932 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 18, NO. 3, MAY/JUNE 2021

Detecting Clustered Independent Rare Variant
Associations Using Genetic Algorithms
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Abstract—The availability of an increasing collection of sequencing data provides the opportunity to study genetic variation with an
unprecedented level of detail. There is much interest in uncovering the role of rare variants and their contribution to disease. However,
detecting associations of rare variants with small minor allele frequencies (MAF) and modest effects remains a challenge for rare
variant association methods. Due to this low signal-to-noise ratio, most methods are underpowered to detect associations even when
conducting rare variant association tests at the gene level. We present a new method for detecting rare variant associations. The
algorithm consists of two steps. In the first step, a genetic algorithm searches for a promising genomic region containing a collection of
genes with causal rare variants. In the second step, a genetic algorithm aims at removing false positives from the located genomic
region. We tested the proposed method with a collection of datasets obtained from real exome data. The proposed method possesses
sufficient power for detecting associations of rare variants with complex phenotypes. This method can be used for studying the
contribution of rare variants with complex disease, particularly in cases where single-variant or gene-based tests are underpowered.

Index Terms—Genetic rare variants, rare variant association studies, SKAT, genetic algorithms, complex disease

1 INTRODUCTION

ECENT advances in sequencing technologies have revo-

lutionized human genetics research. The availability of
an increasing collection of human genomic sequences ena-
bles the study of genome variation to an unprecedented
level of detail. These studies hold the promise to transform
our understanding of genomic variation and its contribution
to human disease.

Preliminary studies of human variation on large genome
samples have discovered a high abundance of rare genetic
variants in the human genome [1]. Recent studies of both
exome sequencing and a combination of whole-genome
sequencing and imputation have started to identify a collec-
tion of rare genetic variants associated with different human
complex diseases and traits [2], [3], [4].

Genome-Wide Association Studies (GWAS) have contrib-
uted to our greater understanding of the role of common
genetic variation in complex disease [5]. In effect, GWAS have
been capable of implicating thousands of common variants to
hundreds of complex phenotypes [6]. However, the first gener-
ation of GWAS arrays were designed to capture common
(minor allele frequency (MAF) > 0.05) genetic markers and
therefore have limited power for identifying associations of
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rare genetic variants (MAF < 0.01) with disease [7]. More
recent GWAS arrays have been designed to capture rare varia-
tion, but they are still unable to identify novel variants.

The single association variant approach that is commonly
used in GWAS would require sample sizes of the order of
hundreds of thousands in order to possess sufficient power
to detect associations of rare variants with modest effects.
Therefore, several methods for Rare-Variant Association
Studies (RVAS) have been proposed in recent years [7], [8].
The aim of these methods is to increase the power of detect-
ing associations by using either collapsing strategies or meth-
ods derived from the C-alpha variance components test [9].

Even though these strategies seem promising in principle,
the power of most RVAS methods (~ 20%) still possesses an
ample room for improvement. In recent experiments, no
RVAS existing method have shown to perform best in all
situations [10].

Alternative strategies such as using an ensemble of these
methods have been proposed toward solving this problem
[11], [12]. Alternative strategies have relied on unsupervised
learning for identifying genes associated with complex dis-
eases [13], [14], [15], [16], [17]. However, detecting associa-
tions under low signal-to-noise ratio scenarios remains a
challenge for rare-variant association methods.

The current dominant approach for conducting RVAS is
the gene-based test in which the variants of a gene are collec-
tively tested in order to increase the power for detecting
associations. Recent studies have explored with collapsing
genetic variants in pairs of genes [18], pathways [19], [20],
and multiple genes [21] to increase the signal-to-noise ratio
for detecting rare variant associations with promising results.

As the sample size of GWAS studies have increased, it
has been evident that several GWAS loci have shown
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statistical evidence of having secondary signals [22],[23],
[24],[25]. In the latest GWAS of adult height, it was observed
a significant clustering of signals (P < 1 x 107%), from 423
loci; it was found that 90, 26 and 31 loci contained 2, 3 and
> 4 independent signals, respectively [25]. Current GWAS
methods cannot differentiate between a locus harboring
multiple genes each one with independent GWAS signals,
or alternatively, a locus where a single gene has multiple
independent signals.

We therefore created a novel method that would allow us
to test the hypothesis of multiple rare variants associated
with the phenotype occurring in different genes in the same
locus. This approach would in principle allow us to increase
the power of detecting an association under the hypothesis
described above and to accommodate for the study of epi-
static effects at the gene level. To our knowledge, the pro-
posed approach consisting of testing rare variant associations
using multiple genes in the same locus has not been previ-
ously reported in the literature.

We have developed and tested an algorithm for conduct-
ing rare-variant association studies that test a collection of
genes within a genomic region for detecting association of
rare variants with a phenotype. The proposed method con-
sists of a two-step genetic algorithm. The first step scans
each chromosome of the genome with the aim of locating
a promising fixed-length region using a rare-variant asso-
ciation test. This step of our search procedure produced a
collection of genes that are included in the identified prom-
ising genomic region. The second step selectively tests
groups of genes in the promising region in order to reduce
the number of false positives. Genetic algorithms are
computational search procedures that have been previously
proposed to address a variety of problems in computational
biology and bioinformatics [26]

We conducted series of computational experiments for
assessing the performance of the proposed method for
detecting associations of rare-variants with dichotomous
phenotypes. We used an extensive collection of simulated
datasets created from real exome data including a small
group of genes with causal rare variants. Experimental
results indicate that the proposed algorithm is capable of
detecting associations between multiple genes each one
possessing independent modest effects. This associations
would not be detected by using either single-variant or
gene-based RVAS.

2 METHODS

In order to tests our hypothesis, a series of experiments
were conducted on a collection of datasets generated from
real exome data. The aim of these experiments was to
explore whether the proposed method was capable of
detecting associations of groups of genes possessing causal
rare-variants with a dichotomous phenotype. Particularly,
the main focus of this work was on identifying associations
for which conventional single rare variant or gene-based
rare variant association methods would fail to detect.

2.1 Algorithm

The search procedure devised for this study was based on
genetic algorithms. Genetic algorithms are computational

search procedures that use a collection of operators that
resemble mechanisms from genetics and natural selection.
Genetic algorithms have been applied successfully to
approximate a variety of search problems in computational
biology and bioinformatics [26].

The proposed algorithm is a two step procedure. The first
step aimed to locate a promising region in a chromosome
which neighborhood collects a group of consecutive genes
that are good candidates to possess causal rare variants.
The second step searched this region thoroughly in order to
collect true positives and remove false positives from the
group of genes. The algorithm conducted the search in each
chromosome at a time. Therefore, an iteration on each chro-
mosome was required for a whole-exome scan.

The identification of the promising region was performed
by a genetic algorithm. The individuals of this genetic algo-
rithm represented a valid random genomic position within a
chromosome. The algorithm then collected all of the genes
included in the fixed-size neighborhood (10 Mb) centered at
this genomic position. This group of genes correponds to a
solution represented by an individual in the population of
the genetic algorithm. The fitness of each individual in the
population of the genetic algorithm was calculated by con-
ducting an SKAT test on the group of genes associated to the
individual. The genetic algorithm then iterated a number of
generations until no further fitness improvement of the best
individual in the population was observed.

SKAT is a supervised, flexible and computationally effi-
cient regression method to test for association between
genetic variants in a region and a continuous or dichoto-
mous trait while easily adjusting for covariates. As a score-
based variance-component test, SKAT can quickly calculate
p values analytically by fitting the null model containing
only the covariates, and so can easily be applied to genome-
wide data [27].

We used the Sequence Kernel Association Tests (SKAT)
as the rare variant association method in this investigation.
SKAT has been established as a gold standard in gene-based
RVAS due to its abilities to model both deleterious and pro-
tective variants, and to allow for the inclusion of covariates
[28]. However, the proposed algorithm could be easily
extended to accommodate alternative rare-variant tests
such as MiST, SKAT-O, KBAC, etc., if required.

Even though a neighborhood size of 10 Mb was used for
sampling the causal genes for the generation of the datasets,
we decided to constraint the proposed algorithm to search
on a neighborhood of 6 Mb. This decision was made in
order to accommodate for the uncertainty of the location of
the causal genes and for computational considerations. As a
consequence, it would be extremely complicated for the
proposed method to locate a promising genomic regions in
which the causal genes are located further apart in the
chromosome.

Table 1 shows the parameters used in our experiments
for the first step of the algorithm. These parameters were
determined empirically from preliminary experiments.

The search procedure described above produced a group
of all genes included in the fixed-length windows of the
identified genomic region. We expected that the set of genes
contained some of the causal genes and potentially, a group
of false positives. In order to remove these false positives
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TABLE 1
Parameters Used by the Search Algorithm of
the First Step of the Proposed Method

Parameter Value
Window Size 6 Mb
Representation Binary
Chromosome Length Variable
Crossover Probability 0.6
Mutation Probability 0.2
Generations 50
Population Size 200

we devised the second step of the proposed method. This
stage aimed at identifying the subset of the genes that pro-
duced the best result on the test.

The identification of the best subset was conducted by a
genetic algorithm. The individuals of these genetic algo-
rithm represented a valid subset of genes from the identi-
fied promising genomic region. The fitness of each
individual in the population of the genetic algorithm was
calculated by conducting an SKAT test on the subset of
genes associated to the individual.

The genetic algorithm then iterated a number of genera-
tions until no further fitness improvement of the best indi-
vidual in the population was observed for 3 generations. In
this case, the algorithm proceeded to the next step.

Table 2 shows the parameters used in our experiments
for the second step of the algorithm. These parameters were
determined empirically from preliminary experiments.

The second step of the algorithm produced a list of genes,
together with the SKAT test calculated for each gene and for
the group of genes on the list. This is the final result of the
procedure.

For the implementation of our algorithm, we used a
genetic algorithm framework available for R [29].

The source code of the algorithm is available at
https://github.com/mguevarasouza/RVASGA with
example data and instructions to run the algorithm.

3 REsuLTS

3.1 Datasets

The datasets used in this investigation were collected using
the SEQPower package [30]. This software enables the gen-
eration of datasets using different models that are useful to
evaluate the performance of RVAS methods. Additional fea-
tures of SEQPower include statistical power analysis and
sample size estimation for sequence-based association
studies.

For our first group of experiments, a collection of 150
datasets were produced by SEQPower from real exome
data consisting of 6500 individuals of European and Ameri-
can ancestral origin. This data was retrieved from the
Exome Variant Server [31]. Each dataset was generated
independently using a Population Attributable Risk (PAR)
model for case-control study designs.

The generation of each dataset consisted of two steps.
First, a baseline dataset describing the genetic variability of
5000 individuals was generated by SEQPower using a PAR
model with a NULL effect of detrimental rare variants on

TABLE 2
Parameters Used by the Search Algorithm of
the Second Step of the Proposed Method

Parameter Value
Representation Binary
Chromosome Length Variable
Crossover Probability 0.6
Mutation Probability 0.2
Generations 100
Population Size 100

the phenotype. In principle, this dataset should not include
significant associations of rare variants with the phenotype,
even when testing for associations at the gene level. Second,
a causal genes dataset consisting of a small collection of
genes located in the same genomic neighborhood was gen-
erated using SEQPower with a different PAR model. In this
case, the effect of detrimental rare variants was set to a
range of values to confer them with different effect sizes on
the phenotype. The latter dataset was then inserted in the
former in order to introduce the causal genes into the appro-
priate chromosome. Depending on the PAR risk value, the
obtained dataset should include significant associations of
rare variants with the phenotype.

More specifically, 30 different datasets were prepared for
each the 5 values of the Population Attributable Risk for detri-
mental rare variants parameter used in this study {0.01, 0.02,
0.03,0.04, 0.05}, for a total of 150 datasets for the experiments.
Each dataset consisted of 5 genes randomly sampled from a
given position of a chromosome using a genomic region of
10 Mb. These datasets were used to explore the capabilities of
the proposed method to identify the collection of genes pos-
sessing causal rare variants at different risk values.

In order to speed up the execution of the proposed
method, we conducted a whole- exome gene-based SKAT
association test in order to exclude the genes possessing a
p-value > 0.1 from the baseline dataset.

In order to assess the performance of the proposed
method we first conducted a gene-based rare variant associ-
ation study using SKAT on individual genes (~2,000) of the
baseline dataset described above. Fig. 1 shows a QQ-plot of
the resulted p-values for this study.

In addition we designed two groups of experiments. In the
first group of experiments, a collection of 5 genes of the same
genomic neighborhood was randomly selected from one des-
ignated chromosome of the baseline dataset and the causal
effect was conferred to them using SEQPower with varying
effect sizes. These causal genes were then introduced into the
baseline dataset. The goal of the proposed algorithm was to
identify as many of these causal genes as possible. Fig. 2
shows a QQ-plot of the resulted p-values for a dataset con-
taining causal genes generated with a PAR of 0.03.

In the second group of experiments, we used the same
approach as before but this time a group of causal genes
were generated and introduced into two different chromo-
somes. This is a more complex scenario but we decided to
also test the algorithm in such conditions because we expect
that multi-factorial diseases will have loci distributed across
the genome [32].
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Fig. 1. Manhattan plot for the gene-based RVAS. The dataset was
obtained with a population attributable risk of detrimental rare-variants of
0.0. No gene in the baseline dataset produced a statistically significant
p-value from the SKAT test.
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Fig. 2. Manhattan plot for the gene-based RVAS. In this experiment, a
collection of five causal genes was inserted on chromosome 17. The
effect of the causal genes were obtained for a population attributable
risk of 0.03. A few genes show modest associations with the phenotype
(P < 0.0001) but did not reach statistical significance.

For both scenarios we explored the ability of our algorithm
to identify associations using different values for the Popula-
tion Attributable Risk for detrimental rare variants para-
meter. Specifically, we used values of 0.05, 0.04, 0.03, 0.02 and
0.01 to assess the performance of the proposed method on
different signal-to-noise ratio conditions.

3.2 Experiments
In this scenario, as mentioned above, all the causal genes
were placed in the same chromosome. All the results
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Fig. 3. Boxplot of the results from 30 runs of the proposed method
(Found) for each disease model compared to the target p-value that
obtained by conducting a multi-gene SKAT test on the five causal genes
(Target).The box represents the interquartile range (IQR): 25th to the
75th percentile, whiskers represent the maximum: Q3 + 1.5*IQR and the
minimum : Q1 -1.5*IQR values.

presented in this section are the average of 30 independent
runs.

3.2.1 SKAT p-Values

After the genetic algorithm completed the search, we calcu-
lated the joint p-value using SKAT tests of the list of genes
contained in the final solution. It is important to point out
that due to the differences in the datasets, the p-values can-
not be compared directly between different runs but the
average provides a tendency of the behavior of the SKAT
tests as the association signal of the causal genes decreases.

The result of these experiments can be seen in Fig. 3. We
compared the p-value of the solution yielded by our algo-
rithm with the p-value obtained by testing SKAT on the
causal genes exclusively. An improvement on the p-value
of the solution is consistently achieved by the proposed
algorithm regardless of the risk value of the PAR model.

More specifically, Fig. 4 shows the improvement on the
p-value for the 30 experiments of the disease model with
PAR = 0.05. In most of the experiments, the proposed
method yielded an improvement on the p-value with respect
to the joint p-value of the casual genes. The triangles repre-
sented in the graphs are the SKAT p-values for the best solu-
tion for each of the 30 runs. The triangles pointing upwards
represent the solutions that provided a better p-value of the
SKAT test than the expected p-value for the joint test for the
causal genes exclusively.

3.2.2 Precision and Recall

We also evaluated the trade-off between the precision and
recall of the proposed method. As expected, the precision of
the method is a decrease function of the risk. In effect, our
method is capable of detecting most casual genes when
PAR = 0.05, even though the length of the region used by
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Fig. 4. Results for the 30 experiments with PAR = 0.05. Experiments
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value are indicated by black triangles and white triangles otherwise.
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Fig. 5. Boxplot of precision and recall for the collection of 30 experi-
ments for each risk value considered in this study. Results are shown
by decreasing values of the population attributable risk. The box repre-
sents the interquartile range (IQR): 25th to the 75th percentile,
whiskers represent the maximum: Q3 + 1.5*IQR and the minimum : Q1
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the method is smaller than the region used for sampling the
casual genes. However, as the risk is decreased, the pro-
posed method becomes decreasingly capable of detecting
the casual genes. In addition, the proposed method pro-
duced a list of genes that includes a number of false posi-
tives. In our experiments, recall was 30 percent in the best
case. These results are shown in Fig. 5.

We were also interested in confirming if the improve-
ment of the p-value yielded by the proposed method was
correlated with the number of genes of the result list. This is
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Fig. 6. Number of genes in the solution produced by the proposed
method and the related p-value. Each figure shows the 30 experiments
for PAR = 0.05 to 0.02 in decreasing order. The case of PAR = 0.01 is
not informative.
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Fig. 7. Number of SKAT significant genes (P < 2.5 x 107%) in the group
of 5 causal genes. Our interest was focused in the magenta bar, which
correspond to experiments in which none of the 5 causal genes is signifi-
cant with respect to individual SKAT test.

to be expected as SKAT aggregates the signal of the list of
genes in order to increased the power for detecting causal
genes. Fig. 6 shows that the genes count of the solution pro-
duced by our method was not positively correlated with to
the obtained p-value. This is more evident in disease models
where the risk is high to moderate.

3.3 Detecting Causal Genes with Low Effect Sizes

We were particularly interested in assessing the power of
the proposed algorithm when confronted to experiments
including exclusively causal genes with low effect sizes;
that is, those experiments in which none of the 5 causal
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Fig. 8. Statistical power of the proposed method for detecting genes with
low effect sizes. Here, we show the power of our algorithm on the most
difficult scenarios where no single gene passed the SKAT
P < 2.5 x 1079 significance threshold.

genes would be detected using a gene-based whole-exome
scan. Therefore, we identified the experiments in which all
of the individual SKAT tests of the causal genes did not pro-
duce a significant p-value after the Bonferroni correction
(2.5 x 1079). Fig. 7 shows the different possibilities of the
number of significant causal genes with respect to the SKAT
test. It can be seen that the proportion of significant causal
genes in the experiment decreases as the risk value is
decreased. We hypothesized that our method would still be
capable of detecting the causal genes in these situations.

In order to assess the statistical power with better resolu-
tion, we conducted additional experiments for risk values
of 0.05, 0.045, 0.04, 0.035, 0.03, 0.025, 0.02, 0.015 and 0.01.
Specifically, we ran the proposed algorithm only on the
experiments in which none of the causal genes is significant.
After the execution of the algorithm, we calculated the sta-
tistical power obtained in the experiments of the different
risk values as shown in Fig. 8.

We compared our genetic algorithm with a stochastic hill
climbing algorithm for the 30 experiments with a risk value
of 0.05. Overall, the genetic algorithm considerably outper-
formed the simpler search algorithm at locating a promising
region in the genome that potentially includes the causal
genes.

4 DISCUSSION

Overall, the proposed method was capable of identifying
the genes possessing rare variants that contribute to the dis-
ease phenotype. This is specially evident when the PAR of
detrimental rare variants is close to 0.05. However, the per-
formance of the algorithm degrades as this risk value is
reduced. This is expected as the algorithm is confounded
by non-causal genes that are stochastically associated with
the trait.

In spite of the limitation that the size of the region used
for searching for the causal genes (6 Mb) was considerably
smaller than the region used to sample those genes from the
baseline dataset (10 Mb), the proposed method was capable
of detecting a fair proportion of these genes. However, the
procedure also produces a collection of false positives.
These false positives are genes surrounding the causal genes
that hold a moderate association with the phenotype by
chance. Completely removing these genes from the solution
proved to be challenging because the inclusion of these
genes typically improves the quality of the solution due to
their additive effects on the SKAT test.

Comparing the results of the proposed method with the
conventional whole-exome scan that searches for individual
genes associated with the phenotype produced mixed
results. On the one hand, conventional RVAS are incapable of
detecting most of the causal genes, using a threshold p-value
of 2.5 x 1076 (after Bonferroni correction of ~ 20,000 tests).
The reason is that due to the procedure used to generate the
datasets, the effect sizes of the causal genes is often marginal.
On the other hand, conventional RVAS does not produce
false positives during the scan. Therefore, there is a trade-off
when using the proposed method against gene-based associ-
ation tests: precision is typically improved but recall is wors-
ened due to the presence of false positives.

We therefore focused in conducting experiments in
which the whole-exome gene-based scan would not be able
to identify any of the causal genes. This is the case in which
the SKAT tests applied individually to each of the causal
genes did not produce a significant p-value. The proposed
method was capable of detecting the genomic region that
includes the causal genes with varying degrees of statistical
power, depending on the risk value, reaching 71 percent of
power with PAR = 0.05 As a consequence, we believe that
our method can be used as a hypothesis generating step
that would require further follow-up and replication for
detecting associations of rare variants in a genomic region
and a phenotype of interest. Association studies testing
individual variants for associations in the promising geno-
mic region can follow afterwards.

The comparisons performed using the p-values demon-
strate that our method often obtain a combination of genes
that produce a better p-value. This is emphasized when the
effect sizes of causal genes is low. In general, the ability of
the proposed method to detect causal genes depends on the
risk conferred by the genetic rare variants. That is, the lower
the risk, the harder for the proposed method to detect the
causal genes. Therefore, the algorithm is confounded with
the presence of non causal genes associated with the pheno-
type by chance. That is, the algorithm is guided by the most
promising genomic region which typically does not include
the causal genes.

The datasets used for the experiments presented here
were generated using the Population Attributable Risk
Model (PAR) for simulating the genotypes. This model con-
fers an effect on the variants that is inversely proportional
to its minimum allele frequency (MAF). That is, the rarer
the variant, the larger the effect on the phenotype. An impli-
cation of this model is that some of the selected genes to be
used as causal genes do not show a strong association with
the phenotype. In this context, a whole-exome gene-based
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scan would produce type II errors. In contrast with the
gene-based scan, our algorithm is often capable of detecting
those genes but at the expense of producing type I errors.

It is important to point out that the power of the proposed
algorithm relies crucially on the election of the underlying
algorithm. We used SKAT during the experiments based on
the results reported in the literature and on computational
considerations [10], [28]. However, our method is sufficiently
flexible to allow the inclusion of alternative rare variant asso-
ciation methods. Further, considering an ensemble of such
methods would also be possible.

Scanning the whole-exome for associations between rare
variants and phenotypes using large regions exhaustively is
prohibitive from the computational perspective. Our method
search for promising regions using an heuristic method, then
tries to remove false positives on the candidate solutions,
providing both efficacy and efficiency in the procedure.

We used dichotomous traits in our experiments. An
immediate extension of this work will be to explore on the
performance of the proposed method when quantitative
traits are considered. For those cases, appropriate genetic
models should be used for data generation, such as the Lin-
ear Models for Quantitative traits.

Once the proposed method have demonstrated to be
capable of producing consistent results on a representative
set of problems, we expect to apply the algorithm to the iden-
tification of novel loci associated with disease phenotypes.
Particularly, we expect to use the algorithm for conducting
rare variant association studies for complex diseases and to
report the results in future publications.

Additionally, we plan to explore with the use of alterna-
tive gene-based association methods such as MiST, SKAT-O,
or KBAC. In recent experiments, these methods perfor-
med better than SKAT at detecting rare variants associated
with both dichotomous and quantitative traits in a variety of
scenarios [10].

We expect that these experiments would contribute to
the better understanding of the capabilities and limitations
of the different gene-base rare variant association methods.
This knowledge would provide the basis for identifying the
problems in which a specific method perform best.

Genetic algorithms are effective optimization procedures.
However, search methods such as Differential Evolution, Par-
ticle Swarm Optimization, among others, have also showed to
produce competitive results with respect to genetic algo-
rithms in similar problems. Therefore, it would be worth-
while to explore which search method performs better, not
only in terms of the quality of the solutions, but also with
respect to the required computational costs.

5 CONCLUSION

This work demonstrated the use of a novel method for iden-
tifying associations of rare variants with disease phenotypes.
The proposed method is capable of detecting promising
genomic regions containing a collection of causal rare var-
iants distributed among different genes within a genomic
neighborhood using a multiple gene rare variant association
test. In addition, we showed the use of this method for
detecting multiple loci in different chromosomes. Overall,
we believe that the proposed method hold much promise for

contributing to the discovery of novel association of rare var-
iants with complex phenotypes.
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