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Abstract—We study the problem of computing a minimal subset of nodes of a given asynchronous Boolean network that need to be

perturbed in a single-step to drive its dynamics from an initial state to a target steady state (or attractor), which we call the source-target

control of Boolean networks. Due to the phenomenon of state-space explosion, a simple global approach that performs computations

on the entire network may not scale well for large networks. We believe that efficient algorithms for such networks must exploit the

structure of the networks together with their dynamics. Taking this view, we derive a decomposition-based solution to the minimal

source-target control problem which can be significantly faster than the existing approaches on large networks. We then show that the

solution can be further optimized if we take into account appropriate information about the source state. We apply our solutions to both

real-life biological networks and randomly generated networks, demonstrating the efficiency and efficacy of our approach.

Index Terms—Boolean networks, attractors, network control, decomposition
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1 INTRODUCTION

CELL reprogramming is a way to change one cell pheno-
type to another, allowing tissue or neuron regeneration

techniques. Recent studies have shown that differentiated
adult cells can be reprogrammed to embryonic-like pluripo-
tent state or directly to other types of adult cells without the
need of intermediate reversion to pluripotent state [1], [2].
This has led to a surge in regenerative medicine and there is
a growing need for the discovery of new and efficient meth-
ods for the control of cellular behaviour.

In this work we focus on the study and control of gene
regulatory networks (GRNs) and their combined dynamics
with an associated signalling pathway. GRNs are graphical
diagrams visualising the relationships between genes and
their regulators. They represent biological systems character-
ised by the orchestrated interplay of complex interactions
resulting in highly nested feedback and feed-forward loops.
Signalling networks consist of interacting signalling path-
ways that perceive the changes in the environment and allow
the cell to correctly respond to them by appropriately adjust-
ing its gene-expression. These pathways are often complex,
multi-component biological systems that are regulated by

various feedbacks and that interfere with each other via
diverse cross-talks. As a result, GRNswith integrated signal-
ling networks are representatives of complex systems char-
acterised by non-linear dynamics. These factors render the
design of external control strategies for these biological sys-
tems a very challenging task. So far, no general mathematical
frameworks for the control of this type of systems have been
developed [3], [4], [5].

Boolean networks (BNs), first introduced by Kauffman [6],
is a popular and well-established framework for modelling
GRNs and their associated signalling pathways. Its main
advantage is that it is simple and yet able to capture the
important dynamic properties of the system under study,
thus facilitating the modelling of large biological systems as a
whole. The states of a BN are tuples of 0s and 1s where each
element of the tuple represents the level of activity of a partic-
ular protein in the GRN or the signalling pathway it models -
0 for inactive and 1 for active. The BN is assumed to evolve
dynamically by moving from one state to the next governed
by a Boolean function for each of its components. The steady
state behaviour of a BN is given by its subset of states called
attractors to one of which the dynamics eventually settles
down. In biological context, attractors are hypothesised to
characterise cellular phenotypes [6] and also correspond to
functional cellular states such as proliferation, apoptosis dif-
ferentiation etc. [7].

Cellular reprogramming, or the control of the GRNs and
their signalling pathways therefore amount to being able to
drive the dynamics of the associated BN from an attractor
to another ‘desirable’ target attractor by perturbing or
reprogramming the nodes of the BN. This needs to be done
while respecting certain constraints viz. a minimal subset of
nodes of the BN are perturbed or the perturbation is applied
only for a minimal number of time steps. Under such con-
straints, it is known that the problem of driving the BN
from a source to a target attractor (the source-target control
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problem) is computationally difficult [8], [9] and does not
scale well to large networks. Thus a simple global approach
(see Section 3.5 for a description) treating the entire network
in one-go is highly inefficient. This is intuitively due to the
infamous state-space explosion problem. Since most real-
life networks are large, there is a strong need for designing
algorithms which exploit certain properties (structural or
dynamic or both) of a BN and can efficiently address the
control problem.

Our Contributions. In this work, we develop a generic
approach towards solving the minimal source-target control
problem (defined formally in Section 3) on large BNs with
asynchronous dynamics, based on combining both their
structural and the dynamic properties. We show that:

� The problem of computing the minimal set of nodes
to be perturbed in a single time-step (hence simulta-
neously) to drive the system from a source state s to
a target attractor At (driver nodes) is equivalent to
computing a subset of states of the state transition
graph of the BN called the strong basin (defined in
Section 3) of attraction of At (dynamic property).

� The network structure of a large BN can be explored
to decompose it into smaller blocks. The strong basins
of attractions of the projections of At to these blocks
can be computed locally and then combined to recover
the global strong basin of attraction of At (structural
property).

� Any algorithm for the computation of the global
strong basin of attraction of At can also be used
(with slight modifications) to compute the local
strong basins of attraction of the projections of At to
the blocks of BN. Doing so results in the improve-
ment in efficiency for certain networks which have
modular structures (real-life biological networks).

� We concretise our approach by describing in detail
one such algorithm (Algorithm 1) which is based on
the computation of fixed points of set operations.

� Furthermore, taking relevant information about source
state s into consideration, we can avoid the computa-
tion of local strong basins in some blocks. This results
in a subset of the global strong basin of At, which still
contains all the states that are required for the compu-
tation of theminimal control. Such an optimisation can
accelerate the computation of the basin ofAt.

� We have implemented our decomposition-based
approach (Algorithm 4) and its optimisation (Algo-
rithm 5) using Algorithm 1 b (which is a slight modifi-
cation of Algorithm 1) as the basis for computation of
strong basins, and applied them to a number of case
studies of BNs corresponding to real-life biological net-
works and randomly generated BNs. Our results show
that for certain structurally well-behaved BNs our
decomposition-based approach is efficient and outper-
forms the global approach. Moreover, its efficiency is
further improved by the optimisation ofAlgorithm 5.

2 RELATED WORK

In recent years, several approaches have been developed for
the control of complex networks [3], [4], [8], [9], [10], [11],

[12], [13], [14], [15]. Among them, the methods [3], [4], [13]
were proposed to tackle the control of networks with linear
time-invariant dynamics. Liu et al. [3] first developed a
structural controllability framework for complex networks
to solve full control problems, by identifying the minimal
set of (driver) nodes that can steer the entire dynamics of
the system. Afterwards, Gao et al. extended this method to
the target control of complex networks [4]. They proposed a
k-walk method and a greedy algorithm to identify a set of
driver nodes for controlling a pre-selected set of target
nodes. However, Czeizler et al. [13] proved that it is NP-
hard to find the minimal set of driver nodes for structural
target control problems and they improved the greedy
algorithm [4] using several heuristics. The above methods
have a common distinctive advantage that they are solely
based on the network structures, which are exponentially
smaller than the number of states in their dynamics. Never-
theless, they are only applicable to systems with linear time-
invariant dynamics.

The control methods proposed in [8], [9], [10], [11], [12],
[14], [15] are designed for networks governed by non-linear
dynamics. Among these methods, the ones based on the
computation of the feedback vertex set (FVS) [10], [11], [15]
and the ‘stable motifs’ of the network [12] drive the network
towards a target state by regulating a component of the net-
work with some constraints (feedback vertex sets and stable
motifs). The method based on FVS is purely a structure-
based method, while that based on stable motifs takes into
account the functional information of the network (network
dynamics) and has a substantial improvement in computing
the number of driver nodes. These two methods are promis-
ing, even though none of them guarantees to find the mini-
mal set of driver nodes. In [14], Wang et al. highlighted an
experimentally feasible approach towards the control of
nonlinear dynamical networks by constructing ‘attractor
networks’ that reflect their controllability. They construct
the attractor network of a system by including all the experi-
mentally validated paths between the attractors of the net-
work. The concept of an attractor network is inspiring.
However, this method cannot provide a straightforward
way to find the paths from one attractor to a desired
attractor, and it fails to formulate a generic framework for
the control of nonlinear dynamical networks.

Closely related to our work, Mandon et al. [8], [9] pro-
posed approaches towards the control of asynchronous
BNs. In particular, in [8] they proposed a few algorithms to
identify reprogramming determinants for both existential
and inevitable reachability of the target attractor with per-
manent perturbations. Later on, they proposed an algorithm
that can find all existing control paths between two states
within a limited number of either permanent or temporary
perturbations [9]. However, these methods do not scale well
for large networks.1 This is mainly due to the fact that they
need to encode all possible control strategies into the transi-
tion system of the BN in order to identify the desired
reprogramming paths [9]. As a consequence, the size of the
resulting perturbed transition graph grows exponentially with

1. We learned through private communication that the current
implementation of their methods does not scale efficiently to BNs hav-
ing more than 20 nodes.
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the number of allowed perturbations, which renders their
algorithms inefficient.

The identified limitations of these existing approaches
motivate us to develop a new approach towards the control
of non-linear Boolean networks which is modular and
exploits both their structural and dynamic properties. Gates
et al. [16] showed that such an approach is inevitable for the
identification of the correct parameters and control strate-
gies, in that, focussing only on a single property (either
structural or dynamic) might not be sufficient.

Note that there is the related and extensively studied
framework of Boolean control networks (BCNs) in the litera-
ture which is used to investigate the controllability and sta-
bility of Boolean networks using external inputs [17], [18],
[19], [20]. These inputs are applied to a fixed subset of varia-
bles of the given BN for a finite sequence of steps. The con-
trollability of the BN then boils down to computing
sequences of values for these inputs for the required num-
ber of steps to drive the BN to a desired state. Although the
control method we study in this work can be cast into the
setting of BCNs, we do not explore that direction here and
shall henceforth refrain from the use or mention of BCNs.
Nevertheless, we would definitely like to explore the con-
nection between BCNs and our methods of control in the
near future.

3 PRELIMINARIES

3.1 Boolean Networks

A Boolean network (BN) describes elements of a dynamical
system with binary-valued nodes and interactions between
elements with Boolean functions. It is formally defined as:

Definition 1 (Boolean Networks). A Boolean network is a
tuple BN ¼ ðx; fÞ where x ¼ ðx1; x2; . . . ; xnÞ such that each
xi; 1 � i � n is a Boolean variable and f ¼ ðf1; f2; . . . ; fnÞ is a
tuple of Boolean functions over x. jxj ¼ n denotes the number
of variables.

In what follows, i will always range between 1 and n,
unless stated otherwise. A Boolean network BN ¼ ðx; fÞ
may be viewed as a directed graph GBN ¼ ðV;EÞ where
V ¼ fv1; v2 . . . ; vng is the set of vertices or nodes and for
every 1 � i; j � n, there is a directed edge from vj to vi if
and only if fi depends on xj. An edge from vj to vi will be
often denoted as vj ! vi. A path from a vertex v to a vertex
v0 is a (possibly empty) sequence of edges from v to v0 in
GBN. For any vertex v 2 V we define its set of parents as
parðvÞ ¼ fv0 2 V j v0 ! vg. For the rest of the exposition, we
assume that an arbitrary but fixed network BN of n varia-
bles is given to us and GBN ¼ ðV;EÞ is its associated directed
graph.

A state s of BN is an element in f0; 1gn. Let S be the set of
states of BN. For any state s ¼ ðs1; s2; . . . ; snÞ, and for every
i, the value of si, often denoted as s½i�, represents the value
that the variable xi takes when the BN ‘is in state s’. For
some i, suppose fi depends on xi1 ; xi2 ; . . . ; xik . Then fiðsÞ
will denote the value fiðs½i1�; s½i2�; . . . ; s½ik�Þ. For two states
s; s0 2 S, the Hamming distance between s and s0 will be
denoted as hdðs; s0Þ and argðhdðs; s0ÞÞ � f1; 2; . . . ; ng will
denote the set of indices in which s and s0 differ. For a state
s and a subset S0 � S, the Hamming distance between s and

S0 is defined as the minimum of the Hamming distances
between s and all the states in S0. That is, hdðs;S0Þ ¼
mins02S0hdðs; s0Þ. We let argðhdðs;S0ÞÞ denote the set of sub-

sets of f1; 2; . . . ; ng such that I 2 argðhdðs;S0ÞÞ if and only

if I is a set of indices of the variables that realise this
Hamming distance.

3.2 Dynamics of Boolean Networks

We assume that the Boolean network evolves in discrete
time steps. It starts initially in a state s0 and its state changes
in every time step according to the update functions f . The
updating may happen in various ways. Every such way of
updating gives rise to a different dynamics for the network.
In this work, we shall be interested primarily in the asyn-
chronous updating scheme.

Definition 2 (Asynchronous dynamics of Boolean net-
works). Suppose s0 2 S is an initial state of BN. The asyn-
chronous evolution of BN is a function � : N ! }ðSÞ such that
�ð0Þ ¼ s0 and for every j � 0, if s 2 �ðjÞ then s0 2 �ðjþ 1Þ is
a possible next state if and only if either hdðs; s0Þ ¼ 1 and
s0½i� ¼ fiðsÞ where i ¼ argðhdðs; s0ÞÞ or hdðs; s0Þ ¼ 0 and there
exists i such that s0½i� ¼ fiðsÞ.
Note that the asynchronous dynamics is non-deterministic

– the value of exactly one variable is updated in a single time-
step. The index of the variable that is updated is not known
in advance. Henceforth, when we talk about the dynamics of
BN, we shall mean the asynchronous dynamics as defined
above.

The dynamics of a Boolean network can be represented
as a state transition graph or a transition system (TS).

Definition 3 (Transition System of BN). The transition sys-
tem of BN, denoted by the generic notation TS is a tuple ðS;!Þ
where the vertices are the set of states S and for any two states s
and s0 there is a directed edge from s to s0, denoted s ! s0 iff s0

is a possible next state according to the asynchronous evolution
function � of BN.

3.3 Attractors and Basins of Attraction

A path from a state s to a state s0 is a (possibly empty)
sequence of transitions from s to s0 in TS. A path from
a state s to a subset S0 of S is a path from s to any state
s0 2 S0. For any state s 2 S, let preTSðsÞ ¼ fs0 2 S j s0 ! sg
and let postTSðsÞ ¼ fs0 2 S j s ! s0g. preTSðsÞ contains all
the states that can reach s by performing a single transition
in TS and postTSðsÞ contains all the states that can be
reached from s by a single transition in TS. preTSðsÞ and
postTSðsÞ are often called the set of predecessors and succes-
sors of s. Note that, by definition, hdðs; preTSðsÞÞ � 1 and

hdðs; postTSðsÞÞ � 1. preTS and postTS can be lifted to a sub-

set S0 of S as: preTSðS0Þ ¼ S
s2S0preTSðsÞ and postTSðS0Þ ¼

S
s2S0postTSðsÞ. We define preiþ1

TS ðS0Þ ¼ preTSðpreiTSðS0ÞÞ
and postiþ1

TS ðS0Þ ¼ postTSðpostiTSðS0ÞÞ where pre0TSðS0Þ ¼
post0TSðS0Þ ¼ S0. For a state s 2 S, reachTSðsÞ denotes the

set of states s0 such that there is a path from s to s0 in TS
and can be defined as the fixpoint of the successor
operation which is often denoted as post�TS. Thus,
reachTSðsÞ ¼ post�TSðsÞ.
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Definition 4 (Attractor). An attractor A of TS (or of BN) is a
minimal subset of states of S such that for every
s 2 A; reachTSðsÞ ¼ A.

Any state which is not part of an attractor is a transient
state. An attractor A of TS is said to be reachable from a
state s if reachTSðsÞ \A 6¼ ;. Attractors represent the stable
behaviour of the BN according to the dynamics. The net-
work starting at any initial state s0 2 S will eventually end
up in one of the attractors of TS and remain there forever
unless perturbed.

Observation 1. Any attractor of TS is a bottom strongly
connected component of TS.

For an attractor A of TS, we define subsets of states of S
called the weak and strong basins of attractions of A,

denoted as basWTSðAÞ and basSTSðAÞ, respectively, as follows.

Definition 5 (Basin). Let A be an attractor of TS.

� Weak basin: The weak basin of attraction of A
with respect to TS, is defined as basWTSðAÞ ¼ fs 2
S j reachTSðsÞ \A 6¼ ;g which equals the fixpoint of
the predecessor opration on A and is often denoted as
pre�TS. Thus, bas

W
TSðAÞ ¼ pre�TSðAÞ.

� Strong basin: The strong basin of attraction of A
with respect to TS, is defined as basSTSðAÞ ¼
basWTSðAÞ n ð

S
A0bas

W
TSðA0ÞÞ where the union is over

all attractors A0 of TS such that A0 6¼ A.

Thus the weak basin of attraction of A is the set of all
states s from which there is a path to A. It is possible that
there are paths from s to some other attractor A0 6¼ A. How-
ever, the notion of a strong basin does not allow this. Thus,

if s 2 basSTSðAÞ then s =2 basWTSðA0Þ for any other attractor A0.
We need the notion of strong basin to ensure reachability to
the target attractor after applying perturbations.

Example 1. Consider the three-node network BN ¼ ðx; fÞ
where x ¼ ðx1; x2; x3Þ and f ¼ ðf1; f2; f3Þwhere f1 ¼ :x2_
ðx1 ^ x2Þ; f2 ¼ x1 ^ x2 and f3 ¼ ð:x1 ^ x2Þ _ ð:x2 ^ x3Þ.
The graph of the network GBN and its associated transition
system TS is given in Fig. 1. TS has three attractors
fð100Þg; fð110Þg and fð101Þg shown by dark grey rectan-
gles. Their corresponding strong basins of attractions are
shown by enclosing grey regions of a lighter shade. Note
that, there is a path from the state (010) to both the attrac-
tors fð100Þg and fð101Þg. Hence (010) is not in the strong
basin of either of these attractors but is in the weak basins
of both of them.

Henceforth, to avoid clutter, we shall drop the subscript
TS when the transition system is clear from the context.
Also, we shall often drop the superscript S when dealing
with strong basins.

3.4 The Control Problem

As described in the introduction, the attractors of a Boolean
network represent the cellular phenotypes, the expressions
of the genes etc. Some of these attractors may be diseased,
weak or undesirable while others are healthy and desirable.
Curing a disease is thus, in effect, moving the dynamics of
the network from an undesired ‘source’ attractor to a
desired ‘target’ attractor.

One of the ways to achieve the above is by controlling the
various ‘parameters’ of the network, for eg. the values of the
variables, or the Boolean functions themselves. In this expo-
sition, we shall be interested in the former kind of control,
that is, perturbing the values of the variables of the network.
Such a perturbation may be (i) permanent – the value(s) of
one or more variables are fixed forever, for all the following
time steps or (ii) temporary – the values of (some of) the vari-
ables are fixed for a finite number (one or more) of time
steps and then the control is removed to let the system
evolve on its own. Moreover, the variables can be either per-
turbed (a) simultaneously – the perturbation is applied to all
the variables at once or (b) sequentially – the perturbation is
applied over a sequence of steps.

In this work we shall be interested in the control of type
(ii) and (a). Moreover, for us, the perturbations are applied
only for a single time step. Thus we can formally define
source-target control as follows.

Definition 6 (Simultaneous Control). A simultaneous con-
trol C is a (possibly empty) subset of f1; 2; . . . ; ng. For a state

s 2 S, the application of C to s, denoted CðsÞ is defined as the

state s0 2 S such that s0½i� ¼ ð1� s½i�Þ if i 2 C and s0½i� ¼ s½i�
otherwise. Given a control C, the set of vertices fvi j i 2 Cg of

GBN will be called the driver nodes for C.

Our aim is to make the control as less invasive to the sys-
tem as possible. Thus not only are the perturbations applied
for just a single time step, they are also applied to as few of
the nodes of the Boolean network as possible. The minimal
simultaneous single-step source-target control problem for
Boolean networks that we are thus interested in can be for-
mally stated as follows.

Minimal Simultaneous Source-Target Control. Given a Bool-
ean network BN, a ‘source state’ s 2 S and a ‘target
attractor’ At of TS, compute a simultaneous control C such
that after the application of C to s, BN eventually reaches At

and C is a minimal such subset of f1; 2; . . . ; ng. We shall call
such a control a minimal source-target control (STC) from s to
At. The set of all minimal control from s to At will be
denoted as Cs!At

min .

Note that the requirement of minimality is crucial, with-
out which the problem is rendered trivial–simply pick some
state s0 2 At and move to it. Our goal is to provide an effi-
cient algorithm for the above question. That is, to devise an
algorithm that takes as input only the Boolean functions f of
BN, a source state s and a target attractor At of TS and out-
puts the indices of a minimal subset of nodes of s that need

Fig. 1. The graph of BN and its transition system.
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to be toggled (the driver nodes) so that after applying the
toggle, the dynamics eventually and surely reaches At. It is
known that in general the problem is computationally diffi-
cult – PSPACE-hard [8] and unless certain open conjectures
in computational complexity are false, solving it would
require time exponential in the size of the Boolean network.
That is intuitively because of the infamous state-space
explosion phenomenon – the number of states of the transi-
tion system is exponential in the network-size.

Observation 2. It is important to note that if the BN is in
some state s 2 basðAÞ in some time step t, that is if
�ðtÞ ¼ s, and assuming that every variable is updated infi-
nitely often (faireness assumption), then by the definition
of basðAÞ, it will eventually and surely reach a state
s0 2 A. That is, there exists a time step t0 > t such that
�ðt0Þ ¼ s0. Hence given a source state s and a target

attractor At, C
s!At
min can easily be seen to be equal to

argðhdðs; basðAtÞÞÞ. In other words

Proposition 1. A control C from s to At is minimal if and only
if CðsÞ 2 basðAtÞ and C 2 argðhdðs; basðAÞÞÞ.

Proof. If CðsÞ =2 basðAtÞ then either (a) CðsÞ =2 basWTSðAtÞ or
(b) CðsÞ 2 basWTSðAtÞ. If (a) holds, then there is no path
from CðsÞ to At and if (b) holds, then there is a path from
CðsÞ to some other attractor A 6¼ At. In either case BN is
not guaranteed to reach a state in At after the control C is
applied to s. And, if C =2 argðhdðs; basðAÞÞÞ, then C can-
not be minimal (by definition of Hamming distance), and
conversely. tu
Thus, solving the minimal simultaneous target-control

problem efficiently, boils down to how efficiently we can
compute the strong basin of the target attractor.

Example 2. Continuing with Example 1, suppose we are in
source state s ¼ ð101Þ (which is also an attractor) and we
want to apply (minimal simultaneous) STC to s so that
the system eventually and surely moves to the target
attractor At ¼ fð110Þg. We could flip s½2� and s½3� to move
directly to At which would require a control C ¼ f2; 3g.
However, if we note that the state (111) is in basðAtÞ, we
can simply apply the STC C0 ¼ f2g and the dynamics of
the BN will ensure that it eventually reaches At. Indeed,
C0 is also the minimal STC in this case.

3.5 A Global Approach

In the rest of this section, we first describe a procedure for
computing the (strong) basin of an attractor based on the
computation of fixed point. We then use this procedure to
design a simple global algorithm for solving the minimal
STC problem based on a global computation of the basin
of the target attractor At. A slightly modified version of
the same algorithm will act as a reference for comparing
the decomposition-based algorithm which we shall later
develop.

3.5.1 Computation of Basins

We first introduce procedures COMP_WB and COMP_SB,
described in Algorithm 1, for the computation of the weak
basin and strong basin of an attractor A based on fixpoint

approaches. Procedure COMP_WB computes the weak basin
of A by computing the fixpoint pre�TSðAÞ (as per Definition
5). The most important step of COMP_SB is line 13, which is
repeated till the set SB settles down to a fixed point, which
is the strong basin of A. Initially WB is equal to A (Line 2).
In each iteration of line 13, we take the current set WB,
which is a subset of the weak basin of A, and remove from
it all the states that have transitions to any state outside the
current WB. These are the states from which there are paths
to some other attractor A0 6¼ A and hence they cannot be in
the strong basin of A. Finally, when WB stabilises, we are
left with the strong basin of A. Below, we give a formal
proof of the correctness of Algorithm 1. We shall use the
procedure COMP_SB for the global minimal control algo-
rithm and later, a minor modification of the procedure,
which we call COMP_SB_REL, for the decomposition-based
algorithm.

3.5.2 Correctness of Algorithm 1

The correctness of the procedure COMP_WB is straightfo-
ward and follows from the fact that basW ðAÞ ¼ pre�ðAÞ
(Definition 5). Below we show the correctness of the proce-
dure COMP_SB. Based on line 13 of Algorithm 1, we define
an operator F on S as follows. For any subset T of state:

F ðTÞ ¼ T n ðpreðpostðTÞ nTÞ \TÞ:

It is easy to see that F is monotonically decreasing and
hence its greatest fixed point, F1, exists. Thus, to prove the
correctness of Algorithm 1, it is enough to show that for any
attractor A of TS, F1ðbasW ðAÞÞ ¼ basSðAÞ. That is, to com-
pute the strong basin of A once can start with its weak basin
and apply the operator F repeatedly till a fixed point is
reached which gives its strong basin. The operation has to
be repeated m times where m is the index of F1ðbasW ðAÞÞ.
We start by proving the following lemmas.

Algorithm 1. Computation of Weak and Strong Basins

1: procedure Comp_WB(f ;A)// Compute the weak basin
2: Initialise WB’ ¼ ;, WB ¼ A;
3: whileWB 6¼WB’ do
4: WB’¼WB
5: WB ¼ preðWB’)
6: end while
7: returnWB;
8: end procedure
9: procedure Comp_SB(f ;A) // Compute the strong basin
10: WB := Comp_WB(f ;A);
11: Initialise SB ¼ ;;
12: while SB 6¼WB do
13: If SB 6¼ ; doWB := SB;
14: SB:=WBnðpreðpostðWBÞ nWBÞ\WB);
15: end while
16: return SB;
17: end procedure

Lemma 1. For any state s 2 S, if s =2 basSðAÞ then
s =2 F1ðbasW ðAÞÞ.

Proof. Suppose for some s 2 S, s =2 basSðAÞ. Then either (i)
there is no path from s to A or (ii) there is a path from s to

1936 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020



another attractor A0 6¼ A of TS. If (i) holds then
s =2 basW ðAÞ either and hence s =2 F1ðbasW ðAÞÞ. So sup-
pose (ii) holds and there is a path from s to another
attractor A0 6¼ A. Consider the shortest such path
s0 ! s1 ! . . . ! sn, where s0 ¼ s and sn 2 A0 and let
si ! sðiþ1Þ; 0 � i < n be the first transition along this

path that moves out of basW ðAÞ. That is, si 2 basW ðAÞ
but sðiþ1Þ =2 basW ðAÞ. We claim that s =2 FjðbasW ðAÞÞ for

all j � ðiþ 1Þ. That is, s is removed in the ðiþ 1Þth step in

the inductive construction of F1ðbasW ðAÞÞ. We prove

this by induction on i.
Suppose i ¼ 0. Then there is already a transition

from s out of basW ðAÞ and hence s 2 ðpreðpostðbasW
ðAÞÞ nAÞ \ basW ðAÞÞ. Thus s =2 F ðbasW ðAÞÞ. Next, sup-
pose i > 0 and the premise holds for all j : 0 � j < i.
Then by induction hypothesis we have s1 =2 Fi

ðbasW ðAÞÞ. Hence s 2 ðpreðpostðFiðbasW ðAÞÞÞ n FiðbasW
ðAÞÞÞ \ FiðbasW ðAÞÞÞ will be removed in the ðiþ 1Þth
step of the inductive construction. tu
For the converse direction, first, we easily observe from

the definition of weak and strong basins that:

Lemma 2. Let A be an attractor of TS. Then

� basSðAÞ � basW ðAÞ,
� for any state s 2 S, s 2 basSðAÞ iff, for all transitions

s ! s0, we have s0 2 basSðAÞ.
Lemma 3. For any state s 2 S, if s =2 F1ðbasW ðAÞÞ then

s =2 basSðAÞ.
Proof. For some state s 2 S, if s =2 F1ðbasW ðAÞÞ then

either s =2 basW ðAÞ, in which case s =2 basSðAÞ [by
Lemma 2] or s 2 basW ðAÞ but gets removed from
F1ðbasW ðAÞÞ at the ith step of the inductive cons-
truction for some i � 1. We do an induction on i to
show that in that case s =2 basSðAÞ. Suppose i ¼ 1.
Then by definition s 2 ðpreðpostðbasW ðAÞÞ n basW ðAÞÞ\
basW ðAÞÞ which means there is a transition from s to
some s0 =2 basW ðAÞ. Thus s =2 basSðAÞ [by Lemma 2]. Next
suppose i > 1 and the premise holds for all j : 1 � j < i.

Then, s 2 ðpreðpostðF ði�1ÞðbasW ðAÞÞÞ n F ði�1Þ ðbasW ðAÞÞÞ
\F ði�1ÞðbasW ðAÞÞÞ. This means there is a state s0 2
F ði�1ÞðbasW ðAÞÞ such that there is a transition from s to s0.
But since by induction hypothesis s0 =2 basSðAÞ we must

have that s =2 basSðAÞ [by Lemma 2]. tu
Combining Lemmas 1 and 3 we have

Theorem 1 (Correctness of Algorithm 1). For any attractor
A of TS we have, basSðAÞ ¼ F1ðbasW ðAÞÞ.

3.5.3 The Global Algorithm

We now use the algorithm COMP_SB to give a global algo-
rithm, Algorithm 2, for the minimal simultaneous STC
problem. Note that Algorithm 2 is worst-case exponential in
the size of the input (the description of BN). Indeed, since
the basin of attraction of At might well be equal to all the
states of the entire transition system TS which is exponen-
tial in the description of BN. Our global solution for the min-
imal control problem, Algorithm 2, is generic, in that, we
can plug into it any other algorithm for computing the basin

of the target attractor and it would still work. Its perfor-
mance, however, directly depends on the performance of
the particular algorithm used to compute this basin.

Algorithm 2. GlobalMinimal Source-Target Control

1: procedure Global_Minimal_control(f ; s;At)
2: SB := Comp_SB(f ;At);
3: return argðhdðs;SB));
4: end procedure

Now, although an efficient algorithm for this problem is
highly unlikely, it is possible that when the network has a
certain well-behaved structure, one can do better than this
global approach. Most of the previous attempts at providing
such an algorithm for such well-behaved networks either
exploited exclusively the structure of the network or failed
to minimise the number of driver nodes. Here we show
that, when we take both the structure and the dynamics into
account, we can have an algorithm which, for certain net-
works, is much more efficient than the global approach.

4 A DECOMPOSITION-BASED APPROACH

In this section, we demonstrate an approach to compute the
strong basin of attraction of At based on the decomposition
of the BN into structural components called blocks. This will
then be used to solve the minimal STC problem. The
approach is based on that of [21] for computing the attrac-
tors of asynchronous Boolean networks. The overall idea is
as follows. The network is divided into blocks based on its
strongly connected components (SCCs). The blocks are then
sorted topologically resulting in a dependency graph of the
blocks which is a directed acyclic graph (DAG). The transi-
tion systems of the blocks are computed inductively in the
sorted order and the target attractor At is then projected to
these blocks. The local strong basins for each of these projec-
tions are computed in the transition system of the particular
block. These local strong basins are then combined to com-
pute the global strong basin basðAtÞ.

4.1 Blocks

Let SCC denote the set of maximal SCCs of GBN.
2 Let W be

an SCC of GBN. The set of parents of W is defined as
parðWÞ ¼ ð Sv2WparðvÞÞ nW .

Definition 7 (Basic Block). A basic block B is a subset of V
such that B ¼ W [ parðW Þ for someW 2 SCC.

Let B be the set of basic blocks of GBN. Since every vertex
of GBN is part of an SCC, we have

S B ¼ V . The union of
two or more basic blocks of B will also be called a block. For
any block B, jBj will denote the number of vertices in B.
Using the set of basic blocks B as vertices, we can form a
directed graph GB ¼ ðB; EBÞ, which we shall call the block
graph of BN. The vertices of GB are the basic blocks and for
any pair of basic blocks B0; B 2 B; B0 6¼ B, there is a directed
edge from B0 to B if and only if B0 \B 6¼ ; and for every
v 2 ðB0 \BÞ, parðvÞ \B ¼ ;. In such a case, B0 is called a

2. By convention, we assume that a single vertex (with or without a
self loop) is always an SCC, although it may not be maximal.
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parent block of B and v is called a control node for B. Let
parðBÞ and ctrðBÞ denote the set of parent blocks and the set
of control nodes of B, respectively. It is easy to observe that

Observation 3. GB is a directed acyclic graph.

A block B (basic or non-basic) is called elementary if
parðvÞ � B for every v 2 B. B is called non-elementary other-
wise. We shall henceforth assume that BN has k basic blocks
and they are topologically sorted as fB1; B2; . . . ; Bkg. Note
that for every j : 1 � j � k, ð S j

‘¼1B‘Þ is an elementary
block. We shall denote it as Bj.

For two basic blocksB andB0 whereB is non-elementary,
B0 is said to be an ancestor ofB if there is a path fromB0 toB
in the block graph GB. The ancestor� closure of a basic block
B (elementary or non-elementary), denoted acðBÞ is defined
as the union of all the ancestors of B. Note that acðBÞ is an
elementary block and so is facðB0Þ j B0 2 parðBÞg, which we
denote as acðBÞ�.

4.2 Projection of States and the Cross Operation

We shall assume that the vertices fv1; v2; . . . ; vng of GBN

inherit the ordering of the variables x of BN. Let B be a
block of BN. Since B is a subset of V its state space is
f0; 1gjBj and is denoted as SB. For any state s 2 S, where
s ¼ ðs1; s2; . . . ; snÞ, the projection of s to B, denoted sjB is the
tuple obtained from s by suppressing the values of the vari-
ables not in B. Thus if B ¼ fvi1 ; vi2 ; . . . ; vikg then
sjB ¼ ðsi1 ; si2 ; . . . ; sikÞ. Clearly sjB 2 SB. For a subset S0 of S,
S0jB is defined as fsjB j s 2 S0g.
Definition 8 (Cross Operation). Let B1 and B2 be two blocks

of BN and let s1 and s2 be states of B1 and B2, respectively.
s1 	 s2 is defined (called crossable) if there exists a state
s 2 SB1[B2

such that sjB1
¼ s1 and sjB2

¼ s2. s1 	 s2 is then
defined to be this unique state s. For any subsets S1 of SB1

and
S2 of SB2

, S1 	 S2 is a subset of SB1[B2
and is defined as:

S1 	 S2 ¼ fs1 	 s2 j s1; s2 are crossable; s1 2 S1; s2 2 S2g:

Note that S1 	 S2 can be the empty set. The cross opera-
tion is easily seen to be associative. Hence for more than
two states s1; s2; . . . ; sk, s1 	 s2 	 . . . sk can be defined as
ðððs1 	 s2Þ 	 . . .Þ 	 skÞ. We have a similar definition for the
cross operation on more than two sets of states.

Example 3. Let BN ¼ ðx; fÞ be a Boolean network where
x ¼ ðx1; x2; . . . ; x5Þ. Suppose BN has 2 blocks B1 and B2

with B1 ¼ fx1; x3; x4g and B2 ¼ fx2; x3; x4; x5g. Let
s ¼ ð10011Þ be a state of BN. Then sjB1

¼ ð101Þ, i.e., the
1st, 3rd and 4th components of s and sjB2

¼ ð0011Þ, i.e.,
the 2nd, 3rd, 4th and 5th components of s. Now, let
s1 ¼ ð001Þ be a state of B1 and s2 ¼ ð1010Þ be a state of B2

then s1 	 s2 ¼ ð01010Þ since this is the unique state of BN
whose projections to B1 and B2 are s1 and s2, resp.

4.3 Transition System of the Blocks

The next step is to describe how to construct the ‘local’ tran-
sition systems of each of the blocks. These transition sys-
tems will be inductively defined starting from the
elementary blocks and moving to the blocks further down

the topological order. For an elementary block B (basic or
non-basic), its transition system TSB is given exactly as Def-
inition 3 with the vertices being SB. This is well-defined
since by the definition of an elementary block, the update
functions of the vertices of B do not depend on the value of
any vertex outside B. On the other hand, the transition sys-
tem of a non-elementary block B depends on the transitions
of its parent blocks (or its control nodes in its parent blocks).
The transition system of such a block thus has to be defined
based on (some or all of) the transitions of its parent blocks.

Towards that, let B be a non-elementary basic block of
BN and let A be an attractor of the transition system of the
elementary block acðBÞ� and let basðAÞ be its (strong) basin
of attraction. Then

Definition 9 (TS of Non-Elementary Blocks). The transi-
tion system of B realised by basðAÞ is defined as a tuple
TSB ¼ ðS;!Þ where the set of states S of TSB is a subset of
SacðBÞ such that s 2 S if and only if sjacðBÞ� 2 basðAÞ and for
any two states s; s0 2 SacðBÞ there is a transition s ! s0 if
and only if either hdðs; s0Þ ¼ 1 and s0½i� ¼ fiðsÞ where
i ¼ argðhdðs; s0ÞÞ or hdðs; s0Þ ¼ 0 and there exists i such that
s0½i� ¼ fiðsÞ.

4.4 The Main Results

In this section, we state and prove the key results of the
above constructions which will form the basis of the decom-
position-based control algorithm that we shall develop in
the next section. This section can be skipped on a quick-
read without affecting the continuity of the article.

We first show that the attractors of (the TS of) BN are pre-
served across the TSs of the blocks. We prove this by prov-
ing a series of lemmas which will form the basis of the final
inductive argument. Let us start with the case where our
given Boolean network BN has two basic blocks B1 and B2.
We shall later generalise the results to the case where BN
has more than two basic blocks by inductive arguments.

Note that either one or both the blocks B1 and B2 are ele-
mentary. If only one of the blocks is elementary, we shall,
without loss in generality, assume that it is B1. Let TS;TS1

and TS2 be the transition systems of BN; B1 and B2 respec-
tively where, if B2 is non-elementary, we shall assume that
TS2 is the transition system of B2 realised by the basin of an
attractor A1 of TS1 as defined in Definition 9.

The states of a transition system will be denoted by s or t
with appropriate subscripts and/or superscripts. For any
state s 2 TS (resp. t 2 TS), we shall denote sjB1

(resp. tjB1
)

by s1 (resp. t1) and sjB2
(resp. tjB2

) by s2 (resp. t2). Similarly,
for a set of states T of TS, T1 and T2 will denote the set of
projections of the states in T to B1 and B2 resp.

Let B�
1 ¼ B1 n ðB1 \B2Þ and B�

2 ¼ B2 n ðB1 \B2Þ. We

shall denote any transition s�!s0 in TS by s �!B s0 if the var-
iable whose value changes in the transition is in B.

Lemma 4. For an elementary block Bi of BN and for every si; s
0
i

of TSi, if there is a path from si to s0i in TSi, then there is a
path from s to s0 in TS such that sjBi

¼ si; s
0jBi

¼ s0i and
sjB�

j
¼ s0jB�

j
; j 6¼ i.

Proof. Let Bi be elementary and suppose s0i �!
B1

s1i
�!B1

. . . �!B1
smi , where s0i ¼ si and smi ¼ s0i, be a path from

si to s0i in TSi. Let sjB�
j
¼ s0jB�

j
¼ s�j . It is clear that

1938 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020



ðs0i 	 s�j Þ �!
B1 ðs1i 	 s�j Þ �!

B1
. . . �!B1 ðsmi 	 s�j Þ is a path

from s to s0 in TS where s ¼ ðs0i 	 s�j Þ; s0 ¼ ðsmi 	 s�j Þ and
s and s0 have the required properties. Indeed, since Bi is

elementary and values of the nodes in B�
j are not modi-

fied along the path. tu
Lemma 5. For every s; s0 of TS if there is a path from s to s0 in

TS then there is a path from si to s0i in TSi for every elementary
block Bi.

Proof. Suppose r ¼ s0 ! s1 ! . . . sm, where s0 ¼ s and
sm ¼ s0 be a path from s to s0 in TS. Let Bi be an elemen-
tary block of BN. We inductively construct a path ri from
si to s0i in TSi using r. rji ; 0 � j < m, will denote the pre-
fix of ri constructed in the jth step of the induction. Ini-
tially r0i ¼ s0i . Suppose r

j
i has been already constructed

and consider the next transition sj ! sjþ1 in r. If this tran-

sition is labeled with Bi then we let r
jþ1
i ¼ r

j
i �!

Bi
sjþ1
i .

Otherwise if this transition is labeled with B�
j ; j 6¼ i, then

we let r
jþ1
i ¼ r

j
i . Since by induction hypothesis r

j
i is a

path in TSi and we add to this a transition from r only if

a node of the elementary block Bi is modified in this tran-

sition, such a transition exists in TSi. Hence, rjþ1
i is also a

path in TSi. Continuing in this manner, we shall have a

path from si to s0i in TSi at the last step when jþ 1 ¼ m. tu
Lemma 6. Suppose B1 and B2 are both elementary blocks and

B1 \B2 ¼ ;. Then for every s; s0 2 TS, there is a path from s
to s0 in TS if and only if there is a path from si to s0i in every
TSi.

Proof. Follows directly from Lemmas 4 and 5. tu
Lemma 7. Let B1 and B2 be two elementary blocks of BN,

B1 \B2 ¼ ;. Then we have that A is an attractor of of TS if
and only if there are attractors A1 and A2 of TS1 and TS2 resp.
such that A ¼ A1 	A2.

Proof. Follows directly from Lemma 6. tu
Lemma 8. Let BN have two blocks B1 and B2 where B2 is non-

elementary, B1 is elementary and is the parent of B2. Then we
have A is an attractor of TS if and only if A1 is an attractor of
TS1 and A is also an attractor of TS2 where TS2 is realized by
basðA1Þ.

Proof. Suppose A is an attractor of TS and for contradiction
suppose A1 is not an attractor of TS1. Then either there
exist s; s0 2 A such that there is no path from s1 to s01 in
TS1. But that is not possible by Lemma 5. Or there exist
s1 2 A1 and s01 =2 A1 such that there is a transition from s1
to s01. But then by Lemma 4, there is a transition from
s 2 A to s0 =2 A in TS where sjB1

¼ s1 and s0jB2
¼ s02. This

contradicts the assumption that A is an attractor of A.
Next suppose A is not an attractor of TS2. Then there is a
transition in TS2 from s 2 A to s0 =2 A. But we have, by the
construction of TS2 (Definition 9), that this is a transition
in TSwhich again contradicts the assumption that A is an
attractor of TS.

For the converse direction, suppose for contradiction
that A is an attractor of TS2 and A1 is an attractor of TS1

but A is not an attractor of TS. We must then have that
there is a transition in TS from s 2 A to s0 =2 A. If this tran-
sition is labelled withB1 then wemust have, by Lemma 5,

that there is a transition in TS1 from s1 to s01. But since
s01 =2 A1 this contradicts the assumption that A1 is an
attractor of TS1. Next, suppose that this transition is
labelled with B�

2 . We must then have that s1 ¼ s01 2 A1.
Hence, by the construction of TS2 (Definition 9) it must
be the case that s0 2 TS2 and this transition from s to s0 is
also present in TS2. But this contradicts the assumption
that A is an attractor of TS2. tu
Now suppose BN has k blocks that are topologically

sorted as fB1; B2; . . . ; Bkg. Note that for every i such that
1 � i � k, (

S
j�iBj) is an elementary block of BN and we

denote its transition system by TSi.

Theorem 2 (Preservation of Attractors). Suppose for every
attractor A of TS and for every i : 1 � i < k, if Biþ1 is non-
elementary then TSiþ1 is realised by basð	j2IAjÞ, its basin w.r.t.
the transition system for ð S j2IBjÞ, where I is the set of indices
of the basic blocks in acðBiþ1Þ�. We then have, for every
i : 1 � i < k,Aiþ1 is an attractor of TSiþ1, ð	j2IAj 	Aiþ1Þ is
an attractor of the transition system for the elementary block
ð Sj2IBj [Biþ1Þ, ð	iþ1

j¼1AjÞ is an attractor of the transition sys-

temTSiþ1 ofBiþ1 andA is an attractor of TSk.

Proof. The proof is by induction on i. The base case is when
i ¼ 2 and BN has two blocks B1 and B2. If B1 and B2 are
both elementary then the result follows from Lemma 7. If
B1 is elementary and is the parent of B2 then the result
follows from Lemma 8. For the inductive case suppose
the result holds for some i where 2 � i < k. Now both

ð Sj2IBjÞ, where I is the set of indices of the basic blocks

in acðBiþ1Þ�, and ð Sj�iBjÞ are elementary. Now, if Biþ1

is elementary then the result follows from Lemma 7. If

Biþ1 is non-elementary then ð Sj2IBjÞ is the parent of

Biþ1 and the result follows from Lemma 8. tu
Next, we show that the basins of attractions of the attrac-

tors of (the TS of) BN are preserved across the TSs of the
blocks as well. We again do this by proving a series of lem-
mas leading up to the final inductive argument. Let us come
back to the case where BN has two blocks B1 and B2.

Lemma 9. Suppose B1 \B2 ¼ ; and both B1 and B2 are ele-
mentary blocks of BN. Let A;A1 and A2 be attractors of
TS;TS1 and TS2 respectively where A ¼ A1 	A2. Then
basTSðAÞ ¼ basTS1

ðA1Þ 	 basTS2
ðA2Þ.

Proof. Follows easily from Lemma 6. tu
Lemma 10. Let A;A1 and A2 be the attractors of TS;TS1 and

TS2 respectively where B1 and B1 are elementary and non-ele-
mentary blocks respectively of BN with B1 being the parent of
B2 and TS2 being realized by basTS1

ðA1Þ and A ¼ A2. Then
basTS1

ðA1Þ 	 basTS2
ðA2Þ ¼ basTS2

ðA2Þ ¼ basTSðAÞ.
Proof. Since TS2 is realized by basTS1

ðA1Þ, by its construc-
tion (Definition 9) we have, for every state s 2 TS2,
s1 2 basTS1

ðA1Þ. Hence basTS1
ðA1Þ 	 basTS2

ðA2Þ ¼ basTS
ðA2Þ.

We next show that basTS2
ðA2Þ ¼ basTSðAÞ. Suppose

s 2 basTS2
ðA2Þ. To show that s 2 basTSðAÞ, it is enough

to show that: (i) There is a path from s to some sA 2 A in
TS and (ii) there is no path from s to t 2 A0 for some
attractor A0 6¼ A of TS.

PAUL ET AL.: AN EFFICIENT APPROACH TOWARDS THE SOURCE-TARGET CONTROL OF BOOLEAN NETWORKS 1939



(i) Since s 2 basTS2
ðA2Þ, and A2 ¼ A, there is a path r

from s to sA 2 A in TS2. It is easy to see from the con-

struction of TS2 (Definition 9) that r is also a path in TS

from s to sA.
(ii) Suppose for contradiction that there is a path r0

in TS from s to t 2 A0 for some attractor A0 6¼ A of TS.
Since A0 6¼ A we must have that either (a) A1 6¼ A0

1 or
(b) A1 ¼ A0

1 but A2 6¼ A0
2. (a) In this case, by Lemma 5,

there must be a path from s1 to t1 2 A0
1 which is a contra-

diction to the fact that s1 2 basðA1Þ. (b) We have by
Theorem 2 that A0

2 ¼ A0. Once again from the construc-

tion of TS2 (Definition 9) it is easy to see that r0 is also a

path in TS2 from s to t 2 A0. But this contradicts the fact

that s 2 basTS2
ðA2Þ. For the converse direction suppose

that s 2 basTSðAÞ. To show that s 2 basTS2
ðA2Þ, it is

enough to show that: (iii) There is a path from s to some

sA2 2 A2 and (iv) there is no path from s to t 2 A0
2 for

some attractor A0
2 6¼ A2 of TS2.

(iii) Since s 2 basTSðAÞ, there is a path r in TS from s
to some sA 2 A. By the fact that A2 ¼ A and by the con-
struction of TS2 (Definition 9) it is clear that r is also a
path in TS2 from s to sA 2 A2.

(iv) Suppose for contradiction that there is a path r0 in
TS2 from s to t 2 A0

2 for some attractor A0
2 6¼ A2 of TS2.

By Theorem 2, A0
2 is equal to an attractor A0 of TS and

A0 6¼ A. It is then easy to see again from the construction

of TS2 (Definition 9) that r0 is also a path in TS from s to

t 2 A0. But this contradicts the assumption that

s 2 basTSðAÞ. tu
Let us, for the final time, come back to the case where BN

has k > 2 blocks and these blocks are topologically sorted
as fB1; B2; . . . ; Bkg. Let i range over f1; 2; . . . ; kg. By the the-
orem on attractor preservation, Theorem 2, we have that
(	j�iAj) is an attractor of TSi.

Lemma 11. Suppose BN has k basic blocks that are topologically
sorted as fB1; B2; . . . ; Bkg. Suppose for every attractor A of
TS and for every i : 1 � i < k, if Biþ1 is non-elementary then
TSiþ1 is realised by basð	j2IAjÞ, its basin w.r.t. the TS for

ð Sj2IBjÞ, where I is the set of indices of the basic blocks in

acðBiþ1Þ� [where ð	j2IAjÞ, by Theorem 2, is an attractor of

the TS for ð Sj2IBjÞ]. Then for every i, ð	j�ibasTSj
ðAjÞÞ ¼

basð	j�iAiÞ where basð	j�iAjÞ is the basin of attraction of

ð	j�iAjÞ with respect to transition system TSi of ð
S

j�iBjÞ.
Proof. The proof is by induction on i. The base case is when

i ¼ 2. Then either B1 and B2 are both elementary and dis-
joint in which case the proof follows from Lemma 9. Or,
B1 is elementary and B2 is non-elementary and B1 is the
parent block of B2. In this case the proof follows from
Lemma 10.

For the inductive case, suppose that the conclusion
of the theorem holds for some i : 2 � i < k. Now, con-
sider ð	j�ðiþ1ÞbasTSj

ðAjÞÞ. By the induction hypothesis,

we have that ð	j�ibasTSj
ðAjÞÞ ¼ basð	j�iAjÞ where

ð	j�iAjÞ is an attractor of the transition system TSi of the

elementary block ð Sj�iBjÞ and basð	j�iAjÞ is its basin.
Now, either Biþ1 is elementary in which case we use

Lemma 9 or Biþ1 is non-elementary and ð Sj2IBjÞ is its

parent in which case we use Lemma 10.
In either case, we have ð	j�ðiþ1ÞbasTSj

ðAjÞÞ ¼
basð	j�ðiþ1ÞAjÞ, where basð	j�ðiþ1ÞAjÞ is the basin of

attraction of the attractor ð	j�ðiþ1ÞAjÞ of TSiþ1. tu
Theorem 3 (Preservation of Basins). Given the hypothesis

and the notations of Theorem 2, we have ð	i�kbasTSi
ðAiÞÞ ¼

basTSðAÞ where basTSðAÞ is the basin of attraction of the
attractor A ¼ ðA1 	A2 	 . . .	AkÞ of TS.

Proof. Follows directly by setting i ¼ k in Lemma 11. tu
Example 4. Continuing with Examples 1 and 2, we note

that BN has two maximal SCCs fv1; v2g and fv3g. These
give rise to two blocks B1 ¼ fv1; v2g and B2 ¼ fv1; v2; v3g
shown in Fig. 2. B1 is elementary whereas B2 is non-
elementary where B1 is its parent and it has control nodes
v1 and v2.

The transition system of block B1 is shown in Fig. 3a.
It has two attractors fð10Þg and fð11Þg shown in dark
grey rectangles with their corresponding strong basins
shown in grey regions of a lighter shade. The transition
system of block B2 generated by the basin of the attractor

fð10Þg of block B1 is shown in Fig. 3b. It has two attrac-

tors fð100Þg and fð101Þg shown again in dark grey rec-

tangles with their corresponding basins of attractions

shown in lighter grey. Note that, indeed, according to

Theorem 2 we have that fð10Þg 	 fð100Þg ¼ fð100Þg and

fð10Þg 	 fð101Þg ¼ fð101Þg are attractors of the global
transition system of BN. Also note that taking the cross of

the local basins does indeed result in the global basins.

4.5 The Decomposition-Based Algorithm

Equipped with the results in Theorems 2 and 3, we can
describe our procedure for computing the strong basin
of the target attractor based on decomposing the BN into
smaller blocks. We shall then use this procedure to give
an algorithm for the minimal control problem. Theorem 3
tells us that in order to compute basðAtÞ it is sufficient
to compute the local basins of the projection of At to
each block Bi (which by Theorem 2 is an attractor of Bi)

Fig. 2. The blocks of BN.

Fig. 3. The transition systems of the blocks B1 and B2.
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and finally merge these local basins using the cross
operation.

Now, as per the results in Section 4.4 for every non-
elementary block Bi, its TS, TSi, is realised by the basin of
attraction basð	j2IAjÞ of its ancestor blocks, having the
index set I. Now since, by the structure of the block graph
GBN, for every j, j < i and j =2 I, Bj is not an ancestor of Bi,
we can, without loss of generality, assume that TSi is real-
ised by the basin of attraction basð	j< iAjÞ of all the blocks

that precede Bi in the topological ordering of B. The local
basin of attraction of Ai is computed w.r.t. the transitions in
TSi, which, as we just saw, is in turn realised by

basð	j< iAjÞ. Hence we slightly modify the original proce-
dure COMP_SB, for computing the strong basin of an
attractor, by making it compute the basin relative to a given
subset of states Z (say). This procedure is called COMP_
SB_REL and is given in Algorithm 1 b. It now takes as input
not only the functions of the BN and an attractor A but also
a subset of states Z. It calls a fixpoint procedure for the com-
putation of the weak basin of A which is also relativised to
the set Z, which is called COMP_WB_REL. The difference of
the procedure in Algorithm 1 b to that in Algorithm 1 is that
states that are added to the final SB are also in the input set
Z. This check is carried out in line 6.

Algorithm 1b. Relativised Computation of Strong Basin

1: procedure Comp_SB_Rel(f , A, Z)
2: WB := COMP_WB_REL(f ; A; Z);
3: Initialise SB :¼ ;;
4: while SB 6¼WB do
5: If SB6¼ ; do WB := SB;
6: SB:=WBnðpreððpostðWBÞ \ ZÞ nWBÞ\WB);
7: end while
8: return SB;
9: end procedure

Algorithm 3 finally implements the decomposition-
based idea in pseudo-code. It takes as input the graph
GBN and the update functions f of a given Boolean net-
work, and an attractor A and returns the strong basin of
attraction of A. Line 2 decomposes GBN into the blocks B
(resulting in k blocks) using the procedure FORM_BLOCK

from [21] and line 3 topologically sorts the blocks by con-
structing the block graph GB. Lines 5-14 then cycle
through the blocks of B in topological order and for each
block Bi, line 6 decomposes the attractor A into its projec-
tion to Bi, denoted as Ai. If Bi is elementary then it com-
putes the local strong basin SBi of Ai independently,
using the procedure COMP_SB of Algorithm 1 (line 8). If
Bi is non-elementary, it computes its local strong basin
SBi relative to the basin of ðA1 	A2 	 . . .	Ai�1Þ using
the procedure COMP_SB_REL of Algorithm 1 b (line 11).
Thus by Theorem 2, at every iteration i of the for-loop,
the invariant that Ai is an attractor of TSi is maintained.
Line 13 extends the global strong basin SB computed so
far by crossing it with the local basin computed at each
step. At the end of the for-loop SB will thus be equal to
the global basin (by Theorem 3). It then easily follows that

Proposition 2. Algorithm 3 correctly computes the strong basin
of the attractor A.

Algorithm 3. A Decomposition-Based Procedure for the
Computation of Strong Basin

1: procedure Comp_SB_Decomp(GBN; f ;A)
2: B :¼ FORM_BLOCK(GBN);
3: B :¼ TOP_SORT(B);
4: k :¼ size of B;
5: for i :¼ 1 to k do
6: Ai :¼ DECOMPOSE(A;Bi); //Decompose the target

attractor into block Bi

7: if Bi is an elementary block then
8: SBi :¼ COMP_SBðf jBi

; AiÞ;
9: else
10: Z :¼ CROSS ðSB; f0; 1gjBijÞ;
11: SBi :¼ COMP_SB_RELðf jBi

; ð	j�iAjÞ; ZÞ;
12: end if
13: SB :¼ CROSS ðSB;SBiÞ;
14: end for
15: return SB;
16: end procedure

We now plug the procedure COMP_SB_DECOMP of Algo-
rithm 3 into Algorithm 2 to derive our decomposition-based
minimal target control algorithm, Algorithm 4, from source
state s to target attractor At.

Algorithm 4. Decomposition-Based Minimal Source-
Target Control

1: procedure Decomp_Minimal_control(GBN; f ; s;At)
2: SB :¼ COMP_SB_DECOMP(GBN; f ;At);
3: return argðhdðs;SB));
4: end procedure

Once again, it is worthwhile to note that our decomposi-
tion-based algorithm, Algorithm 4, can still be exponential
in the size of the input BN, in the worst case. Indeed, since
the weak basin of an attractor A of BN might be the entire
TS. In such a case Algorithms 3 and 1 b combine to end up
computing the entire weak basin of A. This is no surprise as
the problem in general is PSPACE-hard. However, in prac-
tice, such cases are rare, esp. for biological networks which,
in addition, have highly modular structures, and our algo-
rithm does provide considerable gains for such networks.
This will be shown later in Section 5.

4.6 An Optimisation of the Algorithm

Looking back at our decomposition-based algorithm for the
computation of the strong basin of a given attractor A, Algo-
rithm 3, note that it does not take into consideration any
information about the source state s of our STC problem.
However it turns out that we can indeed use s to optimise
our decomposition-based algorithm further. This optimisa-
tion proceeds as follows. For every block Bi, we check if the
projection of s to Bi is in fact equal to the projection of our
target attractor A to Bi. If that is the case, intuitively, we do
not need to perturb the indices of s in Bi in the final control
C that we compute for the STC problem.

The procedure OPT_COMP_SB_DECOMP of Algorithm 5
implements this idea in pseudo-code where it now takes as
input also the source state s of the STC problem. The only
difference with the procedure COMP_SB_DECOMP of Algo-
rithm 3 is that inside the for-loop of lines 5-14, for every
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block Bi, the algorithm first computes the projection of the
source state s in block Bi, denoted si, at line 2. Then, it
checks whether fsig ¼ Ai, if so, there is no need to compute
the entire local basin of Ai for Bi. It then simply sets SBi as
the cross of SB and Ai, where SB is the (subset of the) basin
computed thus far. If fsig is not equal to Ai, it computes the
basin of Ai as in Algorithm 3 (lines 7-12). To save space, in
the description of the procedure OPT_COMP_SB_DECOMP in
Algorithm 5, we have only shown the additional lines that
need to be added to the original COMP_SB_DECOMP proce-
dure of Algorithm 3. Finally, in the algorithm for computing
the STC, the procedure OPT_COMP_SB_DECOMP is used
instead of COMP_SB_DECOMP in Algorithm 4.

5 CASE STUDIES

To demonstrate the correctness and efficiency of our control
framework, we evaluate the performance of the global
approach, the decomposition-based approach, and the opti-
mised decomposition-based approach on several networks.
The approaches described by Algorithm 2, Algorithm 4,
and Algorithm 5 are implemented in the software tool
ASSA-PBN [22], [23], which is based on the model
checker [24] to encode BNs into the efficient data structure,
binary decision diagrams (BDDs). All the experiments are
performed on a computer (MacBook Pro), which contains a
CPU of Intel Core i7 @3:1 GHz and 8 GB of DDR3 RAM.

Algorithm 5. Optimised Computation of Strong Basin

1: procedureOpt_Comp_SB_Decomp(GBN; f ; s;A)
2: fsig :¼ DECOMPOSE(fsg; Bi);
3: if fsig ¼ Ai then
4: SBi :¼ CROSSðSB; AiÞ;
5: end if
6: end procedure

We apply three approaches on six real-life biological net-
works [25], [26], [27], [28], [29], [30] and three randomly gen-
erated networks (BN-100, 120, 180). For every pair of source
and target attractors of the networks, we compute a mini-
mal control C that can realise the minimal simultaneous sin-
gle-step source-target control as explained in Section 3.4.
An overview of the networks and their evaluation results is
given in Table 1.3

ExactMinimal Control set.According to Proposition 1 and 2,
our decomposition-based approach and the global approach
compute an exact minimal control C with respect to a source
state and a target attractor. The numbers of driver nodes com-
puted by these approaches are identical, demonstrating the
correctness of our decomposition-based approaches. More-
over, the number of driver nodes is relatively small compared
to the size of the network.

Table 2 summaries the Hamming distances (HD)
between attractors and the number of driver nodes (#D) for
all pairs of source and target attractors for the PC12 cell net-
work. The attractors are labelled with numbers. The num-
bers in the first column and the first row represent the
source and target attractors, respectively. Compared to the
size of the network and the Hamming distance between the
source and target attractors, the minimal set of driver nodes
required is quite small. In particular, to drive the network
from any other attractor to the attractor ‘cell differentiation’,
only one node ‘NGF’ is required, which is consistent with
the conclusion in [26].

Efficiency and Scalability. In Table 1, Tg; Td and To repre-
sent the total time costs of computing a minimal control for
all pairs of source and target attractors with the global
approach, the decomposition-based approach and the opti-
mised decomposition-based approach, respectively. The

TABLE 1
An Overview of the Networks and Their Evaluation Results

TABLE 2
The Hamming Distance between Attractors and the Number of Driver Nodes of the PC12 Cell Network

3. The symbol � denotes that the algorithm fails to return any results
within one hour.
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key of the control approaches lies in computation of the
basin of the target attractor. Benefited from the fixpoint
computation of strong basin, as described in Algorithm 1,
all the approaches are efficient. Compared with the global
approach, our decomposition-based approach has an
advantage in terms of efficiency (see the speedups in col-
umn Tg=Td) for structurally well-behaved networks, thanks to
its ‘divide and conquer’ strategy. And the efficiency of the
decomposition-based approach is further improved by the
optimisation (see the speedups in column Td=To), since the
optimisation compares the source and the target attractors
to avoid unnecessary computation of the local strong basins
of the target attractor in some blocks.

Figs. 4a and 4b show the heatmaps of speedups gained by
the decomposition-based approach over the global approach
(Tg=Td) and speedups gained by the optimisation (Td=To) for
every pair of source and target attractors of the PC12 cell net-
work. The indices of the columns and rows are consistent
with Table 2. In Fig. 4a, the speedups gained by the decom-
position-based approach is highly relevant to the target
attractor, as most of the computation time is spent on the
computation of its strong basin. The speedups gained by the

optimisation is determined by both the source and the target
attractors. If the Hamming distance between the source and
the target attractor is small, the optimisation can skip local
strong basin computation in many blocks and gain a high
speedup. For instance, the dark gray entities in Fig. 4b indi-
cate high speedups and the Hamming distances between
their associated source and target attractors (see Table 2) are
relatively small.

Finally, our decomposition-based approaches have better
scalability than the global approach, the global approach
fails to compute the results for large networks (BN-120 and
BN-180 with 120 and 180 nodes, resp.) as it deals with the
entire networks at once.

6 CONCLUSION AND FUTURE WORK

In this work, we have described a decomposition-based
approach towards the computation of a minimal set of
nodes of a Boolean network that needs to be simultaneously
controlled in order to drive its dynamics from a source state
to a target attractor. Our approach is generic and can be
applied based on any algorithm for computing the strong
basin of attraction of an attractor. For certain modular real-
life networks, the approach results in a significant increase
in efficiency compared with a global approach and its gen-
erality means that the improvement in efficiency can be
attained irrespective of the exact algorithm used for the
computation of the strong basins. In this section, we con-
clude by looking back critically at our approaches, summa-
rising various extensions and discussing future directions.

As mentioned in Section 1, the problem of minimal con-
trol is PSPACE-hard and efficient algorithms are unlikely
for the general cases. Yet, one might ask in retrospect, what
is the inherent characteristic of our decomposition-based
approaches that makes it so efficient compared with the
global approach for the real-life networks we studied. We
put forward a couple of heuristics which we believe
explains and crucially determines the success of our
approach. One such heuristic is that the basins of attraction
computed at each step are small compared with the size of
the transition system. This reduces the state space that
needs to be considered in every subsequent step thus
improving efficiency.

Another heuristic, which depends on the structure of
the network, is that the number of blocks in the network
cannot be too few. Otherwise, our decomposition-based
approaches comes close to the global approach in terms of
efficiency. Note that if the entire network is one single giant
block, then the decomposition-based approach is the same
as the global approach (given that the same procedure is
used for the computation of the strong basins) and there is
no gain in efficiency. On the other hand, if a network has
too many blocks, computing local strong basins for all the
blocks may hamper the efficiency of the decomposition-
based approach. For such kind of networks, our optimisa-
tion of the decomposition-based approach, proposed in
Algorithm 5 provides a solution by avoiding the expensive
computation of the local strong basins of the blocks in which
the source state and the target attractor do not differ.
Another way to reduce the number of ‘small’ blocks might
be to combine multiple basic blocks into larger blocks.

Fig. 4. Speedups of the PC12 cell network.
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While constructing the local transition systems, such
merged blocks are treated as single basic blocks and their
dynamics, attractors and basins are computed in one-go. In
[31], we have proposed a method for the near-optimal
decomposition of BNs and we are working further on it to
find an optimal ‘block-to-node ratio’, given which, our
decomposition-based control approaches fare the best. We
believe there are many real-life networks which might bene-
fit from the optimal decomposition techniques before the
computation of the control.

As mentioned in the section on related work, the control
approaches based on computation of the feedback vertex
set [10], [11], [15] and the stable motifs [12] are promising
approximate control algorithms for nonlinear dynamical
networks. In the near future, we would like to compare our
approaches with these two in terms of efficiency and the
number of driver nodes. We also plan to investigate if and
how the concept of simultaneous single-step control that we
study here can be cast into the framework of Boolean con-
trol networks [17], [18], [19], [20]. We can then analyse if we
can compute control strategies by appropriately modyfing
the techniques already available in the literature for BCNs.
Conversely, the decomposition-based approach that we
developed here might in turn be useful in improving some
of the control techniques on BCNs esp. on large networks.
Finally, we would like to extend our decomposition-based
approach to the control of probabilistic Boolean net-
works [32], [33].
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