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Abstract— Hospitals often set protocols based on well defined standards to maintain the quality of patient reports. To ensure that the

clinicians conform to the protocols, quality assurance of these reports is needed. Patient reports are currently written in free-text format,

which complicates the task of quality assurance. In this paper, we present amachine learning based natural language processing system

for automatic quality assurance of radiology reports on breast cancer. This is achieved in three steps: we i) identify the top-level structure

(headings) of the report, ii) classify the report content into the top-level headings, and iii) convert the free-text detailed findings in the

report to a semi-structured format (post-structuring). Top level structure and content of report were predicted with an F1 score of 0.97 and

0.94, respectively, using Support Vector Machine (SVM) classifiers. For automatic structuring, our proposed hierarchical Conditional

RandomField (CRF) outperformed the baseline CRFwith an F1 score of 0.78 versus 0.71. The determined structure of the report is

represented in semi-structured XML format of the free-text report, which helps to easily visualize the conformance of the findings to the

protocols. This format also allows easy extraction of specific information for other purposes such as search, evaluation, and research.

Index Terms—Quality assurance, automatic structuring, post-structuring, radiology reports, conditional random field
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1 INTRODUCTION

MEDICAL reports are essential for communicating the
findings of imaging procedures with referring physi-

cians, who further treat the patients by considering these
reports. Since, medical reports are very important for diagno-
ses of diseases, there is a need to ensure that these reports are
of a high quality. To maintain the quality of reports, hospitals
often set well-defined protocols for reporting. For example,
for breast cancer radiology reporting, hospitals generally use
the “Breast Imaging-Reporting And Data System” (BI-RADS)
[1], [20], which is a classification system proposed by Ameri-
can College of Radiology (ACR), to represent the malignancy
risk of the breast cancer of a patient. It was implemented to
standardize reporting and quality control for mammography.
The BI-RADS lexicon provides specific terms to be used to
describe findings. Along with that, it also describes the
desired report structure: for example, a report should contain
breast composition and a clear description of findings. The
rate of compliancewith these reporting standards can be used
for quality assurance and also to further measure clinical
performance [2].

Conformance to reporting standards can be seen as a part
of assessing report clarity, organization, and accuracy [3],
[4]. Quality assurance is currently mainly a manual process.

Peer review is used to assess report quality, mainly geared
towards accuracy of reports [5]. Yang et al. [6] used psycho-
metric assessment to measure report quality and analyzed
parameters like report preparation, organization, readabil-
ity. Making quality assurance systems automatic would
reduce the workload of radiologists and make the process
more efficient. To the best of our knowledge, no system exists
to automate this process.

Quality assurance is complicated due to the fact that
reporting is done in free-text, narrative format. The inac-
cessibility of narrative structure for computers makes it
hard to analyze if all the necessary information are
present in the report. Structured reporting templates can
be introduced to force the radiologists to stick to the
reporting standards and improve the quality of reports
[7], [8]. However, a study [9] shows that this type of sys-
tem resulted in lower quality reports, as it restricts the
style and format of writing. An alternative is to perform
automatic structuring of free-text reports after they
have been written, without additional technical burden
on the radiologists. Thus, the radiologists can concen-
trate more on the task of interpreting images rather than
structure of writing, which helps in maintaining accu-
racy of the report content.

In this work, we follow the post-structuring paradigm.
We present an approach for automatic structuring of radiol-
ogy reports for quality assurance using machine learning.
We define the quality of a report by conformity to reporting
standards set by ACR BIRADS. Concretely, we (i) identify
the top-level structure from the reports (henceforth, referred
to as heading identification), (ii) classify the report content
into the top-level headings (referred to as content identifica-
tion), and, (iii) automatically convert the free-text report

� S. Pathak, C. Seifert, and M. van Keulen are with the Data Management and
Biometric Group, University of Twente, Enschede 7522, NB, the Netherlands.
E-mail: shreyasi12dgp13@gmail.com, {c.seifert, m.vankeulen}@utwente.nl.

� J. van Rossen, O. Vijlbrief, and J. Geerdink are with the Hospital Group
Twente (ZGT), Hengelo 7555, DL, the Netherlands.
E-mail: {j.vrossen, o.vijlbrief, J.Geerdink}@zgt.nl.

Manuscript received 6 Oct. 2018; revised 30 Dec. 2018; accepted 4 Mar. 2019.
Date of publication 3 May 2019; date of current version 8 Dec. 2020.
(Corresponding author: Shreyasi Pathak.)
Digital Object Identifier no. 10.1109/TCBB.2019.2914678

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020 1883

1545-5963� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 16,2020 at 07:34:23 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6984-8208
https://orcid.org/0000-0002-6984-8208
https://orcid.org/0000-0002-6984-8208
https://orcid.org/0000-0002-6984-8208
https://orcid.org/0000-0002-6984-8208
https://orcid.org/0000-0002-9478-2204
https://orcid.org/0000-0002-9478-2204
https://orcid.org/0000-0002-9478-2204
https://orcid.org/0000-0002-9478-2204
https://orcid.org/0000-0002-9478-2204
https://orcid.org/0000-0003-2303-6009
https://orcid.org/0000-0003-2303-6009
https://orcid.org/0000-0003-2303-6009
https://orcid.org/0000-0003-2303-6009
https://orcid.org/0000-0003-2303-6009
https://orcid.org/0000-0001-6718-6653
https://orcid.org/0000-0001-6718-6653
https://orcid.org/0000-0001-6718-6653
https://orcid.org/0000-0001-6718-6653
https://orcid.org/0000-0001-6718-6653
https://orcid.org/0000-0002-6776-3868
https://orcid.org/0000-0002-6776-3868
https://orcid.org/0000-0002-6776-3868
https://orcid.org/0000-0002-6776-3868
https://orcid.org/0000-0002-6776-3868
https://orcid.org/0000-0003-2436-1372
https://orcid.org/0000-0003-2436-1372
https://orcid.org/0000-0003-2436-1372
https://orcid.org/0000-0003-2436-1372
https://orcid.org/0000-0003-2436-1372
mailto:
mailto:
mailto:


findings to a structured format for making the task of com-
parison to well-defined protocols easier (referred to as auto-
matic structuring). For visualization and use in subsequent
applications, we generate an output in a semi-structured
XML format (Table 1). In this work, we focus on Dutch radi-
ology reports on breast cancer; the automatic structuring
was performed on findings from the mammography imag-
ing modality in these reports. This article is an extended ver-
sion of our previous work [10]. Among others, it adds more
depth into error analysis of our task and additionally pro-
vides experiments with various feature combinations for the
classifiers.

In the remainder of this paper, we first review structured
reporting initiatives and natural language processing for
radiology reports (Section 2). Next, we describe our data set
in Section 3. Our approach to heading and content identifi-
cation, and automatic structuring is detailed in Section 4,
followed by the experimental setup (Section 5) and results
(Section 6). Finally, we discuss the implication of our results
in Section 7 and conclude our work in Section 8.

2 RELATED WORK

In this section, we will discuss structuring initiatives for
radiology reporting, and review work on natural language
processing techniques in the domain of radiology.

2.1 Structured Reporting Initiatives

Accuracy, clarity, readability, and organization are some of
the important factors for good quality of radiology reporting
[3], [4]. Sistrom and Langlotz [7] identified i) language, ii)
format as two key attributes for improving the quality of a
radiology report. Standardizing the language of the report pro-
motes common interpretation of the reports by the radiolog-
ists throughout the world. Breast Imaging-Reporting and
Data System is a very successful attempt by ACR at stan-
dardizing the language for breast cancer reporting [1].
RadLex [11] is another attempt at standardizing disease ter-
minology, observation and radiology procedure. Structured
reporting further increases efficiency of information transfer
and referring clinicians can extract the relevant information
easily. Sistrom and Langlotz [7] clarified that structured
reporting does not mean having a point-and-click interface
for data capture, rather a simple report format that reflects

the way radiologist and referring physician sees the report
and should not impose any restriction on the radiologists.
Radiological Society of North America (RSNA) highlighted
that structured reporting would improve clinical quality and
help in addressing quality assurance [4].

Though there has been a lot of discussion about the effect
of structuring on the quality of radiology report, not much
actual assessment was done until 2005. In 2005, Sistrom and
Honeyman-Buck [12] tested information extraction from
free-text and structured reports. They found that both, the
free-text and structured report resulted in similar accuracy and
efficiency in information extraction, but a post-experimental
questionnaire expressed clinicians’ opinion in favour of struc-
tured report format. Schwartz et al. [8] reported that referring
clinicians and radiologists found greater satisfaction with con-
tent and clarity in structured reports, but the clinical usefulness
did not vary significantly between the two formats. Another
study by Johnson et al. [9], concluded that structured report-
ing resulted in a decrease in report accuracy and completeness.
The subjects were asked to use commercially available struc-
tured reporting system (SRS), a point-and-click menu driven
software, to create the structured reports and they found it to
be overly constraining and time-consuming.

To summarize, previous work has shown that structured
reporting and standard language are important for report
quality, but should not impose restriction on the radiolog-
ists. Further, structured reporting can help in addressing
quality assurance.

2.2 Natural Language Processing in Radiology

Electronic health records (EHRs), like radiology reports,
increases the use of digital content and thus generates new
challenges in the medical domain. It is not possible for
humans to analyze this huge amount of data and extract rele-
vant information manually, so automated strategies are
needed. There are two types of techniques used in natural
language processing for processing data: i) rule-based and ii)
machine learning approaches.

In rule-based approaches, rules are manually created by
experts to match a specific task. Various rule-based systems
have been used for information extraction in breast cancer
radiology reports. Nassif et al. [13] developed a rule-based
system in 2009 to extract BI-RADS related features from a
mammography study. The system was tested on 100

TABLE 1
Example of Structuring of Free-Text Mammography Finding
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radiology reports labeled by radiologists, resulting in a preci-
sion of 97.7 percent and a recall of 95.5 percent. Sippo et al.
[14] developed a rule-based NLP system in 2013 to extract the
BI-RADS final assessment category from radiology reports.
They tested their system on > 220 reports for each type of
study – diagnostic and screening mammography, ultrasound
etc. achieving a recall of 100 percent and a precision of 96.6
percent.

Machine learning (ML) approaches can learn the patterns
from data automatically given the input text sequence and
some labeled text samples. Hidden Markov Model, Conditional
Random Field (CRF) [15] are some of the ML approaches used
for sequence labeling. Hassanpour and Langlotz [16] com-
pared dictionary-based (a type of rule-based) model, Condi-
tional Markov Model and CRFs on the task of information
extraction from chest radiology reports, finding that ML
approaches (F1: 85.5%) performed better than rule-based
(F1: 57.8%). Torii, Wagholikar and Liu [17] investigated the
performance of CRF taggers for extracting clinical concepts
and also tested the portability of the taggers on different
datasets. Esuli, Marcheggiani and Sebastiani [18] developed
a cascaded 2-stage Linear Chain CRF model (one CRF
for identifying entities at clause level and another one at
word level) for information extraction from breast cancer
radiology reports. The cascaded system (F1: 0.873) outper-
formed their baseline model of standard one level LC-CRF
(F1: 0.846) on 500mammography reports.

Hybrid approaches combine rule-based and machine learn-
ing approaches. For example, Taira, Sodrland and Jakobovits
[19] developed a method for automatic structuring of free-
text thoracic radiology reports using some rule-based and
some statistical and machine learning methods like maxi-
mum entropy classifier. We want to develop a fully auto-
mated system without any rule creation involved from
experts, which is whywewill not follow a hybrid approach.

In this work, we apply machine learning approaches to
avoid manual rule construction and use CRFs, as they have
shown high performance on sequence labeling task.

3 CORPUS: RADIOLOGY REPORTS ON BREAST

CANCER

According to BI-RADS [20], a breast cancer radiology report
should contain an indication of examination (clinical data),
a breast composition, a clear description of findings, and a
conclusion with the BI-RADS assessment category. For our
purpose of quality assurance of a report, we will consider
these things and annotate the reports accordingly.

We used a dataset of 180 Dutch radiology reports on
breast cancer from 2012 to 2017 (30 reports per year). Thus,
the dataset contains variation in reports over the years. The
reports were gathered from Hospital Group Twente (ZGT)
in the Netherlands. The reports are produced by dictation
from the radiologists, into an automatic speech recognition
system. These automatically generated reports are further
cross-checkedwith the dictation, by radiologists or secretary.
The reports contain patient identity data like patient id,
name, data of birth and address in separate columns, which
were removed to anonymize the reports. A sample report is
shown in Fig. 1a, with its English translation in Fig. 1b. The
report has 3 sections, namely Clinical Data, Findings and
Conclusion. Clinical Data contains clinical history of the
patient including any existing disease or symptoms. Findings
consists of noteworthy clinical findings (abnormal, normal)
observed from imaging modalities like mammography, MRI
and ultrasound. Conclusion provides a summary of the diag-
nosis and follow-up recommendations and should necessar-
ily contain a BI-RADS category. In the report, these sections
start with a heading describing the name of the section, for
example,Klinische gegevens (Clinical Data),Verslag (Findings)
and Conclusie (Conclusion). Reports from 2017 and 2016 (60
reports) additionally contain a title. The dataset consists of
both male and female breast cancer reports; for automatic
structuring, we focus on female reports.

For the first two sub-tasks of heading identification and
content identification, 180 reports were manually annotated
at the sentence-level by a trained expert. The reports were
split into sentences, where for our data set, it was observed
that a sentence means start of a new line, resulting in 1,591
sentences in total. In Fig. 1a, sentences are indicated by the
labels s1 to s7. For the first sub-task of heading identifica-
tion, sentences were labeled as heading (e.g., s2, s4, s6), not
heading (e.g., s3, s5, s7) and title (e.g., s1). For the second
sub-task of content identification, sentences were labeled as
title, clinical data (e.g., s2, s3), findings (e.g., s4, s5) and conclu-
sion (e.g., s6, s7). For the third sub-task of automatic struc-
turing, we manually extracted the mammography imaging
modality findings from the findings section of the report,
which generated 108 mammography findings. These were
manually annotated by two radiologists – a trainee (2 years
of experience) and a consultant. Out of 108 reports, 18
reports were labeled collaboratively by both, 44 reports by
the trainee and 46 by the consultant. After labeling, these 44
reports and 46 reports were analyzed to highlight any inter-
annotator discrepancy, which were further resolved by the
annotators.

Fig. 1. Example of a breast cancer radiology report.
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A 3-level annotation scheme at word-level was followed
for automatic structuring as shown in Fig. 2. CA-n in the
diagram will be explained in the approach (Section 4.3). At
the first level, the reports were annotated as:

� positive finding (PF): something suspicious was
detected about the lesion in the breast, which might
indicate cancer.

� negative finding (NF): nothing bad was found or
absence of specific abnormalities.

� breast composition (BC): density of the breast.
� other (O): text not belonging to the above.

After this first level of annotation, the PF were further anno-
tated into second level classes – mass (MS), calcification (C),
architectural distortion (AD), associated features (AF) and asym-
metry (AS). At the third level, mass was further annotated as
location (L), size (SI), margin (MA), density (DE), AF and shape
(SH). Calcification was further annotated asmorphology (MO),
distribution (DI), SI, L and AF. Similar third level annotation
was done with AD, AF and AS. The same scheme of second
and third level annotation was followed for NF, though they
have different combination of classes (as shown in Fig. 2). BC
does not have any further levels of annotation. Thus, complete
label (global) of a token is a concatenation of the labels at the 3
levels, resulting in 39 different labels. Our dataset only had
data for 34 labels. This annotation scheme is based on the
ACR BIRADS, with a few modifications done by our expert
radiologists, e.g., a PF and a NF were added, a location class
was added at the second level under NF to tag the location
common for all the “no abnormalities”, example, the phrase
“left breast” in ”no calcification, mass, architectural distortion
was found in the left breast”. Our model can also be applied
to findings from other imaging modalities but it needs to be
trained on manually labeled data for those modalities. Due to
absence of labeled data from other modalities, we only per-
formed automatic structuring ofmammography findings.

4 APPROACH

In this section, we describe our approach for the three sub-
goals – heading identification, content identification, and
automatic structuring of mammography findings.

4.1 Heading Identification

In this section, we describe the feature extraction and classi-
fiers built for our task.

4.1.1 Feature Extraction

Reports were separated into sentences as explained in
Section 3. The sentences were separated into word-level
tokens using regular expression nbnwnwþnb, which means
tokens with at least 2 alphanumeric characters. Punctuations
are always ignored and treated as token separator. For exam-
ple, a sentence like “Mammografie t,o,v, 12/08/2016: Mamma
compositiebeeld C” will generate {mammografie, 12, 08, 2016,
mamma, compositiebeeld} as tokens. Only unigramswere taken
as tokens and converted to lowercase. The maximum docu-
ment frequency was set such that the terms occurring in
more than 60 percent of the documents will be ignored.
Increasing the maximum document frequency did not
improve the performance, so most probably high frequency
non-informativewordswere removed.

One of the features used was word list feature. A vocabu-
lary was built using the unique words generated after pre-
processing. Each sentence is represented by a term vector,
where TF-IDF score is used for the tokens present in the sen-
tence and a zero for absent tokens. The second feature is
length of sentence, represented in two ways – i) number of
tokens in the sentence and ii) logarithm to the base 10 of the
value in (i) (this representation was used to get the length in
the same value range as the other features). The third fea-
ture is the symbol at the end of sentence (EOS symbol). The
headings end with a colon (:) usually and the rest of the sen-
tences either end with a comma (,) or just a letter.

4.1.2 Classifiers

Heading identification is a multiclass classification problem,
where the sentences are to be classified into one of the follow-
ing classes: heading, not heading and title. We trained a Multi-
nomial Naive Bayes (NB), a linear Support Vector Machine
(SVM) and a Random Forest (RF) classifier.1 For NB, Laplace
smoothing was used. SVM was trained using stochastic

Fig. 2. 3-level annotation scheme for automatic structuring of mammography findings (Hierarchical Conditional RandomFieldModel A (Section 4.3.4)).

1. Classifiers were built using Python scikit-learn package.
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gradient descent and L2 loss. We used a maximum tree
depth of 10 and bootstrap sampling for RF classifier.

4.2 Content Identification

Content identification is a multiclass classification problem,
where the sentences are to be classified into title, clinical data,
findings and conclusion. We followed the same approach as
explained in Section 4.1, except, for feature extraction, we
used only word list and length of sentence features. End of
sentence symbol feature was not used, as sentences in two
different sections usually end with similar symbol (‘,’), thus,
not contributing any unique feature to content identification
problem.

4.3 Automatic Structuring

Our goal is to convert the free-text mammography findings
into a semi-structured XML format. An example of this is
shown in Table 1, where the first column shows a free-text
mammography finding and the second column shows the
semi-structuredXMLversion. LetX be amammography find-
ing, consisting of a sequence of tokens, x = (x1; x2; :: xt; ::; xn)
and the task is to determine a corresponding sequence of
labels y = (y1; y2; ::yt; ::; yn) for x. This task can be seen as
sequence labeling, which is a task of predicting the most proba-
ble label for each of the tokens in the sequence. In this task, the
context of the token, i.e., labels of immediately preceding or
following tokens, is taken into account for label prediction. To
achieve our goal, we used a Linear-Chain Conditional Ran-
dom Field (LC-CRF)2 [15], a supervised classification algo-
rithm for sequence labeling. In ourmodels, LC-CRF considers
the label yt�1 of the immediately preceding token xt�1 for pre-
dicting the label yt of the current token xt.

4.3.1 Data Preprocessing

Each report from the dataset of 108 mammography findings
was split at punctuations {,().?:-} (retaining them as tokens
after splitting) and space, to generate tokens, x, which were
transformed according to the IOB tagging scheme [21].
Here, B means beginning of an entity, I means inside (also
including end) of an entity and O means not an entity. For
example, as shown in Table 1, “Mamma compositiebeeld C,”
labeled as breast_composition was transformed to [(mamma,

B-breast_composition), (compositiebeeld, I-breast_composition),
(C, I-breast_composition), (‘,’ , I-breast_composition)],
where each entry stands for (token, label IOB scheme).
Each digit was replaced by #NUM for the purpose of
reducing the vocabulary size without removing any impor-
tant information.

4.3.2 Feature Extraction

Each extracted token, xt, is represented by a feature vector
xt for LC-CRF, including linguistic features of the current
token, xt, and also features of the previous token, xt�1, and
the next token, xtþ1. A feature vector xt consists of the fol-
lowing 10 features for xt and the same 10 features for xt�1

and xtþ1 (a total of 30 features):

� The token xt itself in lowercase, its suffixes (last 2
and 3 characters) and the word stem.

� Features indicating if xt starts with a capital letter, is
uppercase, is a Dutch stop word or is punctuation.
The part-of-speech (POS) tag of xt and its prefix (first
2 characters).

4.3.3 Baseline Model

As baseline, we used one LC-CRF classifier, as described at
the starting of Section 4.3, to predict the complete label (con-
catenation of labels at the 3 levels) of a token and as input to
the classifier, we used the feature vectors described in Feature
Extraction (Section 4.3.2). For example, the LC-CRF classifier
will predict the tokens clusters and microkalk as NF/C/DI and
NF/C/MO respectively (see Table 1). The graphical represen-
tation of this model is shown in Fig. 3a. Here, xt�1, xt, xtþ1

are feature vectors of the tokens in a sequence and their cor-
responding labels are yt�1, yt, ytþ1, shown as NF/C/O, NF/
C/DI, NF/C/MO. The lines indicate dependency on feature
vectors xt�1, xt, xtþ1 and preceding label yt�1 for prediction
of the label yt. Thus, in this model, only one classifier is used
to predict 34 labels.

4.3.4 Hierarchical CRF

We built a model using a three-level hierarchy of LC-CRF
classifiers, called Model A, as shown in Fig. 2. The model
has 13 LC-CRF classifiers and all the classifiers perform
token-level prediction. One classifier (CA-1) is at level 1 for
classifying the tokens into the first level classes. At level 2,
there are 2 classifiers – one (CA-2) for further classifying the
tokens predicted as positive finding by CA-1, another (CA-3)

Fig. 3. Graphical representation for input feature vectors xt�2 to xtþ1={links geen clusters microkalk}.

2. We have used scikit-learn Python package, sklearn-crfsuite,
implementation of LC-CRF.
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for negative finding tokens. At level 3, there are 10 classifiers
for further classification of tokens into third level classes. For
example, the tokens classified as PF by CA-1 at level 1 and as
MS byCA-2 at level 2, will be sent to CA-4 classifier to further
get classified as either L, SI, MA, DE, SH or AF. The complete
predicted label for each token is the concatenation of its pre-
dicted classes at the three levels. The graphical representa-
tion of this model is shown in Fig. 3b. For example, for given
feature vectors xt and xtþ1 of the tokens clusters andmicrokalk
respectively and for given classes at the same-level of the
immediately preceding token, the first level class predictions
for both the tokens are NF. The feature vector of these tokens
are sent to NF classifier, CA-3, for second level prediction,
where they get classified as C. Consequently, they are sent to
the calcification classifier, CA-10, where they get classified as
MO and DI respectively. Labels at each level are combined
resulting in NF/C/DI and NF/C/MO labels for the two
tokens. The undirected lines are dependency lines and
directed lines are flow between the 3 levels (y, w, z). There is
no dependency line between the first two columns at the sec-
ond level (w) as links goes to PF and geen to NF classifier and
two different classifiers are independent of each other’s fea-
ture vectors and predicted class.

4.3.5 Hierarchical CRF with Combined Classes

As shown in Fig. 2, every classifier at level 3, predicts location
as one of its classes. All the location classes describe similar
tokens like rechts, links, beide mamma. Thus, we build one clas-
sifier for the similar classes instead of having different classi-
fiers. This will provide us with more training data for a
classifier. Fig. 4 shows the modified model with combined
classes having 9 classifiers. Henceforth, this is referred to as
Model B and all classifiers in this model are referred to as
CB-n (n ¼ 1; . . . ; 9). We can see instead of having 11 classi-
fiers that predict location (CA-n, n ¼ 3; . . . ; 13) in Model A,
we have only one classifier CB-5 in Model B. Analogously,
classifiers were aggregated for MA, MO, DI, AF and SI. All
the classifiers use LC-CRF and perform token-level predic-
tion. When classifying a token, classifiers might contradict
each other. Consider for example NF/MS: CB-5 and CB-6 are
the two classifiers predicting location, margin or other for the
same token. If the predictions are location by CB-5 and other
by CB-6, then location is selected (no contradiction). Simi-
larly, if both classifiers predict other, then the resulting class
is other (no contradiction). If the predicted class is location by

CB-5 and size by CB-6 (contradiction), then the class with the
highest a-posteriori probability is selected.

5 EXPERIMENTAL SETUP

We used the F1 score to evaluate the performance of a classi-
fier on predicting different classes. The F1 score of a class is
the harmonic mean of precision and recall of that class and
is defined as

F1 ¼ 2TP

2TP þ FP þ FN
;

with TP, FP, FN being number of true positives, false posi-
tives and false negatives respectively. As our problem is a
multiclass problem, the TP, FN, FP of a class are calculated
according to one-versus-rest binary classification, where the
class in consideration is positive and all other classes are
negative.

We alsomeasured F1 score of themodels on the entire test
set using micro-averaged and weighted macro-averaged F1 (Fm

1

and FM
1 ). Fm

1 was computed by calculating the TP as sum
over the TP of all the classes (same for FN, FP).FM

1 was calcu-
lated by computing the F1 scores of each class separately and
then averaging it. As, averaging gives equal weight to all the
classes, the fact that our classes have unequal number of
instances, is not taken into account. Thus, we used weighted
averaging for FM

1 . FM
1 and Fm

1 gave similar results, so we
only report FM

1 scores in the rest of the paper.
We evaluated how well the classifiers predict tokens as

well as phrases. For phrases, we consider complete and par-
tial matches. At the token-level (TL), we consider all the token
labels in the dataset to calculate the TP, FP, FN scores of a
class. At the partial phrase-level (PP) and the complete
phrase-level (CP), we measure how well the classifier is per-
forming in identifying multi-token phrases. A complete
match requires all the tokens of the phrase to be correctly
labeled. We consider a match with Dice’s coefficient greater
than 0.65 as a partial match. For similarity calculation, we take
the phrase from the ground truth and match with the corre-
sponding predicted labels. Phrase-level scores are important
from the radiologists’ point of view, as they care about how
well their phrases match. Table 2a shows 6 tokens, with
their token-level labels (B-PF, I-PF etc). A PF phrase starts at
the B-PF and ends at the last I-PF. For the NF phrase, the
Dice’s coefficient is calculated as 2 � 2=ð3þ 3Þ ¼ 0:66 > 0:65,

Fig. 4. Hierarchical conditional random field model B.
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resulting in a partial match. For each class, we calculate the
number of partial matches called partial phrase accuracy
(PP-Acc); how well the partial phrases match by averaging
the Dice’s coefficient for each match (PP-Sim); the number of
complete matches (CP-Acc); and the F1 scores for token-level
matches (TLF1).

For heading and content identification, we evaluated NB,
SVM and RF models, using 5-fold cross validation on 180
reports. We measured the performance of these classifiers
for different combinations of features and analyzed for
which feature combination the classifiers gave the best per-
formance. Features used for heading identification are TF-
IDF word list, EOS symbol and log length of the sentence;
and for content identification – word list features repre-
sented in form of term frequency and TF-IDF, and length of
the sentence feature represented in terms of number of
tokens and log to the base 10 of number of tokens.

For automatic structuring, we built three different LC-CRF
models: the baselinemodel,Model A andModel B.We evalu-
ated our models using 4-fold cross validation on 108 mam-
mography findings. For automatic structuring, we evaluated
the models on different combinations of classes (Table 4c).
‘All’ means evaluation on all the 34 classes. ‘w/o O’ means
all the classes except the other (O) class at the first level (33
classes). ‘w/o< 10&O’ means classes excluding O class and
classes with instances< 10. Normalized confusion matrix,
where all the values in each row of a confusion matrix are
divided by the sum of all the values in that row (class support
size) was calculated for automatic structuring task. All codes
associatedwith this paper are available as open source.3

6 RESULTS

In this section, we describe the results of heading and con-
tent identification and automatic structuring.

6.1 Heading Identification

Table 3a shows the performance of heading identification
classifiers for different feature combinations. NB performed
better with word list feature than with all the three features,
whereas, SVM’s performance did not change on adding EOS
symbol and length feature on top of word list feature. Over-
all, it can be seen that word list itself is a very informative fea-
ture. EOS symbol feature was better informative than length
of the sentence, as, for all the classifiers, the FM

1 for TF-IDF +
EOS symbol is either same or better than TF-IDF + length.
The scores in Table 4a are for the best feature combination
i.e., the word list feature. It shows that the classes headings
and not headingswere predicted with an F1 score of 0.96 and
0.98 respectively both by SVM and NB. For these classes,

SVM and NB performed better than RF but for title, RF per-
formed better. Fig. 5a shows the heat map representation of
confusion matrix for heading identification using SVM and
word list features. It can be seen that only 26 out of 540 head-
ing instances were confusedwith not heading class.

6.2 Content Identification

Table 3b shows the performance of the content identification
classifiers for different feature combinations. SVM shows the
best performance (F1 = 0.94) for TF-IDFword list feature and
the scores in Table 4b are based on only this feature. In gen-
eral, log length performs better than token length of sen-
tence. The token length is a feature with high variance (short
and long sentences), the log length varies much less. The
token length of the sentence effected SVM much worse than
NB as NB does an implicit normalization of features.
Table 4b shows that SVMperformed better for predicting the
classes conclusion, clinical data, title and findings with an F1

score of 0.92, 0.94, 0.99 and 0.94 respectively. Fig. 5b shows
the heat map of confusion matrix for content identification
using SVM classifier and word list feature. Both the conclu-
sion and clinical data classeswerewrongly predicted as find-
ings in 44 and 25 out of their total instances respectively. This
can be explained because conclusion, clinical data and find-
ings, although being different, have similar words in their
description, leading to themisclassification.

6.3 Automatic Structuring

Table 4c compares the performance of our baseline model
to the hierarchical Models A and B. Both, Model A and B

TABLE 3
Performance of the Classifiers in Terms of FM

1 Scores
for Different Feature Combinations

(a) Heading identification

Features NB SVM RF

TF-IDF 0.97 0.97 0.92
TF-IDF + Length (log10) 0.93 0.97 0.94
TF-IDF + EOS Symbol 0.95 0.97 0.95
All Features 0.91 0.97 0.94

(b) Content identification

Features NB SVM RF

Term frequency 0.91 0.92 0.79
TF-IDF 0.87 0.94 0.80
Term frequency + Length 0.87 0.40 0.81
TF-IDF + Length 0.70 0.29 0.82
Term frequency + Length (log10) 0.91 0.92 0.81
TF-IDF + Length (log10) 0.80 0.92 0.82

TABLE 2
Token Level and Phrase Level Measures

3. Source Code, https://doi.org/10.5281/zenodo.2717897
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(FM
1 = 0.78) outperformed the baseline model (FM

1 = 0.71).
No difference in performance was observed between Model
A and B. Without the not important other (O) class, the
Model B has FM

1 = 0.74. On further removing classes with
instances< 10, the FM

1 score improves from 0.74 to 0.76 for
Model B. This means that the classes having instances< 10
were not predicted well enough. If we would have at least
10 instances for each class, then the FM

1 score could be
expected to be around 0.76.

Table 2b shows the performance of the classifier (CA-1
and CB-1) at the first level in predicting breast composition,
negative finding, positive finding. BC (TL F1 = 0.94) and NF
(TL F1 = 0.95) were identified better than PF (TL F1 = 0.87).
This is because PF contains varied vocabulary for describing
an abnormality, while NF contains specific terms like no
presence of mass, calcification. BC is also described using
specific terms like “mamma compositiebeeld”. Token-level
measure is always higher than complete phrase-level mea-
sure. PP-Acc is at least as good as CP-Acc. All the partial
phrase matches in BC and PF are complete matches except
for NF. But even for NF, the partial phrases have similarity
of 0.99 (PP-Sim)with the ground truth.

Table 5 shows the performance of the classes at the second
level for the 3 models. Positive finding classifiers CA-2 and
CB-2 at level 2 for Model A and B are similar and therefore,
their F1 scores are also same. But the negative finding classi-
fier CA-3 and CB-3 are not similar for Model A and B, leading
to different scores. The baseline model failed to predict the
PF/AF and PF/AS classes but the hierarchical models suc-
cessfully predicted the PF/AS class with 0.57 F1 score and
very weakly predicted PF/AF with an F1 score of 0.11. PF/
MSwas predicted best among all the PF sub classes. There is a
decrease in the overall PF sub classes prediction at the second
level in comparison to the PF prediction at the first level for
Model A and B. This shows even though PF class at the first
level was predicted with good enough F1 score of 0.87, the PF
classifiers at the second level didmore errors in predicting the
second level PF classes. For the baseline model, as the global
classes get predicted as a whole, it can be interpreted that F1

score of 0.49 for PF classes at the first level was because of the
PF/MS and PF/C sub classes. Among all the NF sub classes
at level 2, NF/AF class was predicted the best (F1 = 0.96) by
the hierarchical models. From the dataset, it was found that
NF/AF had a very similar sentence in all the reports, e.g.
“Huid-subcutis geen bijzonderheden”, leading to the high F1

score. NF/L was at least slightly predicted by Model B, as
Model B has an aggregated location classifier CB-5.

Table 6 shows the TL F1 performance obtained for all the
global classes. #Reportsmeans the number of reports consist-
ing of a class. #Phrases shows the number of phrases of each
class. #Tokens contains the number of tokens belonging to a
class and a phrase consists of multiple tokens – Each B-X, I-X
are tokens for class X. Class ‘O’ was not labeled as B-X, I-X as

Fig. 5. Confusion matrix heat map for SVM classifier.

TABLE 5
Prediction of Second Level Classes in Terms of F1 Score

for the Three Models of Automatic Structuring

Classes Baseline Model A Model B Instances

PF/MS 0.53 0.66 0.66 483
PF/C 0.46 0.58 0.58 311
PF/AD 0.00 0.00 0.00 16
PF/AF 0.00 0.11 0.11 67
PF/AS 0.00 0.57 0.57 30
NF/MS 0.92 0.92 0.89 262
NF/C 0.88 0.85 0.88 260
NF/AD 0.89 0.90 0.88 77
NF/AF 0.96 0.96 0.96 403
NF/AS - - - -
NF/L 0.00 0.00 0.20 10
NF/O 0.89 0.82 0.79 88

Avg (FM
1 ) 0.70 0.75 0.75 2007

TABLE 4
Heading and Content Identification and Automatic
Structuring Performance in Terms of F1 Scores
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phrase of ‘O’ is not important, that is why there is no entry for
phrases for class ‘O’. PF/AD/L, PF/AD/AF, NF/AD/L,
NF/AS/L and NF/AS/O does not occur in our dataset and
that is why the values corresponding to them are 0. Overall, it
can be seen that NF sub-classes were predicted better than PF
sub-classes, asmost of the NF sub-classes are described using
specific tokens. Generally, Model A and B predicted PF sub-
classes better than baseline. BC, NF/AF/O, NF/C/DI, NF/

MS/MA and NF/C/MO were predicted very well in all the
models. Some classes were predicted better in baseline – NF/
MS/O, NF/MS/MA and PF/C/O. This indicates that for
these classes, the neighbouring global classes of the baseline
model may be informative during prediction. Also, multi-
level prediction increased the number of false positives for a
class, specially for classes with greater number of instances.
The effect of aggregated classifiers in model B can be seen in
NF/C/DI, NF/C/MO, PF/C/L, PF/MS/L and PF/C/SI. As
the aggregated classifiers were trained on all L, DI, MO and
SI in the dataset, it resulted in better prediction of third level
classes like L, SI, even with few instances (14 tokens of PF/
C/SI). But aggregating classifiers also resulted in loss of infor-
mation about the context, which is reflected through slightly
lower performance in Model B for classes PF/MS/MA, PF/
C/AF and PF/AS/O. Aggregating AF classifier (CB-8) did
not help in predicting any third level AF classes in PF due to
notmuch similarity in their descriptions.

Fig. 6 shows the normalized confusion matrix heat map
of global classes for baseline model, Model A and Model B.
In baseline model, most classes were misclassified as other
class and only BC and most NF classes were classified cor-
rectly. NF/C/L was wrongly predicted as PF/C/L, as loca-
tion (L) of both NF and PF can be described in a similar
manner. Similarly, PF/C/SI, PF/AS/SI were wrongly pre-
dicted as PF/MS/SI, as size (SI) of MS, C and AS are always
written in a similar way in reports. For Model A and B
(Fig. 6), there were not many misclassification with other
class as for these models, tokens can only be misclassified
into other class at the first level. In Model A and B, PF/MS/
L were misclassified as PF/C/L, whereas in baseline, it was
misclassified as other. Some other noteworthy observations
between Model A and B are Model B had more true posi-
tives than Model A. Model A did not have any true positive
of NF/L, PF/C/SI and PF/AS/SI whereas Model B had
some. Model A misclassified PF/AS/SI as PF/AS/O, which
shows misclassification at the third level. This observation
proves that for Model B, aggregated classifiers like size
helped in better prediction of third level classes.

Table 7 gives an indication of error propagation through
the classifiers at the 3 levels for Model A and B. DFM

1 at a
level indicate the difference in FM

1 of that level of classifiers
on predicted classes when given true classes from previous
level and when given predicted classes from previous level.

TABLE 6
Global Classes in the Dataset and Their F1 Scores

Classes #Tokens #Phrases #Reports Baseline Model A Model B

O 1417 - 108 0.78 0.86 0.86
BC 622 99 97 0.89 0.94 0.94
PF/MS/L 139 33 27 0.29 0.40 0.47
PF/MS/SI 86 23 22 0.67 0.66 0.69
PF/MS/MA 59 22 20 0.53 0.72 0.70
PF/MS/DE 2 1 1 0.00 0.00 0.00
PF/MS/AF 7 2 2 0.00 0.00 0.00
PF/MS/SH 3 3 3 0.00 0.00 0.00
PF/MS/O 187 70 27 0.48 0.52 0.47
PF/C/L 68 38 35 0.49 0.44 0.59
PF/C/SI 14 5 5 0.00 0.00 0.22
PF/C/MO 39 37 32 0.52 0.56 0.51
PF/C/DI 19 13 11 0.25 0.58 0.53
PF/C/AF 33 6 6 0.00 0.17 0.00
PF/C/O 138 68 38 0.45 0.37 0.37
PF/AD/L 0 0 0 - - -
PF/AD/AF 0 0 0 - - -
PF/AD/O 16 1 1 0.00 0.00 0.00
PF/AF/L 6 6 5 0.00 0.00 0.00
PF/AF/O 61 11 7 0.00 0.12 0.13
PF/AS/L 35 14 11 0.00 0.14 0.17
PF/AS/SI 5 2 2 0.00 0.00 0.36
PF/AS/AF 1 1 1 0.00 0.00 0.00
PF/AS/O 172 13 11 0.00 0.58 0.56
NF/MS/L 17 14 13 0.60 0.50 0.50
NF/MS/MA 35 35 35 1.00 0.96 0.97
NF/MS/O 210 113 61 0.93 0.88 0.89
NF/C/L 2 1 2 0.00 0.00 0.00
NF/C/MO 56 56 51 0.95 0.91 0.97
NF/C/DI 54 53 50 0.98 0.98 0.99
NF/C/O 148 100 62 0.81 0.76 0.81
NF/AD/L 0 0 0 - - -
NF/AD/O 77 46 43 0.89 0.88 0.88
NF/AF/L 6 7 5 0.13 0.30 0.39
NF/AF/O 397 71 63 0.96 0.96 0.96
NF/AS/L 0 0 0 - - -
NF/AS/O 0 0 0 - - -
NF/L 10 6 6 0.00 0.00 0.20
NF/O 88 46 31 0.89 0.82 0.79

Total/Avg (FM
1 ) 4229 1016 - 0.71 0.78 0.78

Fig. 6. Normalized confusion matrices for automatic structuring.
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This can be interpreted as error made by the classifiers at the
previous level. Error made by level 1 (DFM

1 at level 2) is not
much significant as compared to error by level 2 (DFM

1 at
level 3) as the latter is a combination of errors from both
level 1 and level 2 classifiers, while the former only consid-
ers error from level 1.

Fig. 7 shows comparison between the ground truth and
predicted labels of a sample report (Table 1) for the task of
automatic structuring using Model B. It can be seen that
most of tokens were correctly predicted. Only one positive
finding between the two negative findings got misclassified
and combined with the negative finding.

7 DISCUSSION

The first task of heading identification achieved a high F1

score of 0.97 on TF-IDF word list features using SVM classi-
fier. Adding features such as log length and end of sentence
symbol did not change the F1 score of SVM classifier. The
second task of content identification achieved a high F1 score
of 0.94 on TF-IDF word list using SVM classifier. Adding
length (in terms of number of tokens) as a feature hugely
decreased the F1 score (F1 ¼ 0:29) and adding log length just
decreased it slightly (F1 ¼ 0:92).

For the third task of automatic structuring, the first level
classes, breast composition and negative finding got pre-
dicted better than positive finding. We found out that breast
composition and negative finding classes was described in a
very specific way in the reports unlike positive finding,
which was described using varied vocabulary. This made
the prediction for positive finding harder than the other two.

On the second level, the positive finding classes mass
and calcification were better predicted than asymmetry,

associated features and architectural distortion. This is
because far lesser training data was available for the latter
classes. Further, from discussionwith radiologists, we found
out, that asymmetry findings are also hard to understand for
humans. So, low scores on asymmetry can be expected. As
negative finding class describes absence of abnormality
using specific words e.g., no presence of mass or calcifica-
tion, so, all the second level sub classes in negative finding –
mass, calcification, architectural distortion, asymmetry and
associated features, were predicted very well.

All the third level sub classes for negative finding were
predicted verywell compared to positive finding sub classes,
due to better prediction of negative finding classes at first
and second level. Morphology, distribution and margin are
some of the third level sub classes with very high score. This
is because morphology can be described using very specific
words like “micro calcification” and “macro calcification”,
distribution can be described using “cluster” andmargin can
be described using words like “stellate” or “star-shaped”.
Among all the third level sub classes in positive finding, size
andmargin had the best results with F1 score of 0.69 and 0.70
respectively as these were the classes most easily recogniz-
able due to their specific format or words. Density and shape
could not be recognized due to very little training data
(around 2 or 3 tokens). Both second level and third level sub
classes of associated features in positive finding were also
very poorly recognized due to very less number of training
data available.

Hierarchical models, Model A and Model B, did not vary
significantly in overall performance. But, some classes were
predicted better in Model B due to the use of aggregated
classifiers. These were those classes, with similar descrip-
tion in all the groups and with less training data in each of
these groups. So, the aggregated classifiers for these classes
resulted in a lot of training data from the groups with that
class, leading to better performance in Model B, e.g., classes
like location and size. On the other hand, for some classes,
better performance in Model A was observed than Model B.
This is because information about the context of a token is
available to classifiers of Model A. In Model A classifiers,

TABLE 7
Error Propagation Through Classifiers at the Three Levels

Measures Level2_A Level2_B Level3_A Level3_B

DFM
1 0.05 0.04 0.17 0.16

#Instances 2191 2191 2093 2093

Fig. 7. Automatic structuring: Comparison of the ground truth and the predicted labels by Model B for a sample report.
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each token is surrounded by various classes in that group,
e.g., associated features class is surrounded by distribution,
morphology, location etc, in the group positive finding/cal-
cification, whereas, in Model B, the aggregated classifier for
associated features only had ‘other’ in its surrounding.
Thus, the context resulted in better prediction of some clas-
ses in Model A. Moreover, this observation was mainly
found in positive finding sub classes where there is more
variability in the description of the findings, for example,
classes like margin, morphology, distribution and associ-
ated features at third level under positive finding.

In the hierarchical models, there is notmuchmisclassifica-
tion with the global (first level) other class but with sub level
other classes belonging to the same higher level, e.g., positive
finding/calcification/distribution gets misclassified as posi-
tive finding/calcification/other. From this, we can conclude
that good quality reports (having non-other classes) may be
predicted to be of poor quality (having only other classes)
but no poor quality report will be predicted to be of good
quality. So, for the purpose of quality assurance, our aim to
identify the poor quality reports can be solved by our mod-
els. Table 6 provides an overview of the number of reports
containing each class. The shape and the density class of
mass existed in only 3 reports and 1 report, respectively out
of 108 mammography reports. These were the two classes
reported least in the findings (a similar finding was also
reported by Houssami et al. [22] in 2004). Whether this was a
mistake in reporting or the observation from the images
were not important enough to be reported, cannot be said.
Another point is that 97 out of 108 reports contained breast
composition, which are more than reported by Houssami
et al. [22] (24 percent). According to ACR BI-RADS guide-
lines, all reports should contain breast composition, thus this
type of analysis can be extended for quality assurance.

Through the automatic structuring models developed in
this work, the information in the reports can be harvested
and used for other purposes, for example, to generate over-
view statistics (e.g., “how many patients had lesions in their
right breast?”). It will also support referring clinicians to
read the report and gather the important information very
quickly. The referring clinicians can be given a standardized
semi-structured visualization of the reports andmore impor-
tantly, the radiologists will not have to change their style of
writing for making the reportsmore readable.

The most similar work to ours is Esuli et al. [18], for infor-
mation extraction from mammography findings in Italian,
but they had only 9 classes. Their annotation structure was
not hierarchical, but they used cascaded, two-stage CRF for
building their model. They had 500 labeled mammography
reports (which is a lot more than what we have) and they
achieved better F1 score (0.873) than our model on these 9
classes. In another work, Hassanpour and Langotz [16]
applied CRF for information extraction in chest CT radiology
reports written in English. They hadmore number of reports
and less classes compared to ours, i.e., 150 reports and 5 clas-
ses and achieved an F1 score of 85.3 percent. We can say that
although the F1 score of our models (0.78) are not as good as
the above models (0.87 & 0.85), we predict a far greater num-
ber of classes (34 classes), with much less training data (108).
Increasing training data might increase the performance of
our models as well. We expect our model to perform

similarly for radiology reports written in languages similar
to Dutch, e.g., German and English. Our models can also be
applied to radiology reports for other medical conditions,
e.g., ultrasound for breast cancer, chest CT, by adapting the
model to their respective reporting structures.

8 CONCLUSION AND FUTURE WORK

We developed a method for automatic structuring of Dutch
free-text radiology reports on breast cancer for quality assur-
ance. We follow a post-structuring paradigm: structuring is
performed after the radiologists have written the report in
free-text format.

We have addressed three tasks on breast cancer radiol-
ogy reports: heading identification, content identification
and automatic structuring using the BI-RADS standard.
Heading and content were identified with an FM

1 score of
0.97 and 0.94 respectively using SVM. For automatic struc-
turing, hierarchical CRF (FM

1 = 0.78) performed better than
baseline CRF (FM

1 = 0.71), while Model A and B did not
show any significant difference.

From the point of view of quality assurance, heading and
content contribute to identification of the presence of indica-
tion of examination, findings and conclusion. A post-process-
ing step can be performed to check if the content corresponds
to the correct heading. Automatic structuring is used to check
the presence of clear description of findings. According to BI-
RADS, findings should contain mass, calcification, asymme-
try, architectural distortion and associated features. Our
model structures the findings automatically into these con-
cepts, further generating a semi-structured XML format. This
provides a platform to check the presence of important con-
cepts. Another important information that must be present in
reports is breast composition. Our model predicts breast
compositionwith F1 ¼ 0:94.

As futurework, the presence and quality of BI-RADS cate-
gory can be evaluated. Based on findings, BI-RADS category
can be predicted to check how well it was assigned. More
reports can be labeled to get more training data. Develop-
ment of a prototype and actual trial in clinical practice can be
done. One of the limitations of our work is that the findings
from the mammography study were manually extracted
from the radiology report. A future work can be to train the
system to recognize mammography, ultrasound and MRI
findings and then use the mammography findings for auto-
matic structuring. Another limitation is due to predictions
occurring at 3 levels in our model, our model has the prob-
lem of error propagation. If the first level classifiers make an
error, it gets propagated to the next level and makes the pre-
diction of second and third level classifiers wrong. Our mod-
els do not contain a way to mitigate the error propagation.
One way to handle this can be use of factorial CRF which
jointly predicts classes at all the levels.
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