the global distribution shown in
Formula 1). (b) Moral graph obtained by transforming all directed edges
into undirected ones, and by connecting parents together. (c) Clique
graph obtained by clustering nodes belonging to the same cycle
together. (d) Junction tree constructed by forming a maximum spanning
tree of cliques.
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parent nodes. Hence, every child and its parents form a cli-
que of size 3, as shown in Fig. 2c.

On the resulting junction tree, the belief propagation algo-
rithm converges in only two iterations: (i) passing messages
upwards, from the leaves of the tree to the root, and (ii) pass-
ing messages downward, from the root clique to the leaves.
Messages are computed according to the Pearl’s belief propa-
gation rules, similarly to Formulas (31)-(33) depicted in [13].
The computational complexity of the belief propagation algo-
rithm is linear in the number of nodes n, in the number of var-
iants m, and exponential in the maximal clique size (also
called treewidth). This size is equal to 3 in our case, which is
negligible compared to n and m. Therefore, running belief
propagation on the junction tree enables us to infer the whole
population’s genomeswith complexity linear in n�m.

Note that the assumption of variants being independent
of each other can be justified as we assume here that indi-
viduals either release all their genomic data or none. Thus,
considering linkage disequilibrium—i.e., dependencies
between genomic variants—would not bring much more
inference power to the attacker. As the evaluation of [17]
shows, the LD correlations have lower impact on privacy
when a larger subset of the targeted SNPs are observed in
relatives’ genomes. We can thus assume that, by observing
the full set of considered SNPs of anyone sharing his
genome, the LD correlations do not help the adversary
improve his inference. This assumption was also made in
previous works [18], [19], and it allows us to significantly
reduce the computational complexity of our algorithm and
make it tractable for thousands of variants and one thou-
sand individuals in the considered population.

The belief propagation algorithm eventually outputs the
marginal posterior probabilities of all individuals at every
genomic position given the observed genomes, i.e., P ðXi

j j
XobsÞ for all gj 2 G and ri 2 R. As suggested by Wagner [20],
we rely upon the success of the inference attack, P ðXi

j ¼
xi
j jXobsÞ, where xi

j is the actual value of the variant, as a
metric to measure privacy. More precisely, the success rate
quantifies the loss of genomic privacy. When we consider
multiple variants, we average the success rate over all con-
sidered variants. For instance, to measure the success rate of
an adversary inferring all variants of an individual rj, we
rely upon the following formula:

1

jGj
X

gi2G
P ðXi

j ¼ xi
j jXobsÞ: (2)

Fig. 1 exemplarily shows a sample population with indi-
viduals who have shared their genomes. In this illustration,

we depict a sharing rate that increases from generation to
generation. In our simulations, we use the genomic data of
the grey nodes to infer the genomes for the rest of the popu-
lation (white nodes) using our belief propagation algorithm.

4 SIMULATION RESULTS

In this section, we first introduce concrete instantiations of
our parameters, and then present the most interesting find-
ings of our experiments.

4.1 Model Instantiations

For all our simulations, we set the birthrate equal to the offi-
cial U.S. rate (2012), i.e., � ¼ 1:88. As for the sharing rate,
we consider two different settings. The first instantiation
assumes a uniform sharing rate gðiÞ ¼ gglobal for all genera-
tions. We also study the case where younger generations
share more data than older ones. In order to simulate this
behavior, we assume a linearly increasing sharing rate gðiÞ ¼
i�jY j
10�jYi j gglobal, where jY j is the size of the whole population.

This is equal to i�k
10 gglobal if the size of the population remains

stable over generations. Of course, gglobal has to be set accord-
ing to k such that gðiÞ never exceeds 1.

Now, we present the various combinations of the other
parameters and the underlying populations we consider.
We label the combinations using the following scheme:

hbase populationi � hdiI � haiM � hsharing rateiU;

hsharing ratei is set to either uni(form) or lin(ear), as defined
above. The base population can either be CEU, which are
Americans with European ancestors, or MIX, which are
Americans with mixed ancestors (70 percent European,
13 percent Mexican, 12 percent African, 3 percent Chinese,
and 2 percent Bangladeshi ancestors). We construct our dif-
ferent populations from founders (generation 0) with real
genomic data gathered from the 1,000 Genomes Project [21].
CEU-0I-0.5M-uni:

Homogeneous CEU population, no immigration, uni-
form sharing rate.

CEU-0I-0.5M-lin:
Homogeneous CEU population, no immigration, linear
sharing rate.

MIX-0I-0.5M-uni:
Mixed American population, no immigration, uniform
sharing rate.

MIX-10I-0.5M-uni:
Mixed American population, 10 percent immigration
rate per generation, random mating, uniform sharing
rate. The immigrants are randomly chosen from a pop-
ulation that consists of 10 percent CEU, 10 percent ACB
(African Caribbeans in Barbados), 40 percent JPT (Japa-
nese in Tokyo), 40 percent CLM (Colombians from
Medellin).

MIX-10I-0.1M-uni:
Mixed American population, 10 percent immigration
rate per generation, low interracial mating, uniform
sharing rate. The immigrants are randomly selected as
above.

CEU-xI-0.5M-lin:
Homogeneous CEU population, x immigration rate per

TABLE 1
Conditional Probability Table of P ðXi

k jXi
mðkÞ;X

i
fðkÞÞ Appearing

in the Right-Hand Product of Formula (1)

Father

Xi
fðkÞ = 0 Xi

fðkÞ = 1 Xi
fðkÞ = 2

Mother
Xi
mðkÞ=0 (1,0,0) (0.5,0.5,0) (0,1,0)

Xi
mðkÞ=1 (0.5,0.5,0) (0.25,0.5,0.25) (0,0.5,0.5)

Xi
mðkÞ=2 (0,1,0) (0,0.5,0.5) (0,0,1)

The vth element in each of the table’s triplet represents P ðXi
k ¼ vjXi

mðkÞ;X
i
fðkÞÞ.
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generation (varying in the experiment), random mat-
ing, linear sharing rate. The immigrants are picked
from an EAS (East Asian) population, since this popu-
lation differs most from the CEU population for the
SNPs highlighted in our paper.

Note that we make use of Python to sample the different
populations, and of the Bayes Net Toolbox (implemented in
Matlab) for the belief propagation algorithm [22].

4.2 Results

We provide here the most interesting findings of our simu-
lations, using first 6,000 SNPs on chromosome 19 (Fig. 3)
and then a set of 10 SNPs that are highly variable among
populations and are linked to certain phenotypes (Fig. 4).
We select nf ¼ 200 founders from the 1,000 Genomes
Project and generate 4 additional generations from these
individuals, generating a population of around 1,000 indi-
viduals. We sample 10 different populations for every set-
tings, and we generate 10 different subset of individuals
sharing their genome for a given sharing rate, and average
the results.

Fig. 3a depicts the success rate with respect to the minor
allele frequencies (MAF) and the sharing rate. The minor
allele frequency is defined as the frequency at which the
least common allele occurs in a given population. As
expected, the success rate monotonically increases with the
sharing rate. Moreover, we see that the absolute success

increase is higher for SNPs with high MAFs. This holds true
since inferring the SNP with high chance is easier if the
major allele occurs more frequently within a population by
just relying on (public) MAF statistics. It is worth noting
here that most of the 6,000 SNPs we use have a low to very
low minor allele frequency: Out of 6,000 SNPs, 5,165 have
their MAFs between 0 and 0.05, and 228 between 0.05 and
0.1. The other bins (from 0.1 to 0.5) in Fig. 3a only contain
between 61 and 102 SNPs. This implies that most of the
SNPs on chromosome can be inferred by relying only on the
MAFs with high success rate.

Fig. 3b shows the evolution of the success rate, averaged
over all 6,000 SNPs, for increasing sharing rate. We observe
that the baseline sucess rate is already very high (from
around 0.92 to 0.93) for all scenarios, due to the large num-
ber of SNPs with low MAFs, confirming our previous find-
ing. Moreover, the homogeneous CEU population gives
slightly worse privacy provision than the more mixed pop-
ulations. However, the interracial mating rate does not have
any significant impact on the average privacy. Note that the
MIX-10I-0.1M-uni curve is not visible, as it is similar to the
MIX-10I-0.5M-uni curve.

Fig. 3 shows the impact of an increasing sharing rate of
younger generations. The x-axis sharing rate is gglobal and the
founding generation never shares anything. This generation’s
privacy is nevertheless slightly affected by descendants’ shar-
ing behavior. We clearly observe the privacy erosion for

Fig. 3. Evolution of privacy with simulations using 6,000 SNPs on chromosome 19.

Fig. 4. Evolution of privacy with simulations using individual SNPs associated with phenotypes.
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younger generations when sharing increasingly more geno-
mic data.

Next, we focus on a small subset of 10 sensitive SNPs that
are linked to various phenotypes, such as diseases, and are
listed as “popular” on SNPedia [23]. SNPedia is a website
that aggregates current scientific knowledge on the relation-
ship between SNPs and phenotypes. These SNPs consist of
2 SNPs associated with the Alzheimer’s disease, 2 associ-
ated with eye color, 2 associated with type-2 diabetes, 1
associated with empathy, 1 associated with muscle strength,
1 associated with lactose intolerance and 1 associated with
coronary heart disease. It is worth noting that, since some of
these SNPs are not part of the 1000 Genomes dataset, we
simulate the missing ones by sampling artificial SNPs with
the allele frequencies provided on dbSNP [24].

First of all, we notice in Fig. 4a that, despite a very homoge-
neous population, the baseline success rate is much smaller
(around 0.4 for 7 out of 10 SNPs) with these sensitive SNPs
than the average over all SNPs on chromosome 19. We also
notice in this figure a superlinear increase of the success rate
with respect to the sharing rate, for all 10 SNPs. Specifically, we
observe that the success rate jumps from 0.4 to 0.8 for 7 out of
10 SNPs if half of the population decides to share his genome.

One of the most interesting parameters for individual
SNPs is the immigration rate. Since there are sometimes
large differences in the allele frequencies of individual
SNPs between populations, genomic privacy can be highly
affected by immigration. In general, there is no clear trend
on how immigration influences the inference success of
individual SNPs: immigration can both increase or decrease
the success rate depending on the genetic diversity it brings.
Fig. 4b shows the influence of immigration from Eastern
Asia (EAS) onto a SNP associated with lactose intolerance.
If the amount of immigrating individuals increases, also the
inference success of this SNP increases, since its minor allele
frequency in the immigrating population is much smaller
than the initial (CEU) population. As this population
increases the genetic homoeneity, it also increases the suc-
cess rate, and thus decreases the overall privacy.

On the other hand, Fig. 4c displays the influence of the
same immigrating population onto a SNP associated with
eye color. Here, the new population brings more genetic
diversity into the population, which leads to an enhance-
ment of privacy. Out of the 10 SNPs, 4 fall into the latter cat-
egory of SNPs where more immigration yields a better
global privacy level in the end.

5 RELATED WORK

Inference algorithms based on graphical models have been
previously proposed in the context of pedigree analysis.
Directed acyclic graphs such as Bayesian networks or hid-
den Markov models have been proposed to represent multi-
locus pedigrees [16]. Fishelson and Geiger propose a
Bayesian network framework to represent linkage analysis
problems, and they compute exact multipoint likelihood by
relying on variable elimination [25]. Lauritzen and Sheehan
present Bayesian network models, and the detailed junction
tree algorithm in the context of genetic analyses [15].

Approximate inference techniques, based on Markov
chain Monte Carlo methods, have also been proposed for
genetic analyses in the case of complex pedigrees [26], [27],

[28]. All the aforementioned models were developed before
whole-genome sequencing became affordable, and they
were essentially used to infer hidden genotypes given
observed phenotypes (such as diseases) in a family. More
recently, researchers have proposedmethods to infer hidden
genotypic data given other observed genomic regions. Geno-
type imputation relies on intra-genome correlations to com-
plete missing SNPs based on observed genotyped data [29].
Another approach relies on low-resolution genotypes and
identity-by-descent genomic regions to infer high-density
genotypes in pedigrees [30]. Finally, Kirkpatrick et al. pro-
pose to rely onGibbs sampling for efficiently inferring haplo-
types from genotypes in complex pedigrees [31]. The latter
approach is approximate but enable to take into account up
to 59 individuals in the inference process.

None of the aforementioned related papers addresses pri-
vacy issues. However, there has been some previous work on
interdependent risks in genomic privacy [11], [17], [19]. Hum-
bert et al. have first proposed to rely on graphical models and
belief propagation to quantify kin genomic privacy [11]. In
particular, they take into account relatives’ genotypes, famil-
ial and intra-genome correlations, to infer hidden genomic
data and quantify privacy of relatives. Then, they make some
independence assumptions between the SNPs within the
same genotype, and study the interaction between family
members with different preferences regarding the sharing of
their genome, and they derive the resulting impact on every-
one’s privacy [19]. Finally, the authors extend their graphical
model to Bayesian networks that account for phenotypic
information in addition to genotypes [17]. They also show
experimentally that the discrepancy in inference power with
and without intra-genome correlations becomes negligible
when the adversary gets access to the whole range of targeted
SNPs of familymembers sharing their genomic data.

All aforementionedwork on kin genomic privacy focused
on a single family, over three generations, considering up to
11 individuals in total. In this work, by using similar models
and methods, such as belief propagation, we have shown
that the inference algorithm can scale to one thousand indi-
viduals and thousands of SNPs. Moreover, by making use of
several population parameters, we simulate various popula-
tions and thoroughly evaluate how immigration, mating and
data-sharing behaviors affect genomic privacy.

6 CONCLUSION

To the best of our knowledge, this work is the first to pro-
pose a framework for predicting the risk of privacy erosion
for large populations at a relatively long term. Based on a
probabilistic population model, we simulate and quantify
the effect of large-scale availability of personal genomic
data on the privacy of a large population.

Our findings show that indeed, an increasing proportion of
individuals uploading their genomic data threatens not only
the privacy of these persons, but also the privacy of the gen-
eral population. Moreover, we observe that an increasing
sharing rate of genomic data in the future can also have a sub-
stantial negative effect on the privacy of all older generations.
We find thatmixed populations can slow down the erosion of
genomic privacy over time compared to more homogeneous
populations. This effect can be mostly explained by the larger
genomic diversity inmixed populations.

1410 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2018



Considering a scenario in which nobody shares its geno-
mic data (baseline), the average genomic privacy level is
already quite low, since most of the population carries the
same variants in general. Thus, individuals sharing their
genome especially affects the genomic privacy of variants
that are varying a lot within the population. Such variants
are often connected to sensitive information such as diseases.
Focusing on a subset of such sensitive variants, we observe
that, for most of them, the baseline genomic privacy is much
higher than the one with all variants of a specific chromo-
some. Moreover, the effect of sharing the genome is much
higher on the genomic privacy of those variants than on the
global privacy. We thus conclude that such variants should
be cautiously handled, and, if possible, not shared at all.

Our work demonstrates that more research about the
implications of large-scale availability of personal genomic
data is necessary. Future directions could, for example,
include an equational, probabilistic form of a simpler popu-
lation model. Another promising direction is to incorporate
multiple populations and regions with different sharing
rates and parameters (e.g., different continents), and more
sophisticated immigration models. Finally, other types of
biomedical data (such as microRNA or gene expressions)
are becoming increasingly available, it would be crucial to
evaluate the privacy erosion stemming from sharing those
data as well [32], [33], [34].
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