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A New Weighted Imputed
Neighborhood-Regularized Tri-Factorization
One-Class Collaborative Filtering Algorithm:

Application to Target Gene Prediction
of Transcription Factors
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Abstract—Identifying target genes of transcription factors (TFs) is crucial to understand transcriptional regulation. However, our
understanding of genome-wide TF targeting profile is limited due to the cost of large-scale experiments and intrinsic complexity of gene
regulation. Thus, computational prediction methods are useful to predict unobserved TF-gene associations. Here, we develop a new
Weighted Imputed Neighborhood-regularized Tri-Factorization one-class collaborative filtering algorithm, WINTF. It predicts unobserved
target genes for TFs using known but noisy, incomplete, and biased TF-gene associations and protein-protein interaction networks. Our
benchmark study shows that WINTF significantly outperforms its counterpart matrix factorization-based algorithms and tri-factorization
methods that do not include weight, imputation, and neighbor-regularization, for TF-gene association prediction. When evaluated by
independent datasets, accuracy is 37.8 percent on the top 495 predicted associations, an enrichment factor of 4.19 compared with
random guess. Furthermore, many predicted novel associations are supported by literature evidence. Although we only use canonical
TF-gene interaction data, WINTF can directly be applied to tissue-specific data when available. Thus, WINTF provides a potentially
useful framework to integrate multiple omics data for further improvement of TF-gene prediction and applications to other sparse and
noisy biological data. The benchmark dataset and source code are freely available at https://github.com/XieResearchGroup/WINTF.

Index Terms—Collaborative filtering, recommender system, tri-factorization, transcription factor, gene regulatory network

1 INTRODUCTION

RANSCRIPTION factors (TFs) regulate gene expression via
Tcomplex interactions with the target genes, and the regu-
lations are crucial for cellular organizations and develop-
ment. TFs can activate or deactivate the target genes by
binding to the recognition DNA sequences, also known as
motifs. TFs can interact with each other or recruit other pro-
tein components to form a protein complex to start transcrip-
tion [1]. Such complex regulations explain the relative
complexity of higher metazoans compared to lower organ-
isms, such as unicellular eukaryotes or prokaryotes. The
number of distinct genes itself cannot explain the complexity
of organisms. It is known that the human genome contains
only twice as many genes as Drosophila, and the difference is
mainly from the duplication of the same gene rather than
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new ones [2]. Thus, the incredibly high complexity of humans
cannot be understood without knowing the fact that human
genome contains approximately one TF per every ten genes
[3]. The complicated gene regulation by TFs seems to play an
important role in development. In Drosophila, for example,
deletion of one TF gene (Antennapedia) is known to cause a
serious phenotypic defect —legs are on the head where anten-
nae should be [4]. Therefore, understanding the associations
between TFs and target genes is an important research topic
in the biological and biomedical sciences.

Recent advancement of sequencing and molecular biol-
ogy technology has led to laboratory techniques to identify
TF-gene associations on a large scale, and the experimental
data have been utilized for computational studies to inte-
grate results from different experiments [5]. Chromatin
immunoprecipitation (ChIP)-based methods include ChIP-
chip [6], ChIP-seq [7], and ChIP-PET [8]. The sequences from
ChIP methods are enriched around the binding sites for the
TFs. Therefore, the target genes for TFs can be Inferred by
mapping the sequence read peaks to the genome. Several
studies have focused on identifying the true associations
from the ChIP data by statistically comparing the sequence
peaks to the background signal [9], [10], [11]. DamID is an
alternative to ChIP techniques to identify TF-DNA interac-
tions [12]. ChIP Enrichment Analysis (ChEA) [13] is a freely
available tool that combines TF-DNA associations manually
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curated and automatically collected from 115 publications
for the ChIP-X experiments, which are the three ChIP techni-
ques and DamID. ChEA takes a set of genes (whose expres-
sion levels are significantly changed) and finds the potential
TFs that are likely to interact with most of the genes [13].
ChEA represents a reliable but incomplete resource for
known TF-target gene associations; thus, it can be used as a
benchmark for algorithm development.

Although the laboratory techniques mentioned above are
essential for studying TF-DNA associations, they are not
complete. Sequencing data from experiments contain noisy
reads that are not necessarily indicating the TF-DNA interac-
tions. In addition, it is well known that the quality of the
antibody used in ChIP protocols are crucial for successful
experiments [14]. The antibody specificity may be insuffi-
cient, or it could block successive interactions between TFs,
making it difficult to observe indirect interactions. DamlID is
largely limited by its resolution as the GATC motifs are
required, although it does not require the use of antibodies
and therefore has advantages over ChIP protocols [15]. Thus,
the currently known TF-gene associations are incomplete,
biased, and noisy due to the limitations of experimental tech-
niques. Computational tools to infer missing TF-gene associ-
ations are needed to gain comprehensive understanding of
the gene regulations.

Collaborative filtering methods are a group of computa-
tional algorithms that are widely used in many areas to infer
unobserved associations based on the observed ones with or
without additional information [16]. The early generations of
collaborative filtering methods are based on probabilistic
models and aimed for business concerns, such as recom-
mending products for users in Amazon.com and Barnes and
Noble [17], [18]. First proposed by Paatero and Tapper in
1994, nonnegative matrix factorization (MF) [19] has been a
popular choice for recommendation problems, especially
after the development of fast multiplicative update rules by
Lee and Seung [20], [21]. One of the most successful collabo-
rative filtering applications is the popular Netflix challenge,
where the user-video preferences are predicted using the
past activity of the users [22]. The early collaborative filtering
methods heavily rely on the availability of the information
about past activity, and it is difficult to make predictions
for users without a history of their choices. To overcome
the drawback, later generation collaborative filtering meth-
ods attempt to utilize additional information, including
user-user or item-item similarities [16]. Recently, Yao et al.
developed an one-class collaborative filtering algorithm,
wiZAN-dual, that utilizes both user-user and item-item sim-
ilarity information as well as regularization and imputation
parameters to improve prediction accuracy [23]. FASCI-
NATE is an extension of wiZAN-dual on a multilayered net-
work [24]. REMAP is an application of wiZAN-dual for
biomedical problems [25]. REMAP predicts off-targets of
drugs based on the drug-drug similarity and target-target
similarity as well as the information about the known targets.
In the comprehensive benchmark studies, REMAP outper-
forms other state-of-the-art methods. Thus, we will only use
REMAP as a baseline for the performance evaluation.

As shown in REMAP, biomedical and biochemical asso-
ciation predictions can be modeled as collaborative filtering
problems by replacing users with drugs and items with

targets. Similarly, the unobserved TF-DNA associations can
be predicted using REMAP. However, the drawback of
matrix factorization (MF)-based collaborative filtering is that
the factorized low-rank matrices for both users and items
must have the same rank. That is, the user-side and item-side
latent features must be in the same latent space, which is unre-
alistic, particularly if the number of users and items are very
different. Moreover, the relationship between the user and
the item is modeled by the inner product between two latent
features. The inner product could be too simple to capture
complex nonlinear relationships between two biological enti-
ties. In this study, we present a new weighted imputed neigh-
borhood-regularized tri-factorization algorithm (WINTF), an
extension of REMAP, which allows us to set different feature
sizes for user and items as well as increase the power of
modeling complex relationships among them. We apply
WINTF to the target gene prediction of TF, in which the latent
features of TFs and genes are set into different ranks. In the
benchmark studies, WINTF achieves better prediction accu-
racy for TF-gene association prediction, compared with
REMAP and vanilla tri-factorization method that do not use
weight, imputation, and neighborhood-regularization. Many
of our predicted novel associations are supported by eviden-
ces from the literature. Further application to tissue-specific
TF-gene association prediction will significantly improve our
understanding in transcriptional regulation.

2 RELATED WORKS AND CONTRIBUTIONS

This section is a review of the existing methods for target
gene identification tools and relevant databases, followed by
methods in the similar mathematical framework. Current
TF-related studies mainly focus on prioritizing the TF-DNA
binding peaks to collect the putative TF-gene associations
from ChIP-X experiments and the databases for the collected
TF-gene associations. To the best of our knowledge, there
are few machine learning-based TF-gene prediction tools
that take known TF-gene associations as input to predict
unknown ones. Thus, the method proposed in this paper is
the first machine learning algorithm for the target gene pre-
diction of transcription factors.

Target identification from profile (TIP) is a probabilistic
model that ranks target genes for TFs based on the relative
binding signal strength from ChIP experiments, with an
assumption that the binding signal is normally distributed
[26]. Identifying target genes (iTAR) is an online server, which
is designed to overcome the limitation from the normality
assumption in TIP by applying Gaussian mixture model for
p-value estimation [27]. Covariance based extraction of regu-
latory targets using multiple time series (CERMT) predicts TF
target genes under an assumption that the true target genes
for TFs will show similar response pattern to the TFs [28]. Tar-
getfinder is a tool to predict target genes based on the assump-
tion that the genes with similar expression profiles are likely
to be regulated by the same TFs [29]. These methods either
take ChIP experimental data as input or utilize gene expres-
sion data to compare the input genes. A recent study combin-
ing these ideas predicts functional TF-gene associations by
correlating ChIP data and gene expression profiles [30].

TRANSFAC, a database for TF-gene interactions from
experimental data, has been managed and updated to adopt
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new data across different organisms as well as tissue-specific
regulations [31], [32]. In addition to the information about
TFs, their binding sites, and target genes, TRANSFAC data-
base now contains information about the control of gene
expressions, the source cell line for TFs, and binding sites for
different experimental conditions, if available [33]. JASPAR
is another TF-gene database for matrix-based TF binding sites
from published experimental results [34]. JASPAR was
recently updated to include multiple species in six taxonomic
groups [35]. The encyclopedia of DNA elements (ENCODE)
project, initiated in 2004, aimed to identify all functional ele-
ments in the human genome, which includes TF-gene associ-
ations [36]. ChEA provides a large collection of TF-gene
association data manually curated and computationally
extracted from over 100 publications for ChIP-X experiments
[13]. TRRUST is a more recently developed database for
human TF-gene associations from text-mining a massive
amount of literature abstracts [37]. TRRUST version 2 con-
tains TF-gene associations in mice as well as more associa-
tions for humans [38]. TRANSFAC, JASPAR, ENCODE
project and ChEA databases are listed in Harmonizome, an
integrated knowledgebase about genes and proteins, devel-
oped to facilitate access to and learning from a large amount
of biomedical data [39]. Human transcriptional regulation
interactions database (HTRIdb) is claimed to be a freely avail-
able database containing experimentally verified human TF-
gene associations [40].

As reviewed in the introduction, MF-based models have
been applied to infer unknown associations such as unob-
served drug-target binding. SymNMF is an MF-based
method to integrate and infer missing similarity informa-
tion between drugs and targets from multiple sources [41].
MTF differs from MF in that the input matrix is factorized
into three smaller matrices (e.g., matrices F, G, and S
in Table 1), instead of two (e.g., matrices F' and G' where
r = s). Unlike aforementioned MF or MTF-based ranking
methods, which heuristically optimizes the feature sizes
(e.g., r and s in Table 1), MTF-based supervised clustering
fixes the feature sizes and regularizes the network by prior
knowledge. Hwang et al. developed an MTF-based cluster-
ing method (R-NMTF) for disease phenotypes and genes
regularized by phenotype similarity and protein-protein
interaction data [42]. Park et al. developed NTriPath to clus-
ter cancer types and genes regularized by protein-protein
interaction data [43]. While the output clusters may be used
for certain ranking tasks, these methods require prior knowl-
edge in the number of clusters and correct cluster labels in
addition to the inputs for M(T)F- based ranking methods.
The matrix tri-factorization has been applied to gene func-
tion prediction, patient stratification, and disease module
detection [44], [45].

Compared with existing work, our contributions in this
paper include:

- We develop a new algorithm WINTF, which for the
first time incorporates sample weight, imputation,
and side information into the existing tri-factorization
frameworks [44], [45], making it better handle noisy
and sparse data.

- Wedevelop an efficient optimization algorithm based
on the multiplicative update rule.

TABLE 1
Symbol Definitions and Descriptions
Symbols Definition
m, n Number of unique genes and TFs.
r, s Feature sizes for genes and transcription factors,
respectively. r < m,and s < n.
w Scalar reliability weight. w € [0, 1]
P Scalar imputation score. p € [0, 1]
0, 0° Set of observed and unobserved associations.
Rii.j Element at i row and j column of matrix R.
R Known association matrix.
Rij = 1if (i,5) € O, 0 otherwise. R € R™"
F Low-rank feature matrix for genes. F' € R™*"
G Low-rank feature matrix for TFs. G € R"**
S Low-rank feature interaction matrix. S € R"™**
M Gene-gene similarity score matrix. It is a symmetric,
positive matrix. A/ € R™*™
N TF similarity score matrix, defined similarly to M.
N e R
Dy, Dy Degree matrices for M and N, respectively. Dj; and
Dy are diagonal, positive matrices.
w Weight matrix.
Wiy = 1if (i,4) € ©, w otherwise. W € R™"
P Imputation matrix.
Pij = 0if (i,j) € O, p otherwise. P € R™™"
1xen Indicator matrix containing 1 at every position.
Ly € R4
Ar Regularization parameter. A, € [0, 1]
Ar, A Importance weights for genes and TFs.
tr(M) Trace of matrix M.
M Frobenius norm of matrix M.

Matrices are capitalized and italicized, and scalars are in lower cases.

- For the first time, we develop an accurate machine
learning algorithm for the target gene prediction of
transcription factors.

3 METHODS

3.1 Prediction Method Description

In this section, we first present a mathematical formulation
of the one-class collaborative filtering problem. The optimi-
zation function for our prediction method, weighted and
imputed neighborhood-regularized tri-factorization (WINTF)
in Eq. (1) with the symbols described in Table 1. Then, we
explain how WINTF differs from REMAP, a single-ranked
version of WINTF. We also present the update rules for
WINTEF, based on the multiplicative update rule by Lee and
Seung [20].

2
J = Z W(u,i) (R(u,z') + P(u,i) - (FSGT)(U7))
(usd)

+ X (FIP 4+ [1S1P + 1GIP) M
+ Aptr(FY(Dy — M)F)
+ Aatr(GT(Dy — N)G).

The problem WINTF solves is to find the nonnegative low-
rank matrices F, S, and G that minimizes the optimization
function in Eq. (1). The optimization function above consists
of four terms. Although the formula is slightly different from
that for REMAP, most ideas in the function are the same. The
shared ideas are explained in the following paragraph.
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WINTF is an extension of REMAP. REMAP [25] was
applied to predict off-target drug-gene associations based
on the wiZAN-dual algorithm [23]. REMAP and WINTF
share several ideas. They take the known user-item (drug-
target in REMAP application) associations with user-user
similarity scores and item-item similarity scores. The inputs
are therefore three matrices: user-item association, user-
user similarity, and item-item similarity matrices. The core
MF algorithm tries to find the low-rank matrices containing
the feature vector representations of users and items, such
that the inner product of the matrices reconstructs the
known association matrix. WINTF and REMAP also com-
monly take a penalty weight, an imputation value, a regu-
larization parameter, and importance weights for user-user
and item-item similarity information as user-defined
parameters. The penalty weight indicates the reliability of
the known associations, and the imputation value indicates
the probability of unknown associations to be positive.
They can be either obtained from a priori knowledge, such
as the false positive rate of high-throughput experiments or
tuned as hyperparameters. The last two terms in Eq. (1)
accounts for the homophily effect (i.e., similar users prefer
similar items). The two importance weights Ar and Ag con-
trol how much the corresponding similarity scores affect
the optimization. In both WINTF and REMAP the homo-
phily effect is an important idea. The similarity scores,
which can be measured by external methods (e.g., chemical
structural similarity for different drugs), are used to reflect
the homophily effect by updating the low-rank matrices
so that the feature vectors for two similar users or items
are close in their euclidean distance. More details about
the design of the optimization function are available in
references [25], [46].

The key difference between WINTF and REMAP is that
WINTF finds three low-rank matrices to approximate the
known association matrix, while REMAP and other tradi-
tional MF methods find only two. The optimization function
for REMAP can be obtained by removing the matrix S in
the Eq. (1). Without the matrix S, however, one can easily
see that the matrix inner product FG' must be in the same
dimension as the known association matrix R. Thus, the
matrices /' and G must have the same rank, meaning
the feature size for both users and items are the same. The
single-rank constraint is undesirable unless the actual fea-
ture sizes are coincidentally identical. The feature interac-
tion matrix S makes it possible to set the rank of F' different
from that of G. By introducing the matrix S into the tradi-
tional MF methods, better predictive performances are
expected due to more flexible choices for feature sizes. An
additional feature interaction matrix S necessarily increase
the running time for the algorithm. In a later section we
show that the increased computational cost is affordable in
most modern computers.

The optimization algorithm for WINTF is based on the
multiplicative update rule [20], similar to the algorithm for
REMAP [25]. As in other MF problems, the optimization
problem in Eq. (1) is not convex due to the coupling of F, S,
and G. Therefore, the multiplicative update rule finds a
fixed-point solution for a local optimum of the problem
with the nonnegativity constraint. The update rules for the
three low-rank matrices are the following.

Flur
F [(1 - ’LUp)RGST + wplanGST + /\FA[F] (u,r)
"IN (1~ w)ReGST + wF(SGTGST) + M, F + ArDyF] |
(2)
Gliys)
G [(1 — wp)RTFS + 7~Up]-m><7LFS + AGNG}O&)
(i,s) [(1 — w)R@FS +wG(STFTFS) + \.G + )‘GDNG} (i,5)
3)
S g [(1—wp)FTRG + wp(FTlman)]@;g)
)T PUIN (1 = w) FT ReG + wFT (FSGT)G + A, S] )
4)

The predicted score matrix for known associations, Re, is
defined as follows.

5o [ (FSGT) ., if (u,i) €@
Re i) = {O " otherwise ©)

Note that we use a global scalar weight w and a global sca-
lar imputation p, instead of position-specific weight matrix
W and imputation matrix P. The update rules above are
derived by considering the partial derivatives with regard to
each low-rank matrix, while considering the other two low-
rank matrices constant. Therefore, we update the low-rank
matrices one at a time, while not changing the other two. The
update process under the multiplicative update rules can
be described as a gradient descent method with specially
designed learning rates. The pseudocode for our method is
below in Algorithm 1.

Algorithm 1. WINTF

1. Input matrices: M, N, and R

Input scalars: QO = {r, s, w, p, \;, \p, \¢ } and max_iter
2. Define: fo, f3, f4, f5 from Egs. (2), (3), (4), and (5) above
3. Initialize: Fy, Sy, Gy < RandomUni formMatriz € [0,1]
4. fori = 0 to (max_iter —1)
5 Re;« f5(R,F;,Si,G))
6. Fip1 — fo(Fy,Si,Gi, Ro Q)
7. Giu — f5(Fi, 8, Gi, Re i, Q)
8. 1+1 ‘_f4(E:S27GuR®uQ)
9.
0.

replace NaNs in Fj. 1, Gji1, Siy1 with 0

10. Return: real-valued matrices F, S, G

Once the updates are complete, R, the prediction score
matrix for all TF-gene associations can be calculated by the
inner product of the three low-rank matrices. The prediction
score matrix for unknown associations, R, can be obtained
by subtracting Re from R, which contains prediction scores
for both known and unknown associations.

Rec = R — Re, where R= FSGT.

Fig. 1 summarizes the process of predicting an unknown
gene-TF association (Gene; and TF; in the figure) by
WINTF. The derivation and proof of the update rules with
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T S | FSG score
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Fig. 1. WINTF concept figure. WINTF takes gene-TF, gene-gene, and
TF-TF networks as input, and updates the three low-rank feature matri-
ces, F, S, and G. Once WINTF update process is complete (Algorithm 1),
the prediction score for an unknown gene-TF association (Gene; — TF;)
is calculated by a dot product of the corresponding low-rank features.
Blue and yellow rectangles represent the feature vectors for the gene and
TF, respectively. In other words, blue rectangle is Fi3 .y and yellow rectan-
gleis G,

the justification of using scalar weight and imputation val-
ues are in the following section.

3.2 Theorems and Proofs

In the Section 3.1, we proposed the update rules for the
three low-rank matrices that find a local minimum of the
cost function J defined in Eq. (1). The cost function J is non-
convex. Thus, we update one low-rank matrix at a time,
while considering the others as constant. When S and G are
fixed, the cost function J can be simplified to Jp.

Jp = |[Wo (R+ P) = FSGT)||* + | F|?

(6)
+ Aptr(FT(Dy — M)F),  st.F >0.

The partial derivative of the J» with regards to F is the
following.

1
S Vrd = =-WoWo (R+P)GS" —\pMF

1

2 OF
+W oW o FSGTGST + A\pF + A\pDy,F.

(7

Based on the multiplicative update rule proposed by Lee
and Seung [20], we obtain the update rule for F' as follows.

s s WoWo (R+P)GST + ApMF|,
() 2w\ TW O W @ (FSGT)GST + A F + ArDaFl,,,
®)

In the method section, we proposed simplified update
rules that reduce the computational complexity from the
large dimension of the weight and imputation matrices. The
simplified update rule for Eq. (8) is the Eq. (2).

In the remainder of this section, we first show that the
fixed-point solution of Eq. (8) satisfies the KKT condition, and
that Egs. (2) and (8) are mathematically equivalent. Then, we
show that the cost function in Eq. (6) decreases monotonically
under the update rule in Eq. (8).

Theorem 1. The fixed-point solution of Eq. (8) satisfies the KKT
condition.

Proof. The Lagrangian of Eq. (6) is the following (A is the
Lagrange multiplier).

Ly, = |[W® (R+ P) — FSGT)||” + A || F||?

9
+ Aptr((FT Dy F) — (FTMF)) — tr(AF).
(]
Let- L;, = 0, we obtain the following.
20-WoWo (R+P)GS" + W oW e FSGTGS”"
+ MF 4+ ApDyF — \pMF) = A
(10)

From the KKT complementary slackness condition, we
obtain the following.
[-WoWo (R+P)GS" +W oW e FSGTGSs”

(11)
+ MNF 4+ ApDyF — )\FMF](W) ® F(u,r) =0.

Eq. 12 is the fixed-point solution of Eq. (8), which satisfies
Eq. (1D).

WoW o (R+ P)GS" + A\pMF),
=[WoW o (FSG")GS" + A\ F + ArDyF], .
(12)

Next, we show that Eq. (2) is equivalent to Eq. (8). We use
14,19 and 19 as the indicator matrices for full, observed,
and unQbserved data, respectively, so that 1,,., = 14 =
19 4197, and 1° = R. Based on that, the weight and imputa-
tion values are for unobserved associations only, the equa-
tions below turn the weight matrix W and imputation
matrix P into scalar weight w and scalar imputation value p,
respectively. Note that the weight matrix W contains the
square root of the global weight w on unobserved positions
and zero on observed ones.
WoW o (R+ P)GST

=(1°0R+uwp 19GS" = (R+wp- 1" —wp-19)GST

= (1 —wp) - RGST +wp - 1,,,,GS7,

and

(WoeW o FSGHGs”
=WoWo (R + Rye)GST = (Ro +w- 19 © Rye)GST
= (1 —w)ReGS™ +w- FSGTGS".
Substituting the two equations above into Eq. (8) proves
that Eq. (2) is equivalent to Eq. (8).

Theorem 2. The cost function in Eq. (6) decreases monotonically
under the update rule in Eq. (8).

Proof. To prove Theorem 2, we start from the cost function
Eq. (6). O

According to the auxiliary function strategy [47], H(F,F)
is an auxiliary function of J(F) if it satisfies the following
conditions.
and H(F,F)> J(F).

H(F>F):J(F)a (13)
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Defining F*Y = argminy H(F,F") proves that J(F®)
monotonically decreases since the following condition is
met by the design of the auxiliary function.

J (F(t)) - H(F@),F(t)) > H(F@*D,F@) > J( F(t+) )
(14)

We first find an auxiliary function satisfying the condi-
tions in Eq. (13), and then solve for the auxiliary function,
which is the global minimum of the auxiliary function.

H(F,F)

<

-2

Ms

(u,k)

(W@W@(RJrP))GS ]uk (u,k) <1+10g <F(uk)>

=1

T

Z A Moy F oy Frapy [ 1+ log [ 22t
=1 k=1 FlomFuk)

(W oW e FSGT)GS,

<

(u k)

‘Mg ng G

2D AL+ Z Z
u=1 k=1 u=1 k=1 F(uk)
u=1 k=1 F(u,k)

(15)

It is trivial to show H(F,F) = J(F). To show H(F,F) >
J(F), we name the five terms in Eq. (15) as H1, H2, H3, H4,
and H5, respectively. Then, using the inequality = > 1 +
log (), the H1 becomes the following.

m T

H1> =2 "N [(WoW o (R+ P)GS"], . Flun
u=1 k=1

= —2r[(W O W & (R+ P))GSTF]

(16)
Z Z ]\Jut (v, k)F(u/c —Ar tT(FTMF)
=1
a7
Then, for H3 we get
H3 = \tr(FFT). (18)

For H4,letF(, ;) = F(u’k) Q(u,r) and we have the following.
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(uz

(19)

We use the inequality below, where A, .,, Bixr, Snxk,
and S; . are nonnegative, and A and B are symmetric [48].

n k (AS*B)S?
P) Pt S*) U > (5" ASB)

i=1 p=1 .p)
m. T [)\FDMF] (u, k)F(“ k)

Thus, H5 = T

u=1 k=1

> )\FtT(FTD]\,jF).
(20)

Substituting Eqs. (16), (17), (18), (19), (20) into Eq. (15)
shows that the auxiliary function satisfies the second condi-
tion in Eq. (13). The gradient of the auxiliary function is the
following.

1 9H(F,F)
2 0
WoWo R+ P)GS"] - Fun
Fuk
DM Flu L A - Foup
Flun F (u,k)
N Woweo ﬁSE;TGST](W) - Flup N [AFDMIT](u@ “Flu)
Fluk) Fug
WoW o (R+P)GS" + X\pMF] (1) - Fu
Fuk)
Wowo FSGTGST + /\,,,ﬁ + )\FDMFV](H,,k) “Flu g
" Flup

(21

The Hessian of H(F,F) is a diagonal matrix with positive
diagonal elements. Thus, we can obtain the global minimum
by setting Eq. (21) to be zero, which results in the following
solution.

W oW e (R+ P)GST + ArMF],
(WO W e (FSGTGST + A F + ApDyF)
(22)

Fiugy = Fiugy -

Setting F(*) = F and F() = F proves that the update
rule Eq. (8) monotonically decreases the cost function. With
the equivalence between Egs. (2) and (8), (6) monotonically
decreases under the update rule Eq. (2).

The update rule for G can be proved analogously to the
proof above. The matrix S-equivalent of the cost function
Eq. (6) is the following.

J(S) = tr(—2W @ W & (R + P)GSTFT)

+tr(W oW o (FSGT)GSTFT) + Atr(STS).

Therefore, we choose an auxiliary function for matrix S,
which is missing two terms corresponding to H2 and H5
in Eq. (15). The auxiliary function and its gradient are the
following.
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Setting the gradient to zero, we obtain the global minimum
solution.

[F"(WoW o (R+ P))G],,
[FT(W 0 W © (FSGT)G + A5

2 2
Siig) = S -

Combining the theorems 1 and 2, we proved that the pro-
posed update rules satisfy the KKT condition and converge
to the solution.

4 EXPERIMENTAL SETUP

The TF-gene association data of our choice in this study is
from ChEA, which contains manually curated as well as
computationally extracted associations from more than 100
publications for ChIP-X experiments [13]. The ChEA dataset
contains 386,776 TF-gene associations for 21,585 genes and
199 TFs for human (approximate density 9 percent). The
gene-gene and TF-TF similarity matrices are calculated by
assuming two interacting proteins are related to each other.
The protein-protein interaction data is from the STRING
database, which contains experimentally known and compu-
tationally predicted protein-protein physical interactions
and functional associations (e.g., co-expressed genes) with
reliability scores [49]. Together, they are termed as protein-
protein interaction (PPI). The similarity score between the i'"
and j'" genes (or TFs) is the PPI reliability score divided by
the maximum available score (1,000). If multiple reliability
scores exist for a pair of proteins, they are averaged. This
makes all similarity scores in between 0 and 1, standing for
minimum and maximum similarity, respectively. Sequence-
based protein-protein similarity scores can be used as it was
done in the REMAP application [25]. Two proteins will have
a high similarity score if their BLAST [50] alignment returns
a high score. As a result, 9,207,162 and 12,775 PPI-based non-
zero scores are obtained for gene-gene and TF-TF similarity,
respectively.

To compare WINTF with REMAP, we evaluated the per-
formances of the two methods for the ChEA dataset
described above. We performed 5-fold cross validations to
measure four different performance metrics: area under
receiver operating characteristic curve (AUC), mean aver-
age precision (MAP), half-life utility (HLU), and mean per-
centile rank (MPR). AUC is one of the most widely used
performance measurements that measures how quickly an

#2166
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S ’
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R2 = 0.9991
0 =738.05
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Total number of elements in matrices F, S, and G
(millions)
Fig. 2. Time complexity of WINTF using ChEA data set. Average running
time (blue squares) from five runs of WINTF are plotted according to the
total number of elements in the three low-rank matrices, F, S, and G. The
x-axis is the total number of elements in the three matrices in millions (i.e.,
m xr+rxs+nxs). Within the tested range, WINTF shows approxi-
mately linear time complexity (green dashed line) to the number of matrix
elements. Error bars represent + five times the standard deviations.

algorithm achieves a high true positive rate while keeping
low false positive rates. HLU measures the likelihood that a
user accepts recommendation if the likelihood exponen-
tially decreases with the ranking of recommended items
[51]. MAP measures the average precision for all users at
different true positive rates [52]. MPR is the average percen-
tile rank of positive associations in the test samples [53]. The
higher AUC, MAP, HLU, and the lower MPR, the better
performance. We compared the performance with and
without the similarity score matrices derived from protein-
protein interactions.

5 RESULTS

5.1 Time Complexity

Compared to REMAP, WINTF necessarily require longer
computational time for an additional matrix,S. As we have
done in our previous application using WINTF algorithm
[54], we measured computational time of WINTF using the
ChEA data set. Fig. 2 shows the average running time accord-
ing to increasing number of total elements in the matrices
F.S, and G. The empirical time complexity of WINTF sug-
gests that the running time approximately linearly increases
as the number of matrix elements increases. It also shows that
WINTF jobs on ChEA data set takes approximately 1,100 sec-
onds at the default rank parameters (r = 1000, s = 100).

5.2 Benchmark Evaluation of Prediction Accuracy

Our benchmark tests under different conditions (e.g., differ-
ent parameters and with/without similarity information)
show WINTF outperforms REMAP under all tested condi-
tions (Tables 2 and 3). Table 2 shows that regardless of the
similarity matrices used, WINTF performs significantly better
than REMAP in all four metrics. Table 3 shows that the rank
parameters affect the performances of both algorithms, and
that WINTF outperforms REMAP under any tested hyper-
parameters. Due to the number of parameters for both algo-
rithms, it is impractical to compare the two algorithms with
all possible combinations. Thus, we tested a limited number
of combinations, evaluating the usefulness of different simi-
larity measurements, and the effect of an additional low-rank
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TABLE 2
Performance Comparison for WINTF and REMAP
With Different Similarity Information

Con. Algo. AUC HLU MAP MPR
A WINTF  .763(8.0e-4) 40.7(.394) .295(.003) .259(5.0e-4)
REMAP 717(.001) 31.1(.667) .231(.002)  .300(.001)
B WINTF  .766(6.0e-4) 40.7(.23) .295(2.6e-3) .259(4.6e-4)
REMAP  .726(1.7e-3) 32.0(1.7) .237(7.4e-3) .294(1.5e-3)
C WINTF  .762(7.8e-4) 40.7(.394) .295(.003) .259(5.0e-4)
REMAP .727(0.002) 33.6(.150) .243(.001)  .291(.002)
D WINTF  .762(7.8e-4) 40.7(.394) .295(.003) .259(5.0e-4)
REMAP 717(.001)  30.1(.672) .231(.002)  .300(.001)
E Vanilla MTF  .500(0.0)  5.96(.06) .155(5.0e-4) .320(6.6e-4)

Values are mean and (standard deviation) for 5-fold cross validation
"Condition A: TF similarity scores are based on sequence similarity only, and
gene similarity scores are not used. Condition B: TF similarity scores are the
average of sequence-based and protein-protein interaction-based scores, and
gene similarity scores are based on PPIs only. Condition C: TF similarity
scores are based on PPIs only, and gene similarity scores are not used. Condi-
tion D: No similarity information used. Condition E: Vanilla MTF (w =
1.0,p =X\ = Ap = Ag =0). r = 1000 and s = 100 for WINTF and vanilla
MTF, and r = 100 for REMAP, respectively.

matrix in WINTEF. In our previous study with REMAP [25],
we performed extensive grid searches on the hyperparameter
space, where we found that the optimal parameters are
w = p =\ = 0.1, and max_iter = 100. In our previous
study, alterations on these parameters did not significantly
affect the performance, unless wis set to 1.0 and p, or A, is set
to 0.0, respectively (Table 2, Condition E), or max_iter is fewer
than 50. We found similar trends from grid searches on
WINTF hyperparameter space (Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2020.2968442).

Small, nonzero w, p, and A, values showed reliable perform-
ances with max_iter = 100. The dimension of the feature
interaction matrix (e.g., 7, s) are important hyperparameters
and known to be data-dependent. Our experiments suggest
that it is best to keep » > 500 and s < 150. Therefore, we set
the default hyperparameters as w = p = A, = 0.1, max_iter =
100, » = 1000, and s = 100. With these default parameters,
we observed that A\p ~ 0.01 works best, and A\; has less
impact on performances compared to other hyperparameters.

TABLE 3
Performance Comparison for WINTF and REMAP
With Different Hyperparameters

ICon.  Algo. AUC HLU MAP MPR
A WINTF  .766(6.0e-4) 40.7(.23) .295(2.6e-3) .259(4.6e-4)
REMAP 726(1.7e-3) 32.0(1.7) .237(7.4e-3) .294(1.5e-3)
B WINTFE  .764(5.1e-6)  40.7(.09) .295(1.6e-3) .259(1.1e-6)
REMAP  .726(2.9¢-3) 32.2(1.6) .238(3.7e-3) .294(2.7e-4)
c WINTF  .765(7.6e-4)  40.7(.10) .295(1.5e-3) .259(6.4e-4)
REMAP  .730(1.8e-3) 29.8(.30) .233(1.6e-3) .292(1.6e-3)
D WINTF  .762(6.6e-4)  40.7(.09) .295(1.6e-3) .259(6.4e-4)
REMAP .717(3.2e-3) 30.9(1.7) .231(4.2e-3) .300(3.0e-3)

Values are mean and (standard deviation) for 5-fold cross validation
'Condition A: Default parameters. Condition B: WINTF ranks = (100,100),
REMAP rank = 100. Condition C: WINTF ranks = (100,50), REMAP rank =
50. ConditionD: \p = \g = 0.
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Therefore, we set A\p = 0.01 and Ay = 0.7 as the default
hyperparameters. Both of the gene-gene and TF-TF similarity
matrices used for our WINTF application are based on pro-
tein-protein interactions from STRING, as described in the
method section.

The results in Table 2 further demonstrates that the
novelty of our method comes from the weight, regulariza-
tion, imputation, and side information parameters. It is noted
that when w=1.0,p = A\, = A\p = A\¢ =0, the optimization
function Eq. (1) is equivalent to that of the plain matrix tri-
factorization, J = (R — FSGT)Q. We observe clear perfor-
mance improvements when the weight, regularization,
imputation, and side information parameters are introduced
into the matrix (tri-) factorization methods.

5.3 Evaluation on Independent Test Data
With the choice of parameters and similarity measurements
described above, we performed WINTF on the full ChEA TF-
gene dataset. We first obtained the predicted score matrix R
as described in the method section. To assess the statistical
significance of the predicted scores, we randomly selected
1,000,000 scores in R. Removing the scores for 90,076 known
associations, we plotted a histogram of the 909,924 predicted
scores, which suggested that the predicted scores are not
following a simple distribution, such as Gaussian or expo-
nential distribution (Fig. 3). Thus, we first removed the pre-
diction scores for TF-gene associations that were already
included in ChEA dataset, and we used Epanechnikov ker-
nel to create a distribution that fits the sampled scores as
shown in Fig. 3. Then, we selected the predicted TF-gene
pairs that ranked approximately within top 2 percent (i.e.,
cumulative density is above 0.9808 under the kernel distribu-
tion). Our prediction and selection method returned 495 TF-
gene associations that were not included in ChEA dataset
(Appendix B, available in the online supplemental material).
We searched for TRANSFAC [33], ENCODE [36], and
TRRUST2 [38] databases to evaluate the final prediction
accuracy. As a result, 187 of the 495 (37.8 percent) associa-
tions were found in at least one of the three databases. Con-
sidering that the chance of correct predictions for random
guesses is 9.0 percent based on the density of the ChEA data
set, we obtain an enrichment factor of 4.19 (37.8 percent
divided by 9.0 percent) for our prediction accuracy.

Among 495 predicted novel associations that are not
included in the ChEA training data, a number of them are
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TABLE 4
Predicted TF-Gene Associations by WINTF

TF Gene ICDF Database Reference
MYC NOTCH2 0.99213 ENCODE [55], [56]
MYC ZMIZ1 0.99906 ENCODE [571]
MYC ARID5B 0.99928 ENCODE [58]
MYC BCL6 0.99909 ENCODE, TRANSFAC  [59], [60]
MYC NDRG1 0.98982 ENCODE, TRRUST2 [62]
MYC ST3GAL1 0.9992 ENCODE, TRRUST2 [63]
MYC EFNA5 0.99607 ENCODE [64]
SPI1 BCL6 0.99864 ENCODE, TRRUST2 [65]
SOX2 HES1 0.99993 None [66], [67]
SOX2 NOTCH2  0.99335 None [67]
CREM MEIS1 0.99955 None [68]
AR RUNX1 0.99837 None [69]

'Cumulative distribution function of the Epanechnikov kernel fitted to the
WINTF prediction scores.

strongly supported by published studies. The associations
are listed in Table 4. While the association between NOTCH1
and MYC was previously known from studies regarding
T-cell acute lymphoblastic leukemia and included in ChEA
dataset, NOTCH2-MYC association was not included. Our
prediction method suggests that NOTCH2 may also be
association with MYC. It was suggested that NOTCH?2 and
MYC are related in terms of cellular proliferation in mouse
thymic lymphoma without strong evidence to conclude their
association [55]. More recently, a study concerned with hyp-
oxia-induced signaling pathway showed that NOTCH2-
knockdown murine mesenchymal stem cells cannot properly
proliferate, which can be reverted by overexpression of MYC
[56]. The collaboration of ZMIZ1 and activated NOTCH1 was
found to cause T-cell acute lymphoblastic leukemia in mouse
models, which was proposed to be a result of the interaction
between ZMIZ1 and MYC at downstream [57]. ARID5B
gene, whose role in T-cell acute lymphoblastic leukemia has
been previously unknown, was found to directly bind MYC
enhancer to promote the expression of MYC, which is a
required step for the disease [58]. The concept of double pro-
tein lymphoma, characterized by the co-expression of MYC
and BCL2 or BCL6, has been known to be aggressive [59],
although the MYC/BCL6 biomarker is of less prognostic
value [60]. Possibly due to rarity of studies involving MYC/
BCLS6, the association was not included in the ChEA dataset,
while the MYC-BCL2 association was included. NDRGI,
whose overexpression in tumor cells decreases the prolifera-
tion rate [61], is known to be suppressed by MYC in embry-
onic cells [62]. In a study concerned with genetic linkage in
colon cancer cells, upregulation of glycosyltransferase genes,
including ST3GAL1 by MYC was observed [63]. It was
reported that EFNA5 was upregulated along with other
genes in MYC-knockout mice neural stem and precursor cells
[64]. The physical interaction between SPI1 and BCL6 is
known. Interestingly, BCL6 acts as a repressor that binds to
SPI1 in germinal center B cells [65]. Although the direct asso-
ciation is unknown and thus excluded from ChEA dataset,
SOX2 and HES1 (with other genes) have been studied as
markers of neural stem cells [66]. A more recent study added
evidence that SOX2 and HES1 are at least members of the
same regulatory pathway in rat anterior pituitary cells [67].
In the study, it was also found that SOX2-expressing
cells have significantly lower levels of NOTCH2 expression,

suggesting a potential repression of NOTCH2 by SOX2 [67].
The direct association between CREM and MEIS1 was not
known although they are involved in the myogenesis, the
growth of skeletal muscle. A recent study suggests that
although CREM and MEIS1 may not directly interact, they
seem to regulate the growth process through another tran-
scription factor, NF-Y [68]. A recent ChIP-seq experiment
showed that RUNXI is a target of AR, which is important for
AR-dependent transcription and cell growth in androgen-
dependent prostate cancer [69]. These studies support our
claim that WINTF can predict unobserved, but positive asso-
ciations based on the known associations. NOTCH2-MYC,
ZMIZ1-MYC, BCL6-MYC, and EFNA5-MYC associations are
in the ENCODE database [36], but not in the TRANSFAC [33]
or TRRUST2 [38] database. MYC-NDRG1, MYC-ST3GALL,
and MYC-BCL6 associations are found in both ENCODE
and TRRUST2 databases. ARID5B-MYC, SOX2-HES1, and
CREM-MEIS1 associations are not found in any of the three
databases, suggesting that our method can predict novel TF-
gene associations from known ones with proper similarity
measurements.

6 DISCUSSIONS

The results in Table 2 suggest that TF-gene associations may
be better modeled by using both protein-protein interaction
network and sequence comparison. It is important to note
that using only one type of them (e.g., sequence-based simi-
larity only) does not improve the predictive power of WINTF.
In addition, the predictive performances were not sensitive to
the PPI-based TF-TF network importance weights (Appendix
A, available in the online supplemental material). It implies
that the canonical PPIs included in the database are insuffi-
cient to model gene regulation scenarios where multiple TFs
form a complex to regulare a gene. A more comprehensive
list of PPIs may address such issue. For better performance as
well as interpretability, other types of gene-gene similarity
scores may be used. The similarity may be based on the
sequence alignment scores of the regulatory elements of the
genes, which assumes that the DNA sequences of the regula-
tory elements have evolved to efficiently recruit the TFs. Dif-
ferential gene expression data can also be used to measure
similarities between genes. The hypothesis in such a case is
that two genes showing similar patterns of expression under
the same conditions are likely to be regulated by the same
TFs. A combination of the two types of similarity scores may
improve the predictions. Other biological constraints such as
the relative location of TF and gene in the genome can be
incorporated into the weight and imputation matrices. How-
ever, many of such similarity measurements are tissue- and
context-specific. Unfortunately, we do not have large-scale
tissue-specific TF-gene association data yet. It is noted the
canonical PPIs used in this study are mainly functional asso-
ciations including the co-expressed genes. Although they are
not perfect measurement for the gene-gene similarity, our
benchmark studies and independent validations demon-
strate their utilization.

Our benchmarks in Table 2 demonstrate that the weight,
regularization, imputation, and side information parame-
ters are essential. Without these parameters, the traditional
matrix tri-factorization method shows no predictive power.
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Table 3 also suggest that the improved performance of
WINTF compared to REMAP is from the existence of the
matrix S. While the main purpose of introducing matrix
is to set different ranks for genes and TFs, it is not clear
whether the ranks must be very different. The Condition B
in Table 3 shows that WINTF performs better than REMAP
even if all rank parameters are set to 100. In practice, the
rank parameters are heuristically optimized. On the other
hand, the matrix S can be viewed as a hidden layer intro-
duced to REMAP. Thus, the matrix S may have worked
similarly to the hidden layers for the popular deep learning
methods, characterized by multiple layers of neural net-
works with activation functions and regularization steps.
Increasing the number of low-rank matrices in WINTF to
mimic deep learning may be an interesting future study. A
more interesting combination is to integrate neural network
techniques with matrix factorization, as shown in a recent
study where the matrix inner product is considered an addi-
tional layer to a multilayer neural network [70]. The time
complexity due to the introduction of an additional low-
rank matrix as well as large number of parameters from
multilayer neural network can be overcome by factorizing
smaller submatrices and projecting to the original feature
space [71]. In addition, the algorithm to optimize the cost
function of matrix factorization may be improved. Simulta-
neous perturbation stochastic approximation is a potential
algorithm to improve the performance as well as the speed
of optimization since it requires a dramatically low number
of evaluations per iteration and randomness to potentially
find the global minimum solution [72], [73]. Such work will
enable larger scale applications of the association prediction
method with improved accuracy and interpretability.

7 CONCLUSIONS

In this study, we develop a tri-factorization-based collabora-
tive filtering algorithm, WINTF, that allows users to set
different low-ranks for users and items. Compared with
its single-rank analog, WINTF showed better performances
measured by four different metrics. We apply WINTEF to pre-
dict unobserved TF-gene associations using a collection of
known associations. Many of the predicted associations by
WINTEF are supported by evidence in the literature or listed
in existing databases. Therefore, WINTF is a powerful tool
for TF-gene association prediction, and it can be directly
applied to tissue-specific tasks to yield further refined
predictions.

ACKNOWLEDGMENTS

This work was supported by Grant Number R01LM011986
from the National Library of Medicine (NLM) of the National
Institute of Health (NIH), and Grant Number RO1GM122845
from the National Institute of General Medical Sciences
(NIGMS) of the National Institute of Health (NIH).

REFERENCES

[11 M. Levine and R. Tjian, “Transcription regulation and animal
diversity,” Nature, vol. 424, no. 6945, pp. 147-51, Jul. 10, 2003.

[2] D. Baltimore, “Our genome unveiled,” Nature, vol. 409, no. 6822,
pp- 814-816, Feb. 15, 2001.

[3]
[4]

[5]
[6]

[71

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

135

E. S. Lander et al., “Initial sequencing and analysis of the human
genome,” Nature, vol. 409, no. 6822, pp. 860-921, Feb. 15, 2001.

T. Phillips, and L. Hoopes, “Transcription factors and transcrip-
tional control in eukaryotic cells,” Nature Educ., vol. 1, no. 1, 2008,
Art. no. 119.

P. Collas, “The current state of chromatin immunoprecipitation,”
Mol. Biotechnology, vol. 45, no. 1, pp. 87-100, May, 2010.

V. R. Iyer et al., “Genomic binding sites of the yeast cell-cycle
transcription factors SBF and MBF,” Nature, vol. 409, no. 6819,
pp- 533-538, 2001.

D.S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold, “Genome-
wide mapping of in vivo protein-DNA interactions,” Science,
vol. 316, no. 5830, pp. 1497-502, Jun. 8, 2007.

C. L. Wei et al., “A global map of p53 transcription-factor bind-
ing sites in the human genome,” Cell, vol. 124, no. 1, pp. 207-19,
Jan. 13, 2006.

P. V. Kharchenko, M. Y. Tolstorukov, and P. J. Park, “Design and
analysis of ChIP-seq experiments for DNA-binding proteins,”
Nature Biotechnol., vol. 26, no. 12, pp. 1351-9, Dec. 2008.

D. A. Nix, S. J. Courdy, and K. M. Boucher, “Empirical meth-
ods for controlling false positives and estimating confidence in
ChIP-Seq peaks,” BMC Bioinformatics, vol. 9, Dec. 5, 2008,
Art. no. 523.

G. Tuteja, P. White, ]. Schug, and K. H. Kaestner, “Extracting tran-
scription factor targets from ChIP-Seq data,” Nucleic Acids Res.,
vol. 37, no. 17, pp. e113, Sep. 2009.

M. J. Vogel, D. Peric-Hupkes, and B. van Steensel, “Detection of in
vivo protein-DNA interactions using DamID in mammalian
cells,” Nat. Protoc., vol. 2, no. 6, pp. 1467-78, 2007.

A. Lachmann et al., “ChEA: Transcription factor regulation
inferred from integrating genome-wide ChIP-X experiments,” Bio-
informatics, vol. 26, no. 19, pp. 243844, Oct. 1, 2010.

T. S. Furey, “ChIP-seq and beyond: New and improved methodol-
ogies to detect and characterize protein-DNA interactions,”
Nature Rev. Genetics, vol. 13, no. 12, pp. 840-52, Dec, 2012.

C. D. McClure and T. D. Southall, “Getting down to specifics: Pro-
filing gene expression and protein-DNA interactions in a cell
type-specific manner,” Adv. Genetics, vol. 91, pp. 103-51, 2015.

X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Adv. Artif. Intell., vol. 2009, 2009, Art. no. 4.

G. Linden, B. Smith, and J. York, “Amazon.com recommenda-
tions: Item-to-item collaborative filtering,” IEEE Internet Comput.,
vol. 7, no. 1, pp. 76-80, Jan./Feb. 2003.

T. Hofmann, “Latent semantic models for collaborative filtering,”
ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 89-115, 2004.

P. Paatero and U. Tapper, “Positive matrix factorization: a non-
negative factor model with optimal utilization of error estimates
of data values,” Environmetrics, vol. 5, no. 2, pp. 111-126, 1994.
D.D.Leeand H.S. Seung, “Learning the parts of objects by non-neg-
ative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788-91,
Oct. 21, 1999.

J. Lee, M. Sun, and G. Lebanon, “A comparative study of collabo-
rative filtering algorithms,” 2012, arXiv:1205.3193.

J. Bennett and S. Lanning, “The netflix prize,” in Proc. KDD Cup
Workshop, 2007, Art. no. 35.

Y. Yao et al., “Dual-regularized one-class collaborative filtering,”
in Proc. 23rd ACM Int. Conf. Conf. Inf. Knowl. Manage., 2014,
pp. 759-768.

C. Chen, H. Tong, L. Xie, L. Ying, and Q. He, “FASCINATE: Fast
cross-layer dependency inference on multi-layered networks,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 765-774.

H. Lim et al., “Large-scale off-target identification using fast and
accurate dual regularized one-class collaborative filtering and
its application to drug repurposing,” PLoS Comput. Biol., vol. 12,
no. 10, Oct. 2016, Art. no. e1005135.

C. Cheng, R. Min, and M. Gerstein, “TIP: A probabilistic method
for identifying transcription factor target genes from ChIP-seq
binding profiles,” Bioinformatics, vol. 27, no. 23, pp. 3221-3227,
2011.

C.-C. Yang et al., “iTAR: A web server for identifying target genes
of transcription factors using ChIP-seq or ChIP-chip data,” BMC
Genomics, vol. 17,2016, Art. no. 632.

H. Redestig, D. Weicht, J. Selbig, and M. A. Hannah,
“Transcription factor target prediction using multiple short
expression time series from Arabidopsis thaliana,” BMC Bioinfor-
matics, vol. 8, Nov 18, 2007, Art. no. 454.



136

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[391

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

S. M. Kielbasa, N. Bluthgen, M. Fahling, and R. Mrowka,
“Targetfinder.org: A resource for systematic discovery of transcrip-
tion factor target genes,” Nucleic Acids Res., vol. 38, no. Web Server
issue, pp. W233-W238, Jul. 2010.

C.]J. Banks, A. Joshi, and T. Michoel, “Functional transcription fac-
tor target discovery via compendia of binding and expression
profiles,” Sci. Rep., vol. 6, Feb. 9, 2016, Art. no. 20649.

E. Wingender, “Compilation of transcription regulating proteins,”
Nucleic Acids Res., vol. 16, no. 5 Pt B, 1988, Art. no. 1879.

V. Matys et al., “TRANSFAC : Transcriptional regulation, from
patterns to profiles,” Nucleic Acids Res., vol. 31, no. 1, pp. 374-378,
2003.

V. Matys et al., “TRANSFAC and its module TRANSCompel:
Transcriptional gene regulation in eukaryotes,” Nucleic Acids Res.,
vol. 34, no. suppl_1, pp. D108-D110, 2006.

A. Sandelin, W. Alkema, P. Engstrom, W. W. Wasserman, and
B. Lenhard, “JASPAR: An open-access database for eukaryotic
transcription factor binding profiles,” Nucleic Acids Res., vol. 32,
no. suppl_1, pp. D91-D94, 2004.

A. Mathelier et al., “JASPAR 2016: A major expansion and update
of the open-access database of transcription factor binding
profiles,” Nucleic Acids Res., vol. 44, no. D1, pp. D110-D115, 2016.
E. P. Consortium, “The ENCODE (Encyclopedia of DNA ele-
ments) project,” Science, vol. 306, no. 5696, pp. 636640, Oct. 22,
2004.

H. Han et al., “TRRUST: a reference database of human tran-
scriptional regulatory interactions,” Sci. Rep., vol. 5, Jun. 12, 2015,
Art.no. 11432.

H. Han ef al., “TRRUST v2: An expanded reference database of
human and mouse transcriptional regulatory interactions,”
Nucleic Acids Res., vol. 46, pp. D380-D386, Oct. 26, 2017.

A. D. Rouillard et al., “The harmonizome: A collection of proc-
essed datasets gathered to serve and mine knowledge about genes
and proteins,” Database, vol. 2016, no. 2016, pp. baw100-baw100,
2016.

L. A. Bovolenta, M. L. Acencio, and N. Lemke, “HTRIdb: An open-
access database for experimentally verified human transcriptional
regulation interactions,” BMC Genomics, vol. 13, Aug, 17, 2012,
Art. no. 405.

H. Chen and J. Li, “A flexible and robust multi-source learning algo-
rithm for drug repositioning,” in Proc. 8th ACM Int. Conf. Bioinf.
Comput. Biol. Health Inf., 2017, pp. 510-515.

T. Hwang et al.,, “Co-clustering phenome-genome for phenotype
classification and disease gene discovery,” Nucleic Acids Res., vol. 40,
no. 19, Oct. 2012, Art. no. el46.

S. Park et al., “An integrative somatic mutation analysis to identify
pathways linked with survival outcomes across 19 cancer types,”
Bioinformatics, vol. 32, no. 11, pp. 1643-1651, Jun. 1, 2016.

M. Zitnik and B. Zupan, “Matrix factorization-based data fusion
for gene function prediction in baker’s yeast and slime mold,” in
Proc. Pacfic Symp. Biocomput., 2014, pp. 400—-411.

A. Copar, M. Zitnik, and B. Zupan, “Scalable non-negative matrix
tri-factorization,” BioData Min, vol. 10,2017, Art. no. 41.

Y. Yao et al., “Dual-regularized one-class collaborative filtering,”
in Proc. 23rd ACM Int. Conf. Inf. Knowl. Manage., 2014, pp. 759-768.
D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2000,
pp- 556-562.

C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative
matrix t-factorizations for clustering,” in Proc. 12th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2006, pp. 126-135.

D. Szklarczyk et al., “STRING v10: Protein-protein interaction net-
works, integrated over the tree of life,” Nucleic Acids Res., vol. 43,
no. Database issue, pp. D447-452, Jan. 2015.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” |. Mol. Biol., vol. 215, no. 3,
pp- 403-10, Oct. 5, 1990.

J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proc. 14th
Conf. Uncertainty Artif. Intell., 1998, pp. 43-52.

Y. Li, J. Hu, C. Zhai, and Y. Chen, “Improving one-class collabora-
tive filtering by incorporating rich user information,” Proc. 19th
ACM Int. Conf. Inf. Knowl. Manage., pp. 959-968, 2010.

Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for
implicit feedback datasets,” in Proc. 8th IEEE Int. Conf. Data Mining,
2008, pp. 263-272.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

A. Wang, H. Lim, S. Y. Cheng, and L. Xie, “ANTENNA, a multi-
rank, multi-layered recommender system for inferring reliable
drug-gene-disease associations: Repurposing diazoxide as a tar-
geted anti-cancer therapy,” IEEE/ACM Trans. Comput. Biol. Bioinf.,
vol. 15, no. 6, pp. 1960-1967, Nov./Dec. 2018.

P. Lopez-Nieva, J. Santos, and J. Fernandez-Piqueras, “Defective
expression of Notch1 and Notch2 in connection to alterations of c-
Myc and Ikaros in gamma-radiation-induced mouse thymic
lymphomas,” Carcinogenesis, vol. 25, no. 7, pp. 1299-304, Jul. 2004.
Y. Sato et al., “Notch2 signaling regulates the proliferation of murine
bone marrow-derived mesenchymal stem/stromal cells via c-Myc
expression,” PLoS One, vol. 11, no. 11,2016, Art. no. e0165946.

L. A. Rakowski et al., “Convergence of the ZMIZ1 and NOTCH1
pathways at C-MYC in acute T lymphoblastic leukemias,” Cancer
Res., vol. 73, no. 2, pp. 930-941, Jan. 15, 2013.

W. Z. Leong et al., “ARID5B activates the TAL1-induced core reg-
ulatory circuit and the MYC oncogene in T-cell acute lymphoblas-
tic leukemia,” in Proc. Amer. Soc. Hematol., 2017, pp. 2343-2360.

R. K. Pillai, M. Sathanoori, S. B. Van Oss, and S. H. Swerdlow,
“Double-hit B-cell lymphomas with BCL6 and MYC translocations
are aggressive, frequently extranodal lymphomas distinct from
BCL2 double-hit B-cell lymphomas,” Amer. |. Surgical Pathol.,
vol. 37, no. 3, pp. 323-32, Mar. 2013.

Q. Ye et al., “Prognostic impact of concurrent MYC and BCL6 rear-
rangements and expression in de novo diffuse large B-cell
lymphoma,” Oncotarget, vol. 7, no. 3, pp. 2401-2416, Jan. 19, 2016.
R.J. Guan et al., “Drg-1 as a differentiation-related, putative meta-
static suppressor gene in human colon cancer,” Cancer Res., vol. 60,
no. 3, pp. 749-755, 2000.

X.Quet al., “Characterization and expression of three novel differ-
entiation-related genes belong to the human NDRG gene family,”
Mol. Cell Biochem., vol. 229, no. 1-2, pp. 35-44, Jan. 2002.

K. Sakuma, M. Aoki, and R. Kannagi, “Transcription factors c-
Myc and CDX2 mediate E-selectin ligand expression in colon can-
cer cells undergoing EGF/bFGF-induced epithelial-mesenchymal
transition,” Proc. Nat. Acad. Sci. USA, vol. 109, no. 20, pp. 7776-7781,
May 15,2012.

V. Martinez-Cerdeno et al., “N-Myc and GCN5 regulate signifi-
cantly overlapping transcriptional programs in neural stem cells,”
PLoS One, vol. 7, no. 6,2012, Art. no. e39456.

F. Wei, K. Zaprazna, J. Wang, and M. L. Atchison, “PU.1 can
recruit BCL6 to DNA to repress gene expression in germinal cen-
ter B cells,” Mol. Cell Biol., vol. 29, no. 17, pp. 4612-4622, Sep. 2009.
H. Takanaga et al., “Gli2 is a novel regulator of sox2 expression
in telencephalic neuroepithelial cells,” Stem Cells, vol. 27, no. 1,
pp- 165-74, Jan. 2009.

K. Batchuluun, M. Azuma, K. Fujiwara, T. Yashiro, and M. Kikuchi,
“Notch signaling and maintenance of SOX2 expression in rat
anterior pituitary cells,” Acta Histochem Cytochem, vol. 50, no. 2, pp.
63-69, Apr. 27,2017.

C. V. C. Grade et al., “CREB, NF-Y and MEISI conserved binding
sites are essential to balance Myostatin promoter/enhancer activ-
ity during early myogenesis,” Mol. Biol. Rep., vol. 44, no. 5,
pp. 419-427, Oct. 2017.

K. Takayama et al., “RUNXI1, an androgen- and EZH2-regulated
gene, has differential roles in AR-dependent and -independent
prostate cancer,” Oncotarget, vol. 6, no. 4, pp. 2263-2276, Feb. 10,
2015.

X. He et al., “Neural collaborative filtering,” in Proc. 26th Int. Conf.
World Wide Web, 2017, pp. 173-182.

L. W.Mackey, A. Talwalkar, and M. I. Jordan, “Distributed matrix
completion and robust factorization,” J. Mach. Learn. Res., vol. 16,
no. 1, pp. 913-960, 2015.

J. C. Spall, “An overview of the simultaneous perturbation
method for efficient optimization,” Airport Model. Simul.,
vol. 19, no. 4, pp. 141-154, 1999.

J. L. Maryak and D. C. Chin, Efficient global optimization using
SPSA, in Proc. Amer. Control Conf., (Cat. No. 99CH36251), vol. 2,
pp- 890-894, 1999.



Hansaim Lim received the BA degree in chemistry
with bioinformatics concentration from the Hunter
College of the City University of New York, in 2014,
the MPhil degree in biochemistry from the CUNY
Graduate Center, in 2019. He is currently working
toward the PhD degree in biochemistry in the Grad-
uate Center of the City University of New York,
since 2015. He joined Dr. Lei Xie’s lab at Hunter
College for his dissertation project. His research
interests cover machine learning and deep learn-
ing-based drug discovery.

LIM AND XIE: NEW WEIGHTED IMPUTED NEIGHBORHOOD-REGULARIZED TRI-FACTORIZATION ONE-CLASS COLLABORATIVE... 137

/

Lei Xie received the BS degree in polymer physics
from the University of Science and Technology of
China, P. R. China., in 1990, the MSc degree in
computer science, and the PhD degree in chemis-
try from Rutgers University, USA, in 2000. He was
an associate scientist at Columbia University and
Howard Hughes Medical Institute, USA. He has
worked in pharmaceutical and biotechnology com-
panies Roche and Eidogen, USA for several years.
He was a principal scientist at San Diego Super-
computer Center from 2006 to 2011. He is currently

a professor with the Department of Computer Science, Hunter College, and
The Graduate Center, The City University of New York, and adjuct profes-
sor of neuroscience with Weill Corell Medical College, Cornell University,
USA. His research interests include data mining, machine learning, bio-
physics, systems biology, drug discovery, and precision medicine with
more than 70 technical publications.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


