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Abstract

Copy number variation (CNV) is a type of genomic/genetic variation that plays an important role 

in phenotypic diversity, evolution, and disease susceptibility. Next generation sequencing (NGS) 

technologies have created an opportunity for more accurate detection of CNVs with higher 

resolution. However, efficient and precise detection of CNVs remains challenging due to high 

levels of noise and biases, data heterogeneity and the “big data” nature of NGS data. Sequence 

coverage (readcount) data are mostly used for detecting CNVs, specially for whole exome 

sequencing data. Readcount data are contaminated with several types of biases and noise that 

hinder accurate detection of CNVs. In this work, we introduce a novel preprocessing pipeline for 

reducing noise and biases to improve the detection accuracy of CNVs in heterogeneous NGS data, 

such as cancer whole exome sequencing data. We have employed several normalization methods 

to reduce readcount’s biases that are due to GC content of reads, read alignment problems, and 

sample impurity. We have also developed a novel efficient and effective smoothing approach based 

on Taut String to reduce noise and increase CNV detection power. Using simulated and real data 

we showed that employing the proposed preprocessing pipeline significantly improves the 

accuracy of CNV detection.
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I. INTRODUCTION

Copy number variations (CNVs) are a critical and common source of variation in the human 

genome. A deletion or amplification of a segment of a genome (ranging from a few hundred 
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base pairs to a few mega base pairs) is defined as a CNV; and compared to single-nucleotide 

polymorphisms (SNP), CNVs incorporate a greater proportion of the genome (4.8–9.5% of 

the genome) [1]. Recently CNV has gained considerable interest as a type of genomic 

variation and evidences have shown associations between CNVs and many diseases 

including cancer [2]. With the arrival of next generation sequencing technologies and due to 

importance of detecting CNVs, many CNV detection tools have been developed; however it 

has been shown that the agreement among them on detected CNV segments is low and they 

generate false positives [3]. One of the reasons that CNV detection algorithms detect false 

CNV segments is due to noise and biases of sequencing data. Employing effective and 

efficient denoising and normalization methods can significantly improve the detection 

accuracy of CNV detection algorithms. The main aim of this study is developing an effective 

preprocessing method to reduce noise and biases for better detection of CNVs, especially in 

cancer, using next generation sequencing (NGS) data.

NGS is a popular strategy for genotyping and by generating hundreds of millions of short 

reads in a single run can provide a comprehensive characterization of CNVs [4]. NGS 

attempts to consolidate the advantages of Sanger sequencing and SNP array technologies. 

The greatest benefit of NGS over conventional Sanger sequencing is the capacity to 

sequence a huge number of reads in a single run at a low cost [5]. Nonetheless, due to short 

read lengths and the complexity of the genome, NGS technologies have introduced many 

new challenges for the analysis of CNVs [6]. In addition, detection of CNVs from NGS data 

is relatively new and there is no commonly agreed method for CNV detection.

Recently, whole-genome sequencing (WGS) and whole-exome sequencing (WES) have 

become primary strategies for NGS technologies in CNV detection and for studying human 

diseases. Several studies have suggested to use WGS data for CNV detection. Since WGS is 

considered too expensive for research involving large cohorts, cost-effective WES has 

become the primary strategy for sequencing, especially in biomedical research such as 

cancer studies. Because of the abundance and popularity of WES data for detecting 

clinically relevant aberrations in cancer, in this study we focus on WES data. WES data has 

several technical issues. Unlike WGS, WES requires PCR amplification that leads to more 

GC bias. Also, hybridization in WES causes low or no coverage in some regions of the 

genome, which introduces more mappability bias. These issues need to be considered for an 

appropriate CNV detection method for WES data [7].

There are several approaches for detecting CNVs using NGS data [8]. Among them, the read 

depth (RD) approach is the most applicable method especially for WES data. The RD based 

approaches assume that the density of short reads is locally proportional to the copy number 

[9]. In the RD based approach, mostly a non-overlapping sliding window is used to count the 

number of short reads that have overlap with the window. These readcount values are used to 

identify CNV regions [3]. The correlation between the readcount value and copy number of 

a specific genomic region is the primary idea behind the RD based CNV detection methods. 

However, existence of noise and biases distorts the relationship between the readcounts and 

copy numbers that introduces challenges for CNV detection. As a result, for having a precise 

CNV detection, these biases and noise should be removed from readcount data before 

detecting CNVs.
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In general, CNV detection methods consist of two major parts: preprocessing and 

segmentation. The aim of the preprocessing part is reducing noise and biases for better 

identification of CNV regions in the segmentation part. The focus of this work is on the 

preprocessing part. There are several types of noise and biases for NGS data: GC bias, 

mappability bias, sample contamination, sequencing noise and experimental noise.

GC bias has been introduced for the first time in [10]. It has been observed that regions with 

low or high GC content have low readcounts compared to other regions. In fact, there is a 

unimodal relationship between readcounts and G and C bases in a genome [11]–[14]. GC 

bias is neither linear nor consistent among different samples. Several methods have been 

proposed to model and remove GS bias [15], [16], [17]. The most popular approach for 

removing GC bias is the Loess regression method [13], [15], [18]. The Loess regression 

method removes reads from regions with very high coverage compared to the expected value 

of coverages and will add reads to regions where very few reads are observed.

Furthermore, a huge number of NGS reads cannot be uniquely mapped to the reference 

genome due to short length of reads and the presence of repetitive regions within the 

reference genome. Mutations and sequencing errors can lead to incorrect mapping of short 

reads as well. These errors cause ambiguities in the alignment process, resulting in 

mappability biases [19]. To remove mappability biases in cancer data, CNV detection 

methods mostly use the number of uniquely mapped short reads in tumor and matched 

normal samples and apply a Loess regression method [20], [21].

A very challenging problem in CNV detection is detecting focal (narrow) CNV regions 

under extreme noise [22], [23]. A few CNV detection tools have employed denoising 

methods such as the discrete wavelet transform (DWT) [24] and Bayesian approaches [25], 

[26] for noise cancelation. Noise can corrupt readcount data, which can be seen as readcount 

signal, and signal-to-noise ratios heavily influence the accuracy of CNV detection. If the 

level of noise in readcount signal is high, CNV detection algorithms are likely to detect 

many false positives and miss focal aberrations. Signal processing techniques, which have 

been long used for effective noise cancellation, can be extremely useful for improving CNV 

detection by identifying and removing noise from the CNV readcount signals [27]–[29].

Complexity of tumor samples imposes another challenge to CNV detection. Tumor samples 

are heterogeneous and contaminated by normal cells. In other words, sequencing tumor 

samples provides reads from the admixture of normal and sub-clonal cancer cells [18]. 

Tumor contamination has been evaluated by visual examination of tumor cells by a 

pathologist or through image processing [30]. Recently, some computational methods have 

been introduced to estimate tumor contamination and to use it for normalizing readcount 

data in CNV detection [18], [31]–[33].

In this work, we introduce a new pipeline for preprocessing readcount data in cancer data for 

detecting CNVs more accurately. The pipeline includes filtering outlier readcounts, 

removing GC and mappability biases, reducing noise, and normalizing for tumor purity. Due 

to the important role of noise cancellation in improving CNV detection power, we have 
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developed a new efficient and precise denoising method based on a signal processing 

technique, Taut String.

II. METHOD

The proposed preprocessing pipeline can be divided into 5 blocks: 1) Filtering outlier 

readcount data; 2) Removing GC bias from both tumor and normal readcount data; 3) 

Calculating the ratios of tumor and normal readcounts for each genomic window and 

removing mappability bias; 4) Eliminating noise from the normalized readcount data; and 5) 

Eliminating the effects of the tumor contamination by normalizing the denoised ratios. The 

outputs of the preprocessing pipeline then input a segmentation algorithm for the detection 

of CNV regions (Figure 1). We used the circular binary segmentation (CBS) method [34] for 

segmentation. We will explain the details about the preprocessing pipeline in the following 

sections.

A. Filtering outlier Readcounts

A sliding window approach is used to compute the GC% and readcount value for each 

genomic window [35]. The size of window is optional. We used a window of size 100 in this 

work. Windows with readcounts and GC content in the bottom and top 1% quantile are 

considered as outlier windows and are removed from the data.

B. Removing GC Bias

We employ the weighted Loess regression method for removing GC bias [15]. In this 

method, a regression analysis is applied to the mean of readcount values that are from 

windows with specific GC content. For both tumor and normal samples, the mean of 

readcount values with specific GC content, mgc, is computed for each possible percentage of 

GC content as:

mgc =
∑i = 1

ngc di
gc

ngc
, (1)

where gc is the percentage of the GC content, ngc is the number of windows that have gc, 

and di
gc is the readcount for window i that has GC content of gc. This method uses a weight 

for each GC content that is equal to the number of windows with the corresponding GC 

content, wgc = ngc. Insufficient read coverage of some percentile of GC content can lead to 

local extremes. This means that if there are a few windows with GC content of gc (low ngc), 

then their corresponding mgc value would be significantly higher or lower than mgc values 

that are corresponding to many other windows (high ngc). These local extremes are removed 

by the Loess regression method, which will lead to smoother values of mgc. Then, a 

weighted Loess regression is applied to all mgc values with their corresponding weights. 

Finally, the number of reads for each window is corrected through the Equation (2):

d = d − dloess − av(d) , (2)
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where d is the readcount value of a particular window before applying the Loess correction, 

dloess is the windows’ smoothed readcounts after the Loess correction, and av(d) is the 

mean of readcounts for all windows.

C. Removing Mappability Bias

The ambiguities in alignment can result in mappability bias in RD based CNV detection 

methods [36]. To eliminate this bias, we employ the method introduced in [20]. In this 

method, the log2 ratio of tumor and normal readcounts for window i, ri, computed as:

ri = log2
dTi
dNi

, (3)

Where dTi and dNi are readcounts for window i in the tumor and normal genomes, 

respectively, after GC bias correction. Then, we use the number of uniquely mapped bases in 

tumor and normal (IT and IN) to remove the mappability bias from r for each window i :

ri′ = ri ⋅ IN
IT

. (4)

IN and IT are obtained using Equation (5), where dM is the number of mapped reads, D is the 

duplicated mapped reads and av(L) is the average length of reads, obtained via SAMtools 

software package [37].

I = dM ⋅ 1 − D
dM

⋅ av(L) . (5)

D. Noise Cancellation with Taut String

Accuracy of CNV detection is significantly affected by the noisiness of the readcount data 

(signal). CNV detection methods identify many false CNVs (false positives (FPs) and false 

negatives (FNs)) when apply to noisy readcount data. As a result, removing noise is a critical 

issue in CNV detection. The log2 ratios of readcounts (after bias cancellation, Equation (5)), 

for each genomic window i on the genome, can be model as Equation (6).

ri′ = fi + yi, (6)

where yi is independent and identically distributed (iid) noise, drawn from a normal 

distribution N(0, σN
2 ) with mean of 0 and standard deviation of σN. The goal is to recover 

original signal f from the noisy observed signal r′.

Selecting an appropriate noise cancelation method depends on the characteristics of the 

noise and signal. From a signal processing point of view, readcount data are sparse, discrete, 

and piecewise constant. There are several techniques for noise cancelation. Kernel 

estimators and Fourier based filtering methods [38], [39] are popular approaches for noise 

Zare et al. Page 5

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduction. However, these methods cannot perform well when denoised signals have several 

amplitudes such as CNV segment data. As a result, they can reduce noise, but they are not 

able to preserve edges.

Another drawback occurs when the noise and signal Fourier spectra overlap. In this 

situation, these linear approaches cannot separate spectra correctly [40]. In addition, 

detection of small CNV segments in a noisy environment is another challenge. Small CNV 

segments are mostly discarded through linear filtering approaches. In general in readcount 

data, amplitude distortion is more than spectra location distortion by noise. Non-linear 

methods that consider amplitudes rather than locations of the spectra in their noise removing 

procedure can work better in this situation. Also, in addition to protect narrow CNVs while 

removing noise, accurate detection of breakpoints of the CNV segments is very important 

and we need to use a noise reduction method that preserves edges.

Sparse representation of signals has been used for a wide range of applications including 

removing noise. Discrete wavelet transform (DWT) is type of a linear transformation which 

are used for obtaining the sparse representation. DWT has a low computational complexity 

compared Fourier transform. However, DWT has several drawbacks such as oscillations, 

shift variance, aliasing and lack of directionality [41].

It has been shown that the solutions of the total variation (TV) regularization are sparse and 

can remove noise from signal. TV based regularization method has been widely used in the 

signal processing community to remove noise from signals while preserve edges and small 

local changes. In this paper, we use an algorithm based on the Taut String method that is 

known for providing extremely efficient solutions to 1D-TV problem in O(N). Taut String, 

introduced in [42], is an efficient and effective non-linear denoising method [43], [44] and it 

can solve a penalized least squares functional with considering total variation norm based 

penalty [44], [45].

Taut String is a nonparametric smoothing method, which has the ability to detect local 

extreme values in a very noisy data. We use ϵ to define the level of noise of y: ϵ = ‖y‖∞.

For a fixed ϵ >0, the goal is to find a unique log2 ratio values, f, such that:

r′ − f ∞ = max
i

|ri′ − fi| ≤ ϵ . (7)

To satisfy Equation (7), f should minimize Equation (8) (norm 2 of a distance operation, DT) 

and Equation (9) (norm 1 of the second derivative of f) as the optimization objectives:

‖DT(f)‖2 = ∑
i = 1

n − 1
fi + 1 − fi

2, (8)

DT*DT(f) 1 = |f2 − f1| + ∑
i = 2

n − 1
|fi − 1 − 2fi + fi + 1| + |fn − fn − 1|, (9)
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Where, DT*: R(n–1) → Rn is dual to DT: Rn→R(n–1) :

DT(f) = f2 − f1, f3 − f2, …, fn − fn − 1 , (10)

and

DT* b1, b2, …, bn − 1 = −b1, b1 − b2, b2 − b3, …, bn − 2 − bn − 1, bn − 1 . (11)

By using a linear regression, an estimate of f f . , can be computed. In fact, it can be shown 

that f  can be represented as a string between r′ − ϵ and r′+ ϵ that is pulled tight (Figure 2a). 

f  can be computed efficiently in linear time complexity (O(n)) [44]. This approach 

eliminates very lowfrequency noise while keeps the location of breakpoints. The only 

challenge is obtaining an optimum ϵ, which we used a 10-fold cross validation algorithm to 

obtain it.

E. Normalizing Tumor Contamination

The tumor samples are admixture of normal and cancerous cells. Distribution of denoised 

copy number ratios f′(ratios of tumor to normal readcount values (f′ = 2f)) can be 

represented as a mixture normal distribution:

pdf f′ = ∑
m = 1

M
amN μm, σm2 , (12)

where ams are the mixing proportions and their values are between 0 and 1. Each μm shows a 

value of the ratio of tumor to normal copy numbers. These numbers can take any value in the 

set of {0, 1, 1.5, }. We estimate the parameters this normal distribution through the 

Expectation Maximization algorithm. Using v = arg maxm am, we define δ = 1
μν

.We utilize 

the tumor contamination model which is proposed by [18] to obtain contamination free 

readcount ratios c from the denoised readcount ratios f′, considering the contamination 

proportion λ in tumor samples:

c = 1 + f′ − 1 ⋅ 1
1 − λ, (13)

and

λ = 1
M − 1 ∑

m
(1 − μm − μν

μν
⋅ 1

0.5 × |2 fm′ − fν′ | ), (14)

where fm′  and fν′  are normalized values of μmand μn and f′m and f′v are their corresponding 

ratios.
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III. DATA SETS

To evaluate the performance of the proposed preprocessing pipeline, we have used three sets 

of data sets: 1) simulated readcount data, 2) simulated sequencing data, and 3) real data.

A. Simulated readcount data sets

We used simulated data to investigate the power of the denoising step in detecting true 

CNVs and their breakpoints. We generated 10 simulated readcount data sets with known 

CNVs. To generate these data sets, we used the detected CNV segments from chromosome 1 

of real data, obtained by applying Varscan2 [46] and CBS segmentation [47]. The known 

CNV segments were used for benchmarking. Sampling from the CNV segments of 10 real 

data sets at 100 bp genomic distances, we generated 10 sets of noiseless readcount signals. 

Then, we added white Gaussian noise to the generated readcount signals to simulate noisy 

readcount signals. These simulated data sets do not reflect biases and we used them to 

evaluate the performance of the denoising block of the pipeline. By adding different levels of 

noise, we simulated noisy readcount signals with several signal to noise ratios (SNRs) for 

each of the noiseless generated readcount signals, where the power of noise is σN
2 .

B. Simulated sequencing data sets

We have also used a CNV simulator, called CNV-Sim (https://github.com/NabaviLab/CNV-

Sim) to evaluate the performance of the denoising block. CNV-Sim is a simulation software 

tool that is highly optimized to make use of existing short read simulators. CNV-Sim gets 

the reference genome in FASTA format and sequencing targets (exons in the case of WES) 

in BED format as its inputs. Based on the simulator parameters, a list of CNV regions that 

are affected by amplifications or deletions is randomly generated. The CNV simulator 

generates three outputs: (i) a list file that contains the synthesized amplifications and 

deletions in txt format, (ii) short reads with no CNVs as control in FASTQ format, and (iii) 

short reads with synthesized CNV as case in FASTQ format. We generated 10 datasets using 

CNV-Sim for chromosome 1. We used BWA tool [48] to align short reads to the reference 

genome (hg19) and generated BAM files. Then, using bedtools [49] and 100bp sliding 

window, we generated readcount data for these simulated sequencing data. These simulated 

data with known aberrant regions were used to evaluate the performance of the CNV 

detection tools in terms of sensitivity and specificity.

C. Real data sets

In this study, we used 10 pairs of breast cancer tumor and matched normal WES data sets, 

provided by the cancer genome atlas (TCGA), to evaluate the performance of the proposed 

preprocessing pipeline in terms of sensitivity and specificity of detecting true CNVs. We 

downloaded raw WES data in FASTQ format from the Cancer Genomic Hub (https://

cghub.ucsc.edu/index.html). We used BWA software tool [48] to align short reads to the 

reference genome (hg19) and generated BAM files. Then, by using bedtools [49] and 100bp 

sliding window we generated readcount data for these samples. We used the CNV results of 

these samples from the SNP array platform, provided by TCGA, as the benchmark.
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IV. RESULTS AND DISCUSSION

A. Results using simulated readcount data

In this section, by using the simulated data, we evaluated the sensitivity of CNV detection 

and the accuracy of detected breakpoints with and without employing denoising. We 

compared the performance of the proposed denoising methods, Taut String, with DWT and 

moving average (MA) denoising methods.

1) Breakpoint Accuracy: Figure 3 shows the simulated readcount signal before and 

after applying denoising on a noisy signal with σN
2  = 0.031 (SNR=7). From Figure 3, It can 

be seen that Taut String outperforms DWT and MA in preserving edges.

We applied DWT, Taut String and MA denoising methods to the 10 noisy simulated 

readcount data at different levels of noise with SNRs ranging from 2 to 10 (σN
2  ranging from 

0.101 to 0.016). Then, we used CBS to detect CNVs’ segments from the denoised readcount 

data. In this analysis, breakpoint accuracy is defined as the percentage of the number of 

times the start and end points of detected CNVs’ segments are exactly the same as in the 

known CNVs’ segments. Figure 4 shows the effects of employing DWT, Taut String and 

MA on the accuracy of detected breakpoints. As can be seen in Figure 4, using an 

appropriate smoothing method before segmentation increases the breakpoint accuracy.

DWT and Taut String perform better than MA, especially at higher levels of noise. At higher 

levels of noise DWT and Taut String methods perform almost similar; but for lower levels of 

noise Taut String outperforms DWT. The reason for superior performance of Taut String 

denoising is that it is more powerful to preserve edges. Denoised signals by DWT and MA 

show more fluctuations at the breakpoints compared to Taut String, which cause less 

accurate CNV breakpoint detection.

2) Sensitivity of detecting CNV segments: Using the 10 sets of simulate readcount 

data with several levels of noise, we compared the performance of DWT, Taut String and 

MA in term of sensitivity in detecting CNV segments. We used segment-based comparison 

to evaluate the performance of the denoising methods. We used GenomicRanges R package 

from Bioconductor [50] to obtain overlapping regions between detected CNVs and 

benchmark CNVs. If a detected amplified/deleted segment has an overlap of 80% or more 

with a benchmark amplified/deleted segment, it was considered as True Positive (TP). An 

amplified/deleted segment in the benchmark that does not have an overlap of 80% or more 

with any detected amplified/deleted regions was called FN. We calculated sensitivity as:

Sensitivity = TP /(FN+TP) . (15)

Figure 5 shows the results of sensitivity analysis for amplified and deleted segments, with 

thr=±0.2. As expected, all three denoising methods improve sensitivity of CNV detection. 

However, edge protecting methods (DWT and Taut String) significantly outperform MA. 

Also, due to better performance of Taut String on preserving edges and protecting narrow 
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changes in data, it improves the sensitivity of CNV detection slightly better than DWT, 

especially at lower levels of noise.

B. Results using simulated sequencing data

To evaluate the performance of each block of the proposed pipeline, we computed 

sensitivity, false discovery rate (FDR) and specificity of CNV detection before and after 

applying each preprocessing steps. Table I shows definitions for sensitivity, FDR, and 

specificity. To call TPs, TNs, FPs, and FNs we used a gene-based approach [3], where we 

first annotated the detected CNV segments to obtain CNV gene lists. We used the CBS 

method from DNACopy Bioconductor package [47] to detect CNV segments. We used 

cghMCR R package from Bioconductor [51] to identify CNV genes using Refseq gene 

identifications. Thresholds of ±0.2 for log2 ratios were used for calling CNV genes. Table II 

shows the performance of each preprocessing steps using the simulated WES data. GC bias, 

mappability bias and tumor contamination were not modeled in the simulation and the 

simulated data do not contain these biases. Therefor, we did not consider GC and 

mappability bias removing in our analysis for simulated data and we did not include them in 

Table II. From Table II, we can see that the denoising block improves the performance of the 

CNV detection.

C. Results using real data

In this section to evaluate the effectiveness of the preprocessing pipeline on detecting true 

CNVs, we compared the results of CNV detection on real data sets with and without 

employing the proposed preprocessing pipeline. We also compared the performance of the 

proposed pipeline with that of the VarScan2 pipeline in terms of sensitivity and specificity in 

detecting CNVs.

1) Performance of preprocessing blocks: To evaluate the performance of each 

block of the proposed pipeline, using real data, we used gene-based approach to calculate 

sensitivity, FDR and specificity of CNV detection before and after applying each 

preprocessing steps.

As depicted in Table III, each preprocessing block improves the performance of the CNV 

detection. In overall, by using the proposed preprocessing steps, the sensitivity of detecting 

amplifications improves from 50.99% to 72.75% and the sensitivity of detecting deletions 

improves from 60.37% to 84.30%. The performance of the CNV detection method is mostly 

affected by the denoising block. The denoising block improves the performance of detection 

for amplifications from 58.57% to 70.15% and from 68.74% to 80.04% for deletions. We 

also compared the performance of DWT and Taut String methods on real data. As can be 

seen in Table III, Taut String outperforms DWT in denoising real readcount data and 

providing higher sensitivity and specificity in CNV detection.

2) Performance comparison with VarScan2: VarScan2 is a preprocessing pipeline 

that generates normalized readcount data of tumor-normal pairs. The output of VarScan2 

inputs a segmentation method for identifying CNV segments. For segmentation, we used the 

CBS method from the DNACopy Bioconductor package [47]. Table IV shows that the 
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overall performance of the proposed method is better than VarScan2. The main reason would 

be using the Taut String method to remove noise from normalized readcount data.

D. Runtime comparison

In this section, we compared the overall runtime of DWT and Taut String methods using real 

and simulated data sets on a 64-bit Windows 10 Operating System, having 16 GB DDR4 

memory and intel core i7–7500U 2.7 GHz CPU. Taut String is linear in time and has the 

time complexity of O(n). DWT has the time complexity of O(nlogn) [52]. Taut String shows 

shorter runtime compared to DWT. Using the real datasets, on average, DWT took 30.73 

seconds while Taut String took only 5.51 seconds. We observed similar behavior using 

simulated data. On average, DWT took 26.93 seconds while Taut String took only 12.65 

seconds. High efficiency of the proposed denoising method, in addition to its superior 

performance compared to the other methods, are the main advantages of the preprocessing 

pipeline. We also observed that using smoothed readcount data decreases the runtime of the 

CBS segmentation significantly. Therefore, using preprocessing can decrease the overall 

time complexity of the CNV detection.

V. CONCLUSION

In this study, for having precise CNV detection, we developed an efficient and effective 

preprocessing pipeline for removing biases and noise from readcount data, generated from 

WES data. The proposed preprocessing pipeline consists of five blocks: filtering outlier 

reads, removing GC bias, removing mappability bias, eliminating noise, and normalizing for 

sample purity. While many CNV detection tools do not use denoising and normalization 

methods, we showed that employing proper denoising and normalization methods can 

significantly improve the performance of CNV detection in terms of sensitivity and 

specificity. We also showed that denoising block plays the most important role in improving 

the performance of CNV detection.

Based on the characteristics of the readcount data and CNV segments, we developed an 

efficient non-linear denoising method that can preserve edges and focal alterations. The 

proposed denoising method is based on the Taut String approach that is an efficient non-

linear method from the signal processing field. To evaluate the performance of the Taut 

String denoising method, we compared the sensitivities in detecting true CNVs and their 

breakpoints of the CBS segmentation while using no denoising, Taut String, DWT, and MA 

methods. DWT and MA denoising methods have been used widely in bioinformatics 

applications. However, this comparison showed that Taut String outperforms DWT and MA 

in both efficiency and accuracy. Another advantage of using Taut String denoising approach 

and having smoother signal is that the segmentation method can be run faster, which can 

decrease the overall complexity of the CNV detection.

To conclude this study, we can say that preprocessing readcount data is essential in precise 

detection of CNVs; and advanced normalization and noise cancellation methods from other 

fields, such as signal processing and statistics can be utilized for having effective and 

efficient preprocessing.
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Fig. 1: 
The overall copy number variation detection pipeline. Vectors dT and dN are the number of 

reads of tumor and normal genome, respectively. The vector r is the log2ratio of tumor and 

normal readcounts after removing GC bias. Vector r is the log2 ratio of readcount signal 

after removing mappability bias. Vector f′ is two to the power of the denoised signal f (copy 

number ratio). The vector c is the normalized signal.
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Fig. 2: 
Reconstruction of the original readcounts from real breast cancer data using the Taut String 

smoothing method. ∈ is 0.95. The black line is the estimated smoothed signal.

Zare et al. Page 18

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
Denoising with a) Taut String and b) DWT c) MA. (SNR=7)
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Fig. 4: 

Breakpoint accuracy before and after applying denoising for different σN
2 , using CBS 

segmentation and simulated readcount data.
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Fig. 5: 
Sensitivity of detection of CNVs segments before and after applying denoising methods for 

different level of noise readcount data. (σN
2 ), using simulated readcount data.
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TABLE I:

Possible Outcomes for CNV Genes and Performance Metrics

CNV gene Not detected Detected

Present FN TP

Not present TN FP

Performance metrics: Sensitivity = TP
FN + TP FDR = FP

FP + TP Specificity = TN
FP + TN
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