
MPGM: Scalable and Accurate
Multiple Network Alignment

Ehsan Kazemi1 and Matthias Grossglauser2

1Yale Institute for Network Science, Yale University
2School of Computer and Communication Sciences, EPFL

Abstract

Protein-protein interaction (PPI) network alignment is a canonical operation to transfer
biological knowledge among species. The alignment of PPI-networks has many applica-
tions, such as the prediction of protein function, detection of conserved network motifs, and
the reconstruction of species’ phylogenetic relationships. A good multiple-network align-
ment (MNA), by considering the data related to several species, provides a deep understand-
ing of biological networks and system-level cellular processes. With the massive amounts of
available PPI data and the increasing number of known PPI networks, the problem of MNA
is gaining more attention in the systems-biology studies.

In this paper, we introduce a new scalable and accurate algorithm, called MPGM, for
aligning multiple networks. The MPGM algorithm has two main steps: (i) SEEDGENERA-
TION and (ii) MULTIPLEPERCOLATION. In the first step, to generate an initial set of seed
tuples, the SEEDGENERATION algorithm uses only protein sequence similarities. In the
second step, to align remaining unmatched nodes, the MULTIPLEPERCOLATION algorithm
uses network structures and the seed tuples generated from the first step. We show that, with
respect to different evaluation criteria, MPGM outperforms the other state-of-the-art algo-
rithms. In addition, we guarantee the performance of MPGM under certain classes of net-
work models. We introduce a sampling-based stochastic model for generating k correlated
networks. We prove that for this model if a sufficient number of seed tuples are available, the
MULTIPLEPERCOLATION algorithm correctly aligns almost all the nodes. Our theoretical
results are supported by experimental evaluations over synthetic networks.

1 Introduction
Protein-protein interaction (PPI) networks are a valuable source of information for understand-
ing the evolution of protein interactions and system-level cellular processes. Discovering and
predicting the interaction patterns, which are related to the functioning of cells, is a fundamental
goal in studying the topology of PPI networks. A comparative analysis of PPI networks pro-
vides us insight into the evolution of species and can help us to transfer biological knowledge
across species.

Network alignment is one of the most powerful methods for comparing PPI networks. The
main goal of network alignment is to find functionally orthologous proteins and to detect con-
served pathways and protein complexes among different species. Local network-alignment and
global network-alignment are the two general classes of network-alignment algorithms. The
local network-alignment algorithms search for small but highly conserved sub-networks (e.g.,

1

ar
X

iv
:1

80
4.

10
02

9v
2

 [
q-

bi
o.

M
N

]
 1

3
M

ay
 2

01
9

homologous regions of biological pathways or protein complexes) among species by compar-
ing PPI networks locally. The global network-alignment algorithms instead, by maximizing
the overall similarity of networks, try to align all (or most of) the proteins to find large sub-
graphs that are functionally and structurally conserved over all the nodes in the two (or several)
networks.

The advance of high-throughput methods for detecting protein interactions has made the PPI
networks of many organisms available to researchers. With the huge amounts of biological net-
work data and the increasing number of known PPI networks, the problem of multiple-network
alignment (MNA) is gaining more attention in the systems-biology studies. We believe that a
good MNA algorithm leads us to a deeper understanding of biological networks (compared to
pairwise-network alignment methods) because they capture the knowledge related to several
species. Most of the early works on global PPI-network alignment consider matching only two
networks [Singh et al., 2007, Ahmet Emre Aladag and Cesim Erten, 2013, Neyshabur et al.,
2013, Hashemifar and Xu, 2014, Vijayan et al., 2015, Malod-Dognin and Pržulj, 2015, Meng
et al., 2016, Kazemi and Grossglauser, 2016].

MNA methods produce alignments consisting of aligned tuples with nodes from several
networks. MNA algorithms are classified into two categories of one-to-one and many-to-many
algorithms. In the first category, each node from a network can be aligned to at most one node
from another network. In the many-to-many category, one or several nodes from a network can
be aligned with one or several nodes from another network.

Several MNA algorithms were proposed in the past few years: NetworkBlast-M, a many-
to-many local MNA algorithm, begins the alignment process with a set of high-scoring sub-
networks (as seeds). It then expands them in a greedy fashion [Sharan et al., 2005, Kalaev
et al., 2008]. Graemlin [Flannick et al., 2006] is a local MNA algorithm that finds alignments
by successively performing alignments between pairs of networks, by using information from
their phylogenetic relationship. IsoRankN [Liao et al., 2009] is the first global MNA algorithm
that uses both pairwise sequence similarities and network topology, to generate many-to-many
alignments. SMETANA [Sahraeian and Yoon, 2013], another many-to-many global MNA al-
gorithm, tries to find aligned node-tuples by using a semi-Markov random-walk model. This
random-walk model is used for computing pairwise similarity scores. CSRW [Jeong and Yoon,
2015], a modified version of SMETANA, uses a context-sensitive random-walk model. Net-
Coffee [Hu et al., 2014] uses a triplet approach, similar to T-Coffee [Notredame et al., 2000],
to produce a one-to-one global alignment. GEDEVO-M [Ibragimov et al., 2014] is a heuristic
one-to-one global MNA algorithm that uses only topological information. To generate multiple
alignments, GEDEVO-M minimizes a generalized graph edit distance measure. NH [Radu and
Charleston, 2015] is a many-to-many global MNA heuristic algorithm that uses only network
structure. Alkan and Erten [Alkan and Erten, 2014] designed a many-to-many global heuristic
method based on a backbone extraction and merge strategy (BEAMS). The BEAMS algorithm,
given k networks, constructs a k-partite pairwise similarity graph. It then builds an alignment,
in a greedy manner, by finding a set of disjoint cliques over the k-partite graph. Gligorijević
et al. [Gligorijević et al., 2015] introduced FUSE, another one-to-one global MNA algorithm.
FUSE first applies a non-negative matrix tri-factorization method to compute pairwise scores
from protein-sequence similarities and network structure. Then it uses an approximate k-partite
matching algorithm to produce the final alignment.

In this paper, we introduce a new scalable and accurate one-to-one global multiple-network
alignment algorithm called MPGM (Multiple Percolation Graph Matching). The MPGM al-
gorithm has two main steps. In the first step (SEEDGENERATION, it uses only protein sequence
similarities to generate an initial set of seed tuples. In the second step (MULTIPLEPERCOLATION),
it uses the structure of networks and the seed tuples generated from the first step to align remain-

2

ing unmatched nodes. MPGM is a new member of the general class of percolation graph match-
ing (PGM) algorithms [Narayanan and Shmatikov, 2009, Yartseva and Grossglauser, 2013, Ko-
rula and Lattanzi, 2014, Chiasserini et al., 2015b, Kazemi et al., 2015a].

The PGM algorithms begin with the assumption that there is side information provided
in the form of a set of pre-aligned node couples, called seed set. These algorithms assume
that a (small) subset of nodes between the two networks are identified and aligned a priori.
The alignment is generated through an incremental process, starting from the seed couples and
percolating to other unmatched node couples based on some local structural information. More
specifically, in every step, the set of aligned nodes are used as evidence to align additional node
couples iteratively. The evidence for deciding which couple to align can take different forms,
but it is obtained locally within the two networks [Yartseva and Grossglauser, 2013, Kazemi,
2016]. The PGM algorithms are truly scalable to graphs with millions of nodes and are robust
to large amount of noise [Korula and Lattanzi, 2014, Kazemi et al., 2015a].

MPGM is the first algorithm from the powerful class of PGM algorithms that aligns more
than two networks. Our MNA algorithm is designed based on ideas inspired by PROPER, a
global pairwise-network alignment algorithm [Kazemi et al., 2016]. We compare MPGM with
several state-of-the-art algorithms. We show that MPGM outperforms the other algorithms,
with respect to different evaluation criteria. Also, we provide experimental evidence for the
good performance of the SEEDGENERATION algorithm. Finally, we study, theoretically and ex-
perimentally, the performance of the MULTIPLEPERCOLATION algorithm, by using a stochastic
graph-sampling model.

2 Algorithms and Methods
The goal of a one-to-one global MNA algorithm is to find an alignment between proteins from
k different species (networks), where a protein from one species can be aligned to at most one
unique protein from another species, in such a way that (i) the tuples of aligned proteins have
similar biological functions, and (ii) the aligned networks are structurally similar, e.g., they
share many conserved interactions among different tuples. To be more precise, a one-to-one
global alignment π between k networks Gi = (Vi, Ei), 1 ≤ i ≤ k, is the partition of all (or
most of) the nodes V = ∪ki=iVi into tuples {T1, T2, · · · , T|π|}, where each tuple is of size at
least two (i.e., they should have nodes from at least two networks), and where each tuple Ti has
at most one node from each network. In addition, any two tuples Ti and Tj are disjoint, i.e.,
Ti ∩ Tj = ∅.

In the global MNA problem, to align the proteins from k > 2 species, PPI-networks and
protein sequence similarities are used as inputs. Formally, we are given the PPI networks of k
different species: the networks are represented by G1(V1, E1), G2(V2, E2), · · · , Gk(Vk, Ek).
Also, the BLAST sequence similarity of the couples of proteins in all the

(
k
2

)
pairs of species

is provided as additional side information. The BLAST bits-score similarity for two proteins
u and v is represented by BlastBit(u, v). Let S≥` denote the set of all couples with BLAST
bit-score similarity of at least `, i.e., S≥` = {[u, v] ∈ ∪1≤i<j≤kVi×Vj | BlastBit(u, v) ≥ `}.
Next, we introduce MPGM, our proposed global MNA algorithm.

2.1 The MPGM Algorithm
The MPGM algorithm has two main steps: (i) In the first step, it uses only the sequence sim-
ilarities to find a set of initial seed-tuples. These seed tuples have nodes from at least two
networks. (ii) In the second step, by using the network structure and the seed-tuples (generated
from the first step), MPGM, aligns the remaining unmatched nodes with a percolation-based

3

graph-matching algorithm. Specifically, in the second step, MPGM adds new nodes to the
initial set of seed-tuples, by using only structural evidence, to generate larger and new tuples.

2.1.1 First Step: SeedGeneration

We now explain how to generate the seed-tuples A = {T1, T2, · · · , T|A|}, by using only se-
quence similarities. We first define an `-consistent tuple as a natural candidate for seed set.
Then, to find these `-consistent tuples, we introduce a heuristic algorithm, called SEEDGENER-
ATION.

Definition 1. A tuple T is `-consistent, if for every u ∈ T there is at least one other protein
v ∈ T (u and v are from two different networks), such that BlastBit(u, v) ≥ `.

In Section 5, (i) we argue that it is reasonable to assume that the BLAST bit-score sim-
ilarities among real proteins are (pseudo) transitive, and (ii) we show that proteins with high
sequence-similarities, often share many experimentally verified GO terms. The pseudo-transitivity
property of the BLAST bit-scores guarantees that, in an `-consistent tuple T , almost all the

(|T |
2

)
pairwise couples have high sequence-similarities; and we know proteins with high sequence-
similarities, often have similar biological functions. Therefore, it is likely that all the proteins
in an `-consistent tuple share many biological functions.

In SEEDGENERATION, we consider only those couples with BLAST bit-score similarity
of at least `, i.e., set S≥`. Note that the parameter ` is in input to the algorithm. The SEED-
GENERATION algorithm, by processing the protein couples from the highest BLAST bit-score
similarity to the lowest, fills in the seed-tuples with proteins from several species in a sequential
and iterative procedure. At a given step of SEEDGENERATION, assume [u, v] is the next couple
that we are going to process, where u and v are from the ith and jth networks, respectively. To
add this couple to the seed-tuples A, we consider the following cases: (i) Both u and v do not
belong to a tuple in A: we add both nodes to a new tuple, i.e., add T = [u, v] to A. (ii) Only
one of u or v belongs to a tuple in A: assume, without loss of generality, u belongs to a tuple
Tu. If the tuple Tu does not already have a protein from the network of node v (i.e., Vj), then v
is added to Tu. This step adds one protein to one existing tuple. (iii) Both u and v, respectively,
belong to tuples Tu and Tv in A: If Tu and Tv do not yet have a node from the jth and ith
networks, respectively, then we merge Tu and Tv by the MERGETUPLES algorithm.

The goal of MERGETUPLES is to combine the two tuples in order to generate a larger tuple
that has nodes from more networks. In this merging algorithm, it is possible to have another
(small) tuple as a leftover. In words, MERGETUPLES picks the tuple that contains the couple
with the highest sequence similarity (refer to it as T1). If the other tuple (denote by T2) has nodes
from networks that T1 did not have a node form them, MERGETUPLES adds those nodes to T1.
In this way, we can generate a tuple with nodes from more networks. At the end of this process
if T2 has less than two nodes we will delete it. Algorithm 1 describes SEEDGENERATION.
Also, MERGETUPLES is described in Algorithm 2. For the notations used in the paper refer to
Table 5 in Appendix A.

Example 2. Table 1 shows a sample execution of the SEEDGENERATION algorithm. This
algorithm uses the set of pairwise sequence similarities; this set is sorted from the highest
BLAST bit-score to `.

2.1.2 Second Step: MultiplePercolation

In the second step of MPGM, a new PGM algorithm, called MULTIPLEPERCOLATION, uses
the network structures and the generated seed-tuples from the first step, to align the remaining

4

Algorithm 1 The SEEDGENERATION algorithm
Require: S≥` (the set of all couples with BLAST bit-score similarity at least `)
Ensure: The seed set A of tuples

1: for all pairs [u, v] in S≥` from the most similar to the lowest .If there are several pairs
with the same BLAST bit-score we randomly pick one of them randomly. do

2: Assume u ∈ Vi and v ∈ Vj
3: if A(u) = ∅ and A(v) = ∅ then
4: Add tuple T = [u, v] to A
5: else if A(u) 6= ∅ and A(v) = ∅ then
6: if Vj ∩ A(u) = ∅ then
7: add v to the tuple A(u)
8: end if
9: else if A(u) = ∅ and A(v) 6= ∅ then

10: if Vi ∩ A(v) = ∅ then
11: add u to the tuple A(v)
12: end if
13: else
14: if Vj ∩ A(u) = ∅ and Vi ∩ A(v) = ∅ then
15: MERGETUPLES (A(u),A(v))
16: end if
17: end if
18: end for
19: return A

Algorithm 2 The MERGETUPLES algorithm
Require: Two tuples T1 and T2

Ensure: The modified tuples T1 and T2

1: Without loss of generality assume T1 is the tuple that contains the couple with the highest
sequence similarity

2: for i = 1 to k do
3: if Vi ∩ T1 = ∅ and Vi ∩ T2 6= ∅ then
4: Move node Vi ∩ T2 from tuple T2 to tuple T1

5: end if
6: end for
7: if |T2| ≤ 1 then
8: Delete the tuple T2

9: end if

unmatched nodes. This PGM algorithm uses the structural similarities of couples as the only
evidence for matching new nodes. The MULTIPLEPERCOLATION algorithm adds new tuples in
a greedy way, in order to maximize the number of conserved interactions among networks. In
MULTIPLEPERCOLATION, network structure provides evidence for similarities of unmatched
node-couples, and a couple with enough structural similarity is matched. New node-tuples are
generated by merging matched couples. Also, if there is enough structural similarity between
two nodes from different tuples, the two tuples are merged. In the MULTIPLEPERCOLATION
algorithm, we look for tuples that contain nodes from more networks, i.e., a tuple that has
nodes from more networks is more valuable. Next, we explain the MULTIPLEPERCOLATION
algorithm in detail.

5

Table 1: An example of the SEEDGENERATION algorithm. Inputs to this algorithm are the set
of pairwise sequence-similarities (i.e, BlastBit(·, ·)) and a fixed threshold `. The sequence
similarities are sorted from the highest BLAST bit-score to `. The seed-tuples A are generated
from the pairwise similarities. In this example, the couple [hs1, mm8] (i.e., the couple of
proteins with the highest sequence similarity) generates the first tuple in the seed set. At the
third step, one of the nodes from the third couple, i.e., hs1, is already in the tuple T1 =[hs1,
mm8]. Because T1 does not have any node from the network of ce, the node ce4 is added to
T1. Also at the eight step, as the two nodes from [ce6, hs9] belong to two different tuples, their
corresponding tuples are merged.

Couples BLAST Seed-tuples A
1 [hs1, mm8] 1308 [hs1, mm8]
2 [ce6, sc9] 909 [hs1, mm8] and [ce6, sc9]
3 [ce4, hs1] 813 [ce4, hs1, mm8] and [ce6, sc9]
4 [dm15, mm8] 797 [ce4, dm15, hs1, mm8] and [ce6, sc9]
5 [ce654, mm8] 603 [ce4, dm15, hs1, mm8] and [ce6, sc9]
6 [dm15, sc12] 414 [ce4, dm15, hs1, mm8, sc12] and [ce6, sc9]
7 [dm7, hs9] 334 [ce4, dm15, hs1, mm8, sc12], [ce6, sc9] and [dm7, hs9]
8 [ce6, hs9] 282 [ce4, dm15, hs1, mm8, sc12] and [ce6, dm7, hs9, sc9]
9 [dm7, sc63] 101 [ce4, dm15, hs1, mm8, sc12] and [ce6, dm7, hs9, sc9]

Assume π is the set of aligned tuples at a given time step of the MULTIPLEPERCOLATION
algorithm. Note that we have initially π = A, where A is the output of SEEDGENERATION.
Let πi,j denotes the set of pairwise alignments between nodes from the ith and jth networks:
A couple [u, v], where u ∈ Vi and v ∈ Vj , belongs to the set πi,j , if and only if there is a tuple
T ∈ π such that both u and v are in that tuple. The set πi,j is defined as

πi,j = {[u, v]|u ∈ Vi and v ∈ Vj
such that there exists T ∈ π where u, v ∈ T}.

The score of a couple of nodes is the number of their common neighbors in the set of
previously aligned tuples. Formally, we define the score of a couple [u, v], u ∈ Vi and v ∈ Vj
as

score([u, v]) =|{[u′, v′] ∈ πi,j
such that (u, u′) ∈ Ei and (v, v′) ∈ Ej}|.

In other words, the score of a couple is equal to the number of interactions that remain conserved
if this couple is added as a new tuple to the set of currently aligned tuples. Assigning the score
to a couple is a way to quantify the structural similarity between two nodes of that couple.
Alternatively, it is possible to interpret the score of a couple as follows: All the couples [u, v] ∈
πi,j provide marks for their neighboring couples, i.e., the couples in Ni(u) × Nj(v) receive
one mark from [u, v], where Ni(u) denotes the set of neighbors of node u in Gi. The score of
a couple is the number of marks it has received from the previously aligned couples (note that
aligned couples are subsets of the aligned tuples). In the MULTIPLEPERCOLATION algorithm,
the initial seed-tuples provide structural evidence for the other unmatched couples. Indeed, for
a tuple T , all the

(|T |
2

)
possible couples [u, v], which are subsets of T , spread marks to their

neighboring couples in the networks V (u) and V (v), where V (u) denotes the network V such
that u ∈ V .

6

After the initial mark spreading step, the couple [u, v] with the highest number of marks
(but at least r)1 is the next candidate to get matched. The alignment process is as follows: (i)
If π(u) = ∅ and π(v) = ∅, then we add a new tuple T = [u, v] to the set of previously aligned
tuples π. (ii) If exactly one of the two nodes u or v belongs to a tuple T ∈ π, by adding the
other node to T (if it is possible2), we generate a tuple with nodes from one more network. (iii)
If both u and v belong to different tuples of π, by merging these two tuples (again, if possible),
we make a larger tuple.

After the alignment process, [u, v] spreads out marks to the other couples, because it is a
newly matched couple. Then, recursively new couples are matched and added to the set of
aligned tuples. The alignment process continues to the point that there is no couple with a
score of at least r. Algorithm 3 describes MULTIPLEPERCOLATION. For the notations refer to
Table 5 in Appendix A.

Algorithm 3 MULTIPLEPERCOLATION

Require: G1(V1, E1), G2(V2, E2), · · · , Gk(Vk, Ek) seed tuples A and the threshold r
Ensure: The set of aligned tuples π

1: π ← A
2: The tuples in set A spread out marks to their neighboring couples
3: while there exists a couple with score at least r do .While a new tuple

is generated or a new node is added to a tuple the marks from those newly aligned couples
are spread over their neighboring couples.

4: [u, v]← the couple with the highest score, where u ∈ Vi and v ∈ Vj
5: if π(u) = ∅ and π(v) = ∅ then
6: Add tuple T = [u, v] to π
7: else if π(u) 6= ∅ and π(v) = ∅ then
8: if Vj ∩ π(u) = ∅ then
9: Add v to tuple π(u)

10: end if
11: else if π(u) = ∅ and π(v) 6= ∅ then
12: if Vi ∩ π(v) = ∅ then
13: Add u to tuple π(v)
14: end if
15: else
16: if for all V`,1≤`≤k we have V` ∩ π(u) = ∅ or V` ∩ π(v) = ∅ then
17: Merge the two tuples π(u) and π(v)
18: end if
19: end if
20: end while
21: return π

Example 3. Figure 1 provides an example of the MULTIPLEPERCOLATION algorithm over
graphsG1,2,3. Dark-green nodes are the initial seed-tuples. The tuple [x1, x2, x3] is an example
of a seed tuple that contains nodes from all the three networks. [y1, y2] is a seed couple between
networks G1 and G2. All the pairwise couples, which are subsets of the initial seed-tuples,
provide structural evidence for the other nodes. In this example, after that initial seed-tuples
spread out marks to other couples, the couples [w1, w2] and [u2, u3] have the highest score

1The parameter r in an input to the MULTIPLEPERCOLATION algorithm.
2Refer to Algorithm 3.

7

(their score is three). Hence we align them first. Among the couples with score two, [w1, u3] is
not a valid alignment; because the nodes w1 and u3 are matched to different nodes in G2 (also,
this true forw2 and u2). The set of aligned tuples is {[u1, u2, u3], [v1, v2, v3], [w1, w2], [z2, z3]}.
Here, there is not enough information to match v1 and v3 directly, but as they both are matched
to v2, we can align them through transitivity of the alignments. Furthermore, if we continue the
percolation process, it is possible to match the couples [i1, i2] and [i1, i3]; it results in the tuple
[i1, i2, i3]. Note that, by aligning all the networks at the same time, we have access to more
structural information. For example, although the pairwise alignment of G1 and G3 does not
provide enough evidence to align [v1, v3], it is possible to align this couple by using the side
information we can get through G2.

G1

u1

v1

x1

y1

w1

i1

G2

u2

v2

z2

x2

y2

w2

i2

G3

u3

v3

z3

x3

i3

Figure 1: The alignment is performed over graphs G1, G2 and G3. Dark-green nodes are the
initial seed-tuples. Light-green nodes are tuples that are matched in the PGM process.

3 Performance Measures
Comparing global MNA algorithms is a challenging task for several reasons. Firstly, it is not
possible to directly evaluate the performance of algorithms, because the true node mappings for
real biological networks is not known. Secondly, algorithms can return tuples of different sizes.
Although the fundamental goal of a global MNA algorithm is to find tuples with nodes from
many different networks, some algorithms tend to return tuples of smaller sizes. Therefore,
tuples of different sizes make the comparison more difficult. For these reasons, we use several
measures in the literature. In addition, we introduce a new measure, using the information
content of aligned tuples.

We first compare global MNA algorithms based on their performance in generating large
tuples. The best tuples are those that contain nodes from all k networks, whereas tuples with
nodes from only two networks are worst [Gligorijević et al., 2015]. The d-coverage of tuples
denotes the number of tuples with nodes from exactly d networks [Gligorijević et al., 2015].
Note that for many-to-many alignment algorithms, it is possible to have more than d nodes in a
tuple with nodes from d networks. Therefore, for the number of proteins in tuples with different

8

d-coverages, we also consider the total number of nodes in those tuples [Gligorijević et al.,
2015].

The first group of measures evaluates the performance of algorithms using the functional
similarity of aligned proteins. A tuple is annotated if it has at least two proteins annotated
with at least one GO term [Gligorijević et al., 2015]. An annotated tuple is consistent if all of
the annotated proteins in that tuple share at least one GO term. We define #AC as the total
number of annotated tuples. Furthermore, #ACd represents the number of annotated tuples
with a coverage d. For the number of consistent tuples, we define #CC and #CCd similarly.
Also, the number of proteins in a consistent tuple with coverage d is denoted by #CPd. The
specificity of an alignment is defined as the ratio of the number of consistent tuples to the
number of annotated tuples: Spec = #CC

#AC and Specd = #CCd

#ACd
[Gligorijević et al., 2015].

Mean entropy (ME) and mean normalized entropy (MNE) are two other measures that cal-
culate the consistency of aligned proteins by using GO terms [Liao et al., 2009, Sahraeian and
Yoon, 2013, Alkan and Erten, 2014]. The entropy (E) of a tuple T = [p1, p2, · · · , pd], with the
set of GO terms GO(T) = {GO1, GO2, · · · , GOm}, is defined as E(T) = −∑m

i=1 gi log gi,
where gi is the fraction of proteins in T that are annotated with the GO term GOi. ME is de-
fined as the average of E(T) over all the annotated tuples. Normalized entropy (NE) is defined
as NE(T) = 1

logmE(T), where m is the number of different GO terms in tuple T . Similarly,
MNE is defined as the average of NE(T) over all the annotated tuples.

To avoid the shallow annotation problem, Alkan and Erten [2014] and Gligorijević et al.
[2015] suggest to restrict the protein annotations to the fifth level of the GO directed acyclic
graph (DAG): (i) by ignoring the higher level GO annotations, and (ii) by replacing the deeper-
level GO annotations with their ancestors at the fifth level. For the specificity (Spec and Specd)
and entropy (ME and MNE) evaluations, we use the same restriction method.

The way we deal with the GO terms can greatly affect the comparison results. Indeed, there
are several drawbacks with the restriction of the GO annotations to a specific level. Firstly,
although depth is one of the indicators of specificity, the GO terms that are at the same level
do not always have same semantic precision, and a GO term at a higher level might be more
specific than a term at a lower level [Resnik, 1999]. Also, it is known that the depth of a GO
term reflects mostly the vagaries of biological knowledge, rather than anything intrinsic about
the terms [Lord et al., 2003]. Secondly, there is no explanation (e.g., in [Alkan and Erten, 2014,
Gligorijević et al., 2015]) about why we should restrict the GO terms to the fifth level. Also, the
notion of consistency for a tuple (i.e., sharing at least one GO term) is very general and does not
say anything about how specific the shared GO terms are. Furthermore, from our experimental
studies, we observe that two random proteins share at least one experimentally verified GO
term with probability 0.21, whereas five proteins share at least one GO term with a very low
probability of 0.002.3

To overcome these limitations, we define the semantic similarity (SSp) measure for a tuple
of proteins. This is the generalization of a measure that is used for the semantic similarity of
two proteins [Resnik, 1999, Schlicker and Albrecht, 2008]. Assume |annot(ti)| is the number
of proteins that are annotated with the GO term ti. The frequency of ti is defined as freq(ti) =
|annot(ti)|+

∑
s∈successors(ti) |annot(s)|, where successors(ti) is the successors of the term

ti in its corresponding gene-annotation DAG. The relative frequency p(ti) for a GO term ti is
defined as p(ti) = freq(ti)

freq(root) . The information content (IC) [Resnik, 1999] for a term ti is
defined as IC(ti) = − log(p(ti)). The semantic similarity between the d terms {t1, t2, · · · , td}
is defined as SS(t1, t2, · · · , td) = IC(LCA(t1, t2, · · · , td)), where LCA(t1, t2, · · · , td) is the

3This means, for example, out of all possible annotated pairs of proteins 21% of them share at least one GO term.
For more information refer to Appendix D.

9

lowest common ancestor of terms ti in DAG. For proteins p1, p2, · · · , pd, we define semantic
similarity as

SSp(p1, p2, · · · , pd) =

max
t1∈GO(p1),t2∈GO(p2),··· ,td∈GO(pd)

IC(LCA(t1, t2, · · · , td)), (1)

where GO(pi) are the GO annotations of pi. The sum of SSp values for all tuples in an align-
ment π is shown by SSp(π). Let SSp(π) denote the average of SSp values, i.e., SSp(π) =
SSp(π)
|π| . Note that, algorithms with higher values of SSp(π) and SSp(π), result in alignments

with higher qualities, because these alignments contain tuples with more specific functional
similarity among their proteins.

The second group of measures evaluates the performance of global MNA algorithms based
on the structural similarity of aligned networks. We define edge correctness (EC) as a gen-
eralization of the measures introduced in [Kuchaiev et al., 2010, Patro and Kingsford, 2012].
EC is a measure of edge conservation between aligned tuples under a multiple alignment π.
For two tuples Ti and Tj , let ETi,Tj

denote the set of all the interactions between nodes from
these two tuples, i.e., ETi,Tj

= {e = (u, v)|u ∈ Ti, v ∈ Tj}. The set of networks that have
an edge in ETi,Tj is defined as V (ETi,Tj). Theoretically, we can have a conserved interac-
tion between two tuples Ti and Tj , if they have nodes from at least two similar networks, i.e.,
|V (Ti) ∩ V (Tj)| ≥ 2. The interaction between two tuples Ti and Tj is conserved if there are
at least two edges from two different networks between these tuples, i.e., |V (ETi,Tj

)| ≥ 2. The
EC measure is defined as EC(π) = ∆(π)

E(π) , where E(π) is the total number edges between all
the tuples Ti and Tj , such that |V (Ti) ∩ V (Tj)| ≥ 2. Also, ∆(π) is the total number of edges
between those tuples with |V (ETi,Tj

)| ≥ 2. In order to provide further analysis, in two of our
experiments we restrict EC to only consistent tuples. Although EC based on consistent tuples
is neither topological nor biological, it captures both type of measures in just one.

Cluster interaction quality (CIQ) measures the structural similarity as a function of the con-
served interactions between different tuples [Alkan and Erten, 2014]. The conservation score
cs(Ti, Tj) is defined as

cs(Ti, Tj) =

0 if |V (Ti) ∩ V (Tj)| = 0 or

|V (ETi,Tj)| = 1
|V (ETi,Tj

)|
|V (Ti)∩V (Tj)| otherwise,

where |V (Ti)∩V (Tj)| and |V (ETi,Tj
)| are the number of distinct networks with nodes in both

Ti,j and with edges in ETi,Tj
, respectively. CIQ(π) is defined as:

CIQ(π) =

∑
∀Ti,Tj∈π |ETi,Tj | × cs(Ti, Tj)∑

∀Ti,Tj∈π |ETi,Tj
| .

We can interpret CIQ as a generalization of S3 [Saraph and Milenković, 2014], a measure for
evaluating the structural similarity of two networks.

4 EXPERIMENTS AND EVALUATIONS
We compare MPGM with several state-of-the-art global MNA algorithms: FUSE (F) [Glig-
orijević et al., 2015], BEAMS (B) [Alkan and Erten, 2014], SMETANA (S) [Sahraeian and

10

Yoon, 2013], CSRW (C) [Jeong and Yoon, 2015], GEDEVO-M (G) [Ibragimov et al., 2014]
and multiMAGNA++ (M) [Vijayan and Milenkovic, 2018]. Also, we compare our algorithm
with IsoRankN (I) [Liao et al., 2009], which is one of the very first global MNA algorithms
for PPI networks. For all these algorithms, we used their default settings. Note that IsoRankN,
SMETANA, CSRW and BEAMS are manytomany global and, GEDEVO-M, multiMAGNA++
and FUSE are one-to-one algorithms.

Table 2 provides a brief description of the PPI networks for five major eukaryotic species
that are extracted from the IntAct database [Hermjakob et al., 2004]. The amino-acid sequences
of proteins are extracted in the FASTA format from UniProt database [Apweiler et al., 2004].
The BLAST bit-score similarities [Altschul et al., 1990] are calculated using these amino-acid
sequences. We consider only experimentally verified GO terms, in order to avoid biases induced
by annotations from computational methods (mainly from sequence similarities).4 More pre-
cisely, we consider the GO terms with codes EXP, IDA, IMP, IGI and IEP, and we exclude the
annotations derived from computational methods and protein-protein interaction experiments.
We also consider GO terms from biological process (BP), molecular function (MF) and cellular
component (CC) annotations all together.

Table 2: PPI networks of eukaryotic species from IntAct molecular interaction database [Her-
mjakob et al., 2004].

Species Abbrev. #nodes #edges Avg. deg.
C. elegans ce 4950 11550 4.67
D. melanogaster dm 8532 26289 6.16
H. sapiens hs 19141 83312 8.71
M. musculus mm 10765 22345 4.15
S. cerevisiae sc 6283 76497 24.35

4.1 Comparisons
We first investigate the optimality of SEEDGENERATION in generating seed-tuples from se-
quence similarities. To have an upper-bound on the number of proteins in the set of seed-tuples
A, we look at the maximum bipartite graph matching between all pairwise species, i.e., all the
proteins in all the possible

(
k
2

)
matchings. The total number of nodes that are matched in at least

one of these bipartite matchings, provide an upper-bound for the number of matchable nodes.
Figure 2 compares SEEDGENERATION, the proposed upper-bound and MPGM for different
values of `, and the other algorithms based on the total number of aligned proteins. In Fig-
ure 3, we compare algorithms based on different d-coverages. We observe that MPGM finds
the most number of tuples with 5-coverage among all the algorithms. Furthermore, we observe
that MPGM has the best overall coverage (for tuples of size five to two). For example, we also
observe that, for ` = 40, the SEEDGENERATION algorithm aligns 28608 proteins (compared to
30820 proteins that we found as an upper-bound) in 1366, 1933, 2342 and 3510 tuples of size
5, 4, 3 and 2, respectively. The second step of MPGM (i.e., MULTIPLEPERCOLATION) extends
the initial seed tuples to 40566 proteins aligned in 3076, 2719, 2502 and 3402 tuples of size 5,
4, 3 and 2, respectively. Figures 3 and 4 show, respectively, the number of tuples and proteins
in all alignments with different d-coverages.

4We obtained GO terms from http://www.ebi.ac.uk/GOA/downloads.

11

http://www.ebi.ac.uk/GOA/downloads

40 60 80 100 120 140

Minimum BLAST score ℓ

20000

25000

30000

35000

40000

T
o
ta
l
n
u
m
b
er

o
f
a
li
g
n
ed

p
ro
te
in
s

MPGM

SeedGeneration

Upper-bound

FUSE

BEAMS

SMETANA

CSRW

IsoRankN

M-MAGNA++

GEDEVO-M

Figure 2: Total number of aligned proteins. For MPGM, we set r = 1. We observe that MPGM
aligns the most number of proteins.

S
ee
d
G
en

er
a
ti
o
n
4
0

S
ee
d
G
en

er
a
ti
o
n
8
0

S
ee
d
G
en

er
a
ti
o
n
1
5
0

M
P
G
M

4
0

M
P
G
M

8
0

M
P
G
M

1
5
0

F
U
S
E

B
E
A
M
S

S
M
E
T
A
N
A

C
S
R
W

Is
o
R
a
n
k
N

M
-M

A
G
N
A
+
+

G
E
D
E
V
O
-M

0

2000

4000

6000

8000

10000

12000

N
um

be
r

of
 a

lig
ne

d
tu

pl
es

5-coverage 4-coverage 3-coverage 2-coverage

Figure 3: The coverage of alignments.

An algorithm with a good d-coverage does not necessarily generate high-quality tuples (in
terms of functional similarity of proteins). For this reason, we look at the number of consis-
tent tuples. For example, although IsoRankN generates the maximum number of tuples with
proteins from two species (see Figure 3), only a small fraction of these tuples are consistent
(see Figure 5). Also, in Figure 5, we observe that MPGM returns the largest number of consis-
tent tuples with proteins from five different species. In addition, Figure 6 shows the number of
proteins from consistent tuples with different d-coverages. In order to further evaluate the func-
tional similarities of aligned proteins, we also used a stronger notion for a consistent tuple: an

12

S
ee
d
G
en

er
a
ti
o
n
4
0

S
ee
d
G
en

er
a
ti
o
n
8
0

S
ee
d
G
en

er
a
ti
o
n
1
5
0

M
P
G
M

4
0

M
P
G
M

8
0

M
P
G
M

1
5
0

F
U
S
E

B
E
A
M
S

S
M
E
T
A
N
A

C
S
R
W

Is
o
R
a
n
k
N

M
-M

A
G
N
A
+
+

G
E
D
E
V
O
-M

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

N
um

be
r

of
 p

ro
te

in
s

in
 a

lig
ne

d
tu

pl
es

5-coverage 4-coverage 3-coverage 2-coverage

Figure 4: Number of proteins in tuples with different d-coverages. The results are for tuples with
nodes from five, four, three and two networks. For MPGM, we set r = 1 and ` ∈ {40, 80, 150}.

Table 3: Comparison results for specificity of tuples of different sizes. For MPGM we set
r = 1.

SeedGeneration (`) MPGM (`) F B S C I M G
40 80 150 40 80 150

Spec5 0.291 0.286 0.284 0.244 0.222 0.184 0.21 0.22 0.187 0.185 0.063 0.194 0.013
Spec4 0.339 0.366 0.369 0.277 0.256 0.224 0.299 0.329 0.291 0.306 0.092 0.297 0.075
Spec3 0.462 0.486 0.500 0.384 0.382 0.349 0.35 0.437 0.417 0.436 0.153 0.397 0.134
Spec2 0.611 0.619 0.646 0.527 0.519 0.529 0.462 0.557 0.558 0.618 0.231 0.495 0.229

annotated tuple is strongly consistent if all of the annotated proteins in that tuple share at least
two GO terms. In Figure 7 we compare algorithms based on the number of strongly consistent
tuples. We observe that SEEDGENERATION returns the most number of strongly consistent
tuples. Also, MPGM performs better than all the other state-of-the-art algorithms.

In table 3, we compare specificity of algorithms. Note that (i) chance of having better
specificity for tuples of smaller sizes is higher, and (ii) different algorithms tend to output align-
ments with varying distribution of tuple sizes. For this reason, we report specificities of tuples
of size 5, 4, 3 and 2 separately. We observe that SEEDGENERATION provides the alignments
with the best specificity. The main reason for this good performance is that it only used the
sequence similarity information. Also, the performance of MPGM (in comparison to the other
algorithms) is better for larger tuples.

Tables 6, 7, 8 and 9 (See Appendix B) provide detailed comparisons for tuples with different
coverages. More precisely, Table 6 (Appendix B) compares algorithms over tuples with nodes
from five networks. The second step of MPGM (i.e., MULTIPLEPERCOLATION) uses PPI
networks to generate 3076 tuples out of initial seed-tuples. We observe that MPGM (for ` = 40)

13

S
ee
d
G
en

er
a
ti
o
n
4
0

S
ee
d
G
en

er
a
ti
o
n
8
0

S
ee
d
G
en

er
a
ti
o
n
1
5
0

M
P
G
M

4
0

M
P
G
M

8
0

M
P
G
M

1
5
0

F
U
S
E

B
E
A
M
S

S
M
E
T
A
N
A

C
S
R
W

Is
o
R
a
n
k
N

M
-M

A
G
N
A
+
+

G
E
D
E
V
O
-M

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 c

on
sis

te
nt

 t
up

le
s

5-coverage 4-coverage 3-coverage 2-coverage

Figure 5: Number of consistent tuples.

finds an alignment with the maximum d-coverage, #CC5, #CP5 and SSp(π). In addition, the
first step of MPGM (i.e., SEEDGENERATION) has the best performance on Spec5, SSp(π) and
MNE. This was expected, because MULTIPLEPERCOLATION uses only network structure, a less
reliable source of information for functional similarity in comparison to sequence similarities,
to align new nodes. From this table, it is clear that MPGM outperforms the other algorithms
with respect to all the measures.

Figure 8 compares algorithms based on the EC measure. We observe that MPGM (for
values of ` larger than 150) finds alignments with the highest EC score. In Figure 9, to calculate
EC, we consider only the edges between consistent tuples. We observe that MPGM has the
best performance among all the algorithms. This shows that MPGM finds alignments where (i)
many of the aligned tuples are consistent and (ii) there are many conserved interactions among
these consistent tuples. CIQ is another measure, based on the structural similarity of aligned
networks, for further evaluating the performance of algorithms. In Figure 10, we observe that
MPGM and SMETANA find alignments with the best CIQ score.

To sum-up, we observe that MPGM generally provides a nice trade-off between functional
and structural similarity measures which is the Pareto frontier. That is, one cannot choose an
algorithm that does better on both measures. Finally, our recommend setting for MPGM is
r = 1 and ` = 80.

4.2 Computational Complexity
The computational complexity of the SEEDGENERATION algorithm is O (|S≥`| log |S≥`|); it
includes (i) sorting all the sequence similarities from the highest to the lowest, and (ii) pro-
cessing them. The computational complexity of the MULTIPLEPERCOLATION algorithm is
O
(
k2 (|E1|+ |E2|) min (D1, D2)

)
, whereD1,2 are the maximum degrees in the two networks.

One of the key features of our algorithm is its computational simplicity. MULTIPLEPER-

14

S
ee
d
G
en

er
a
ti
o
n
4
0

S
ee
d
G
en

er
a
ti
o
n
8
0

S
ee
d
G
en

er
a
ti
o
n
1
5
0

M
P
G
M

4
0

M
P
G
M

8
0

M
P
G
M

1
5
0

F
U
S
E

B
E
A
M
S

S
M
E
T
A
N
A

C
S
R
W

Is
o
R
a
n
k
N

M
-M

A
G
N
A
+
+

G
E
D
E
V
O
-M

0

2000

4000

6000

8000

N
um

be
r

of
 p

ro
te

in
s

in
 c

on
sis

te
nt

 t
up

le
s

5-coverage 4-coverage 3-coverage 2-coverage

Figure 6: Number of proteins in consistent tuples with different d-coverages. The results are
for tuples with nodes from five, four, three and two networks. For MPGM, we set r = 1 and
` ∈ {40, 80, 150}. We observe that MPGM finds the most number of proteins in consistent
tuples and consistent tuple with nodes from all the five networks.

COLATION is easily parallelizable in a distributed manner. To have a scalable algorithm, for
very large networks (graphs with millions of nodes), we use a MapReduce [Dean and Ghe-
mawat, 2008] implementation of MULTIPLEPERCOLATION. The MapReduce programming
model consists of two important steps [Dean and Ghemawat, 2008]: First, the Map step pro-
cesses a subset of data (based on the task) and returns another set of data. Second, the Reduce
step, from the result of the Map step, returns a smaller set of data. More specifically, for MUL-
TIPLEPERCOLATION, in the Map step, we spread out marks from the aligned proteins. In the
Reduce step, we add all the couples with at least r marks to the set of already aligned proteins
π. The MULTIPLEPERCOLATION algorithm by iteratively performing these two steps aligns
the proteins from all the k networks.

In table 4, we compare the time complexity of different algorithms in order to align all the
five species form table 2. We observe that MPGM and SMETANA are the fastest algorithms.
Also, while FUSE shows the closest performance to MPGM in terms of biological and topo-
logical measures, it is much slower. We also evaluated the performance of our MapReduce
implementation in scenarios where the original implementation cannot perform the alignment
process. For example, by using a Hadoop cluster of 25 nodes, it takes almost 27 minutes to
align 5 synthetic networks with 5 million nodes.

15

S
ee
d
G
en

er
a
ti
o
n
4
0

S
ee
d
G
en

er
a
ti
o
n
8
0

S
ee
d
G
en

er
a
ti
o
n
1
5
0

M
P
G
M

4
0

M
P
G
M

8
0

M
P
G
M

1
5
0

F
U
S
E

B
E
A
M
S

S
M
E
T
A
N
A

C
S
R
W

Is
o
R
a
n
k
N

M
-M

A
G
N
A
+
+

G
E
D
E
V
O
-M

0

200

400

600

800

1000

1200

1400

N
um

be
r

of
 s

tr
on

gl
y

co
ns

ist
en

t
tu

pl
es

(s

ha
re

 a
t

le
as

t
tw

o
G

O
 t

er
m

s)

5-coverage 4-coverage 3-coverage 2-coverage

Figure 7: Number of strongly consistent tuples.

40 60 80 100 120 140 160 180 200

Minimum BLAST score ℓ

0.00

0.05

0.10

0.15

0.20

0.25

E
C

 fo
r

al
l t

up
le

s

MPGM
SeedGeneration

FUSE

BEAMS

SMETANA

CSRW

IsoRankN

GEDEVO-M

M-MAGNA++

Figure 8: Comparison based on EC for all tuples. The results for MPGM are presented for
r = 1 and different values of `.

5 Interpretation and Discussion
One simple solution to the global MNA problem is to first compute individual alignments be-
tween all pairs of networks and then derive the final multiple alignment by merging all these
pairwise alignments. The main drawback of this approach is that the collection of these pair-
wise alignments might be inconsistent. For example, for nodes u1,2,3 ∈ V1,2,3, if u1 is matched
to u2 and u2 to u3, but u1 is matched to another node from G3, then it is not possible to gen-
erate a consistent one-to-one global MNA from these pairwise alignments. In contrast to the

16

40 60 80 100 120 140 160 180 200

Minimum BLAST score ℓ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
C

 fo
r
co
n
si
st
en
t
tu
pl
es

MPGM
SeedGeneration

FUSE

BEAMS

SMETANA

CSRW

IsoRankN

GEDEVO-M

M-MAGNA++

Figure 9: Comparison based on the EC measure for consistent tuples. The results for MPGM
are presented for r = 1 and different values of `. We observe that MPGM has the best perfor-
mance among all the algorithms.

40 60 80 100 120 140 160 180 200

Minimum BLAST score ℓ

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

C
IQ

MPGM
SeedGeneration

FUSE

BEAMS

SMETANA

CSRW

IsoRankN

GEDEVO-M

M-MAGNA++

Figure 10: Comparison based on the CIQ measure. The results for MPGM are presented for
r = 1 and different values of `. We observe that MPGM and SMETANA find alignments with
the highest CIQ score.

idea of merging different pairwise alignments, our approach has three main advantages: (i) It
aligns all the k networks at the same time. Therefore, it will always end up with a consistent
one-to-one global MNA. (ii) It uses structural information from all networks simultaneously.
(iii) The SEEDGENERATION algorithm gives more weight to the pairs of species that are evo-
lutionarily closer to each other. For example, as H. sapiens and M. musculus are very close, (a)
many couples from these two species are matched first, and (b) there are more couples of pro-
teins with high sequence similarities from these two species. Hence there are more tuples that
contain proteins from both H. sapiens and M. musculus. In the rest of this section, we provide
experimental evidence and theoretical results that explain the good performance of the MPGM

17

Table 4: The time complexity (in seconds) of algorithms for aligning the five species from
table 2.

Algorithm Time (s)
MPGM 131
FUSE 5911
BEAMS 364
SMETANA 146
CSRW 626
IsoRankN 9094
multiMAGNA++ 423
GEDEVO-M 4746

algorithm.

5.1 Why Does SeedGeneration Work?
The first step of MPGM (SEEDGENERATION) is a heuristic algorithm that generates seed-
tuples. The SEEDGENERATION algorithm is designed based on the following observations.
First, it is well known that proteins with high BLAST bit-score similarities share GO terms
with a high probability.5 Second, we look at the transitivity of BLAST bit-score similarities
for real proteins. Note that the BLAST similarity, in general, is not a transitive measure, i.e.,
for proteins p1, p2 and p3 given that couples [p1, p2] and [p2, p3] are similar, we can not always
conclude that the two proteins p1 and p3 are similar (see Example 4).

Example 4. Consider the three toy proteins p1, p2 and p3 with amino-acid sequences [MMMMMM],
[MMMMMMV V V V V V] and [V V V V V V], respectively. In this example, p2 is similar
to both p1 and p3, where p1 is not similar to p3. Indeed, we have BlastBit(p1, p2) =
11.2, BlastBit(p2, p3) = 10.0 and BlastBit(p1, p3) = 0.

In real-world, proteins cover a small portion of the space of possible amino-acid sequences,
and it might be safe to assume a (pseudo) transitivity property for them. To empirically evaluate
the transitivity of BLAST bit-scores, we define a new measure for an estimation of the BLAST
bit-score similarity of two proteins p1 and p3, when we know that there is a protein p2, such
that BLAST bit-score similarities between p2 and both p1, p3 are at least `. Formally, we define
α`,β as

α`,β = argmax
α

[P[BLAST (i, k) ≥ α× ` | BLAST (i, j)

≥ `, BLAST (j, k) ≥ `] ≥ β]

An empirical value of α`,β close to one is an indicator of a high level of transitivity (with a
probability of β) between the sequence similarities of protein couples. In Figure 11, we study
the transitivity of BLAST bit-scores for different levels of confidence β. For example, in this
figure, we observe that for two couples [p1, p2] and [p2, p3] with BLAST bit-score similarities
of at least 100, the similarity of the couple [p1, p3] is at least 91 with a probability of 0.80.
In general, based on this experimental evidence, it seems reasonable to assume that there is a
pseudo-transitive relationship between the sequence similarities of real proteins.

5For a detailed discussion on this argument please refer to Appendix C.

18

100 200 300 400 500

Minimum BLAST score (ℓ)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α
ℓ,
β

β=0.99

β=.0.97

β=0.95

β=0.90

β=0.80

Figure 11: The transitivity of BLAST bit-score similarities for real proteins. The α`,β measure
is calculated for different values of ` and β.

The two main observations about (i) the relationship between sequence similarity and bi-
ological functions of protein couples, and (ii) the transitivity of BLAST bit-scores help us to
design a heuristic algorithm for generating high-quality tuples (i.e., `∗-consistent tuples with
value of `∗ very close to `) from sequence similarities.

5.2 Why Does MultiplePercolation Work?
The general class of PGM algorithms has been shown to be very powerful for global pairwise-
network alignment problems. For example, PROPER is a state-of-the-art algorithm that uses
PGM-based methods to align two networks [Kazemi et al., 2016]. There are several works
on the theoretical and practical aspects of PGM algorithms [Narayanan and Shmatikov, 2009,
Yartseva and Grossglauser, 2013, Korula and Lattanzi, 2014, Chiasserini et al., 2015a, Kazemi
et al., 2015b, Kazemi, 2016, Cullina and Kiyavash, 2016, Cullina et al., 2016, Shirani et al.,
2017, 2018, Dai et al., 2018, Mossel and Xu, 2019]. In this paper, we introduced a global MNA
algorithm, as a new member of the PGM class. In this section, by using a parsimonious k-
graph sampling model (as a generalization of the model from [Kazemi et al., 2015b]), we prove
that MULTIPLEPERCOLATION aligns all the nodes correctly if initially enough number of seed-
tuples are provided. We first explain the model. Then we state the main theorem. Finally,
we present experimental evaluations of MULTIPLEPERCOLATION over random graphs that are
generated based on our k-graph sampling model.

5.2.1 A Multi-graph Sampling Model

Assume that all the k networks Gi(Vi, Ei) are evolved from an ancestor network G(V,E)
through node sampling (to model gene or protein deletion) and edge sampling (to model loss of

19

protein-protein interactions) processes.

Definition 5 (TheMulti(G, t, s, k) sampling model). Assume we have t = [t1, t2, · · · , tk] and
s = [s1, s2, · · · , sk], 0 < ti, si ≤ 1. The network Gi(Vi, Ei) is sampled from G(V,E) in the
following way: First the nodes Vi are sampled from V independently with probability ti; then
the edges Ei are sampled from those edges of graph G, whose both endpoints are sampled in
Vi, by independent edge sampling processes with probability si. We define ti,j =

√
titj and

si,j =
√
sisj .

Definition 6 (A correctly matched tuple). A tuple T is a correctly matched tuple, if and only if
all the nodes in T are the same (say a node u), i.e., they are samples of a same node from the
ancestor network G.

Definition 7 (A completely correctly matched tuple). A correctly matched tuple T , which con-
tains a different sample of a node u, is complete if and only if for all the vertex sets Vi, 1 ≤ i ≤ k,
if u ∈ Vi then Vi(T) = u

Assume the k networks Gi(Vi, Ei) are sampled from a G(n, p) random graph with n nodes
and average degrees of np. Now we state two main theorems that guarantee the performance
of MULTIPLEPERCOLATION over the Multi(G(n.p), t, s, k) sampling model. We first define
two parameters bt,s,r and at,s,r:

bt,s,r =

[
(r − 1)!

nt2(ps2)r

] 1
r−1

and at,s,r = (1− 1

r
)bt,s,r. (2)

Theorem 8. For r ≥ 2 and an arbitrarily small but fixed 1
6 > ε > 0, assume that n−1 � p ≤

n−
5
6−ε. For an initial set of seed tuple A, if |Ai,j | > (1 + ε)ati,j ,si,j ,r for every 1 ≤ i, j ≤

k, i 6= j, then with high probability the MULTIPLEPERCOLATION algorithm percolates and for
the final alignment π, we have |πi,j | = nt2i,j ± o(n), where almost all the tuples are completely
correctly matched tuples.

Theorem 9. For r ≥ 2 and an arbitrarily small but fixed 1
6 > ε > 0, assume that n−1 �

p ≤ n−
5
6−ε. For an initial set of seed tuple A, if for every 1 ≤ i ≤ k there at least c set of

Ai,j , 1 ≤ j ≤ k and i 6= j, such that |Ai,j | > (1 + ε)ati,j ,si,j ,r, then with high probability the
MULTIPLEPERCOLATION algorithm percolates and for the final alignment π, we have:

• Almost all the tuples T ∈ π are correctly matched tuples.

• For a correctly matched tuple T , which contains the node u, if there are at least k− c+ 1
networks Gi(Vi, E1) such that u ∈ Vi, then T is a completely correctly matched tuple

Note that Theorem 8 is the special case of Theorem 9 for c = k − 1. The proofs of Theo-
rems 8 and 9 follow from the generalization of the ideas that are used to prove [Kazemi et al.,
2015a, Theorem 1 (Robustness of NOISYSEEDS)].

5.2.2 Experimental Results: Synthetic Networks

To evaluate the performance of our algorithm by using synthetic networks, we consider k ∈
{3, 4, 5} randomly generated networks from theMulti(G, t, s, k) model. In these experiments,
we assume that a priori a set of seed-tuples A (|A| = a), with nodes from all the k networks,
are given and the MULTIPLEPERCOLATION algorithm starts the alignment process from these
tuples.

20

180 200 220 240 260 280 300 320

Number of seeds (|A| = a)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

N
u
m
b
er

o
f
co
rr
ec
tl
y
m
a
tc
h
ed

tu
p
le
s Multiple, |T | = 5

Multiple, |T | = 4

Multiple, |T | = 3

Multiple, |T | = 2

Pairwise

Figure 12: Multiple network alignment for graphs sampled fromMulti(G, t, s, k) with param-
eters k = 5, n = 105, p = 20/n, t = 0.9 and s = 0.9. We set r = 2 for MULTIPLEPERCOLA-
TION.

In the first set of experiments, we assume G is an Erdős-Rényi graph with 105 nodes and
an average degree of 20. We assume k networks Gi are sampled from G with node and edge
sampling probabilities of t = 0.9 and s = 0.9, respectively. Figures 12, 13 and 14 show the
simulation results for these experiments. We use r = 2 for the MULTIPLEPERCOLATION al-
gorithm. For each k ∈ {3, 4, 5}, the total number of correctly aligned tuples is provided. We
observe that when there is enough number of tuples in the seed set, MULTIPLEPERCOLATION
aligns correctly most of the nodes. We also see the sharp phase-transitions predicted in Theo-
rems 8 and 9. According to Equation (2), we need at,s,r = 236 correct seed-tuples to find the
complete alignments for the model parameters of n = 105, p = 20/n, t = 0.9 and s = 0.9.
We observe that the phase transitions take place very close to at,s,r = 236. For example, if
k = 5, in expectation there are nt5 = 59049 nodes that are present in all the five networks.
From Figures 12 (the black curve), it is clear that MULTIPLEPERCOLATION aligns correctly
almost all these nodes. Also, in expectation, there are

(
5
3

)
nt3(1 − t)2 = 7290 nodes that are

present in exactly three networks. Again, from Figures 12 (the red curve), we observe that
MULTIPLEPERCOLATION correctly aligns them.

While we are only able to guarantee the performance of the MULTIPLEPERCOLATION al-
gorithm for Erdős-Rényi graphs, we study the performance of our algorithms on two other net-
work models with heavy-tailed degree distributions. For this reason, first, we apply the MUL-
TIPLEPERCOLATION algorithm to a variant of power-law random graphs called the Chung-Lu
model (CL) [Chung and Lu, 2002]. In this model, the degree distribution of nodes follows a
power law. Secondly, we apply MULTIPLEPERCOLATION to the Barabási Albert model (BA)
[Barabási and Albert, 1999]. This model generates random scale-free networks in a preferential
attachment setting. In Figure 15, we observe that MULTIPLEPERCOLATION successfully aligns
all the nodes from the k = 5 networks correctly. We also observe that while for both models we
need fewer number of seed than for Erdős-Rényi graphs, the required number of initial seeds

21

180 200 220 240 260 280 300 320

Number of seeds (|A| = a)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

N
u
m
b
er

o
f
co
rr
ec
tl
y
m
a
tc
h
ed

tu
p
le
s Multiple, |T | = 4

Multiple, |T | = 3

Multiple, |T | = 2

Pairwise

Figure 13: Multiple network alignment for graphs sampled fromMulti(G, t, s, k) with param-
eters k = 4, n = 105, p = 20/n, t = 0.9 and s = 0.9. We set r = 2 for MULTIPLEPERCOLA-
TION.

180 200 220 240 260 280 300 320

Number of seeds (|A| = a)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

N
u
m
b
er

o
f
co
rr
ec
tl
y
m
a
tc
h
ed

tu
p
le
s Multiple, |T | = 3

Multiple, |T | = 2

Pairwise

Figure 14: Multiple network alignment for graphs sampled fromMulti(G, t, s, k) with param-
eters k = 3, n = 105, p = 20/n, t = 0.9 and s = 0.9. We set r = 2 for MULTIPLEPERCOLA-
TION.

22

0 50 100 150 200

Number of seeds (|A| = a)

0

10000

20000

30000

40000

50000

60000

N
u
m
b
er

o
f
co
rr
ec
tl
y
m
a
tc
h
ed

tu
p
le
s

CL, |T | = 5

CL, |T | = 4

CL, |T | = 3

CL, |T | = 2

BA, |T | = 5

BA, |T | = 4

BA, |T | = 3

BA, |T | = 2

Figure 15: Multiple network alignment for graphs sampled from Chung-Lu (CL) and Barabási
Albert (BA) models with n = 105 nodes. The average degree of both graphs are 10. The node
(t) and edge (s) sampling probabilities are both 0.9. We set r = 2 for MULTIPLEPERCOLA-
TION.

for BA models is even less.

6 Conclusion
In this paper, we introduced a new one-to-one global multiple-network alignment algorithm,
called MPGM. Our algorithm has two main steps. In the first step (SEEDGENERATION), it
uses protein sequence-similarities to generate an initial seed-set of tuples. In the second step,
MPGM applies a percolation-based graph-matching algorithm (called MULTIPLEPERCOLA-
TION) to align the remaining unmatched proteins, by using only the structure of networks and
the seed tuples from the first step. We have compared MPGM with several state-of-the-art meth-
ods. We observe that MPGM outperforms the other algorithms with respect to several mea-
sures. More specifically, MPGM finds many consistent tuples with high d-coverage (mainly
for d = k). Also, it outputs alignments with a high structural similarity between networks,
i.e., many interactions are conserved among aligned tuples. We have studied the transitivity of
sequence similarities for real proteins and have found that it is reasonable to assume a pseudo-
transitive relationship among them. We argue, based on this pseudo-transitivity property, that
theSEEDGENERATION heuristic is able to find seed tuples with high functional similarities. In
addition, we present a random-sampling model to generate k correlated networks. By using
this model, we prove conditions under which MULTIPLEPERCOLATION aligns (almost) all the
nodes correctly if initially enough seed tuples are provided.

Acknowledgements. The work of Ehsan Kazemi was supported by Swiss National Science
Foundation (Early Postdoc.Mobility) under grant number 168574.

23

References
Ahmet Emre Aladag and Cesim Erten. Spinal: scalable protein interaction network alignment.

Bioinformatics, 29(7):917–924, 2013.

Ferhat Alkan and Cesim Erten. Beams: backbone extraction and merge strategy for the global
many-to-many alignment of multiple ppi networks. Bioinformatics, 30(4):531–539, 2014.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

Rolf Apweiler, Amos Bairoch, Cathy H Wu, Brigitte Barker, Winona Cand Boeckmann,
Serenella Ferro, Elisabeth Gasteiger, Hongzhan Huang, Rodrigo Lopez, Michele Magrane,
et al. UniProt: the universal protein knowledgebase. Nucleic Acids Research, 32(suppl 1):
D115–D119, 2004.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

Carla F. Chiasserini, Michele Garetto, and Emilio Leonardi. De-anonymizing scale-free social
networks by percolation graph matching. In Proc. of IEEE INFOCOM 2015, Hong Kong,
April 2015a.

Carla F. Chiasserini, Michele Garetto, and Emilio Leonardi. Impact of Clustering on the Perfor-
mance of Network De-anonymization. In Proc. of ACM COSN 2015, Palo Alto, CA, USA,
November 2015b.

Fan Chung and Linyuan Lu. Connected components in random graphs with given expected
degree sequences. Annals of combinatorics, 6(2):125–145, 2002.

Daniel Cullina and Negar Kiyavash. Improved Achievability and Converse Bounds for Erdős–
Rényi Graph Matching. In Proceedings of the 2016 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Science, New York, NY, USA, 2016.
ACM.

Daniel Cullina, Kushagra Singhal, Negar Kiyavash, and Prateek Mittal. On the Simultaneous
Preservation of Privacy and Community Structure in Anonymized Networks. arXiv e-prints,
art. arXiv:1603.08028, Mar 2016.

Osman Emre Dai, Daniel Cullina, Negar Kiyavash, and Matthias Grossglauser. On the Perfor-
mance of a Canonical Labeling for Matching Correlated Erdos-Renyi Graphs. arXiv e-prints,
art. arXiv:1804.09758, Apr 2018.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

Jason Flannick, Antal Novak, Balaji S Srinivasan, Harley H McAdams, and Serafim Batzoglou.
Graemlin: general and robust alignment of multiple large interaction networks. Genome
research, 16(9):1169–1181, 2006.

Vladimir Gligorijević, Noël Malod-Dognin, and Nataša Pržulj. Fuse: multiple network align-
ment via data fusion. Bioinformatics, 2015.

Somaye Hashemifar and Jinbo Xu. HubAlign: an accurate and efficient method for global
alignment of protein–protein interaction networks. Bioinformatics, 30(17):i438–i444, 2014.

24

Henning Hermjakob, Luisa Montecchi-Palazzi, Chris Lewington, Sugath Mudali, Samuel Ker-
rien, Sandra Orchard, Martin Vingron, Bernd Roechert, Peter Roepstorff, Alfonso Valencia,
et al. IntAct: an open source molecular interaction database. Nucleic Acids Research, 32
(suppl 1):D452–D455, 2004.

Jialu Hu, Birte Kehr, and Knut Reinert. NetCoffee: a fast and accurate global alignment ap-
proach to identify functionally conserved proteins in multiple networks. Bioinformatics, 30
(4):540–548, 2014.

Rashid Ibragimov, Maximilian Malek, Jan Baumbach, and Jiong Guo. Multiple graph edit dis-
tance: simultaneous topological alignment of multiple protein-protein interaction networks
with an evolutionary algorithm. In Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation. ACM, 2014.

Hyundoo Jeong and Byung-Jun Yoon. Accurate multiple network alignment through context-
sensitive random walk. BMC systems biology, 9(Suppl 1):S7, 2015.

Maxim Kalaev, Mike Smoot, Trey Ideker, and Roded Sharan. Networkblast: comparative anal-
ysis of protein networks. Bioinformatics, 24(4), 2008.

Ehsan Kazemi. Network alignment: Theory, algorithms, and applications. PhD dissertation,
EPFL, 2016.

Ehsan Kazemi and Matthias Grossglauser. On the Structure and Efficient Computation of Iso-
Rank Node Similarities. arXiv e-prints, art. arXiv:1602.00668, Feb 2016.

Ehsan Kazemi, S. Hamed Hassani, and Matthias Grossglauser. Growing a Graph Matching
from a Handful of Seeds. Proc. of the VLDB Endowment, 8(10):1010–1021, 2015a.

Ehsan Kazemi, Lyudmila Yartseva, and Matthias Grossglauser. When Can Two Unlabeled
Networks Be Aligned Under Partial Overlap? In Allerton, Monticello, IL, USA, October
2015b.

Ehsan Kazemi, Hamed Hassani, Matthias Grossglauser, and Hassan Pezeshgi Modarres.
PROPER: global protein interaction network alignment through percolation matching. BMC
Bioinformatics, 17(1):527, 2016.

Nitish Korula and Silvio Lattanzi. An efficient reconciliation algorithm for social networks.
Proc. of the VLDB Endowment, 7(5):377–388, 2014.

Oleksii Kuchaiev, Tijana Milenković, Vesna Memišević, Wayne Hayes, and Nataša Pržulj.
Topological network alignment uncovers biological function and phylogeny. Journal of the
Royal Society Interface, pages 1341–1354, 2010.

Chung-Shou Liao, Kanghao Lu, Michael Baym, Rohit Singh, and Bonnie Berger. IsoRankN:
spectral methods for global alignment of multiple protein networks. Bioinformatics, 25(12):
i253–i258, 2009.

Phillip W. Lord, Robert D. Stevens, Andy Brass, and Carole A. Goble. Investigating semantic
similarity measures across the gene ontology: the relationship between sequence and anno-
tation. Bioinformatics, 19(10):1275–1283, 2003.

Noël Malod-Dognin and Nataša Pržulj. L-GRAAL: Lagrangian graphlet-based network aligner.
Bioinformatics, 31(13):2182–2189, 2015.

25

Lei Meng, Aaron Striegel, and Tijana Milenković. Local versus global biological network
alignment. Bioinformatics, 2016.

Meeta Mistry and Paul Pavlidis. Gene ontology term overlap as a measure of gene functional
similarity. BMC bioinformatics, 9(1):327, 2008.

Elchanan Mossel and Jiaming Xu. Seeded Graph Matching via Large Neighborhood Statis-
tics. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 1005–1014, 2019.

Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In Proc. of IEEE
Symposium on Security and Privacy 2009, Oakland, CA, USA, May 2009.

Behnam Neyshabur, Ahmadreza Khadem, Somaye Hashemifar, and Seyed Shahriar Arab. NE-
TAL: a new graph-based method for global alignment of protein–protein interaction net-
works. Bioinformatics, 29(13):1654–1662, 2013.

Cédric Notredame, Desmond G Higgins, and Jaap Heringa. T-coffee: A novel method for fast
and accurate multiple sequence alignment. Journal of molecular biology, 302(1):205–217,
2000.

Rob Patro and Carl Kingsford. Global network alignment using multiscale spectral signatures.
Bioinformatics, 28(23):3105–3114, 2012.

Alex Radu and Michael Charleston. Node handprinting: a scalable and accurate algorithm for
aligning multiple biological networks. Journal of Computational Biology, 22(7):687–697,
2015.

Philip Resnik. Semantic similarity in a taxonomy: An information-based measure and its ap-
plication to problems of ambiguity in natural language. Journal of artificial intelligence
research, 11:95–130, 1999.

Sayed Mohammad Ebrahim Sahraeian and Byung-Jun Yoon. SMETANA: accurate and scalable
algorithm for probabilistic alignment of large-scale biological networks. PLoS One, 8(7):
e67995, 2013.

Vikram Saraph and Tijana Milenković. Magna: Maximizing accuracy in global network align-
ment. Bioinformatics, 30(20):2931–2940, 2014.

Andreas Schlicker and Mario Albrecht. Funsimmat: a comprehensive functional similarity
database. Nucleic acids research, 36(suppl 1):D434–D439, 2008.

Roded Sharan, Silpa Suthram, Ryan M. Kelley, Tanja Kuhn, Scott McCuine, Peter Uetz, Tay-
lor Sittler, Richard M. Karp, and Trey Ideker. Conserved patterns of protein interaction in
multiple species. Proceedings of the National Academy of Sciences of the United States of
America, 102(6):1974–1979, 2005.

Farhad Shirani, Siddharth Garg, and Elza Erkip. Seeded graph matching: Efficient algorithms
and theoretical guarantees. In Asilomar Conference on Signals, Systems, and Computers,
ACSSC, pages 253–257, 2017.

Farhad Shirani, Siddharth Garg, and Elza Erkip. Typicality Matching for Pairs of Correlated
Graphs. In 2018 IEEE International Symposium on Information Theory, ISIT, pages 221–
225, 2018.

26

Rohit Singh, Jinbo Xu, and Bonnie Berger. Pairwise Global Alignment of Protein Interaction
Networks by Matching Neighborhood Topology. In Proc. of Research in Computational
Molecular Biology 2007, San Francisco, CA, USA, April 2007.

Vipin Vijayan and Tijana Milenkovic. Multiple network alignment via multimagna++.
IEEE/ACM Trans. Comput. Biology Bioinform., 15(5):1669–1682, 2018.

Vipin Vijayan, Vikram Saraph, and Tijana Milenković. MAGNA++: Maximizing Accuracy in
Global Network Alignment via both node and edge conservation. Bioinformatics, 31(14):
2409–2411, 2015.

Lyudmila Yartseva and Matthias Grossglauser. On the performance of percolation graph match-
ing. In Proc. of ACM COSN 2013, Boston, MA, USA, October 2013.

27

A Table of Notations

Table 5:

Gi(Vi, Ei) A network with vertex set Vi and edge set Ei.
(u, v) An edge between nodes u and v.
Ni(u) The set of neighbors of node u in Gi.
BlastBit(u, v) BLAST bit-score similarity of two proteins u and v
[u, v] A couple of proteins u and v.
T A tuple.
A Initial seed-tuples.
π The final alignment.
|T | Number of nodes in tuple T .
V (T) The set of networks such that have a node in the tuple T .
V (u) The network Vi such that u ∈ Vi.
S≥` The set of all couples with BLAST bit-score similarities at least `.
A(u) Returns the tuple T ∈ A such that u ∈ T . If there is no such tuple, we define

A(u) = ∅.
ETi,Tj The set of all the interactions between nodes from the two tuples Ti and Tj ,

i.e., ETi,Tj
= {e = (u, v)|u ∈ Ti, v ∈ Tj}.

V (ETi,Tj
) The set of networks such that have an edge in ETi,Tj

.
C(π) The set of consistent tuples in an alignment π.

B Detailed Comparisons
Tables 6, 7, 8 and 9 provide detailed comparisons for tuples with different coverages. Table 6
compares algorithms over tuples with nodes from five networks. The second step of MPGM
(i.e., MULTIPLEPERCOLATION) uses PPI networks to generate 3076 tuples out of initial seed-
tuples. We observe that MPGM (for ` = 40) finds an alignment with the maximum d-coverage,
#CC5, #CP5 and SSp(π). In addition, the first step of MPGM (i.e., SEEDGENERATION) has
the best performance on Spec5, SSp(π) and MNE. This was expected, because MULTIPLEPER-
COLATION uses only network structure, a less reliable source of information for functional sim-
ilarity in comparison to sequence similarities, to align new nodes. From this table, it is clear
that MPGM outperforms the other algorithms with respect to all the measures.

Table 6: Comparison results for tuples of size five. For MPGM we set r = 1.

SeedGeneration (`) MPGM (`) F B S C I M G
40 80 150 40 80 150

d-coverage 1366 880 568 3076 3062 3068 2233 867 1132 1104 379 1896 1942
#CC5 386 248 159 707 647 541 449 187 209 200 23 312 25
#CP5 1930 1240 795 3535 3235 2705 2245 1082 1279 1234 126 1560 125
Spec5 0.291 0.286 0.284 0.244 0.222 0.184 0.21 0.22 0.187 0.185 0.063 0.194 0.013
SSp(π) 5294 3519 2251 10659 10002 9285 7078 2788 3315 3097 554 5279 2614
SSp(π) 3.928 4.018 3.993 3.55 3.326 3.074 3.22 3.239 2.944 2.818 1.482 3.071 1.37
MNE 2.927 2.943 3.049 3.008 3.071 3.144 3.014 3.162 3.312 3.071 3.469 3.185 3.889

28

Table 7: Comparison results for tuples of size four. For MPGM we set r = 1.

SeedGeneration (`) MPGM (`) F B S C I M G
40 80 150 40 80 150

d-coverage 1933 1591 1133 2719 2520 2321 3527 1663 1547 1670 1475 3305 4168
#CC4 580 532 392 631 534 435 834 510 414 474 118 652 215
#CP4 2320 2128 1568 2524 2136 1740 3336 2398 1903 2272 560 2608 860
Spec4 0.339 0.366 0.369 0.277 0.256 0.224 0.299 0.329 0.291 0.306 0.092 0.297 0.075
SSp(π) 8309 7335 5465 10449 9087 7902 12829 7043 5863 6522 2953 12840 7988
SSp(π) 4.591 4.814 4.982 4.213 3.984 3.726 4.095 4.34 3.922 4.044 2.156 3.951 1.947
MNE 2.565 2.648 2.717 2.571 2.621 2.668 2.597 2.733 2.664 2.73 3.168 2.720 3.525

Table 8: Comparison results for tuples of size three. For MPGM we set r = 1.

SeedGeneration (`) MPGM (`) F B S C I M G
40 80 150 40 80 150

d-coverage 2342 2227 1842 2502 2522 2523 2180 2320 1951 1981 2869 2736 2157
#CC3 775 794 692 603 598 545 472 801 617 662 308 620 232
#CP3 2325 2382 2076 1809 1794 1635 1416 2886 2132 2352 1027 1860 696
Spec3 0.462 0.486 0.500 0.384 0.382 0.349 0.35 0.437 0.417 0.436 0.153 0.397 0.134
SSp(π) 11509 11672 9988 10040 10070 9430 8197 11509 9064 9526 7463 14530 6092
SSp(π) 6.007 6.319 6.394 5.263 5.348 4.995 4.956 5.706 5.441 5.587 3.224 5.389 2.884
MNE 2.239 2.290 2.372 2.312 2.336 2.35 2.348 2.276 2.31 2.264 2.83 2.431 3.022

Table 9: Comparison results for tuples of size two. For MPGM we set r = 1.

SeedGeneration (`) MPGM (`) F B S C I M G
40 80 150 40 80 150

d-coverage 3510 4013 4411 3402 3675 3825 3118 3265 2820 2988 5620 3958 2110
#CC2 859 1088 1357 579 645 703 495 900 702 905 541 685 202
#CP2 1718 2176 2714 1158 1290 1406 990 2309 1644 2073 1224 1370 404
Spec2 0.611 0.619 0.646 0.527 0.519 0.529 0.462 0.557 0.558 0.618 0.231 0.495 0.229
SSp(π) 15049 18777 22849 10664 12032 12918 9035 14749 12003 14898 12853 22048 7897
SSp(π) 8.157 8.286 8.551 7.025 7.153 7.161 6.118 7.375 7.378 8.124 4.21 5.729 3.826
MNE 1.946 1.944 1.968 2.01 2.03 2.002 2.163 1.987 1.951 1.987 2.464 2.152 2.797

C BLAST Bit-score Similarities and GO terms
To provide experimental evidence for our hypothesis, we look at the biological similarity of
protein couples versus their BLAST bit-score similarities. For this reason, we define a gene-
ontology consistency (GOC) measure (based on the measure introduced in [Mistry and Pavlidis,
2008]) to evaluate the relationship between BLAST bit-scores and the experimentally verified
GO terms. This measure represents the percentage of pairs of proteins with BLAST bit-score
similarity of at least `, such that they share at least one GO term. Formally, we define

goc≥` =

|{[pi, pj]|BLAST (pi, pj) ≥ ` and go(pi) ∩ go(pj) 6= ∅}|
|{[pi, pj]|BLAST (pi, pj) ≥ `, go(pi) 6= ∅ and go(pj) 6= ∅}|

. (3)

In this section, we consider only experimentally verified GO terms. Figure 16 shows the goc≥`
measure for couples of proteins among five eukaryotic species, namely C. elegans (ce), D.
melanogaster (dm), H. sapiens (hs), M. musculus (mm) and S. cerevisiae (sc). In this figure, the
results are provided for cases, where we consider (i) all the experimental GO terms, (ii) cellu-

29

100 200 300 400 500 600

Minimum BLAST score (ℓ)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

g
oc

≥
ℓ

All

Biological process

Molecular function

Cellular component

Figure 16: The goc≥` measure for couples of proteins with BLAST bit-score similarities of at
least `.

lar component (CC) annotations, (iii) molecular function (MF) annotations, and (iv) biological
process (BP) annotations. For further experiments, we look at the average of semantic simi-
larity SSp (eq. (1)) between couples of proteins with BLAST bit-score similarity of at least `.
Figure 17 shows the SSp for couples of proteins with BLAST bit-score similarities of at least `.
We observe that, for couples of proteins with higher BLAST bit-score similarities, the average
of SSp measure increases.

D GO Annotation: Statistics
In this appendix, we look at a few statistics regarding GO annotations. GO annotations com-
prises three orthogonal taxonomies for a gene product: molecular-function, biological-process
and cellular-component. This information is captured in three different directed acyclic graphs
(DAGs). The roots (the most general annotations for each category) of these DAGs are:

• GO:0003674 for molecular function annotations

• GO:0008150 for biological process annotations

• GO:0005575 for cellular component annotations

For information content of each GO term, we use the SWISS-PROT-Human proteins, and
counted the number of times each concept occurs. Information content is calculated based on
the following information:

• Number of GO terms in the dataset is 26831.

• Number of annotated proteins in the dataset is 38264085.

30

100 200 300 400 500 600

Minimum BLAST score (ℓ)

3

4

5

6

7

8

9

10

11

A
v
er
a
g
e
o
f
S
S
p

All

Biological process

Molecular function

Cellular component

Figure 17: Average of SSp for couples of proteins with BLAST bit-score similarities of at
least `. We observe that, for couples of proteins with higher BLAST bit-score similarities, the
average of SSp measure increases.

• Number of experimental GO terms in the dataset is 24017.

• Number of experimentally annotated proteins in the dataset is 102499.

Table 10 provides information related to different categories of GO annotations for the five
networks we used in our experiments.

Table 10: Statistics for experimental GO annotations.
GO type #GO #proteins Avg. #GO
All 20738 28896 49.47
Biological process 14876 20723 48.21
Molecular function 3938 21670 7.84
Cellular component 1924 21099 12.35

Next we report the number of experimentally annotated proteins (at the cut-off level 5 of
DAGs) in each network:

• C. elegans: 1544 out of 4950 proteins (31.2 %).

• D. melanogaster: 4653 out of 8532 proteins (54.5 %).

• H. sapiens: 10929 out of 19141 proteins (57.1 %).

• M. musculus: 7150 out of 10765 proteins (66.4 %).

• S. cerevisiae: 4819 out of 6283 proteins (76.7 %).

31

The probabilities of sharing at least one GO term (at the cut-off level 5) for tuples of size two
to five, when all the proteins of a tuple are annotated, are as follows:

• tuples of size 2: 0.215

• tuples of size 3: 0.042

• tuples of size 4: 0.009

• tuples of size 5: 0.002

Also, the probabilities of sharing at least one GO term (at the cut-off level 5) for tuples of size
two to five, when at least two proteins from each tuple are annotated, are as follows:

• tuples of size 2: 0.215

• tuples of size 3: 0.167

• tuples of size 4: 0.120

• tuples of size 5: 0.081

In Figure 18, the total number of annotated proteins, at different cut-off levels, are shown.
Also, the number of GO terms and the average number of GO terms for each annotated protein,
at different cut-off levels, are shown in Figures 19 and 20, receptively.

3 4 5 6 7 8 9

Cut-off level

0

5000

10000

15000

20000

25000

30000

N
u
m
b
er

o
f
a
n
n
o
ta
te
d
p
ro
te
in
s

All

Biological process

Molecular function

Cellular component

Figure 18: Number of annotated proteins for different cut-off levels

32

3 4 5 6 7 8 9

Cut-off level

0

1000

2000

3000

4000

5000

6000

N
u
m
b
er

o
f
d
iff
er
en
t
G
O

te
rm

s

All

Biological process

Molecular function

Cellular component

Figure 19: Number of different GO terms for different cut-off levels

3 4 5 6 7 8 9

Cut-off level

0

2

4

6

8

10

12

A
v
er
a
g
e
n
u
m
b
er

o
f
G
O

te
rm

s
fo
r
ea
ch

p
ro
te
in

All

Biological process

Molecular function

Cellular component

Figure 20: Average number of GO terms for each annotated protein for different cut-off levels

33

	1 Introduction
	2 Algorithms and Methods
	2.1 The MPGM Algorithm
	2.1.1 First Step: SeedGeneration
	2.1.2 Second Step: MultiplePercolation

	3 Performance Measures
	4 EXPERIMENTS AND EVALUATIONS
	4.1 Comparisons
	4.2 Computational Complexity

	5 Interpretation and Discussion
	5.1 Why Does SeedGeneration Work?
	5.2 Why Does MultiplePercolation Work?
	5.2.1 A Multi-graph Sampling Model
	5.2.2 Experimental Results: Synthetic Networks

	6 Conclusion
	A Table of Notations
	B Detailed Comparisons
	C BLAST Bit-score Similarities and GO terms
	D GO Annotation: Statistics

