
Deep Convolutional and Recurrent
Neural Networks for Cell Motility
Discrimination and Prediction
Jacob C. Kimmel , Andrew S. Brack, and Wallace F. Marshall

Abstract—Cells in culture display diverse motility behaviors that may reflect differences in cell state and function, providing motivation

to discriminate between different motility behaviors. Current methods to do so rely upon manual feature engineering. However, the

types of features necessary to distinguish between motility behaviors can vary greatly depending on the biological context, and it is not

always clear which features may be most predictive in each setting for distinguishing particular cell types or disease states.

Convolutional neural networks (CNNs) are machine learning models allowing for relevant features to be learned directly from spatial

data. Similarly, recurrent neural networks (RNNs) are a class of models capable of learning long term temporal dependencies. Given

that cell motility is inherently spacio-temporal data, we present an approach utilizing both convolutional and long- short-term memory

(LSTM) recurrent neural network units to analyze cell motility data. These RNN models provide accurate classification of simulated

motility and experimentally measured motility from multiple cell types, comparable to results achieved with hand-engineered features.

The variety of cell motility differences we can detect suggests that the algorithm is generally applicable to additional cell types not

analyzed here. RNN autoencoders based on the same architecture are capable of learning motility features in an unsupervised manner

and capturing variation between myogenic cells in the latent space. Adapting these RNN models to motility prediction, RNNs are

capable of predicting muscle stem cell motility from past tracking data with performance superior to standard motion prediction models.

This advance in cell motility prediction may be of practical utility in cell tracking applications.

Index Terms—Convolutional neural network, recurrent neural network, cell motility, cell classification, long short-term memory

Ç

1 INTRODUCTION

CELL motility is an emergent property of living matter
that spans the nanomolecular and macroscopic length

scales, involving a complex regulatory network and
dynamic reorganization of the cell’s geometry [1], [2]. Cells
can display a diverse set of motility behaviors, and these
behaviors can provide a usef ul window for inference of a
cell’s functional state. Neoplastic transformation has long
been appreciated to alter cell motility behaviors, increasing
the migration rate of various models in culture and serving
as a mechanism for metastasis [3], [4], [5], [6], [7]. The motil-
ity behaviors of cancer cells in culture can even be predic-
tive of broader tumor progression [8].

Likewise, the migration of progenitor cells is critical in
early development and tissue regeneration [9]. Skeletal
muscle stem cells (MuSCs) provide an accessible cell culture
system to study stem cell motility behaviors in vitro by

timelapse imaging. During embryonic development, MuSC
precursors must migrate from early stage developmental
structures (somites) to their adult location along the edge of
muscle fibers in the trunk and limbs [10], [11]. In the adult,
motility continues to play a critical role, as MuSCs migrate
along muscle fibers in vivo to sites of injury to initiate tissue
repair [12], [13]. Motility behaviors are heterogeneous
between MuSCs and change during stem cell activation
[14], [15]. Heterogeneous fitness for regeneration within
the MuSC pool is well appreciated [16], and analysis of
heterogeneous motility behaviors may provide an addi-
tional lens through which to decompose different MuSC
phenotypes.

Given the biological importance of motility behaviors,
classification of cells based on motility behaviors has
useful applications in research and diagnostics. Similarly,
exploration of heterogeneity within the motility behav-
iors of a cell population may provide biological insights.
However, it is often difficult to determine which features
of motility behavior will be predictive of a phenotype of
interest, or allow for discrimination of heterogeneous
behavior. Different phenotype classification tasks and
cell populations may require distinct feature sets to
extract valuable biological information. A method to algo-
rithmically determine relevant features of cell motility for a
given classification or discrimination task is therefore
advantageous.
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1.1 Related Work

Quantitative investigation of cell morphology has allowed
for inference of drug mechanisms [17], [18] and the recov-
ery of gene interactions [19], demonstrating the versatility
of cell phenotype analysis. Existing results combining cell
morphology and motility analysis have shown that the two
feature sets are complementary [20], suggesting that new
cell motility analysis methods may likewise complement
existing morphology analysis approaches. Inspired by
these results, we focus our attention here exclusively on
analysis of cell motility, which has received relatively less
attention.

To date, a number of tools have been proposed that rely
upon a set of handcrafted features to quantify cell motility
behaviors, providing some remarkable results [21], [22],
[23], [24], [25]. Neural progenitor cells were discriminated
by morphology and motility behavior alone [25], and genes
that affect motility have been identified solely from time-
lapse imaging data [21]. Similarly, a heuristic cell motility
feature was identified as one of the most important sources
of information to predict hematopoietic cell lineage deci-
sions [20]. We have recently demonstrated that rates of cell
state transitions and the ordered or random nature of these
transitions may also be inferred from motility alone [15].

These results demonstrate the potential insights that may
be gathered from more extensive analysis of cell motility.
However, these methods rely upon engineering of a hand-
crafted feature set, and have thus far focused largely on
features of speed and directional persistence. It is possible
that more complex features may allow for improved
discrimination of cell motility behaviors, but it is difficult to
predict what these features may be in each context.

Convolutional neural networks provide an approach to
learn relevant features from data, rather than handcrafting
features based on a “best guess” of which features are rele-
vant. In the field of computer vision, convolutional neural
networks (CNNs) have recently made rapid advancements,
demonstrating state-of-the-art performance on a variety of
image classification tasks [26], [27], [28], [29]. CNNs utilize a
set of parameterized kernels to extract spatial features,
allowing distinct feature kernels to be learned for a given
classification task [30]. In this way, CNNs are able to learn a
“representation” of the problem’s feature space. Feature
space representations may also be learned in an unsuper-
vised manner by training CNN autoencoder architectures
to encode and decode [31], [32]. This approach may be use-
ful for learning relevant motility features where an explicit
classification task is not present.

While CNNs are most commonly applied to tasks involv-
ing analysis in images with two spatial dimensions and one
channel dimension at a single time-point, convolution is a
natural analytical tool for any input information with spatial
dimensions. CNNs have been successfully applied to a
diverse set of non-imaging domains, including natural lan-
guage processing [33], bird song segmentation [34], and EEG
recordings [35]. Perhaps most clearly mirroring our chal-
lenge of motion classification, CNNs have performed well in
the classification of video recordings [36], [37], [38], [39].

Cell motility may be represented as a time series with one
temporal dimension and two spatial dimensions, where
the two spatial dimensions represent the Cartesian axes

of motion (i.e., x, y). For the purposes of convolutional analy-
sis, we treat each of the two spatial dimensions as channels.
In this formulation, the value of the an x; y coordinate at time
t is entered as an element in a ðTime� CoordinateÞ matrix.
Multiple problem domains have shown success in apply-
ing CNNs to multi-channel time series data in this manner
[40], [41], [42], [43]. Similarly, convolutional layers with
one spatial dimension and one channel dimension may
allow for motility behavior classification and unsupervised
feature learning without a priori definition of handcrafted
features.

Deep neural networks have also been extensively applied
to the analysis of sequential inputs, such as natural lan-
guage sentences and biological polymer sequences [33],
[44], [45], [46]. While simple 1D CNNs that consider raw
sequence inputs can be effective, the introduction of recur-
rent units such as long short-term memory (LSTM) units to
learn temporal relationships within the input sequence can
improve performance and effectively learn long-term
dependencies [47].

In the multi-channel time series representation described
above, CNN layers may function as feature extractors that
require no hand-engineering. Pairing these extracted fea-
tures with recurrent neural network (RNN) units may also
allow for motility behavior analysis capable of learning
long-term dependencies across the time series. Similar
approaches combining convolutional layers and recurrent
units have proven effective in the analysis of biological
polymer sequences [48] and in image classification [49].

Here, we investigate whether RNNs paired with CNN
feature extractors could be effectively applied to the prob-
lem of cell motility behavior classification. We develop a
tool we call Lanternfish to represent motility paths as multi-
channel time series, classify different motility behaviors,
learn motility features in an unsupervised fashion, and pre-
dict future cell motility from past behavior using RNNs.
Lanternfish represents cell motility as a simple multi-channel
time series, where time series values are Cartesian coordi-
nates. We demonstrate that RNNs with convolutional layers
as feature extractors are sufficient to accurately distinguish
experimentally observed cell motility behaviors. Autoen-
coder architectures based on these models capture variation
between cell types and reveal heterogeneity within cell
states in the latent space. Additionally, we show that our
RNNmodel can be adapted to predict cell motility in subse-
quent frames more accurately than standard methods, with
potential applications in the field of cell tracking.

2 METHODS

Code for analysis presented here is available at https://
github.com/jacobkimmel/lanternfish. Experimentally mea-
sured cell motility data and cell motility simulators are avail-
able at https://github.com/cellgeometry/heteromotility.

2.1 RNN Classification Architectures

Our baseline RNN classification architecture utilizes an
LSTM layer with n ¼ 256 hidden units, followed by two
fully-connected layers with 256 and 128 units respectively.
Each of these fully-connected layers is paired with a rectified
linear unit activation [26]. The final layer is a fully-connected
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layer with n ¼ K units where K is the number of classes
paired with a softmax activation. This baseline architecture
is presented in Fig. 1A.

We modify this architecture slightly to yield an RNN
with convolutional feature extractors. This architecture pre-
pends a set of four convolutional layers with one spatial
dimension and one channel dimension (“1D” convolutions
for brevity). These 1D convolutional layers utilize size 3 ker-
nels with unit strides. Following these convolutional layers
is a max pooling layer with filter size 2 and stride s ¼ 2. Fol-
lowing the max pooling layer, the second architecture is
identical to the first (Fig. 1B).

2.2 RNN Autoencoder Architecture

Our RNN autoencoder architecture strongly resembles the
classification network. Following the fully-connected layers
in the classification architecture, the RNN autoencoder
appends a 1D upsampling layer andmirror 1D convolutional
layers to return the input back to the original size (Fig. 1C).
Mean-squared error (MSE) against the input sequence was
utilized as a loss function for training.

2.3 RNN Motility Prediction Architecture

We adapt our RNN autoencoder architecture to a prediction
architecture by removing the max pooling, fully-connected,
and dropout layers. Sequences are convolved by four 1D
convolutional layers, as in the autoencoder, before being
passed to an LSTM and convolved by four more 1D convo-
lutional layers. The final convolutional layer uses a linear
activation function rather than a ReLU. Input sequences
length tin are provided in the same multi-channel time
series format as our other RNN architectures, and output
sequences are multi-channel time series of length tout. The
number of LSTM units is adjusted to n ¼ 2tout depending
on the length of desired output sequences.

2.4 Baseline Motility Classification

As a baseline motility classifier, a heuristic feature extractor
is paired with a Random Forest (RF) classifier [50]. The fea-
ture extractor calculates 13 parameters of motion: (1) mean
displacement, (2) displacement variance, (3) minimum and
(4) maximum displacement, (5) the mean turning angle, (6)
the mean turning angle magnitude, (7) turning angle vari-
ance, (8) total distance traveled, (9) net distance traveled
(distance from starting position to final position), (10) pro-
gressivity of motion (net distance as a fraction of total
distance) [51], (11) linearity of motion (Pearson’s r2), (12)
monotonicity of motion (Spearman’s r), and (13) the convex
hull area of the cell motility track [21]. These heuristics are
commonly employed in the quantitative cell motility litera-
ture [21], [25], [51], [52]. The RF classifier hyperparameters
were optimized by grid search for each application. Code
for the baseline classifier is available on Github.

2.5 Baseline Kinematic Motion Prediction

A linear kinematic model is used for baseline motility pre-
dictions. The kinematic model calculates the mean velocity

~v ¼ 1

t

Xt

i¼1

~dvi;

across the last t time steps in the preceding track and proj-
ects the object by~v for each predicted time step. The tempo-
ral window t is optimized by parameter search. This model
assumes the moving particle exhibits ballistic motion.

2.6 Saliency Analysis

The “saliency” of regions within an input track, estimating
their importance for the assignment of a specific class by a
classification model, was performed in the manner
described previously [53]. Briefly, for a given input track x,
class k, and trained classification model f that outputs the

Fig. 1. Cell motility classification and autoencoder architecture schematics. (A) A baseline RNN architecture, without convolutional feature extractors.
(B) RNN classification and (C) autoencoder architectures with convolutional feature extractors, where n ¼ i; j; ::: is the number of parameterized ker-
nels used by each 1D convolutional layer in a series, the number of nodes in a fully-connected layer, or the number of nodes in an LSTM unit in a
series. Convolutional layers are paired with a rectified linear unit activation. Pooling and upsampling layers operate with isotropic kernels of size 2
and stride of 2. Zero padding is performed as needed in autoencoder models to match input size.
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class score for k, fk, each element in x is evaluated for influ-
ence on the score fkðxÞ. This influence is computed as the
gradient of fk with respect to x, @fk

@x . We present the rectified
gradients as saliency maps using a ReLU.

2.7 Computational Infrastructure

Nvidia GTX 1080 (Pascal) and Titan Xp GPUs were used for
all experiments.

2.8 Cell Culture

Mouse embryonic fibroblasts, muscle stem cells, and myo-
blasts were cultured as previously described [15]. Neoplas-
tic MEFs were generated as described and generously
donated by the authors of [54].

2.9 Timelapse Cell Imaging

Timelapse cell imaging, cell segmentation, and cell tracking
was performed as described [15]. Briefly, cells were imaged
for 10 hours in DIC at 6.5 minute intervals using a stagetop
incubator at 37oC and 5 percent CO2. Images were segmented
using common heuristic techniques and tracking was per-
formed using a modified version of uTrack [55]. Cell tracking
data is available on the “Heteromotility” Github repository
https://github.com/cellgeometry/heteromotility.

3 EXPERIMENTAL RESULTS

3.1 Motility Simulations

To determine if RNN models could discriminate between
different types of motion under ideal conditions, we trained
RNN classificationmodels on simulated data from 3 distinct,
biologically relevant models of motion, namely random
walks, Levy flights, and fractional Brownian motion. Ran-
dom walks are a type of motion with normally distributed

random step sizes and directionality. Random walks are
observed in freely diffusing biomolecules [56]. Levy flights
similarly display random directionality, but step sizes are
instead chosen from a long-tailed Levy distribution. Levy
flights are observed in multiple biological systems and opti-
mize path finding [57], [58], [59], [60]. Fractional Brownian
motion models a random walk with long term dependence,
similarly relevant as a representation of regulated motion in
biology [61], [62]. By starting with simulated data we can
optimize parameters using large sample sizes that would be
difficult to obtainwith living cells.

Random walks, Levy flights, and fractional Brownian
motion were simulated for classification, each with a mean
displacement of m ¼ 5 ðx; yÞ units per time step. Simulations
were carried out for T ¼ 100 time steps and restricted to a
ð2048; 2048Þ pixel plane, representing the field-of-view that
might be expected using a standard 4 megapixel micros-
copy camera. Example simulations are presented alongside
experimentally measured cell motility tracks (Fig. 2). We
note that simulated motion tracks do not reflect the full
complexity of real cell motility tracks, motivating us to sim-
ulate motility more akin to real cell motion in Section 3.6.

3.2 RNNs Accurately Classify Simulated Motility
Behaviors

Experiments to classify multi-channel time series represen-
tations of cell motility were performed using n ¼ 15;000
samples from each simulation class. RNN classifiers were
trained and evaluated using 5-fold cross validation. In each
training fold, 10 percent of the data was used for validation
and model selection by early stopping. The held-out test set
was unseen by the model at the time of either training or
model selection and was used only for final model evalua-
tion. Early stopping was performed in all models after the

Fig. 2. (A) Representative motility simulations of each class. (B) Representative cell motility tracks for different cell types. (C) Heatmaps demonstrat-
ing the multi-channel time series representation of cell motility for representative tracks of multiple cell types.
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testing loss failed to improve for 3 consecutive epochs [63].
Models were evaluated based on the prediction accuracy on
the testing set.

Modelswere trained using crossentropy as a loss function.
Optimization was performed with Adam using a learning
rate of � ¼ 0:001 [64]. Weights for each of the convolutional
and fully-connected layers were regularized by the l2 norm
with strength � ¼ 10�6. The optimizer, learning rate, and reg-
ularization strength were chosen empirically, and a rigorous
search for optimization hyperparameterswas not performed.
Using this scheme, models fit rapidly on simulated data
(Fig. 3A).

Both baseline RNN models and RNN models with con-
volutional feature extractors achieved near perfect classifi-
cation accuracy (Fig. 3B). Likewise, a Random Forest model
trained on hand-engineered features successfully discrimi-
nated these simulations. This result indicates that RNNs are
capable of discriminating different types of motion with no
hand-engineering of features.

To investigate how the RNN models may be learning to
discriminate different motion models, we visualized filters
from the first convolution layer of RNNs with convolu-
tional feature extractors (Fig. 3C). Inspection of these filters
reveals that several combinations of gradients are learned
across the first and second dimension of motility. Interpret-
ing filters in later layers becomes more challenging, but
this result is in line with intuitions and suggests that at
least some features we may engineer by hand (metrics of
displacement, etc.) are being learned by convolutional fea-
ture extractors.

3.3 RNNs Accurately Discriminate Cell Types by
Motility Behavior

After validating that RNNs were sufficient to distinguish
simulated classes of motion, we applied the same classifica-
tion networks to distinguish different types of experimen-
tally measured cell motility. Cell motility was tracked in
three different cell types by timelapse imaging for 10 hours,
followed by segmentation and tracking by standard meth-
ods. Mouse embryonic fibroblasts (MEFs) are commonly
used for in vitro cell culture assays, and neoplastic transfor-
mation of these cells has been demonstrated to alter their
motility behaviors [15]. We tracked both wild-type and neo-
plastic (c-Myc overexpression, HRas-V12) MEFs to compare

their motility behaviors. These two groups represent two
“cell states” of the same cell type.

Muscle stem cells (MuSCs) are the obligate stem cell of
the skeletal muscle, and their motility is known to be
effected by their activation state [14]. Activated MuSCs
commit to become myoblasts, a proliferating myogenic
progenitor cell. We tracked both MuSCs and myoblasts to
compare motility between these two myogenic cell types
(see Methods for culture details).

We treat the cell population of origin for each track as a
class label, such that we have four distinct classes: wild-type
MEFs, neoplasticMEFs,MuSCs, andmyoblasts. In the follow-
ing experiments, we train classification models to discrimi-
nate these class labels on a pairwise basis, aswell as together.

To determine if RNNs could distinguish cell types based
on experimentally measured motility, we trained RNN clas-
sifiers to discriminate between MEFs and MuSCs. Models
were trained for 1000 epochs using early stopping with a 15
epoch patience period. Training was performed on a total of
n ¼ 562 MuSC and n ¼ 562 MEF tracks (both wild-type and
neoplastic) using 5-fold cross validation. Equal numbers of
MuSCs and MEFs were used to ensure class balancing. In
each training fold, 10 percent of the data was reserved for
model selecting during the training process. We report eval-
uation accuracies from the held-out test sets, which are
used neither in model training nor selection.

In other domains, transfer learning between models
trained on different data sets has proven advantageous to
model performance [64]. It is possible that pre-training an
RNN classification model on the simulated motility tracks
described above, where training data is plentiful, will yield
performance improvements when classifying experimen-
tally measured cell motility, where data is expensive. To
assess this possibility, we performed the classification
experiments above both with random initializations (de novo
training) andwith weights transferred from a corresponding
model trained to classify simulations (Simulation pretrain-
ing). Simulated pretraining did not appear to improve the
performance on any tasks we evaluate, possibly due to dis-
crepancies between simulatedmotion and real cell motility.

Mean accuracy on the held-out test set for this cell type
classification task was 85:31%� 0:62% for baseline RNN
models and 94:84%� 0:80% for RNN models with convolu-
tional feature extractors when trained de novo, compared to

Fig. 3. RNN classifiers effectively distinguish simulated models of motion. (A) Representative training curves for a baseline RNN classifier and an
RNN classifier with convolutional feature extractors. (B) Performance of a baseline RNN classifier, RNN classifier with convolutional feature extrac-
tors, and a Random Forest (RF) baseline trained on heuristic features. Bars presented are the mean accuracy �95% confidence intervals. Note that
confidence intervals are not readily visible, as models perform at 100 percent accuracy across all training/testing folds. (C) Kernel weights learned in
the first convolutional layer of the RNN model diagrammed in Fig. 1B.
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a heuristic RF baseline model at 94:95%� 0:39% (Fig. 4A).
These results indicate that even with a small data set such
as this, RNN models can be effectively trained to discrimi-
nate different types of cell motility with performance simi-
lar to hand-engineered features (Fig. 4A). Moreover, RNN
models with convolutional feature extractors improve sig-
nificantly upon the RNN baseline (p < 0:01, t-test), suggest-
ing that convolutional layers allow the models to capture
features that are missed by LSTMs alone.

To determine if RNNmodels could discriminate between
the three distinct cell types we observe, we trained classi-
fiers to discriminate MuSCs, myoblasts, and MEFs (both
wild-type and neoplastic) in a three-way classification task.
Our baseline RNN models achieved 58:99%� 1:79% accu-
racy on this task, while RNN models with convolutional
layers achieved 75:25%� 1:45% accuracy. Both RNN
approaches failed to match the heuristic baseline perfor-
mance at 79:94%� 1:10% accuracy (Fig. 4A).

3.4 RNNs Provide Discriminative Power between
Stem Cell Activation States

To determine if RNNs can distinguish between more
nuanced differences in cell state, RNN classifiers were
trained to discriminate between myogenic activation states

(MuSCs andmyoblasts). Training was performed on n ¼ 334
MuSCs andmyoblasts per class using 5-fold cross-validation.
As with the cell type classification experiments, 10 percent
of each training fold was used model selection by early
stopping. We report evaluation metrics from the held-out
test set.

Mean test accuracy reached 85:47%� 1:96% for RNN
baseline models, 93:11%� 0:65% for RNN models with con-
volutional layers, and 95:31%� 0:32 for our heuristic baseline
(Fig. 4A). As with cell type classification, the increase in per-
formance provided by the addition of convolutional layers to
the RNN baseline model is significant (p < 0:05, t-test).
These results demonstrate that RNNmodels can discriminate
between stem cell activation states based on motility alone,
even with small data sets. The RNNmodels perform compa-
rably to hand-engineered features pairedwith a RandomFor-
est classifier on this task.

RNN classifiers were also trained in the same manner to
discriminate between wild-type and neoplastic MEFs with
transfer learning from either the simulated motion classifier
or the cell type (MEF versus MuSC) classifier trained above.
Training was performed on n ¼ 250 samples per class using
5-fold cross-validation. Validation data for model selection
was reserved from each training fold as before. RNNmodels

Fig. 4. RNNs can discriminate between different cell types and cell states based on motility. (A) Prediction accuracy (5-fold CV, mean �95%Þ CI) for
RNN models and a heuristic baseline trained to classify experimentally measured cell motility. Models pretrained with weights from a simulated
motion classifier or a cell mimetic motion classifier are indicated in the legend. RNN-CNN models with mimetic pretraining were only trained for myo-
genic state classification and therefore data are not presented for other tasks. (B) Representative images of different cell types, from top left to bot-
tom right: MuSC, myoblast, neoplastic MEF, and wild-type MEF. Colored markers indicate the cell’s path along the substrate over time. (C) Saliency
analysis of an RNN classifier for myogenic activation states overlaid with cell tracks in the Cartesian plane. Large displacements in the myoblast
tracks are highly salient, while in MuSC tracks sharp turns and characteristic “U-turns” are salient.
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failed to achieve testing accuracy greater than 66.2 percent on
this task (Fig. 4A). Pretraining using the cell type classifica-
tion task proved to be of minimal benefit, with accuracy at
65:20%� 2:55% for models with no pretraining and
66:20%� 1:62% when using the cell type pretraining. The
baseline heuristic model performed at 72:04%� 1:85% accu-
racy, significantly outperforming the RNNmodels.

The more nuanced phenotypic difference between wild-
type and neoplastic MEFs may be an inherently more chal-
lenging classification problem. The small available sample
size likely compounds this difficulty and exacerbates the
RNN classifiers’ poor performance. This experiment high-
lights the fact that hand-engineered features may provide
superior performance on some tasks.

To develop an understanding of how the RNN models
were discriminating MuSC and myoblast motility, we per-
formed saliency analysis to visualize the relevant aspects of
our input tracks for classification [53]. The basic principle of
saliency analysis is to identify the regions of a given input that
have the most influence on whether or not the input is consid-
ered part of a particular class. This influence of input regions
on a particular classification decision is estimated by the mag-
nitude of the gradient on the input with respect to the class
score (seeMethods). Here, we find the temporal regions of cell
motility tracks that provide the highest signal for the network
to classify that input as either a MuSC or a myoblast (Figs. 4C
and 4D). Qualitatively, it appears that large displacements in
myoblast tracks provide strong gradients for the myoblast
class, while tight turns and reversals of direction in MuSC
tracks provide strong gradients for that class.

Saliency analysis of this form offers a unique window for
interpreting motility classification models. While interpret-
ability techniques are available for hand-engineered features,
it is often difficult to dissect nuanced interactions between
features that may be causal for classification decisions for a
given sample. Saliency analysis offers the ability to highlight
input regions, rather than pre-computed features, which lead
to a classification result. These highlighted regions of input
may be easier to interpret than a set of most influential fea-
tures in some instances.

3.5 Cell Mimetic Pretraining

Transfer learning from RNN classifiers trained on random
walk, Levy flight, and fractional Brownian motion simula-
tions failed to improve classification performance on experi-
mentally measured cell motility tasks. We reasoned that
this may be due to the drastic differences between the
behavior of these simulations and real cells. To remedy this,
we attempted to generate simulated data that more accu-
rately reflected real cell motility to enhance pre-training effi-
cacy. For a set of real cell motility data, we measure the
displacements and turning behavior of each cell. Displace-
ments are measured simply as the Euclidean distance
between each set of sequential timepoints. The turning
direction at a point ti is determined as the angle between
the vectors that connect points ti�1 to ti and ti to tiþ1.

Cells are decomposed into a set of k clusters by k-means
clustering on a set of parameters measured from these dis-
placement and turn angle distributions. The number of clus-
ters k ¼ 5 was chosen empirically to capture the diversity of
the cell phenotypes while still leaving non-trivial numbers

of cells in each cluster. For each cluster, a bounded Johnson
distribution is fit to the aggregate distribution of displace-
ments and a Gaussian mixture model is fit to the aggregate
distribution of turn angles (Appendix, Fig. 8). Simulated
samples are generated by randomly sampling displacement
magnitudes and turn angles from the fitted Johnson distri-
butions for T time steps. To represent a population of cells,
the proportion of simulations generated from each cluster is
equivalent to the cluster’s prevalence in the original cell
data. This approach may be conceptually likened to the
bag-of-words model [66], in which k-means clustering is
used to decompose features into a representative
“vocabulary.” By sampling from each of k clusters propor-
tionally, we aim to capture and simulate heterogeneous
phenotypes within a cell population, rather than simply
reproducing a single averaged phenotype that may not be
representative of any true cell phenotype.

We generated “cellmimetic” simulations forMuSCs,myo-
blasts, wild-type MEFs, and neoplastic MEFs by the above
method, with n ¼ 15;000 simulated samples for each. RNN
classifiers for myogenic state (MuSC versus myoblast) were
pretrained by classifying between the two simulated data
sets. Likewise, RNN classifiers were trained to distinguish
the two MEF states. Both models achieved > 99% testing
accuracy. The weights from this pretrained network were
used to initialize RNN classifiers for the myogenic activation
and neoplastic state classification tasks outlined above.

Mean testing accuracies were effectively unchanged at
93:41%� 0:78% for the myogenic state classification task.
Accuracy slightly decreased for the MEF neoplastic state
classification task to 58:8%� 2:83%. These results suggest
that pre-training on “mimetic” simulations has little effect
on final classification accuracy, and that transfer learning
from simulations to experimentally measured data is not
advantageous for the tasks explored here. However, we
leave open the possibility that similar simulation and pre-
training schemes may provide benefit in other contexts not
evaluated in these experiments.

3.6 Autoencoders Allow Unsupervised Learning of
Representations in Motion Feature Space

Results up to this point indicate that supervised classifica-
tion of different cell motility phenotypes using RNNmodels
is effective and comparable in performance to classification
with hand-engineered features. We now shift our attention
to the use of RNN models for unsupervised learning tasks.
In the analysis of motility data, supervised classification
data is not always available. For instance, to explore the het-
erogeneity of types in a given population, there is no obvi-
ous method to generate supervised classification data that
may be used to learn relevant feature kernels by optimiza-
tion of a standard classification loss function. This would
also be an issue in the identification of heterogeneous motil-
ity behaviors in patient biopsy samples, in which the distin-
guishing features are not known a priori.

Identifying different types of cell motility without an
explicit discrimination task represents an unsupervised
learning problem. A traditional method to approach this
task is to perform unsupervised clustering on a set of heu-
ristically defined features [67]. Recent work has also devel-
oped methods to learn features from data unsupervised
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learning tasks. Training neural networks as autoencoders is
one such method which has been used in other contexts to
learn relevant feature kernels where no obvious supervised
discrimination problem is present [31], [32].

Autoencoders are generally formulated using an encoder
model that maps the input to a compressed number of
dimensions, followed by a decoder which maps this “latent
representation” back to the input dimensionality. These
models are often trained by optimizing the encoder and
decoder to accurately reconstruct the input after this set of
transformations. This use of autoencoders has proved suc-
cessful when applied to RNA-sequencing data [68], [69] for
cell type and cell state identification. Similarly, the latent
dimensions of an autoencoder may serve to segregate cell
states from cell motility data in an unsupervised fashion. To
determine if autoencoders can learn unsupervised represen-
tations of cell motility, we trained RNN autoencoders on our
multi-channel time series representations of cell motility.

An RNN autoencoder was formulated by using the same
initial convolutional layers and LSTM unit as in our classifi-
cation architecture. Following the LSTM unit, we again use
a set of three fully-connected layers paired with ReLU acti-
vations. We set the central fully-connected layer to use
n ¼ 16 hidden units, corresponding to 16 latent dimensions.
The number of latent dimensions was chosen empirically
and does not represent the result of a rigorous hyperpara-
meter search. Following the fully connected layers, we uti-
lize upsampling and convolutional layers to decode the
latent representation back to the input dimensions (Fig. 1B).

RNN autoencoders were trained similarly to classification
models, but the regularization strength was increased to
� ¼ 10�5. Regularization strength was increased after over-
fitting was observed empirically. TheAdadelta optimizer was
used with learning rate � ¼ 0:1 [70]. The alternative

optimizer was chosen empirically based on the time to con-
vergence we observed in early training experiments.

To determine if the autoencoder could learn features from
simulations in an unsupervised manner, the model was
trained on n ¼ 15;000 samples of each class for three types of
simulatedmotion (randomwalk, Levy flight, fractional Brow-
nian motion) using 5-fold cross validation. Mean squared
error was used as a loss function. Models consistently con-
verged for each training fold (MSE ¼ 410� 11, pixel units).
RNN autoencoder outputs consistently failed to capture the
full extent of a the input motility track, seeming instead to
capture a vague notion of the motility location and extent
(Fig. 5A).

Do the latent dimensions capture information about the
inputs, even if the reconstructions are poor? To answer this
question, we utilized the output of the autoencoders’ central
layer (the encoded representation) as features to classify the
input classes for each simulation. A Random Forest classi-
fier was trained to distinguish the simulation classes from
these features. Random Forests trained on autoencoder fea-
tures achieved 56:36%� 0:59% accuracy on this 3 class
problem. This indicates that the features learned by these
autoencoders contain some information about the three sim-
ulated classes, but are less useful for classification that the
heuristic features we define as a baseline (Fig. 5C).

The encoded representation of an autoencoder may also
be interpreted as a latent space where clusters within the
data may be identified. Visualizing the latent space of our
autoencoder trained on simulated tracks using t-SNE [71]
reveals that despite the poor quality of reconstructions, the
latent dimensions largely segregate fractional Brownian
motion (fBm) simulations from random walks (RW) and
Levy flights (PF), though the latter two are intermixed
(Fig. 5B).

Fig. 5. RNN autoencoders can learn representations of cell motility in an unsupervised manner. (A) Sample input and (B) output to an RNN autoen-
coder. (C) Accuracy of Random Forest classifiers trained to discriminate simulations (k ¼ 3 classes) or myogenic states (k ¼ 2 classes) based on
RNN autoencoder latent features. (D) t-SNE visualization of the latent space learned by an RNN autoencoder trained on MuSC and myoblast cell
motility tracks. The model segregates the different states of myogenic activation and finds a continuous progression from the MuSC to myoblast
state. (E) Louvain community detection identifies multiple myogenic sub-states. Myoblasts are largely segregated into two clusters, shared with
more myoblast-like MuSCs. (F) Mean speed features overlaid on the RNN latent space. The autoencoder is able to capture properties of motion we
might extract heuristically.
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It is possible that a similar examination of the latent space
in an autoencoder trained on experimentally observed cell
tracks will reveal structure within the data. To determine if
our RNN autoencoder models were capable of learning
latent spaces that segregate cell types and cell states, we
trained an autoencoder on MuSC n ¼ 1407 and myoblast
n ¼ 334 tracks (length T ¼ 60) using 5-fold cross-validation.
The models consistently converged on each training fold
(MSE ¼ 8574� 830, pixel units). Training a Random Forest
classifier to discriminate MuSCs and myoblasts based on
the 16 latent dimensions of this model, as for the simulated
motility autoencoder above, yields a prediction accuracy
88:69%� 0:57%. Again, this performance is inferior to that
achieved using hand-engineered features, but does demon-
strate that the latent dimensions capture variation between
myogenic cell states (Fig. 3C).

Examining a t-SNE visualization of the latent space, it is
evident that the latent dimensions capture variation
between MuSCs and myoblasts, segregating myoblasts into
one region of the latent space (Fig. 5D). Interestingly, the
latent space does not separate the two cell types discretely,
but rather presents a continuum between the MuSC and
myoblast phenotypes, such that some MuSCs are similar to
myoblasts, while others are distinct. This reflects the under-
lying biology, in which MuSCs transition over time from a
quiescent state into the activated myoblast state [72], [73].

We apply Louvain community detection [74], as com-
monly employed in the field of single cell RNA-sequencing
[75], to identify subpopulations within the latent space.
Community detection identifies five subpopulations, cap-
turing the majority of myoblasts in two of the five clusters
(Fig. 5E). It is interesting that myoblasts are segregated into
two non-overlapping clusters, suggesting two discrete
states of myoblast motility. MuSC captured within the myo-
blast dominated clusters (2 and 3) may be more activated
than counterparts in cluster 1, while cluster 4 may represent
an intermediary state. We compare this cluster partition
derived from autoencoder latent features to a baseline
k-means clustering performed on heuristic motility features
(See Appendix, Fig. 7). This heuristic feature baseline like-
wise separates the two myogenic activation states (MuSC,
myoblast), but does not reveal substructure within the myo-
blast state like the learned features do.

Cluster identification within these autoencoder latent
spaces is a promising approach to reveal substructure
within cell populations. To determine if our autoencoder
model was learning some heuristic features, we visualized
the mean speed of each track in the latent space (Fig. 5F). It
is readily apparent that the model learns to discriminate
cells with different mean speeds, indicating that the model
is capable of capturing some of the features we may have
hand-engineered in a completely unsupervised manner.
Combining motility and morphology analysis to further
characterize these heterogeneous clusters is an interesting
direction for future research.

Collectively, these results demonstrate that RNN autoen-
coders are capable of distinguishing cell types and revealing
heterogeneous substructure from cell motility observations
in an entirely unsupervised manner. The continuum of cell
states between MuSCs and myoblasts suggested by the
autoencoder latent space is consistent with known biology

and suggestive of trajectories cells traverse through
behavioral space. Application of these methods to other
cell types may similarly suggest trajectories of cell state
transition.

3.7 RNNs Predict Muscle Stem Cell Motility

Tracking individual cells in timelapse microscopy experi-
ments is a difficult multi-object tracking problem [76]. Popu-
lar tracking methods utilize a motion model to predict cell
motility in advance of the next frame to improve tracking
performance [77]. This motion prediction is especially use-
ful in the event of “missed detections,” where a cell is not
detected or segmented for a given set of frames but is
detected later on. The most common motion models
employed are based on linear kinematics, with Kalman fil-
ters serving as a popular choice [55]. Linear kinematics
assume that particles possess an inertia and tendency to
continue moving in the same direction as previously
observed. These assumptions are equivalent to assuming
objects exhibit ballistic motion.

However, cell motion does not adhere to ballistic
assumptions in all cell types, with myogenic cells being an
excellent example of such a system. In myogenic cells, a
motile cell often makes a few rapid displacements punctu-
ated by stopping periods or direction changes which violate
intuitions about the inertia of moving objects. A motion
model specifically tailored to the cell type of interest may
therefore be useful to improve tracking performance, but
such specific tailoring would require a prior knowledge of
the very motion features that the live cell experiment is
designed to analyze. Some way to tailor prediction models
on the fly could help solve this problem.

Recurrent neural networks have been effectively utilized
for sequence prediction in multiple fields [78], [79], [80],
[81]. We adapted the convolutional RNN autoencoder
model to a sequence prediction model by removing the
pooling layers and fully-connected layers and altering the
number of nodes in the central LSTM layer (Fig. 6C, see
Methods). As a prediction task, we trained the RNN predic-
tion model on tin ¼ 20 time steps of motion and predicted
tout ¼ 10 time steps into the future. As a data set, we split
MuSC motion paths into subpaths of length ttotal ¼ 30 for a
total of n ¼ 8;676 paths.

A testing set of 10 percent of all tracks was held out for
final model evaluation, and the remaining tracks were split
with 80 percent used for training and 20 percent used for
validation/model selection. Mean squared error between
the predicted path and the ground truth path was used as
the loss function and the Adam optimizer was used with
learning rate � ¼ 0:001. No regularization was used when
training motility prediction models.

As a baseline for comparison, we performed a simple
kinematic prediction of MuSC paths that assumes persis-
tence of the velocity from preceding time points. The velocity
for prediction was obtained by averaging instantaneous
velocity for t ¼ 15 time points prior to the track terminus,
where t was optimized by parameter search. This baseline
model leads to an averagemean squared error (MSE) in pixel
units of 220� 15:34 (30 train/test splits). The RNN predic-
tion model by comparison produces a significantly lower
MSE of 192:45� 6:50 (pixel units) (t-test p < 0:001),
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indicating that the RNN model is a superior motion predic-
tor in the MuSC context (Fig. 6B). Representative track end-
ings (length tout ¼ 10) produced by the RNN prediction
model are displayed alongside the preceding track begin-
nings (length tin ¼ 20) and the ground truth track endings
(Fig. 6A).

In most cases the motion prediction reasonably approxi-
mates the cell’s ground truth direction, but does not closely
mirror the exact path (Fig. 6A, inset i and ii). In some events,
the RNN model fails to predict even the correct direction of
motion in cases where the linear model performs well
(Fig. 6A, inset iii). We performed the same experiment with
mimetic myoblast simulations using n ¼ 105 total samples,
holding out n ¼ 5000 samples for testing. Similar to the
MuSC results, RNN motion predictors achieved a markedly
lower MSE of 1194:99� 15:34, relative to the baseline kine-
matic model MSE of 9797:78� 38:76 (t-test p < 0:001).

These results indicate that convolutional RNN models
effectively model some cases where linear models fail, and
likewise fail in some cases where traditional linear models
perform well. Comparing performance on average, RNN
motion models have lower overall error compared to linear
models, but the existence of clear failure cases highlights the
need for further research prior to widespread application.

With future improvements, RNN motility prediction
models may offer a way to fit a uniquely tailored motion
model to specific cell biology contexts. Cell-context specific
RNN motility predictors may be useful to improve multi-
cell tracking performance, which remains a difficult prob-
lem in the field. Addressing challenges with cell tracking is
a problem well suited for the type of learned modeling
approach we present, as different cell types can exhibit
highly different motility behaviors, making the a priori
design of a universal motion prediction model difficult. Of
note, recent work has suggested that cell motility prediction

from morphology features is highly accurate in some con-
texts [82]. This suggests that the use of morphology features,
in addition to motility information, may allow for more
robust cell motility predictions.

4 CONCLUSION

Deep neural networks enable representation learning, or
learning of features relevant for the description of a feature
space. By representing cell motility as a multi-channel time
series, we show that RNNs with convolutional feature
extractors may be applied as an effective analytical tool.
Our results demonstrate that these models are capable of
discriminating between simulated models of motion and
multiple types of experimentally measured cell motility
behaviors, though these models are still inferior to hand-
engineered features paired with random forest classifiers.
In our experimentally measured cell motility data, we find
that RNN models effectively discriminate between differ-
ent cell types, and different states of myogenic progenitor
activation. We also find that RNN autoencoders can learn
latent spaces that distinguish between cell states and
suggest cell state transition trajectories in an unsupervised
fashion.

Adapting the convolutional RNNautoencoder formotility
prediction, we find that the RNN model reduces prediction
error relative to a standard linear model when predicting
MuSCmotility. Such predictionmodelsmay be useful for cell
tracking. While we apply the methods described here to cell
biology, there is no conceptual limitation that prevents appli-
cation to other fields where discrimination based on motion
recordings is desired. In the field of cell biology, analysis of
motility with deep neural networks may allow for useful
insights to be gathered in contexts where relevant features
are non-obvious or laborious to construct.

Fig. 6. RNNmodels predict MuSC motility more effectively than linear kinematic models. (A) Representative samples of MuSC tracks used for predic-
tion with predicted track endings and true track endings. Subpanel (i) shows a representative track where the RNN prediction accurately reflects a
turn that the linear model and the linear model does not. Subpanel (ii) shows a case where the RNN model detects that a cell will stop moving, albeit
the prediction is noisy. Subpanel (iii) shows a clear failure case where the RNN model predicts a turn that does not occur, while the linear model per-
forms well. (B) Performance of the RNN motion prediction model relative to a linear kinematic baseline model, determined as the mean squared error
between ground truth and predicted track endings. (**t-test p < 0:001) (C) RNN motility prediction architecture, where k is the number of kernels in
each 1D convolutional layer and n is the number of units in the LSTM. All convolutional layers except the final layer are paired with a ReLU activation.
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APPENDIX

BASELINE CLUSTERING OF MYOGENIC CELL STATES

MIMETIC MOTILITY SIMULATIONS
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