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Abstract—Computational modelling of metabolic processes has proven to be a useful approach to formulate our knowledge and

improve our understanding of core biochemical systems that are crucial to maintaining cellular functions. Towards understanding the

broader role of metabolism on cellular decision-making in health and disease conditions, it is important to integrate the study of

metabolism with other core regulatory systems and omics within the cell, including gene expression patterns. After quantitatively

integrating gene expression profiles with a genome-scale reconstruction of human metabolism, we propose a set of combinatorial

methods to reverse engineer gene expression profiles and to find pairs and higher-order combinations of genetic modifications that

simultaneously optimize multi-objective cellular goals. This enables us to suggest classes of transcriptomic profiles that are most

suitable to achieve given metabolic phenotypes. We demonstrate how our techniques are able to compute beneficial, neutral or “toxic”

combinations of gene expression levels. We test our methods on nine tissue-specific cancer models, comparing our outcomes with the

corresponding normal cells, identifying genes as targets for potential therapies. Our methods open the way to a broad class of

applications that require an understanding of the interplay among genotype, metabolism, and cellular behaviour, at scale.

Index Terms—Optimisation, genome-scale metabolic modelling, flux balance analysis, cancer metabolism, synthetic lethality

Ç

1 INTRODUCTION

METABOLISM, the set of biochemical reactions that trans-
form various compounds in living cells and organ-

isms, is one of the core systems responsible for maintaining
cellular functions. Metabolic models (reconstructions) of
bacteria have been developed to facilitate the study and
manipulation of biochemical processes [1], allowing the bio-
production of valuable compounds to be optimized through
metabolic engineering [2]. The study of human metabolism,
on the other hand, is becoming increasingly important for
biomedical applications as an approach for understanding
health and diseases. This is enabled by the availability of
human metabolic reconstructions [3], [4], which integrate
extensive metabolic information from various resources.

Achieving detailed kinetic modeling of metabolism is
challenging and requires information about parameters that
are hard to measure experimentally (e.g., kinetic rates and

concentration of metabolites). Thus, Metabolic Flux Analy-
sis (MFA) has emerged as a powerful methodology for esti-
mating the fluxes (flow of material) through different
reactions or pathways in large-scale metabolic networks,
which provides an informative marker of metabolic behav-
ior. A number of computational MFA techniques have been
developed to predict these fluxes under various conditions
(e.g., the availability of different nutrients) and genetic per-
turbations (e.g., mutations in genes associated with the
catalysis of certain reactions) using metabolic models such
as Recon [5]. In particular, Flux Balance Analysis (FBA) [1]
reduces the problem of determining the metabotype (the
fluxes through all reactions in the system) to a tractable lin-
ear program under the assumptions of steady-state and
optimality. Due to its scalability and the informative results
it generates, FBA is widely used, for example to predict
growth phenotypes and adaptation in specific environmen-
tal conditions [6], [7].

Even with state-of-the-art metabolic models (e.g., Recon)
and scalable computational techniques (e.g., FBA), a number
of questions in metabolic systems biology remain open. In
particular, recent evidence suggests that cells adjust their
metabolism to optimize multiple (potentially conflicting)
objectives and ensure flexible adaptation to changes in their
external environments [8], [9]. However, FBA-based meth-
ods usually consider the optimization of a single objective
(e.g., cellular growth), which is represented as a combined
flux (e.g., biomass) or a linear combination of the fluxes
through several reactions (e.g., a number of biosynthesis pro-
cesses). Furthermore, Recon annotates different reactions
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with information about the genes involved in their catalysis,
and these qualitative rules (e.g., a given reaction requires
either gene A or gene B) can be used to study the quantitative
effects of gene expression on metabolism. However,
due to the large number of genes, metabolites and reactions
modelled, addressing all possible combined effects of pertur-
bation remains challenging. Finally, in both metabolic
engineering and disease studies we often seek the gene
expression profiles that could lead to some desiredmetabolic
state. This amounts to solving the inverse problem of what is
typically addressed through FBA, but computational meth-
ods suitable for such studies are still lacking [10].

In this paper, we propose an approach and a pipeline of
methods that address the challenges outlined above. To
study the trade-offs between several metabolic require-
ments, we combine Flux Balance Analysis (FBA) with
multi-objective optimization without weighting and with-
out combining the separate objectives into a single func-
tion. To capture the quantitative effect of gene expression
on metabolism, we adjust the bounds on reaction fluxes in
response to regulation. Combining these two strategies
allows us to study the optimal metabolic states with
respect to all the cellular objectives chosen. To address the
inverse problem, we develop an evolutionary algorithm
that allows us to explore the combinatorial, genome-wide
transcriptomic space in order to identify expression pro-
files that lead to optimal metabolic states. We then apply
clustering and statistical approaches to study the similari-
ties between different optimal expression profiles. Com-
pared to existing methods for linear Pareto-optimization of
metabolic networks [11], [12], our method based on evolu-
tionary algorithms is able to also capture concavity and
discontinuity in the Pareto front, often present due to the
nonlinearity of the metabolic network.

To gain further insights into the relationship between
gene expression and metabolism, we then explore the com-
bined effects ofmultiple-gene perturbations on themetabolic
state. Previously, an FBA-based exhaustive computational
exploration of single-gene knockouts has led to the identifi-
cation of toxic genes that substantially decrease the biomass
flux even when expressed only basally [13]. However,
redundancies and latent associations in the metabolism
might mask such toxicity, necessitating multiple-gene per-
turbation to reveal these combined effects. Here, using our
combinatorial approach we enable the study of double or
higher level gene perturbations, while preserving the quanti-
tative relation between expression and metabolism. We
show that, while computationally intensive, the exhaustive
exploration of pairwise perturbations is still feasible even for
large-scale models such as Recon. Yet, for three or more
genes, such exhaustive approach becomes intractable (e.g.,
for the 2194 genes encoded as part of Recon 2, such an
approachwould require solvingmore than 1.75 billion linear
programs). Therefore, we address this problem by proposing
amethod based on an incomplete algorithm.

Overall, our pipeline increases the predictive capability of
Recon and allows assessing the potential of cell metabolism
when pushed to optimize desired functions. Furthermore, it
predicts at genome-scale the gene expression levels required
to ensure pre-defined levels of those metabolic functions.
The set of methods included in our pipeline are summarized

in Fig. 1. The code is freely available as aMATLAB toolbox at
https://github.com/claudioangione/PGA_and_C-EDGE.

Our methods can be used for mechanistic prediction of
promising high-order sets of genes, thus potentially comple-
menting the trial and error overexpression task usually per-
formed by experimentalists. Additionally, our high-order
study of the combined effect of many genes highlights,
among all redundancies in the model, those that actually
affect the biomass. As a side-effect, our method also predicts
hidden genetic interactions, where the combined effect of
two ormore genes cannot bemeasured or predicted from the
effects of the genes alone. Our multi-objective approach sug-
gests potential changes in the expression profiles with the
aim of changing the phenotype of a cell. Unlike the methods
based on present/absent calls leading to on/off gene knock-
outs, it may be used as a prediction tool for the rapidly grow-
ing CRISPR-Cas9 techniques based on genome engineering
for precise overexpression and partial knockdown [14], [15].

2 METHODS

2.1 Flux Balance Analysis

For large biochemical networks, FBA-based approaches are
often preferred to other mathematical modeling techniques
(e.g. ordinary differential equations) as they do not require
enzyme kinetic parameters and concentrations of metabo-
lites in the system.

Let the network be composed of m metabolites with con-
centration xi, i ¼ 1; . . . ;m and n reactions with flux rates vj,
j ¼ 1; . . . ; n. Let S 2 Rm�n be the stoichiometric matrix (m
rows and n columns). The balance that metabolite concentra-
tions xi must satisfy is _xi ¼

Pn
j¼1 Sijvj; i ¼ 1; . . . ;m;where

Sij is the stoichiometric coefficient of the ith metabolite in the
jth reaction. Under steady-state conditions (homeostatic
assumption) _xi ¼ 0; 8i 2 finternal metabolitesg, we obtain
a balance equation for every internal metabolite:Pn

j¼1 Sijvj ¼ 0, or alternatively Sv ¼ 0.
Each metabolite of the metabolic network is associated

with a constraint, while the reaction rates vj represent the
variables, each of which is bounded by a minimum and
maximum flux rate V min

j and V max
j . Since the matrix S is not

square and n > m with rows and columns linearly inde-
pendent, there are more variables than constraints, and
therefore a plurality of solutions. A final optimal distribu-
tion of fluxes, among all feasible steady-state flux distribu-
tions, is computed after an objective (i.e., a flux rate) or a
linear combination of objectives is chosen to be maximized,
therefore solving the maximization problem

max uœv

such that Sv ¼ 0

V min
j � vj � V max

j ; i ¼ 1; . . . ; n;

(1)

where u is an n-dimensional array of coefficients defining the
linear combination of flux rates selected to bemaximized.

2.2 Bilevel Optimisation With Transcriptomics

In order to add transcriptomic information to an FBAmodel in
a quantitative fashion,wemodel the effect of each gene expres-
sion profile as a change in the lower and upper bounds of the
metabolic reactions, yielding a rerouted flux distribution
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across the network. Each enzymatic reaction is facilitated or
impaired according to the enzyme abundance, which depends
on the gene expression values. Although it often represents a
subject of debate, this assumption in human metabolism is
motivated by the recent evidence that, in mammals, the

mRNA level is the main contributor to the overall protein
expression level, with a good correlation between transcript
level and protein abundance [16], [17]. Furthermore, in most
normal and cancer cell lines, mRNA and protein levels have
been found to be positively correlated [18].

Fig. 1. Analysis of simultaneous gene effects on human metabolism. Starting from an augmented genome-scale human metabolic reconstruction
(A1, see also the Methods section), we substitute Boolean gene-protein-reaction rules (GPR) associations with continuous associations (A2), there-
fore obtaining a model able to account for quantitative gene expression levels, associated with the phenotype through bilevel FBA (A3). Then, we
develop a multi-objective parallel genetic algorithm (PGA) (B) to find the gene expression levels that simultaneously optimize the biomass and
the phosphoglycerate dehydrogenase (PHGDH) reaction rate (B1). Further analyses highlight the difference in gene expression level between these
scenarios of high, mid and low biomass (B2). Controllability analysis, multi-dimensional scaling and co-expression analysis are then executed on the
optimal gene expression profiles. Independently, we propose a set-based sensitivity method, named C-EDGE (C), solved as a single-objective paral-
lel genetic algorithm (soPGA), selecting k-uples of "-expressed and KO genes, suggesting single genes (C1) and groups of genes (C2) with toxic or
beneficial effect on the biomass. Finally, we apply our methods to the study of cancer metabolism (D). We assess cell-specific gene effects in cancer
cells, and we use C-EDGE to compare nine tissue-specific normal and cancer cells.
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More specifically, transcriptomic data is mapped to the
Recon model using three maps with real-valued domain
and range, defined by three rules that allow us to further
constrain the model [19]. Each reaction in the model is con-
trolled by a single enzyme, by two or more enzymes (enzy-
matic complex, represented by a Boolean AND relation), or
by different but equivalent enzymes (isoenzymes, repre-
sented by a Boolean OR relation). We derive the gene set
expression data using the following rules (applied recur-
sively for gene sets where the AND/OR rules are nested):

gsxðaÞ ¼ gxðaÞ; a single gene;

gsxða AND bÞ ¼ minfgxðaÞ; gxðbÞg; a+b enzym. complex;

gsxða OR bÞ ¼ maxfgxðaÞ; gxðbÞg; a,b isoenzymes;

(2)

where gsx is the gene set expression value, and gx(a) and gx
(b) are the gene expression values (expressed as fold
changes) of two genes a and b, respectively. It is worth men-
tioning that, in our pipeline, gx are values generated by the
PGA (see the next subsections).

Standard FBA only takes into account a single objective
or a linear combination of objectives. However, it is now
widely believed that a cell has to perform different, often
conflicting tasks while ensuring a high growth rate [20],
[21]. Trade-off have also been reported to limit the cellular
optimization, e.g., as a result of evolution or adaptation to a
new environment [22]. As proposed by Costanza et al. [23],
a multi-objective approach is more realistic than consider-
ing only the assumption of maximum growth. Let m be the
number of metabolites and n the number of reactions in the
model. The stoichiometric matrix is S 2 Rm�n and v 2 Rn is
the array of flux rates. We solve the following two-level
maximization problem, which allows us to associate an
expression profile with an objective vector v of flux rates:

max tœv

such that max uœv

such that Sv ¼ 0

gsxgi V
min
i � vi � gsxgi V

max
i ;

i ¼ 1; . . . ; n

(3)

where u and t are n-dimensional arrays of weights associated
respectively with the first and second optimization objec-
tives, gsxi is the gene set expression of the ith reaction in the
model, derived from gene expression using Eq. (2). Through
the parameter g we enable modulation of the strength of the
correlation between gene expression and reaction bounds.
Changing this parameter, for values greater than 1, does not
affect the distribution of gene expression found by the PGA
(see Supplementary Information, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2020.2973386 for
further discussion on g). Since we couple this bilevel linear
program with a multi-objective optimization algorithm, t
and u select a single objective each. In accordance with the
original metabolic model [24], the upper and lower bounds
(V max

i and V min
i ) could also assume negative values, e.g.,

when a reaction is reversible.

2.3 Genome-Scale Metabolic Model

We illustrate our methods through a study of human metab-
olism and by identifying cancer-associated pathways. We
adopt a humanmetabolic model obtained by merging Recon
2 [3] (7440 reactions, 5063 metabolites and 2140 genes) with
the model by Quek et al. [24] (7327 reactions, 4962 metabo-
lites and 2169 genes). While the former is a highly curated
but generic metabolic model, the latter provides a smaller
and more specialized model for investigating the metabo-
lism of human cell lines in culture, with 44 additional gene-
protein-reaction (GPR) associations (listed as Supplementary
Information S8 Table, available online).

By merging the two models we obtained a fully annotated
humanmetabolicmodelwith additional associations between
genes and reactions (7440 reactions, 5063metabolites and 2166
genes). Inconsistencies, duplications of metabolite names,
charges, and annotations were corrected manually. We also
replaced three reactions to satisfy stoichiometric balance, fol-
lowing PSAMM [25]. The list of the replaced reactions is avail-
able in Table S9, available online. The Matlab file of the
resulting metabolic model is available as Supplementary
Information, available online.

In the proposed model, we focus on biomass as the first
(inner) objective (i.e., uv in Eq. (3)), and we study separately
high and low biomass scenarios, corresponding to fast- and
slow-growing cells. For both scenarios, we consider the phos-
phoglycerate dehydrogenase (PHGDH) as a second (outer)
objective (i.e., tv in Eq. (3)).We select this objective as PHGDH
is the enzyme catalyzing reactions in the serine synthesis
pathway, together with phosphoserine aminotransferase
(PSAT), and phosphoserine phosphatase (PSPH). Increased
PHGDH flux, and in general serine synthesis pathway activ-
ity, was initially measured in mouse cancer when compared
to normal tissues [26]. Increased serinemetabolism has been a
target of recent research attention as one of the main bio-
markers of cancer, and inhibition of PHGDH has been
reported to block cancer proliferation [27].

2.4 Multi-Objective Optimization

In many optimization problems, the search process for the
best input or parameters needs to take into account more
than one objective. A common approach is to combine the
objectives into a single objective function (e.g., using a linear
combination with fixed coefficients). The main disadvan-
tage of this approach is that the definition of coefficients
in a linear combination requires choosing the appropriate
weight for each objective. If these weights are not available
beforehand, a possible solution is to optimize each objective
separately (using single-objective optimization), and then
estimate the trade-offs as a linear combination of the solu-
tions, where the coefficients can be chosen after visual
inspection of the single-objective solutions. However, this
approach does not permit to recover non-convex sections of
the set of optimal solutions. Furthermore, generally, no
prior knowledge is available on how two or more particular
objectives are balanced in a given cell. Therefore, rather
than establishing a weight for each objective and then com-
bining them into a single objective, we optimize all the
objectives simultaneously through an evolutionary algo-
rithm, providing the final trade-off curve. Throughout this
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paper, we will consider the following two objectives: (i) bio-
mass, and (ii) phosphoglycerate dehydrogenase (PHGDH).

In a given multidimensional objective space, the trade-off
solution set, also called the Pareto front, is the set of points x
such that there does not exist any other point dominating x
in all objectives. Formally, let f1; . . . ;fr be r objective func-
tions to be maximized or minimized. The multi-objective
optimization problem is the problem of optimizing the vec-
tor function fðxÞ ¼ ðf1ðxÞ;f2ðxÞ; . . . ;frðxÞÞ; where x 2 X is
the variable (vector) to be optimized in the search space
X � RN . For a maximization problem, a Pareto optimal vec-
tor x� 2 X is a point such that there does not exist any other
point x that dominates x�. A point xwould dominate x� if:

fiðxÞ � fiðx�Þ; 8i ¼ 1; . . . ; r; and (4)

9j 2 f1; . . . ; rg such that fjðxÞ > fjðx�Þ (5)

(or, equivalently, for a minimization problem, fiðxÞ �
fiðx�Þ; 8i ¼ 1; . . . ; r, with at least one j such that fjðxÞ <
fjðx�Þ). If at least two objectives fi and fj are in conflict
with each other (e.g., when an increase in the first objective
requires a decrease in the second), then the Pareto front con-
tains multiple non-dominated trade-off solutions. In our
case, we consider r ¼ 2 objective functions and N genes,
whose space of expression levels (and more specifically fold
changes) represents the search space.

2.5 Multi-Objective Parallel gzenetic Algorithm (PGA)

Genetic algorithms are advanced heuristic methods that
have been successfully applied to solve hard problems
involving biological optimization of given objective func-
tions in a wide range of parameter selection and control
problems. These include knockout- or partial knockdown-
based metabolic engineering [28], robust systems design
[29], evaluation of response to cancer treatment [30], identi-
fication of cancer glioma tumors [31], or design of chemo-
therapies [32].

To identify the Pareto optimal vector x� 2 X � RN , we
employ a multi-objective parallel genetic algorithm (PGA)
inspired by NSGA-II [33]. This genetic algorithm does not
need weights for the objective functions, which enables us
to seek gene expression profiles corresponding to trade-off
solutions for simultaneous optimization (maximization or
minimization) of multiple reaction fluxes. Each individual
(i.e., gene expression profile) of the initial population is ini-
tialized as ð1; 1; . . . ; 1Þ þ � 2 RN , where � 2 RN is a random
uniform noise in the range ð�1; 1Þ to ensure early variability
in the population. Mutations and cross-over are used to gen-
erate a new offspring of gene expression profiles.

Each individual of the PGA population is mapped onto
the model using Eq. (2), therefore creating a population of
contextualised metabolic models, which is the run using
bilevel FBA in Eq. (3). Hence, for each gene expression pro-
file (individual) generated by the PGA, a vector of flux rates
v 2 Rn is generated, output of the metabolic model corre-
sponding to that individual. Such output is projected onto a
two dimensional space, therefore mapped onto a point
described as a pair of values ðuv; tvÞ, where uv is the first
(inner) objective representing the biomass rate, and tv is the
second (outer) objective representing the phosphoglycerate
dehydrogenase (PHGDH) flux rate. Then, we modify the

population of individuals through mutations and cross-
over using the PGA to run again the FBA and generate
another Pareto optimal front under the new gene expression
values. In this way, we can analyse how the gene expression
profiles affect the rates of biomass and PHGDH as shown in
Fig. 2, exploring the transcriptomic search space by map-
ping each gene expression profile generated by the PGA
onto a 2D metabolic objective space. We set the initial popu-
lation equal to 128 individuals and the maximum number
of populations generated equal to 384 (see the Supplemen-
tary Information, available online for more details).

More details on the PGA settings are provided as Supple-
mentary Information, available online. The full Matlab code
and the steps to execute it are at https://github.com/
claudioangione/PGA_and_C-EDGE/. The code has been
tested on MATLAB R2018b, and we suggest running it in
parallel on a multi-core CPU (with the MATLAB parallel
toolbox), as it has been fully parallelised to improve the
speed of the PGA.

2.6 Controllability Analysis

Controllability analysis is a technique to evaluate how robust
a given solution is, when it undergoes small perturbations
(e.g., changes in one or more genes of the optimal expression
profile found by the multi-objective PGA). From a biological
standpoint, implementing in vitro an overexpression/
underexpression strategy with low controllability coefficient
ensures that the final result is reached even if small errors are
made during the implementation of the in silico strategy.
Therefore, when implementing a solution found by the PGA,
the number andwidth of the errors that can bemadewithout
affecting the final cellular outcome can be estimated by com-
puting the controllability of the solution.

Here, for each solution found by the PGA with a PHGDH
production above the significance threshold mP þ 2sP (mean
and standard deviation of the PHGDH flux rate across the
space sampled by the PGA), we evaluate the controllability to
gene perturbation. Given a point y ¼ ðy1; . . . ; ypÞ in the objec-
tive space, corresponding to the profile x ¼ ðx1; . . . ; xNÞ,
where N is the number of genes in the model and p the
number of objectives, we define its controllability coefficient
P ðyÞ as

P ðyÞþ ¼
Q

j¼1;...;p yþj � yj

���
���

Q
j¼1;...;p yj

�� �� ; P ðyÞ� ¼
Q

j¼1;...;p y�j � yj

���
���

Q
j¼1;...;p yj

�� �� ;

P ðyÞ ¼ max P ðyÞþ; P ðyÞ�� �
;

(6)

where yþ ¼ fðxþ "~1), y� ¼ fðmaxf~0; x� "~1gÞ, ~1 being
the all-ones vector, and f being the function that associates
an expression profile with an objective vector through the
gene-expression augmented FBA in Eq. (3). Note that the
operator max 	; 	f g is applied entry by entry on the two
arrays. In the subsequent analyses we perform a perturba-
tion of " ¼ 0:01 in the gene expression levels.

The controllability index P ðyÞ is a proxy for the relative
instability of a given solution y found by the PGA, and takes
into account the worst output perturbation obtained as a
result of positive and negative gene perturbation. A zero
P ðyÞ index indicates that the phenotypic outcome of the

OCCHIPINTI ET AL.: DISCOVERING ESSENTIAL MULTIPLE GENE EFFECTS THROUGH LARGE SCALE OPTIMIZATION: AN APPLICATION TO... 2343

https://github.com/claudioangione/PGA_and_C-EDGE/
https://github.com/claudioangione/PGA_and_C-EDGE/


expression profile is robust to positive and negative pertur-
bations. The greater the P ðyÞ index, the less robust the point.
The definition in Eq. (6) measures the outcome of the input
perturbation as a percentage of the output perturbation,
therefore taking into account the initial output value; this is
to account for the fact that a strong output perturbation on a
large output value is less noticeable than the same perturba-
tion on a small output value.

Since in our multi-objective setting we do not weigh the
objectives, our calculation of the distance between two
points ya and yb using Eq. (6) in the metabolic space is

inspired from the hypervolume indicator [34] applied to the
first two coordinates of the point, representing the biomass
and the PHGDH. Formally, the distance is defined as

dHðya; ybÞ ¼
Y

j¼1;2

ðyaj � ybj Þ: (7)

Two points with equal hypervolume may lie in different
regions of the objective space, but they represent an equiva-
lent choice for a decision-maker, due to the absence
of weights establishing the relative importance of the

Fig. 2. (a) Full multi-objective optimization procedure. Individuals, corresponding to gene expression profiles, are generated by the parallel genetic
algorithm (PGA). For each individual, a context-specific metabolic model is constructed following the gsx mappings in Eq. (2). This model is then run
using the bilevel program in Eq. (3), obtaining values for the two objectives (biomass and PHGDH), which therefore allow us to map the model onto a
metabolic space. The value of the objectives is then fed back to the PGA for mutation and cross-over, and drives the generation of new individuals to
explore the metabolic space. (b) Multi-objective optimization of biomass and PHGDH. As well as showing the progress of the genetic algorithm, the
plot highlights the portions of the space where human metabolism is able to operate. For instance, there are only a few flux distributions with medium
biomass yield and high PHGDH. Solutions are denoted by progressively colder colors depending on the PGA population in which they have been
generated. From a preventive point of view, the most interesting points are those with low PHGDH and high biomass, representing the case in which
the cell has high biomass but low chance of developing PHGDH-dependent cancer. Conversely, from a therapeutic standpoint, the key solutions are
those with high PHGDH (and therefore potential cancer cells), but impaired cell growth. Overall, we let the PGA generate 384 populations containing
128 gene expression profiles each. The grey area represents the Pareto front identified from an alternative multi-optimization model by Budinich
et al. [37]. The plot shows that [37] covers a smaller area in the biomass-PHGDH metabolic space. In particular, all the solutions in the grey Pareto
front are dominated by the solutions identified by the method proposed here, showing that our approach is able to explore a larger area of the solution
space. The nonzero controllability coefficients R are shown (in log-scale) from lowest (LC) to highest (HC) with “stems” above each point in the bot-
tom panel. The points with lowest nonzero controllability, and therefore high robustness to perturbations, are also the ones with the highest biomass
yield. (c) Highest, Lowest and Mid-Biomass Scenarios. Average of gene expression levels across the three regions of the Pareto front. To distinguish
the highest, lowest and mid-biomass scenarios, we extract a low-biomass and a high-biomass sections from the points sampled by the PGA, defining
the remaining points as mid-biomass. More specifically, the low-biomass points are those whose biomass is negligible (less than 10�10), while the
high-biomass points are those whose biomass is more than mb þ 2sb, where mb and sb are the mean and standard deviation of the biomass values
across all the points sampled. The x-axis shows the fold change of each gene compared to its control value, which is encoded as the baseline value
of 1 within the model. In each region, we also show the box plots with lines indicating 9-91 percent probability mass. To test whether there is a differ-
ence in the variance of the three distributions (highest, lowest and mid-biomass) we run a three-way anova test. The null hypothesis of equal variance
was rejected with p-value = 0.034, therefore leading us to accept the alternative hypothesis that the three distributions have different variances, from
the largest (low-biomass) to the smallest (high-biomass).
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objectives. If such weights are provided, the definition of
distance between two points may be modified accordingly,
and also 	k k1 or 	k k2 (euclidean) distances can be used.

2.7 The EDGE Algorithm

The effect of a single gene presence or absence in a meta-
bolic model can be estimated through the EDGE algorithm
[13]. Formally, the EDGE score of a gene g is defined as

EDGEðgÞ ¼ min
j¼1;...;K

f"ðTg; jÞ � f0ðTgÞ; (8)

where f is the objective of the linear program in Eq. (1)
(without loss of generality, we will assume f represents the
biomass); Tg is the set of reactions associated with g; j ranges
over the K reactions associated with g; minj¼1;...;Kf

"ðTg; jÞ
represents the lowest biomass that is obtainable when one
reaction (among the K reactions associated with g) has its
flux rate set to ", while the other reactions are set equal to
zero; the reactions not associated with g are not constrained;
f0ðTgÞ is the biomass when all the flux rates of the K reac-
tions associated with g are set to zero.

2.8 C-EDGE: Computing Expression-Based Effect
of Single-Gene Perturbations

The EDGE algorithm can be used to perform a systematic
evaluation of gene effects in a metabolic model to correctly
predict growth phenotypes after gene overexpression [13].
However, one of the main limitations of EDGE is that the
perturbation is applied directly to flux rates, and therefore
it represents a perturbation only when the reaction is con-
trolled by a single gene.

To overcome this, we develop C-EDGE (Controlled
Expression-Dependent Gene Effects), which considers genes,
rather than reactions, as fundamental units, and assesses the
role of perturbations in gene expression levels. Unlike the
standard EDGE approach, C-EDGE is not a reaction-based
approach. In fact, it allows predicting growth directly related
to gene expression in a more detailed fashion. Therefore, it
can be applied directly to all genes in the model. Unlike
EDGE, it does not need to exclude complex gene sets, includ-
ing any combination of enzymatic complexes and isoen-
zymes. Since our augmented metabolic model is gene-based,
we define our gene score in C-EDGE1 by setting all gene
expression levels at their initial value, while computing the
difference between the biomass when a gene g is "-expressed
and when it is knocked out. This is equivalent to computing
the sensitivity analysis of g in 0 rather than in its initial value.
Formally, we define:

C-EDGE1ðgÞ ¼fðxð"ÞÞ � fðxð0ÞÞ;
xð"Þ ¼ ð1; . . . ; 1; "; 1; . . . ; 1Þ; xð0Þ ¼ ð1; . . . ; 1; 0; 1; . . . ; 1Þ;

(9)

where xð"Þ; xð0Þ 2 RN , N being the number of genes in the
model, and f represents the cellular objective, in our case
the biomass flux rate. (Note that " and 0 in the gene expres-
sion profiles xð"Þ and xð0Þ must be in the location associated
with g in the gene expression profile.)

Therefore, the C-EDGE1 algorithm is based on the fol-
lowing three steps:

(i) Eq. (2) is used to map the gene expression profiles
xð"Þ and xð0Þ to obtain gsxðxð"ÞÞ and gsxðxð0ÞÞ;

(ii) The metabolic model is then run twice through
Eq. (3), with gsxðxð"ÞÞ and gsxðxð0ÞÞ to compute fðxð"ÞÞ
and fðxð0ÞÞ respectively;

(iii) Finally, C-EDGE1ðgÞ is computed using Eq. (9).
Then the next gene is perturbed and steps (i), (ii) and (iii)

are performed to compute the C-EDGE1 value of that gene.
Hence, by perturbing one gene at a time, and then running
the model in Eq. (3) after applying our gsx map in Eq. (2),
C-EDGE1 allows to investigate the single-gene effect on the
cellular objective.

While the standard EDGE cannot be applied as a differ-
ence between “wild-type plus epsilon” and “wild-type”
fluxes due to difficulty of obtaining internal fluxes for the
wild type [35], C-EDGE1 is suitable for computing the same
difference because it is applied directly to gene values, for
which the wild-type profiling might be easier to perform in
vitro. Therefore, C-EDGE1 can be computed starting from
any gene expression profile and performing one-at-a-time
"-perturbation of gene expression, in order to evaluate the
difference in the biomass or any other flux in the model.

2.9 C-EDGEk: Computing Combined effezct of
High-Order Gene Perturbations

The prediction of combined gene effects enables the identifi-
cation of potential treatments involving multiple targets
(e.g., a single multi-target drug or a combination of single-
target drugs). To this end, we generalize Eq. (9) for a setG of
k genes,G � g1; . . . ; gNf g, Gj j ¼ k, for which we compute the
simultaneous effect on the objective f of the linear program:

C-EDGEkðGÞ ¼ fðxð"ÞÞ � fðxð0ÞÞ;
x
ð"Þ
i ¼ " if gi 2 G; x

ð"Þ
i ¼ 1 otherwise;

x
ð0Þ
i ¼ 0 if gi 2 G; x

ð0Þ
i ¼ 1 otherwise:

(10)

Our idea is therefore to perform a combinatorial evolution-
ary search in the high-dimensional (k � 3) space of all possi-
ble k-uples of genes, to enable the prediction of those tuples
such that their combined C-EDGE score is different from the
C-EDGE scores of its subsets. The search is guided by a single
objective function that represents the difference between the
C-EDGE of a set of k genes and the C-EDGE of all its
k� 1-subsets. We therefore implemented a single-objective
PGA (soPGA) to explore the discrete search space (present/
absence of a gene in a k-uple), and to perform the maximiza-
tion of a single objective function as formalised below.

The aim of the high-order C-EDGEk is to highlight those
combinations of k genes whose C-EDGE score is different
from the C-EDGE score of all subsets with k� 1 genes. There-
fore, given a set of k genes G ¼ g1; . . . ; gkf g, we designed the
following soPGA objective function:

DðGÞ ¼
Y

1�i�k

C-EDGEkðGÞ � C-EDGEk�1ðG n giÞj j: (11)

The sets whose C-EDGEk is different from all the
C-EDGEk�1 are those with nonzero DðGÞ. A single objective
optimization algorithm is therefore sufficient in this case.
An equivalent approach would be to cast this problem as a
k-objective optimization problem, where the k objectives are
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the maximization of C-EDGEkðGÞ � C-EDGEk�1ðG n giÞj j,
and we are interested in any point not lying on any of the
axes, i.e., with all nonzero coordinates. The advantage of
using Eq. (11) is that DðGÞ can be regarded also as the confi-
dence of our prediction for the peculiarity of the subset G.

For the soPGA underlying the high-order C-EDGE, we
considered only the mutation operator. Cross-over, another
commonly used PGA operator, is not biologically meaning-
ful in this context, because it would bring together and
merge two different subsets. Conversely, mutations starts
from a subset and tries to modify it until it reaches a better
combination for the C-EDGE.

Without this C-EDGE approach, if k ¼ 3, evaluating each
triple in Recon 2 would require more than 1.75 billion runs
of the bilevel linear program that simulates the metabolism,
which is in the order of months of CPU time. It is worth not-
ing that the multi-objective PGA was used to explore the
continuous gene expression search-space in order to find
the optimal Pareto solutions, while the soPGA constituting
the C-EDGE algorithm is used to investigate the effects of
presence, absence or "-expression of sets of genes. There-
fore, the search space exploration carried out by the soPGA
contained in C-EDGE is used to select k-uples of genes that
maximise DðGÞ. As a result, it is a discrete search space
(presence/absence of each gene in the k-uple).

Finally, we remark that in the definition DðGÞ we only
consider all the subsets with cardinality k� 1. One might
argue that it is worth computing the same type of difference,
say D0ðGÞ, comparing C-EDGEk(G) with all the subsets ofG,
and not only with the subsets with k� 1 elements. However,
D0ðGÞ would not be indicative of the role of G because we
would not detect all cases in whichC-EDGEk 6¼ C-EDGEk�1.
For instance, the D0ðGÞ approach would fail when
C-EDGEk�2 ¼ C-EDGEk, which would give D0ðGÞ ¼ 0 (and
therefore the k-uple would not be deemed interesting) even
if C-EDGEk 6¼ C-EDGEk�1, and therefore the k-uple should
actually be deemed interesting.

3 RESULTS

3.1 Multi-Objective Optimization of Biomass
and PHGDH

In our augmented Recon model, we use bilevel Flux Balwith
a Parallel Genetic Algorithm. In the bilevel formulation in
Eq. (3), we take as a second-level objective tv the minimiza-
tion/maximization of phosphoglycerate dehydrogenase
(PHGDH) in the model, with the maximum/minimum pos-
sible biomass (first-level objective uv). Both objective func-
tions act as objectives for the PGA. We then take these
objectives and optimize both, finding the trade-off if the two
objectives conflict with each other. For instance, suppose that
v� is a (proposed) solution to the bilevel linear program in
Eq. (3) that maximizes the PHGDH while minimizing the
biomass, therefore estimating the minimum growth rate
achievable by the cell in a given condition. We cast the opti-
mization problem as a vector minimization problem of the
form min uv�;�tv�ð Þ; where the maximization of the
PHGDH has been cast as the minimization of its negation.
Then, the genetic algorithm seeks the best gene expression
profiles that, once encoded as constraints and after Eq. (3) is
solved, lead to the optimal trade-off between these two

objectives. We therefore obtain a Pareto front in the biomass-
PHGDHmetabolic space, where each point corresponds to a
gene expression profile in the genotypic space (Fig. 2b). As a
result, by considering this augmented model in combination
with bilevel FBA, we enable mechanistic evaluation of the
metabotype for any given gene expression profile.

We use the phenotypic space as a means to explore the
regions where the cell can operate, i.e., its metabolic poten-
tial [21]. When all genes are normally active, the model pre-
dicts maximum biomass. Modifying the gene expression
values leads to a reduced or essentially unchanged biomass.
Indeed, a common assumption is that the cell’s expression
pattern is adapted to its external environment, and therefore
a change in its gene expression profile (i.e., change of the
external conditions) causes a reduction in the biomass [36].
The vector minimization problem coupled with the FBA
simulation allows us to effectively explore metabolic poten-
tials with low biomass yield.

The Pareto front represents a set of optimal states that
can be reached by human metabolism. Since a PGA (or, in
fact, any algorithm designed to estimate the Pareto front)
cannot guarantee that better solutions will not be discov-
ered with more populations or with different settings, the
Pareto front can be thought of as a lower bound of optimal
metabolic behavior.

In order to evaluate the robustness of the solutions, we
used controllability analysis (see Eq. (6). Fig. 2c shows that
the metabolic configurations with the highest biomass are
associated with low controllability coefficient (and therefore
high robustness). As a result, the points of the Pareto front
with the largest biomass are suitable candidate solutions for
the decision maker, as their robustness is high compared to
other points in the space. This also suggests that metabolic
configurations of low biomass are highly unstable if com-
pared with medium and high biomass, the latter being the
most stable configuration for human metabolism. Further-
more, during the exploration of the solution space by the
PGA, the low-biomass regions were the most difficult to
reach through its in silico genetic engineering, as the Pareto
optimization algorithm was not able to reach areas of negli-
gible biomass and low PHGDH.

3.2 Optimization-Driven Sampling of the Metabolic
Landscape

Starting from the metabolic configurations found by the
PGA, we investigate the average gene expression level in
three scenarios (lowest biomass, highest biomass, and mid-
biomass). To distinguish these scenarios, we extract a low-
biomass and a high-biomass sections from the points sam-
pled by the PGA. We defined as low-biomass points those
whose biomass is negligible (less than 10�10), while as high-
biomass points those whose biomass is more than mb þ 2sb,
where mb and sb are the mean and standard deviation of the
biomass values across all the points sampled.

We ran a three-way analysis of variance [38] to test
whether there is a difference in the variance of the three dis-
tributions (high, mid and low biomass). The null hypothesis
of equal variance was rejected with p-value = 0.034, there-
fore leading us to accept the alternative hypothesis that the
three distributions have different variances, with the high-
biomass configurations showing the smallest standard
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deviation in their gene expression levels (Fig. 2c). This indi-
cates that the way to reach high biomass values is not sim-
ply overexpressing all genes to a very high level, as one
might expect from a first analysis of the Recon model.
Indeed, increasing the functioning rate of the biomass-pro-
ducing machinery also increases the formation of byprod-
ucts, that need to be excreted within the current capabilities
of the metabolic network.

Furthermore, we use a similar lowest/mid/highest bio-
mass class separation to show the average expression level
suggested by the PGA in the three scenarios (Table S6, avail-
able online). In this way, we allow the analysis of the
expression level of single genes in all cases. The most over-
expressed gene when moving from the low-biomass to the
high-biomass metabolic landscape is SGMS1, whose expres-
sion is significantly altered in different types of cancer [39].
Conversely, the gene undergoing the largest underexpres-
sion when moving from the low-biomass to the high-bio-
mass metabolic landscape is GMDS, whose decreased
activity has been previously linked with resistance to
TRAIL-induced apoptosis, and therefore increased tumor
development and metastasis [40]. For both genes, our
results prove a high sensitivity to changes in the biomass.
Finally, with the goal of estimating the co-regulation of
genes across different regions of the metabolic space (and
specifically high/low biomass), we defined a distance
between genes based on the correlation between their
expression levels across the points sampled by the PGA. If p
and q are two vectors representing the expression levels of
two genes across the points sampled, we define a distance:

dðp; qÞ ¼ 1� ðp�~1Þðq �~1Þ
pk k qk k ; (12)

where ~1 indicates the all-ones vector, and 	k k is the euclid-
ean norm. This definition allows us to capture the correla-
tion of two gene expression profiles with respect to the
deviation from the wild-type all-ones expression profile. By
repeating this process for all the pairs of genes, we build a
dissimilarity matrix Dpq ¼ dðp; qÞ, and a weighted distance
graph with genes as nodes, and edges ðp; qÞwhose weight is
the distance dðp; qÞ. In Figs. S2 and S3, available online, we
use the low/high biomass separation of the metabolic space
to perform hierarchical clustering applied in these two sub-
spaces, therefore highlighting clusters of genes in different
metabolic scenarios (see Supplementary Information, avail-
able online for more details).

3.3 C-EDGE: Effects of Single-Gene Perturbations

C-EDGE enables exact tests of toxicity on pairs, triplets (or
larger sets) of genes. A gene is neutral if the cellular objective
is constant regardless of the gene being KO or forced to be
"-expressed. It is beneficial if the cellular objective is reduced
when the gene is knocked out, while it is toxic if the cellular
objective is increased when the gene is knocked out. We
take into account the biomass as the cellular objective. " is
an infinitesimal perturbation but it cannot be arbitrary due
to the finite precision of the floating-point representation in
Matlab. We took " ¼ 10�2 as a gene perturbation, which in
turn produces a perturbation in the order of 10�6 for the
flux bounds according to Eq. (3).

By perturbing one gene at a time, and then running the
model using Eq. (3) after applying our gsx map in Eq. (2),
we identified seven genes as highly beneficial (Table 1). The
most sensitive gene, CMPK, takes part in 40 biochemical
reactions. The genes SPTLC1, SPTLC2 and SGMS1 are part
of the sphingomyelin biosynthetic process, which has been
previously identified as a target for cancer therapy [41].

3.4 C-EDGEk: Effects of High-Order Gene
Perturbations

Using C-EDGEk, we investigate the combined effect of high-
order sets of gene perturbation on the metabolism. First, we
tackle the problem of computing the combined effect of
pairs of genes by defining a new single-objective PGA
(soPGA, with objective function DðGÞ, see Methods). Specif-
ically, we are interested in those sets of pairs of toxic genes
that become non-toxic if activated together. Among these
pairs of genes, three pairs are found by the soPGA to have a
surprising behavior of "-activation; namely, they are
remarkably beneficial if "-activated as a pair, but both genes
are slightly toxic if "-activated one at a time. These three
pairs detected by our method are the only pairs showing
this behavior, as proved by the extensive computation of C-
EDGE2 that we perform in Table S2, available online.

In Fig. 3, we show the behavior of the first pair of genes
(DTYMK, SLC25A19) in the human metabolic pathways,
extracted from the BiGG database [42]. An "-gene expres-
sion of both genes causes a decrease in the biomass. This
interaction is due to the fact that dTDP needs to be pro-
duced and then transported into the mitochondrion from
the cytosol. If both reactions are impaired, the metabolism
is not able to compensate and the production of mitochon-
drial DNA is impaired, causing a decrease of biomass to
0.61 h�1. In Fig. 4, we show the behavior of the pair (GUK1,
SLC25A19). The interaction between these genes is due to
the shared metabolite dGDP. The lack of both enzymes also
affects mitochondrial DNA, in a more severe way with
respect to the first pair. The biomass is decreased to
0.22 h�1. Finally, the third pair (DEGS1.1, DEGS1.2), shown
in Fig. S1, available online, is a pair of transcriptional var-
iants of the same gene DEGS1. This kind of interaction is
due to the fact that the conversion of dihydroceramide into
N-acylsphingosine is key for the growth of the cell, and at
least one of the two reaction branches must be active.

TABLE 1
C-EDGE Score Computed on Single Genes by

Perturbing of " ¼ 0:01 One Gene Expression Level at a Time

Entrez ID Gene name C-EDGE Reactions

51727.1 CMPK 0.130973319 40
1717.1 DHCR7 0.09803441 3
7298.1 TYMS 0.076388358 1
9489.1 PGS1 0.06862476 1
10558.1 SPTLC1 0.057188608 1
9517.1 SPTLC2 0.057188608 1
259230.1 SGMS1 0.057188608 1

Only seven genes have non-negligible C-EDGE score. Different values of "
caused only changes in the values of the score, but not in the members of the
list, showing that the method is fully robust to changes of the perturbation.
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Finally, we applied C-EDGE to identify sets of genes
whose over- or underexpression impedes cell proliferation
(“toxic” genes), and those sets of genes whose activation is
highly beneficial for the biomass. With the C-EDGE algo-
rithm applied to sets of three genes (Table S4, available
online), we were able to suggest sets of genes where the C-
EDGE3 score of the set is different from all the three C-EDGE2

scores of the sub-pairs. Interestingly, we found some sets of
genes (e.g., {SLC7A10,FUCA1, SLC40A1}) that are toxic as a
set, although the three sub-pairs are beneficial to the biomass.

To check consistency between the results obtained
through optimization and those obtained with C-EDGE, we
applied multi-dimensional scaling to the low-biomass and
high-biomass section of the Pareto front (see Supplementary
Information, also Fig. S4, available online), also highlighting
the position of the seven genes with the highest C-EDGE1

score. As expected, the seven highly beneficial genes are
more central in the high-biomass case. We finally carried
out further statistical analysis on the Pareto front to high-
light its relationship with C-EDGE (see Supplementary
Information, available online).

As shown in Figs. 3, 4 and (S1, available online), our
method proves useful to infer lethal combinations of reac-
tions that are not directly related, and are not part of the
same pathway, as well as crucial isozymes for the produc-
tion of biomass. As a result, C-EDGE2 and higher order
C-EDGEk are able to compute the coupled robustness of
pathways with respect to the overall cell metabolism, and to
identify hidden lethal interactions between pathways that
impair the production of biomass.

We remark that these results are unlikely to be found by
chance or with a visual inspection of the metabolic map.

While the first pair (Fig. 3) shares keymetabolites for the bio-
mass, and it may therefore seem straightforward to attribute
a key role for the pair, a large number of reactions also
share the samemetabolites. For instance, the number of reac-
tions in which the ATP is involved in the cytosol is 335,
which means that, assuming one gene per reaction, up to
335
2

� � ¼ 55; 945 pairs of genes could be strong candidates for
showing the same surprising behavior we found for this pair.

For k � 3, systematically exploring the space of all possi-
ble combinations of genes and evaluating the effect of their
perturbation on the metabolism would be generally infeasi-
ble due to combinatorial explosion. C-EDGE would still
require a relatively large amount of CPU time but, as shown
with k ¼ 3, it can dramatically decrease the time needed to
explore this Boolean search space, also by proposing
k�uples as soon as they are found during the generation of
the populations within the soPGA.

3.5 Differential Analysis of Nine Tissue-Specific
Cancer Models

In order to test C-EDGE on various cancer models, we use
our framework to perform comparative metabolic analysis
in the same tissue and across different tissues for cancer and
normal cells. We use the genome-scale models of nine tissue-
specific cancermodels byNam et al. [43], obtained fromAffy-
metrix and Illumina Hiseq RNA-seq platforms, where the
affy package and GIMMEwere used to generate eachmodel.
Table S10, available online reports the details of each model
including the number of reactions, metabolites and genes.

By considering tissue-specific models as a case-study of
C-EDGE, we provide hypotheses on the molecular basis of
cancer for nine tissue-specific metabolic models, obtained
using gene expression profiles of primary cancer cells and
the corresponding normal cells [43]. Importantly, themethod
we propose seeks information on genes taking into account

Fig. 3. C-EDGE2 detects long-range pathway interactions. DTYMK is
responsible (alone) for dTMP kinase and nucleoside-diphosphatase
(dUDP). SLC25A19 is responsible (alone) for 64 transport reactions,
including the dUDP reaction associated with DTYMK. The products and
reactants in common between the reactions controlled by DTYMK and
those controlled by SLC25A19 are ADP, dTDP, ATP (here both reac-
tions are reversible, therefore the terms reactant and products are inter-
changeable). A further analysis on the topology of the network justifies
this behavior found by C-EDGE2: if the expression of both genes is epsi-
lon, there is (i) "-production and (ii) "-transport (SLC25A19 is a deoxynu-
cleotide transporter) of dTDP into the mitochondrion from the cytosol,
thus impairing mitochondrial DNA replication. In the absence of mito-
chondrial DNA, the biomass production is severely impaired. If at least
one of them is fully working, the biomass is not impaired, irrespective of
the expression level of the other gene of the pair.

Fig. 4. C-EDGE2 detects short-range pathway interactions. GUK1 is
responsible (alone) for deoxyguanylate kinase (dGMP:ATP) and guany-
late kinase (GMP:ATP). SLC25A19 is responsible (alone) for 64 trans-
port reactions, including dATP, where the ATP is associated with GUK1.
In this case, C-EDGE2 retrieved a nontrivial relation between two path-
ways. dGDP is involved in both reactions, as well as ATP and ADP.
While this behavior requires further experimental validation, we can
speculate that the key role is played by dGDP, since ADP and ATP are
widely diffused metabolites and can therefore be easily replenished by
alternative reactions.
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only the effect of their expression level on the metabotype,
and not the expression level itself. In Tables S7 and S11, avail-
able online, we list the genes detected as beneficial (positive
C-EDGE score), neutral (zero C-EDGE score) or toxic (nega-
tive C-EDGE score) for each of the nine metabolic models in
cancer and normal configurations. C-EDGE computes the
metabolic effect of the perturbation of single genes in the
model.

We find that the gene CRLS1, controlling cardiolipin syn-
thase, is the only gene with positive C-EDGE score in all
normal cells and in all cancer cells. Cardiolipin is a phos-
pholipid at the heart of mitochondrial metabolism. It is
found mostly in the inner mitochondrial membrane and
plays a pivotal role in ensuring mitochondrial function. Our
finding is confirmed by studies that correlate changes in car-
diolipin content or composition with most cancers [44].
More specifically, this correlation is due to the fact that
energy metabolism is impaired in most, if not all, cancer
cells, independent of tissue origin. Moreover, tumour-
related metabolism and the mitogenactivated protein kinase
(MAPK) signaling pathways were found to be enriched
with CRLS1-coexpression genes. CRLS1 has also been clas-
sified as novel tumor suppressor involved in regulating
lipid and selenoamino acid metabolism in the tumour
microenvironment [45].

From the comparison of the nine models, CMPK resulted
as a neutral gene for the normal liver cell, while is always
with positive C-EDGE score in most of the other models.
Cytidine monophosphate kinase (CMPK), a member of the
nucleoside monophosphate kinase family, plays an impor-
tant role in the biosynthesis of nucleoside metabolism and
tumour development. Furthermore, knock-down of CMPK
significantly inhibits cancer cell proliferation, migration and
invasion [46].

Phosphatidylglycerophosphate synthase (PGS1) is in six
cases neutral for cancer cell, but negative for the normal
cell; it catalyzes the first step in the biosynthesis of the mito-
chondrial phospholipid cardiolipin (finalized by CRLS1).
PGS1 has been classified as a potential target that prevents
cell growth, which also supports our findings [47].

The sphingomyelin synthase 1 gene (SGMS1) has been
classified by the model as beneficial for all types of cancer.
Indeed, SGMS1 is one of the genes, whose expression is
often altered in cancer [39]. It plays a crucial role in cancer
since it controls the inhibition of the proliferative signaling
pathways in cancer cells. In addition, it has been shown that
the activation of SGMS1 increases saturated fatty acids
incorporated in a number of cancer cells [48].

Finally, biotinidase (BTD) was identified as beneficial for
breast, kidney, liver and lung cancer cells. This is supported
by several studies that report BTD as novel marker in cancer
[49], [50]. Our pipeline can also offer routes to predict gene
targets for potential drug development. For instance, in
both the breast cancer cell and in the lung cancer cell (ade-
nocarcinoma), an overexpression of MLYCD was correctly
detected to be beneficial for the cancer cell, while being toxic
for the normal cell. This result has been experimentally
proven by other in silico experiments [51], therefore sug-
gesting MLYCD as a key target to inhibit in order to selec-
tively impair proliferation in cancer cells while not affecting
normal cells.

3.6 Comparisons With Previous Approaches

We compared the biomass and PHGDH flux rates reported
in Fig. 2 with those obtained by running the method pro-
posed by Budinich et al. [37]. The latter is based on bilevel
optimization and it is carried out using BENSOLVE [52],
which computes a set of directions and points describing
the image of the efficient points. This algorithm provides
exact solutions by calculating the objective space and identi-
fying the vertices, which corresponds to Pareto optimal
points. We ran the model proposed in [37] in exactly the
same setting and on the same metabolic model adopted in
our approach. First, we used Bensons algorithm for multi-
objective flux balance analysis (MO-FBA). Then, we ran the
BENSOLVE solver to investigate the solution space.

The grey area in Fig. 2b shows the search space covered
by the method presented in [37]. The points in the Pareto
front obtained using the method proposed by Budinich et al.
[37] are all dominated by the Pareto front calculated by the
methodology proposed here, which also includes biomass
optima that are not reached by Budinich et al. Although this
indicates that the method proposed in Budinich et al. does
not cover the whole area of the Pareto front identified by
our method, the computational cost is considerably lower
than our PGA approach. Hence, it provides a highly effec-
tive solution for a fast estimation of a lower bound of the
Pareto front in cases of low computational capacity or lim-
ited available computational time.

Our method is also different from previous works that
consider multi-objective optimization with single-gene
knockout [11], [12], [13] since it allows exploring double or
higher level gene perturbations with a non-linear approach
providing new insights into pathways interactions (Figs. 3
and (S1, available online)). This is due to the integration of
the PGA and C-EDGE with metabolic modelling, which
allows us to identify optimal solutions for simultaneous
non-linear optimization problems.

Finally, to show the added value of C-EDGE compared to
the standard EDGE, we also ran the original EDGE algo-
rithm [13] on the augmented Recon 2 model (Table S1, avail-
able online). The EDGE algorithm identified only two non-
negligible genes: CRLS1 and SGMS1, which are involved in
only one reaction. Both genes were also detected by C-
EDGE in the augmented Recon 2 model (Table 1) or in the
cancer-specific application (Tables S11, available online).
Furthermore, the standard EDGE was not able to detect two
of the genes involved in more than one reaction (i.e., CMPK
involved in 40 reactions and DHCR7 involved in 3 reac-
tions), which were all detected in our C-EDGE approach.
This is due to the fact that the EDGE algorithm cannot be
run at gene-level on isozymes or enzymatic complexes since
it is based on flux rates’ perturbations. Hence, it represents
a single-gene perturbation only when the reaction is con-
trolled by a single gene. Conversely, C-EDGE takes genes,
rather than reactions, as fundamental units. In this way, we
can assess the role of perturbations directly at gene level.

4 CONCLUSION

Despite often being recognized as a consequence of the state
of a cell, metabolism is now widely accepted to play a cen-
tral role in deciding the cell behavior [43], [53]. Recent evi-
dence suggests that complex biological outcomes, including
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onset of diseases, are often the result of the simultaneous
regulation of multiple genes. To this end, in this work we
took a multi-perturbation and multi-objective perspective.
We proposed a pipeline of methods for optimization and
analysis of gene expression and its effects on human metab-
olism. We used a manually curated and improved version
of the human metabolic model Recon 2, augmented with
quantitative transcriptional regulation. Our method can be
used for the mapping of gene and protein expression onto
the metabolism in a continuous fashion, without the need of
thresholds for the Boolean status of low/high protein abun-
dance [54].

Within the same pipeline, we proposed C-EDGE, a
method based on a single-objective genetic algorithm to
detect toxic, neutral, or beneficial sets of genes in the global
metabolic model and in its tissue-specific versions. Previous
methods for gene overexpression or knockout involved
only single genes (e.g., the ASKA library [55]), pairs of genes
(e.g., double knockout analysis [56] or synthetic genetic
arrays [57]) with time-consuming procedures due to combi-
natorial explosion.

Existing experimental methods to predict the effect of the
simultaneous perturbation of a set of genes are labor-
intensive tasks. The main problem faced by these techniques
is the scalability to sets of genes, becoming extremely chal-
lenging in three-wise gene analyses. In fact, although compu-
tational approaches for pairs of genes have been proposed
[30], even studying synthetic lethality for three genes becomes
computationally intractable. Our high-order C-EDGE can
therefore dramatically improve predictions of cancer genes in
cell-specificmetabolicmodels. It can easily be applied to iden-
tify synthetic lethality and synthetic dosage lethality for high
order k-uples of genes, from a gene-based perspective rather
than from a reaction-based perspective [58].

Using the high-order C-EDGE on nine tissue-specific
cancer and normal models, we found that the importance of
a perturbation of a single gene can vary from cancer to
cancer, and also at different stages of the same type of
cancer [43]. The genetic modifications and the highly toxic
and beneficial genes were not consistent across different
cancer types. We remark that all our C-EDGE computations
are performed directly on genes rather than on reaction
fluxes. Therefore, compared to similar approaches [13], [43],
we are able to analyze reactions controlled by isoenzymes
or enzymatic complexes. We also showed how C-EDGE2

and the high-order C-EDGEk are able to detect cases where
a combined effect of different genes can lead to lethal conse-
quences for the cell.

Our approach can be used on normal/cancer pairs of
models to predict environmental or transcriptomic states
that may reduce the proliferation rate of cancer cells. For
instance, one can evaluate the cancer and normal metabo-
type associated with gene expression profiles in various con-
ditions. With a multi-objective optimization algorithm, this
allows seeking the environmental conditions that minimize
the growth of cancer cells, while also minimizing the effect
on normal cells. Further applications of our method are dis-
cussed in Supplementary Information, available online.

Manipulating genome and regulating gene expression
finds applications in the reconstruction of engineered biolog-
ical systems,with possible applications to drug development

and human gene therapy [59]. We are able to quantitatively
predict the combined effects of any set of genes (toxic, benefi-
cial or neutral), which are not predictable from the analysis
of the effects of the single genes on the growth rate. Pairwise
and higher-order (k � 3) detection of combined gene effects
is a desired feature in drug discovery, as it enables the inves-
tigation of treatments effective for multiple targets (e.g., a
single multi-target drug or a combination of single-target
drugs). This is especially useful in cancer therapeutics,
where the target is an optimal dosage from a multiobjective
standpoint, which maximizes efficacy and minimizes toxic-
ity (therefore, multi-optimal solutions ensure high therapeutic
index). Most importantly, we are able to identify high-order
overexpression combinations of k genes whose effect on
the phenotype is different from that of all subsets with
k� 1 genes.

The field of transcription modulation is experiencing a
fast growth phase due to the recent advances in the
CRISPR-Cas9 technology, which can be repurposed for reg-
ulation of the gene expression profile of a cell. Methods to
find knockout strategies are successfully guiding metabolic
engineering [60], [61], and general recent advances in mam-
malian cell engineering have been reviewed elsewhere [62],
[63], [64]. Likewise, computational biology will soon need
to address the lack of methods to guide genetic modulations
of expression, where the considerably larger search space
will likely require using metabolic modelling in combina-
tion with advanced machine or deep learning methods [65].
Our method may offer a route to find the best gene modula-
tions (overexpression or partial knockdown) to carry out on
multiple genes and towards multiple cellular objectives. For
instance, expression vectors found with our method can be
potentially used as a guide for CRISPR-Cas or CombiGEM
systems [66], which have already proven successful in edit-
ing and modulating expression simultaneously across the
genome [67], [68], e.g., to prioritize therapeutic targets in
cancer cells [69].
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