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D-UNet: a dimension-fusion U shape network for
chronic stroke lesion segmentation
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Abstract—Assessing the location and extent of lesions caused by chronic stroke is critical for medical diagnosis, surgical planning,
and prognosis. In recent years, with the rapid development of 2D and 3D convolutional neural networks (CNN), the encoder-decoder
structure has shown great potential in the field of medical image segmentation. However, the 2D CNN ignores the 3D information of
medical images, while the 3D CNN suffers from high computational resource demands. This paper proposes a new architecture called
dimension-fusion-UNet (D-UNet), which combines 2D and 3D convolution innovatively in the encoding stage. The proposed
architecture achieves a better segmentation performance than 2D networks, while requiring significantly less computation time in
comparison to 3D networks. Furthermore, to alleviate the data imbalance issue between positive and negative samples for the network
training, we propose a new loss function called Enhance Mixing Loss (EML). This function adds a weighted focal coefficient and
combines two traditional loss functions. The proposed method has been tested on the ATLAS dataset and compared to three
state-of-the-art methods. The results demonstrate that the proposed method achieves the best quality performance in terms of DSC =
0.5349±0.2763 and precision = 0.6331±0.295).

Index Terms—MRI, stroke segmentation, deep learning, dimensional fusion.
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1 INTRODUCTION

S TROKE is the most common cerebrovascular disease
and is one of the most common causes of death and

disability worldwide [1], [2]. It is a group of diseases caused
by a sudden cerebrovascular rupture or cerebrovascular
infraction. The typical symptom of this disease is a focal
neurological deficit, such as sudden seizures, language dis-
orders, hemianopia, loss of feeling, etc. [3]. These symp-
toms may develop into chronic diseases (such as dementia,
hemiplegia, etc.), which can seriously affect the life quality
of patients; these diseases consume a large part of social
health care costs [4]. At the subacute/chronic stages, ef-
fective rehabilitation can promote a long-term functional
recovery. However, there have been few advances in large-
scale neuroimaging-based stroke predictions at the subacute
and chronic stages. The most common research scan is
a high-resolution T1-weighted structural MRI. Researches
using these types of images at the subacture/chronic stages
have revealed promising biomarkers. These could poten-
tially provide additional information, beyond behavioral
assessments, to predict an individuals likelihood of recovery
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for specific functions (e.g., motor, speech) and response
to treatments [5], [6]. Thus far, measures that include the
size, location, and overlap of the lesion with existing brain
regions or structures, such as the corticospinal tract, have
been successfully used as predictors of long-term stroke
recovery and rehabilitation [7]. However, a key barrier to
correctly analyzing these large-scale stroke neuroimaging
datasets to predict outcomes is the accurate segmentation
of lesions. As manually-based annotations may no longer
be suitable for a wide range of data requirements, there is a
need for automatic segmentation tools for their analyses.

Strokes occur in different locations, with large differ-
ences in shape and unclear boundaries as shown in Fig. 1. A
public dataset, Anatomical Tracings of Lesions-After-Stroke
(ATLAS), is utilized to illustrate this variability [7]. Firstly,
the segmentation performance is reduced by motion arti-
facts in the MRI images. Secondly, the position and shape of
the lesions are significantly different owing to the existence
of multiple subtypes of strokes. The lesion volume can vary
from hundreds to tens of thousands of cubic millimeters
depending on the severity of the disease, and the lesion
area can occur in the cerebrum, cerebellum, and other areas
of the brain. Finally, the boundaries of some lesions are
not clear, and different clinicians may inconsistently label
different lesion areas. Therefore, the accurate automated
segmentation is a challenging problem.

To tackle these difficulties, researchers have made many
efforts, including intensity threshold processing, region
growth, and deformable models. However, these methods
rely on the hand-crafted feature extraction by experts; they
have a limited feature representation and low generalization
performance. In recent years, with the rapid development of
deep learning, convolutional neural networks (CNN) have
proven to have great potential in the field of medical image
analysis [7]–[17]. The study of CNN is mainly based on two-
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Fig. 1. The MRI T1 sequence stroke image from the ATLAS dataset.
The first column is the raw data, the second column is the gold standard
from the hand-marked lesions by the doctor, and the third column is the
combination of the first two columns. Strokes occur in different locations,
with large differences in shape and unclear boundaries.

dimensional (2D) and three-dimensional (3D) approaches:
(1) In the 2D CNN approaches, the MRI volume data are
converted into several planar slices and independently pre-
dict the lesion area of each slice. These ignore the spatial
characteristics of the MRI data such that the predictions
are discontinuous. (2) In the 3D CNN, approaches, spatial
information is extracted for inference. However, due to their
computational and storage requirements, the 3D CNN have
been largely avoided.

In order to solve the problem of accurately automating
the image segmentation, we propose a novel network called
the Dimension-fusion-UNet (D-UNet). In this new model,
the 3D spatial information in the MRI data is effectively
utilized under the 2D framework of the subject and has
low computing resource requirements. Our D-UNet has the
following two technical achievements:

Dimension fusion network: First, in order to extract
the information of consecutive slices from MRI data, we
designed a novel downsampling block based on a UNet
improvement. This improvement performs 3D and 2D fea-
ture extraction on a small number of consecutive slices in
the early stage of the network. Then, in a novel way, their
respective feature maps are fused to achieve a small number
of parameters in the 2D network. Through the extraction
of 3D features in the MRI data, D-UNet can achieve better
performance than a pure 2D network.

Enhanced Mixing Loss: Second, in order to improve
the convergence speed of the network, we propose a new

loss function, called the Enhanced Mixing Loss, which not
only enhances the gradient propagation of the traditional
Dice Loss, but also combines the advantages of the Dice loss
and Focal loss functions. This new method converges faster
than using the two traditional loss functions, and exhibits a
smoother convergence curve. In summary, this work has the
following contributions: 1. We propose the D-UNet network
to effectively segment the lesion area in the MRI data. The
structure is based on the 2D UNet improvement. A part of
the 3D convolution is added to the downsampling module
to extract the spatial information in the MRI volume data;
the extracted features are fused with the 2D structures in
a new method. 2. We propose a novel loss function, which
is expected to make the network converge in a faster and
smoother fashion. It would not only enhance the gradient
propagation in the traditional Dice loss, but also combine
the merits of Dice loss and Focal loss functions. 3. The
proposed method is tested on the ATLAS dataset and com-
pared to three state-of-the-art, demonstrating the superior
performance of the method.

2 RELATED WORKS
We summarize some of the work related to stroke seg-
mentation, including hand-crafted feature based methods
and deep learning based methods. Among them, the deep
learning methods include 2D-based CNN, 3D-based CNN,
and the traditional segmentation loss function.

Hand-crafted feature based methods: Researchers have
been working on the automatic segmentation and predic-
tion of brain disease areas and have achieved good results
[18]. Kemmling et al. [19] use a multivariate computed
tomography perfusion (CTP)-based model to calculate the
probability of voxelwise infarcts. Kuo et al. [20] propose to
use the SVM classifier to learn texture feature vectors for the
segmentation of liver tumors. Chyzhyk et al. [21]propose
to construct an image data classifier from multimodal MRI
data for voxel-based lesion segmentations. Sivakumar et al.
[22] use an adaptive neuro fuzzy inference system (ANFIS)
classifier to detect and segment brain stroke areas auto-
matically while using the heuristic histogram equalization
technique (HHET) to enhance the internal regions of the
brain image. These proposals in the literature are machine
learning models based on multiple linear regressions, rely-
ing on the precise design of features by feature engineers.
They achieve good performance on small sized data sets,
but have limited generalization in larger data sets.

Deep learning based methods: Deep learning has
emerged in recent years, which address a key limitation
in traditional machine learning methods, which require
engineers to artificially design features. Chen et al. [23]
propose a 2D network framework consisting of an ensemble
of a DeconvNets (EDD)-Net and a multi-scale convolutional
label evaluation net (MUSCLE Net); this ensemble achieves
the best performance on a large clinical dataset. Cui et al.
[24] propose a network of cascaded structures for process-
ing nasopharyngeal carcinoma cases in MRI images. The
authors firstly segment the tumors and then classify the
segmentation results to obtain four subregions of nasopha-
ryngeal carcinoma. These deep learning methods convert
the MRI data to 2D slices and apply 2D segmentation CNN
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for each slice. The 3D results are generated by connecting the
2D segmentation results. However, due to the limitations of
the slices 2D characteristics, the important 3D context infor-
mation in the volume data is neglected, thus the prediction
may lose continuity.

3D CNN has proven to have great potential in the
analysis of 3D MRI data. Kamnitsas et al. [25] propose a
two-path 3D CNN structure and uses a 3D fully connected
conditional random field for post processing, which ranks
first in the challenge of chronic stroke lesion segmentation
(ISLES 2015). Zhang et al. [10] propose 3D FC-DenseNet,
which can make the network deeper by using the improved
dense net tight connection structure to enhance the back
propagation of image information and gradients. Feng et
al. [26] extract features from both the temporal and the
spatial dimensions by using 3D convolution operations,
which capture the dynamic information in multiple adjacent
frames. However, they usually require more parameters and
might sometimes over-fit on small training data sets [27],
[28]. In addition, 2D-based and 3D-based cascade methods
have emerged. For example, Li et al. [29] propose a hybrid
densely connected UNet (H-DenseUNet), which first per-
forms a 2D-based dense-UNet segmentation, and then uses
a 3D-based CNN to correct the spatial continuity of the liver
and the tumor.

The binary cross-entropy loss function [30] is commonly
used in deep learning based segmentation tasks. This func-
tion calculates the gradient by characterizing the difference
in the probability distribution of each pixel in the predicted
sample and the real sample. Tsung-Yi Lin et al. [31] add
a modulating factor to deal with the serious imbalance
between the number of foreground and background pixels.
Another common loss function is Dice’s coefficient loss [32].
This function directly calculates the gradient by the dice
overlap coefficient of the predicted sample and the real
label; it can also alleviate to some extent the segmentation
problem resulting from the pixel imbalance between the
foreground and the background.

3 METHODS

In this section, we introduce our approach including the
proposed D-UNet framework, enhanced mixing loss, and
the implementation details. In Section 3.1, we illustrate the
proposed D-UNet framework, in Section 3.2, we introduce
the enhanced mixing loss algorithm, and finally in Section
3.3, we present some implementation details.

3.1 D-UNet for extracting three-dimensional informa-
tion

The basic structure of the network consists of an improved
UNet [33]. This symmetrical encoder-decoder structure
combines high-level semantics with low-level fine-grained
surface information; it has achieved good effects on medical
images. The encoding phase of the D-UNet consists of two
dimensions. As shown in Fig. 2(a), both the 2D and 3D
convolutions perform the downsampling operation in their
respective dimensions; the results are combined through the
dimension transform block which denote as a red cube. This
fusion enables subsequent 2D networks to be integrated into

the 3D information, refines the edges of the target area,
and facilitates the ability of the network to identify small
lesion areas. Meanwhile, since the 3D information is well
extracted in the early stage of the network, and the trainable
parameters of the network are extremely increased as the
network deepens, the dimension transform block is only
added in the early coding stage.

Specifically, consider Fig. 2(b), where H×W denotes the
feature dimensions of height and width, D represents the
depth in the volume feature, and C represents the channel
of the feature map. The dimension transform block consists
of 3D dimensionality reduction, channel excitation [34], and
dimensional fusion. The squeeze-and-excite (SE) block has
been proposed in recent years, where r denotes the reduc-
tion ratio, a hyperparameter which allows us to vary the
capacity and computational cost of the SE block [34]. This
block activates the connection between different channels
by weighting the feature channels. We apply this structure
in the dimension fusion block in order to enhance the fusion
effect of 3D features and 2D features.

In each dimension transform block, we first reduce the
dimensions of the 3D branch feature map and then add with
the 2D branch after SE weighted respectively. Specifically,
let I3d and I2d denote the feature maps from 3D and 2D
network respectively, which act as the input of dimension
transform block, n denotes the batch size, h×w× d denotes
the maps height, width, depth and last dimension c denotes
the maps channel. We first convert I3d∈Rn×h×w×d×c to
I∗3d∈Rn×h×w×d×1 by using a 3D 1×1×1 convolution which
filter number is set to 1, then we squeeze the dimensionality
of I∗3d from n × h × w × d × 1 to n × h × w × d. In order
to keep the channel number consistent with the 2D branch
for later integration, we also convert I∗3d∈Rn×h×w×d to
I∗3d∈Rn×h×w×c by using a 2D 3×3 convolution that filter
number is set to c. Let I

′
3d denote the I3d after dimensional-

ity reduction:

I
′

3d = fr(I3d), I
′

3d ∈ Rn×h×w×c (1)

where fr indicates the dimensionality reduction opera-
tion, thus we convert the size of 3D feature map from
I3d∈Rn×h×w×d×c to I

′

3d ∈ Rn×h×w×c. In order to enhance
the feature expression ability of the two dimensions before
fusion, we use an SE block to weight the 3D and 2D feature
map channels, and add their channel weighted outputs:

T = fSE(I
′

3d) + fSE(I2d), T ∈ Rn×h×w×c (2)

The 3D and 2D features are fused in this step, where fSE
denotes the SE weighted block proposed in [34]. T denotes
the feature map fusion which results in the dimension
fusion block. More detailed parameter settings for the entire
network are shown in Table 1.

3.2 Enhanced Mixing Loss Function

In 3D medical data, especially MRI stroke images as shown
in Fig. 1, the volume occupied by the stroke is often very
small throughout the scan interval. An extremely large num-
ber of background regions may dominate the loss function
during training, which leads to the learning process easily
falling into a local optimal solution. Therefore, we propose
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Fig. 2. The entire D-UNet architecture is shown in (a). This network improves 2D UNet, which combines 3D convolution in the downsampling phase
and uses a dimension transform block to combine them. (b) Introduces the details of the dimension transform block, which has two branches for its
input from 2D and 3D networks. First, the feature channel of the 3D network output (blue arrow) is compressed to 1 by using a 1x1x1 convolution.
The compressed result is then squeezed in a spatial dimension and passed to a 2D 3x3 convolution. This makes the output consistent with the 2D
network (gray arrow). Finally, each of the channels is weighted by the SE-block and then added together.

a new loss function, which refers to the method addressing
the foreground-background voxel imbalance in [31], and
combines two traditional loss functions in a concise manner
[32].

3.2.1 Focal Loss
Focal loss (FL) is an improvement of the binary cross
entropy loss (BCE), by adding a modulating factor. This
reduces the loss contribution from easy samples and extends
the range in low loss. We introduce the formula of focal loss
from the binary cross entropy (BCE):

FL(p, g) =

{
−
∑Nf

i=1 α(1− p)γ log(p), if g = 1

−
∑Nb

i=1(1− α)pγ log(1− p), otherwise
(3)

where g ∈ 0, 1 represents the ground truth based on
the pixel level; p ∈ [0, 1] represents the model prediction
probability value, in which 0 denotes the background and
1 is the foreground; Nf and Nb represent the numbers of
pixels of class 0 and class 1, respectively; α ∈ (0, 1] and

γ ∈ [0, 5] are the modulation factors, which can be flexibly
adjusted according to the situation.

3.2.2 Dice Coefficient Loss
The dice coefficient loss (DL) mitigates the imbalance prob-
lem of background and foreground pixels by modifying the
segmentation evaluation index DSC between the prediction
samples and the ground truth annotation, showing better
performance in the segmentation task:

DL(p, g) = 1− 2
∑N
i=1 pigi + δ∑N

i=1 p
2
i +

∑N
i=1 g

2
i + δ

(4)

where δ ∈ [0, 1] is a tunable parameter to prevent a divide-
by-zero error and let the negative samples also have a
gradient propagation.

3.2.3 Proposed Enhanced Mixing Loss
Based on the above two kinds of loss, we propose the
enhanced mixing loss (EML) to increase the convergence
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TABLE 1
Architecture of the proposed D-UNet. Feature size denotes the size of the manipulated feature map while the last dimension indicates the channel

number. Up-sampling [*] indicates that the corresponding layer number is concatenated before up sampling and N∗ indicates the number of
features of the corresponding layer number, for example, Up-sampling block 1 being connected to Convolution block 4, N is set to 256, up

sampling block 2 being connected to dimension fusion block 3, N is set to 128, and so on.

Feature size Two-dimensional operation Feature size Three-dimensional operation

Input 192×192×4 - 192×192×4×1 -

Convolution block 1 192×192×32 2×(3×3 Conv+ Bn) 192×192×4×3 2×(3×3×3 Conv+ Bn)

Pooling 96×96×32 2×2 max pooling 96×96×2×32 2×2×2 max pooling

Convolution block 2 96×96×64 2×(3×3 Conv+ Bn) 96×96×2×64 2×(3×3×3 Conv+ Bn)

Dimension fusion block 2 96×96×64 - - -

Pooling 48×48×64 2×2 max pooling 48×48×1×64 2×2×2 max pooling

Convolution block 3 48×48×128 2×(3×3 Conv+ Bn) 48×48×1×128 2×(3×3×3 Conv+ Bn)

Dimension fusion block 3 48×48×128 - - -

Pooling 24×24×128 2×2 max pooling - -

Convolution block 4 24×24×256 2×(3×3 Conv+ Bn) - -

Dropout 24×24×256 - - -

Pooling 12×12×256 2×2 max pooling - -

Convolution block 5 12×12×512 2×(3×3 Conv+ Bn) - -

Dropout 12×12×512 - - -

Up-sampling block 1-4 192×192×32 2×2 Up-sampling[*] - -
2×(3×3 Conv+ Bn)

Convolution 192×192×1 1×1 Conv - -

speed. First, Log value was used in DL and we invert
the value for keeping the value positive, thus enhancing
the gradient obtained for each iteration. Then, in order to
explore whether the two losses have mutually reinforcing
relationships, we also add the focal loss. However, since
the focal loss is based on the sum of all voxel proba-
bilities, it is numerically much larger than the dice loss
(DL(p, g) ∈ [0, 1]), which plays a leading role in gradient
propagation. We hope that the newly added FL and log(DL)
contribute equally to EML, so a balance factor of 1/N is
added to FL to obtain a FL based voxel average. The formula
for EML is as follows:

EML(p, g) =
1

N
FL(p, g)− log(DL(p, g)) (5)

3.3 Implementation details

In the data preprocessing, transverse section images have
been selected for this experiment. Within each image, a
square area is selected with the diagonal coordinates (10,
40) and (190, 220). This selected area eliminates irrelevant
information and enlarges the proportion of stroke lesions
in the entire image. Next, the cropped images are resized
192 × 192 using a bilinear interpolation. Finally, each slice
of the processed image is integrated, with a spatial arrange-
ment of two upper slices and one lower slice, forming a
matrix of size 192 × 192 × 4. In the downsampling phase,
modifications to reduce the total number of parameters from
UNet are made. Specifically, the number of filters in the first
convolution in the 2D-based and 3D-based streams is set
to 32. After each pooling layer, the number of convolution
filters is doubled, and finally the number of convolutions
in the 2D stream is set to 512. The kernal initialization for
each convolution is set using the Hes method [35]. A batch
normalization is conducted after each layer of convolution
to improve the stability of the training. The parameter r in
the dimension transform block is set to 16. α, γ, δ in the loss

function is set to 1.1, 0.48, 1 respectly to fit our randomly
selected dataset. With the SGD optimizer, the learning rate is
set to 1e-6. Additional parameter settings are consistent with
[36]. We have also employed data augmentation methods
to improve the robustness of the model, including setting
the input mean to zero translation, scaling, and horizontal
flipping. These methods are applied to all of our compar-
ative experiments to ensure fairness. We have trained the
models on three 1080TI GPUs. All of the models are trained
using the first 150 epochs before validating, to optimize the
performance of each architecture without any fine tuning.

4 EXPERIMENTAL RESULTS AND DISCUS-
SIONS
We compare our proposed method to the 2D and 3D convo-
lutional UNet. In this section, we also show the superiority
of the proposed loss and discuss the results of the proposed
dimension-transform block at different stages. Datasets and
quantitative indicators: We have used the Anatomical Trac-
ings of Lesions-After-Stroke (ATLAS) dataset [7] as our
training and validation sets. The dataset contains 229 cases
of chronic stroke with MRI T1 sequence scans, in which
the size of each case is 233×197×189 while the physical
size is 0.9×0.9×3.0mm3; the scans delineate different lesion
grade staging. We have randomly selected 183 cases (ac-
counting for the overall 0.8 ratio) as the training set, and the
remaining cases as validation sets. We report the model’s
performance in the Dice Similarity Coefficient (DSC), pre-
cision, and recall. DSC is an important indicator to assess
the overall difference between our estimates and the ground
truths. Recall usually reflects the extent of recall in the lesion
area, which is an important reference in clinical practice.
We perform threshold processing on all of the prediction
results. When the probability that the pixel is predicted to
be foreground is less than 0.5, we set it to zero, otherwise
it is set to one. In addition, precision evaluates the quality
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of the segmentation, as the proportion of boundary pixels
in the automatic segmentation that correspond to boundary
pixels in the ground truth of the image. The quantitative
indicator formulae are shown below:

DSC =
2TP

2TP + FP + FN
(6)

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

where, true positive (TP ) indicates that the model cor-
rectly predicted voxel. False positive (FP ) indicates the
voxel that the model classify negative as positive. False neg-
ative (FN) indicates that the positive voxel is mistakenly
classified as negative by the model.

4.1 Performance comparison with UNet and its 2D and
3D variants
We compare the proposed method with the baseline ar-
chitecture, UNet, both qualitatively and quantitatively. We
have trained two versions of UNet to better exploit its per-
formance. The original version uses the parameter settings
described in [33]. In the transformed version, the number
of convolution kernels is reduced and batch normalization
is added after each convolution. Section 3.3 provides a
more detailed description of the transform. Furthermore,
we compare the proposed method with the 3D structure to
prove that our method can extract the 3D information of the
data with a small amount of structure. We show the results
of different structure outputs, and choose case based DSC,
recall, and precision as our quantitative indicators. Further-
more, we also conduct a global based DSC assessment as an
auxiliary judgment. It is worth noting that the batch size of
all networks is set to 36 during training, except for the 3D
UNet. Since the 3D Unet has very high memory demands,
the batch size is set to six.

In the quantitative comparison, as shown in Table 2,
the UNet (original), UNet (transform), and the proposed
method are evaluated. The 2D transform is close to the
original in both indicators. However, with respect to the
kernel number, the transformation scheme is only half of
the original network. It shows that a large number of con-
volution kernels are unnecessary for this small data set. We
have also reduced the number of 3D Unet convolution ker-
nels to match the number of 2D Unet convolution kernels.
In addition, all the transform versions and our proposed
method adds batch normalization after each convolution
layer (except for the last layer of convolution) to ensure
convergence stability. The 2D structure achieves a better
index than the 3D structure, we consider the following
factors: first, due to its huge network structure, 3D network
requires a huge amount of time to train, making it difficult to
adjust the hyperparameters to optimize performance. Then,
Overfitting can easily occur in large network structures,
especially if there are fewer training sets (our training set
contains only 183 cases). Last but not least, 3D structure
requires a large amount of computing resources, which
limits the width and depth of the 3D structure by our

TABLE 2
Comparison results of the proposed method with baseline approaches.

Method DSC DSC(global) Recall Precision Total parameters

2D UNet(original) 0.4874±0.2858 0.7117 0.4838±0.2983 0.5612±0.3229 31,030,593

2D UNet(transform) 0.4966±0.2906 0.7146 0.5038±0.3044 0.5511±0.3298 7,771,297

3D UNet(transform) 0.4710±0.2877 0.7098 0.4736±0.3099 0.5531±0.3247 22,597,826

Ours 0.5349±0.2763 0.7231 0.5243±0.2910 0.6331±0.2958 8,640,163

implementation platform conditions, leading to a decrease
in the performance. The results we reported is also consis-
tent with that of [29], which also shows the phenomenon
that the segmentation performance of the 3d structure is
lower than the 2d structure. In addition, the time required
to train a 3D UNet (140 hours) is about six times that
of 2D UNet (23.8 hours). By comparing the segmentation
performance and the number of parameters, the metrics
for the proposed method are improved by 3.83% over a
single 2D structure, and the number of parameters is only
increased by 2%. These results show that with the addition
of 3D structure, the overall performance of the network
is improved. It proves that compared with the simple 2D
network structure, the proposed dimension transform block
can effectively utilize 3D information.

4.2 Comparison with other state-of-the-art methods

In this section, we compare the proposed model with other
existing well-known frameworks and methods mentioned
in [37]. SegNet [38] performs nonlinear upsampling; this
is accomplished using unpooling for the maxpooling index
defined in the downsampling phase. Pyramid Scene Parsing
Network [39] introduces more context information by using
atrous convolution and pyramid pooling. DeepLab v3 plus
[40] is the latest version of the Google DeepLab series, which
combines the advantages of Atrous Spatial Pyramid Pooling
and an encoder-decoder structure. The above methods have
achieved good results in the deep learning segmentation
task. We compare with these methods to demonstrate the
superior performance of the proposed D-UNet. All of the
network parameters are configured according to the original
articles, except for the minor changes mentioned in Section
4.1; the networks are implemented in our platform. The
training set and validation set are strictly consistent (includ-
ing data preprocessing). During training, the batch size is
set to 36. Additional details can be viewed the open source
code.

The prediction results obtained with the different frame-
works are illustrated in Fig. 3. Seven prediction maps are
randomly selected and sorted by the size of the lesion area in
ascending order. As shown in the figure, it can be observed
that the lesion with a very small foreground area is quite
fuzzy, indicating this case is very difficult for the network.
In spite of this, our method correctly detects the lesion area.
It proves that our approach possesses the ability to identify
difficult samples. From the third and fourth rows of Fig.
3, we have found that all models correctly predicted the
location of the lesion area in the case of big differences in
foreground and background. Furthermore, our method is
closer to the ground truth in terms of lesion boundaries.
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Observing the last two rows, we have found that the pro-
posed method still maintains a good, feature expression
ability when the boundary is very blurry. This is because we
combine the 3D features and the spatial dimensions to more
effectively express the characteristics of the edge blurred
lesions. In order to show the distribution of the results and
prove the stability of the proposed method, we draw a box
plot based on the DSC score for each case. These results
are shown in Fig. 4. The lower edge of all methods is zero
because the ATLAS data set has a very large number of
small lesion areas (e.g., the first to third rows of Fig. 3),
which easily cause the model to fail to recognize the lesions.
The upper edge and median line for the proposed method
are the best in comparison with other highly recognized
methods, which means it not only achieves the highest
segmentation performance on a single case, but also yields
better median scores for all cases.

To quantitatively illustrate the superiority of our
method, we compare the results of these algorithms and
summarize them in Table 3, where DSC, recall, and precision
are based on the mean ± standard deviation of each case,
and DSC (global) represents the metric based on the voxel
calculation. Hu et al. use the ATLAS dataset, and select some
specific cases as training/validation sets to summarize some
traditional segmentation methods. We compare several deep
learning segmentation frameworks with the methods men-
tioned in [37]. The top half of the table shows the imple-
mentation in [37], and the bottom half is implemented on
our platform. It can be seen from the table that the deep
learning based methods achieve better performance than the
traditional algorithms. With respect to the DSC scores, the
proposed method ranked first with a score of 0.7231. This is
0.30 higher than the Clusterize method in DSC (the lowest),
and 0.0383 higher than the UNet method (second best). Our
method is superior in terms of the segmentation perfor-
mance for each case. DSC (global) can reflect a voxel-based
overall DSC score more intuitively. With respect to recall
and precision, the performance of the traditional algorithm
Clusterize is the highest in recall, but its precision score is
the lowest, which indicates that this algorithm identifies
many non-lesional areas as lesions, thus causing a high
recall. The proposed method ranked third in the recall score
of 0.5243, and the highest in the precision score of 0.6631,
which indicates that the identified regions are basically the
correct lesion areas.

4.3 Loss validity

In order to compare the effectiveness of the proposed loss,
we trained on the proposed model and compared several
common losses in the segmentation task. As illustrated in
Fig. 5, the results show several DSC rising graphs on the
training sets as the number of training iterations increases.
Comparing the scores of the losses in the training set, in the
early stage of training (about 30 epoch) shown on Fig. 5, the
dice coefficient loss converges faster than the focal loss, but
is subsequently exceeded by the focal loss. In each period,
our method converges faster than other methods.

We also performed a quantitative analysis of the three
losses, as shown in Table 4. It is worth noting that our
goal is to make the proposed model converge faster. This

TABLE 3
The quantitative comparison of different methods. Among them, DSC,

Recall, and Precision are based on the mean ± standard deviation
calculated in each case, and DSC (global) represents the DSC based

on the voxel calculation.

Method DSC DSC(global) Recall Precision

Clusterize 0.23±0.19 - 0.79±0.23 0.16±0.15

ALI 0.36±0.25 - 0.55±0.31 0.31±0.25

Lesion gnb 0.36±0.23 - 0.69±0.29 0.30±0.20

LINDA 0.45±0.31 - 0.52±0.34 0.50±0.34

SegNet 0.3292±0.2514 0.5993 03318±0.2654 0.3846±0.2883

PSP 0.4462±0.2633 0.6729 0.4704±0.2780 0.4998±0.2913

Deeplab v3 plus 0.4529±0.2921 0.7104 0.4456±0.3032 0.5627±0.3249

UNet 0.4966±0.2906 0.7146 0.5038±0.3044 0.5511±0.3298

Ours 0.5349±0.2763 0.7231 0.5243±0.2910 0.6331±0.2958

TABLE 4
Quantitative analysis of the three loss functions.

Method DSC(global) Recall Precision

FL 0.6805 0.4339±0.2625 0.6225±0.3667
DL 0.7346 0.53±0.2908 0.6143±0.3324

EML 0.7231 0.5243±0.2910 0.6331±0.2958

statistical score is only used as a secondary reference. Since
DL directly uses 1 - DSC as punished, it has an advantage
to achieve the highest DSC score. Therefore, despite the
proposed EML is slightly lower than DL in DSC (0.0115
lower) and Recall (0.057±0.002 lower), we consider that it
is within an acceptable range. On the other hand, EML
achieves the highest precision whereas DL presents the
lowest, which indicates that EML can effectively reduce the
false positive results (This phenomenon is also consistent
with FL). Therefore, EML is competitive in segmentation
performance compared to DL and FL.

4.4 Comparison of dimension fusion blocks between
different layers

We also compare the results of the dimension transform
block used in different ways (Add, SE) and in different
downsampling layers. The DSC is used as the main eval-
uation index of model performance, and the number of
their parameters is enumerated. The 3D framework used
in the experiment, as shown in Fig. 2, has only two pooling
layers for the dimension transform block within three layers.
The ’add’ in Table 5 represents the use of the final fusion
operation of the dimension fusion block, (i.e., the Add block
in Fig. 2), and the ’SE’ indicates the use of the SE block the
figure [34]. The last column of the name in the architecture
indicates which layer is used in the conversion structure. For
example, ’Add-23’ means the corresponding 3D structure
fusion before the second and third maxpooling in the 2D
structure.

In order to prove the validity of dimensional transfor-
mation on 2D networks, we compare the performance of
UNet (division) and different structures using the dimen-
sion fusion block in different layers. All of the results with
using the dimensional fusion are better than UNet without
using the dimension fusion block. We suspect this is because



8

Fig. 3. Comparisons of our method, Baseline, DenseUnet, DeepLabv3+, PSPNet, and FCN-8s on four different patients.

the network fuses the 3D features in downsampling. By
comparing Add-1, Add-12, and Add-23, we find that the
deeper the 3D structure is, the better the fusion performance
results. This can be interpreted as a deeper 3D structure pro-
vides a better feature extraction ability. However, we found
an interesting phenomenon: the DSC with more layers in
the case Add-123 has decreased. This may be because the
gradient of the 3D and 2D structure is tighter with the
fusion of more layers; this change in gradient may result
in a decrease in the efficiency of the feature extraction. We
demonstrate the validity of the proposed fusion structure

and demonstrate that our method obtains 3D information
in an efficient manner.

To prove that the SE block can achieve better fusion by
weighting the output of the two dimensions, we show a
comparison of the addition of SE (the last three rows) and
direct fusion in Table 5. The structure of the SE block is
consistent with the direct fusion for the number of layers,
but all of the structures using the SE block are higher than
the DSC of the direct fusion structure. It is shown that the
nonlinear weighting before feature fusion can enhance the
fusion effect of features.
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Fig. 4. Box plots of DSC score results for different methods.

Fig. 5. The DSC score curve of the training set during the training
process.

TABLE 5
Comparison results of the proposed method with baseline approaches.

Architecture DSC Total parameters

2D UNet(transform) 0.4966±0.2906 7,771,297
Add-1 0.5102±0.2932 7,802,210

Add-12 0.5216±0.2776 7,970,019
Add-23 0.5248±0.2770 8,635,043
Add-123 0.5110±0.2762 8,636,260

SEAdd-12 0.5235±0.2851 7,971,299
SEAdd-23 0.5349±0.2763 8,640,163
SEAdd-123 0.5186±0.2865 8,647,012

5 CONCLUSION

Automated stroke segmentation plays an important role
in clinical diagnosis and prognosis. It is of great value to
quickly and accurately identify areas of the lesions and help
physicians make surgical plans without high computing
resource demands. In this paper, we propose an end-to-end
training method for the automatic stroke segmentation, in
which 3D context information can be effectively utilized,
with low hardware requirements. Meanwhile, we propose
a new loss function for faster and smoother convergence.
The proposed method has been compared with three state-
of-the-art methods; it achieves the best performance on
two quality metrics (DSC = 0.5349±0.2763, Precision =
0.6331±0.2958). In future work, we hope to increase the
punishment for extremely difficult samples inspired from
[41], which may further enhance the performance of the
proposed EML. We plan to validate our method on a larger
clinical dataset to verify the generalization of the method
in the current 3D structure, further study the possibility
of dimension fusion block combinations, and extend our
model to different applications, for example, calculating
overlap of the lesion with existing brain regions or struc-
tures, for used as predictors of long-term stroke recovery
and rehabilitation.
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