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Abstract—RNA-binding proteins (RBPs) have a significant role in various regulatory tasks. However, the mechanism by which RBPs

identify the subsequence target RNAs is still not clear. In recent years, several machine and deep learning-based computational models

have been proposed for understanding the binding preferences of RBPs. These methods required integrating multiple features with raw

RNA sequences such as secondary structure and their performances can be further improved. In this paper, we propose an efficient

and simple convolution neural network, RBPCNN, that relies on the combination of the raw RNA sequence and evolutionary

information. We show that conservation scores (evolutionary information) for the RNA sequences can significantly improve the overall

performance of the proposed predictor. In addition, the automatic extraction of the binding sequence motifs can enhance our

understanding of the binding specificities of RBPs. The experimental results show that RBPCNN outperforms significantly the current

state-of-the-art methods. More specifically, the average area under the receiver operator curve was improved by 2.67 percent and the

mean average precision was improved by 8.03 percent. The datasets and results can be downloaded from https://home.jbnu.ac.kr/

NSCL/RBPCNN.htm

Index Terms—Convolution neural network, deep learning, evolutionary information, RNA-binding protein, sequence motifs

Ç

1 INTRODUCTION

RNA binding site or binding motif is a subsequence of
RNA where the binding between the RBP and its RNA

subsequence targets take place. Thus, identifying these
binding sites helps for a better understanding of the pro-
cesses of the post-transcriptional modification. RNA-bind-
ing proteins (RBPs) are extremely engaged in different
regulatory mechanisms, such as gene splicing and localiza-
tion, and providing significant functional data for patient
healthcare [1]. It has been observed that RBPs have a key
function in several important biological processes [1], [2],
[3], [4], [5], [6], [7], [8]. Therefore, the search for binding RBP
sites is a vital study objective.

Different high-throughput RBPs detection technologies
have been introduced such as CLIP-Seq [9], PAR-CLIP
[10], RIP-Seq [11], but they still require long processing
time and high cost. However, these technologies provide
the key bases data for developing powerful computational
models [12], [13], [14], [15], [16], [17]. Thus, researchers
have put a huge effort into the development of accurate,
low-cost, and fast computational models for identifying
RBPs sites. For instance, Livi and Blanzieri [18] have

proposed a method called Oli by which they extracted tet-
ranucleotide features and used a support vector machine
(SVM) as a classifier. Maticzka et al. proposed GraphProt
model [15] by which they learned the features from RNA
structure and sequence and fed them to SVM classifier. On
the other hand, deep learning has shown an unprece-
dented performance in different domains such as image
processing [19], [20], [21], [22], [23], text understanding
[24], speech recognition [25], [26], [27], and genome analy-
sis [28], [29], [30], [31], [32], [33]. For instance, the Deep-
Bind model [13] was proposed to study the DNA and RNA
specificities from large datasets. DeepSEA and DanQ mod-
els were proposed to study to effects of non-coding var-
iants [34], [35]. The DeepCpG model was proposed to
study CpG sites [36]. All of these successful examples have
proven that deep learning can effectively extract the fea-
tures automatically from raw genomic sequences and pro-
vide better outcomes in terms of prediction and analysis.
Moreover, deep learning-based models can deal with
large scale datasets better than conventional methods.
Also, a moderate noise level and misleading training data
can be tolerated efficiently using deep learning. Therefore,
different deep learning-based models have been proposed
for RNA protein binding sites prediction. For instance,
recently, Pan et al. [37] proposed iDeepS model by which
they integrated RNA secondary structure with raw RNA
sequences. This model combined a convolution neural net-
work with bidirectional long short-term memory (BLSTM).
Shen et al. [38] proposed MSCGRU model by which they
integrated a multi-scale convolution neural network with
gated recurrent network GRU.
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High order nucleotide encoding was used as input to the
CNN model in [39] for predicting binding sites in lncRNA
chains. RNA binding sites in circRNAs has been studied in
[40] using word embedding technique as input to CNN and
RNN model followed by the conditional random field. Pan
and Shen introduced the combination of local and global
CNN models for the identification of RNA binding sites
[41]. A Multi-scale CNN model was proposed for identify-
ing cancer-specific circRNA Binding sites [42] and RNA
binding sites [43]. A hybrid deep learning model was pro-
posed in [44] for RNA binding sites prediction using a
codon encoding method. Different representations such as
motifs and RNA structures were used in deep belief net-
work and CNN models for generating shared representa-
tion. This representation was used in the classifier for
prediction RNA binding sites [45]. The positions and the
intensities of the CLIP-seq peaks were used for predicting
binding sites of functional mRNA targets [46]. Ghanbari
and Ohler proposed a deep neural network in which they
integrated region type of binding sites and raw RNA
sequence [47]. Capsule network using hybrid features was
also proposed for finding RNA binding sites by [48]. Fur-
thermore, various deep learning models have been pro-
posed for studying DNA bindings using different features
such as [49], [50], [51].

Various studies showed that transcription factor binding
sites are conserved among species [52], [53], [54], [55], [56].
For example, Rosanova et al. showed that transcription fac-
tor binding sites in higher eukaryotes are conserved over
the last 600 million years [57]. Another study showed that
gene expression can be predicted from the conservation of
the transcription factor binding sites [58]. Therefore, in this
paper, we study the importance of conservation information
to improve the performance of the RNA transcription factor
binding site predictors. We propose a simple and efficient
convolutional neural network for RNA protein binding sites
prediction Fig. 1. The input combines the raw RNA sequen-
ces with evolutionary information. We show that this

evolutionary information helps in achieving outstanding
results compared with the state-of-the-art models. We call
our model RBPCNN. The proposed architecture is simpler
than the state-of-the-art models that required using BLSTM
or GRU. In addition, RBPCNN is able to learn the binding
motifs and visualize the learned conservation scores.

The rest of the paper is organized as follows. Section 2
introduces the benchmark datasets, the RNA sequence
encoding strategy, and the proposed model. Section 3
presents the performance of the proposed model and the
comparison results with competing methods. Section 4 con-
cludes the paper.

2 MATERIAL AND METHODS

2.1 Materials

In this paper, we utilized 31 RBP datasets obtained from
iDeepS paper [37]. These datasets were originally obtained
from DoRiNA [59] and iCount website (http://icount.
biolab.si/). Each nucleotide in the cluster of the interaction
sites was treated as binding sites and thus, from which the
positive datasets were constructed. On the other hand, the
negative datasets were constructed by sampling from RNA
sequences that were not identified as binding sites. Each
experiment has 30,000 samples for training and hyper-
parameter optimization and 10,000 samples for testing the
performance of the trained model. The training datasets
contain 6,000 positive sequences and 24,000 negative ones
while the testing datasets contain 2,000 positive sequences
and 8,000 negative ones. For a fair comparison with other
models, we have used the same configurations of datasets
preparations.

Three experimental protocols namely iCLIP, PAR-CLIP,
and CLIP-SEQ/HITS-CLIP were used to prepare the datasets
as shown in Table 1. iCLIP stands for individual-nucleotide
resolution Cross-Linking and ImmunoPrecipitation and it
is used for detecting the protein-RNA interactions by utilizing
the ultraviolet light to help in binding the RNA molecules

Fig. 1. An overview of the RBPCNNmodel. A raw RNA sequence is first encoded into a one-hot matrix and conservation scores. The first convolution
layer searches the motifs in the encoded input sequence. The subsequent convolution layers discover the interactions between the learned motifs of
the first convolution layer. The learned features from the convolution layers go through fully connected layers with a softmax layer at the output for
prediction.
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and proteins [60]. PAR-CLIP stands for photoactivatable ribo-
nucleoside-enhanced crosslinking and immunoprecipitation
and it works by integrating nascent RNA with photoactivat-
able nucleoside [3]. This technique has been used to study
transcriptome-wide binding sites of different RNA-binding
proteins RBPs [61], [62], [63]. HITS-CLIP stands for High-
throughput sequencing of RNA combined with crosslinking
immunoprecipitation and it uses ultraviolet crosslinking with
next-generation sequencing [9], [64].

2.2 Encoding Sequence and Evolutionary
Information

Each input RNA sequence S ¼ ðs1; s2; ; snÞ was one-hot
encoded. Thus, A, C, G, U, and N were encoded as (1000),
(0100), (0010), (0001), and (0000) respectively. The length of
the input sequence is n ¼ 101 nt. In addition to one-hot
encoding, we added conservation (evolutionary) informa-
tion of each nucleotide of the input sequence. The evolution-
ary information was obtained from (http://hgdownload.
cse.ucsc.edu/goldenpath/hg19/phylo P100way/) where
we used the conservation scores of multiple alignments of
99 vertebrate genomes to the human genome. These scores
were obtained from the PHAST package (http://compgen.
bscb.cornell.edu/phast/). The values of these scores were
scaled to [0-1]. Thus, each input sequence S with n nucleoti-
des is encoded as n� 5 such as four channels for one-hot
encoding and the last channel for conservation scores.

2.3 The Proposed Model

We propose a simple and efficient deep learning model
based on the convolution neural network (CNN) [77] for
the identification of RNA protein binding sites as shown
in Fig. 1. It is called RBPCNN. Unlike other models
that require BLSTM [78] or GRU [79] we only use a well-
optimized convolution neural network that outperforms
the state-of-the-art models. The most important hyper-
parameters were selected using the grid search algorithm.
The ranges of the tuned hyper-parameters are shown
in Table 2.

The length of the transcription factor binding sites in
eukaryotes ranges from 5nt to 30nt as reported by Stewart

et al. [80]. Therefore, the input length of the proposed mod-
els is set to 101nt. Each sequence is centered on the tran-
scription factor binding site and the additional nucleotides
were used for providing contextual information. We fol-
lowed the same configurations for the input length of other
studies we compare with for the fair comparison. The
RBPCNN is composed of convolution layers and fully con-
nected layers. Each convolution layer is followed by a ReLU
activation layer, a max-pooling layer with a pool size of 2
and a stride of 2, and a drop out layer with a dropout rate of
0.3 [81]. The fully connected layers are followed by a ReLU
activation function and a dropout layer with a dropout rate
of 0.5. The last layer is a softmax layer that outputs the prob-
ability results of the classification task.

The convolution layer is a one-dimensional convolution
expressed in Eq(1) where I is the input, o and k are the indi-
ces of the output position and the kernels, respectively, and
Wf is the weight matrix of S �N shape with S filters and N
input channels.

ConvðIÞok ¼ ReLU

 XS�1

s¼0

XN�1

n¼0

Wf
snIoþs;n

!
: (1)

The dense layer is expressedmathematically in Eq(2)where zk
is a one-dimension feature vector, The weights of the zk from
the previous layer iswk, and the additive bias term iswdþ1.

f ¼ wdþ1 þ
Xd
k¼1

wkzk: (2)

The dropout layer is added to switch off certain neurons at
training time in order to reduce overfitting. Adding dropout
after dense layer results in Eq. (3) wheremk is sampled form
Bernoulli distribution.

f ¼ wdþ1 þ
Xd
k¼1

mkwkzk: (3)

The rectified linear unit activation function was used in
this design and it is given in Eq(4) [82].

ReLUðzÞ ¼ maxð0; zÞ: (4)

The final layer is the Softmax layer that normalizes its input
vector z into a probability distribution having C probabilities
proportional to the exponential of the input numbers.

SoftmaxðzÞj ¼
expzjPC
i¼1 exp

zi
: (5)

TABLE 1
An Overview of RBP Datasets Used in This Study

Experimental protocol Protein

TIAL1, TIA1 [65]
TDP-43 [66]

iCLIP Nsun2 [67]
hnRNPL, hnRNPL-like [68]
hnRNPC [69]
U2AF2, hnRNPC [70]

MOV10 [71]
FUS, ESWR1,TAF15 [72];

PAR-CLIP ELAVL1, ELAVL1A,
ELAVL1-MNase, Ago2MNase [73];
IGF2BP1-3, Ago/EIF2C1-4, PUM2 [3];

Ago2 [74]
CLIP-SEQ/HITS-CLIP SRSF1 [75];

eIF4AIII [76];
Ago2, ELAVL1 [73];

TABLE 2
The Ranges of the Tuned-Hyper Parameters

The hyper-parameters The range

The number of the convolution layers [1,2,3]
The number of the kernels [32,64,128]
The kernel length [5, 7, 9,11]
The number of the fully connected layers [1,2]
The number of nodes in the dense layer [16, 32]
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The proposed models were constructed using Keras
(https://keras.io/). The optimizer was Adam [83] with a
learning rate of 5e-4. The number of epochs was set to 500
with early stopping based on validation loss. Kernels were
initialized using a random uniform in the range [-0.05, 0.05].
Max norm weight constraint was applied with a value of 3
[81]. Categorical cross-entropy function was used for
parameters update. The motifs and the conservation scores
were visualized using TOMTOM [84] and pysster frame-
work [85].

3 RESULTS

In this section, we study the performance of the proposed
model RBPCNN and compare it with the state-of-the-art-
models. In addition, we visualize the learned motifs and
conservation scores by the RBPCNNmodel.

3.1 Evaluation Metrics

In this paper, we used the area under the receiver operating
characteristic curve (AUC) and the average precision score
(AP). Since the datasets are imbalanced the AP is a more
important metric for reflecting the real performance of the
proposed model [86]. Scikit-learn package (https://scikit-
learn.org) was used to compute these metrics.

3.2 The Importance of Evolution Information

In order to study the importance of adding evolutionary
information, we trained the proposed model using raw
RNA sequences only. For a fair comparison, we have
searched the best hyper-parameters again in the case of
using raw RNA sequences only using similar grid search
parameters as shown in Table 2. The average AUC of using
raw RNA sequence only was 87.40 percent while it was
90.44 percent after integrating the conservation scores. On
the other hand, the mean AP of using raw RNA sequences
only was 69.64 percent while it was 77.54 percent after inte-
grating the conservation scores. Thus, adding conservation
scores to the raw RNA sequences improved the perfor-
mance by 3.04 and 7.90 percent in terms of AUC and AP,
respectively. The Figs. 2 and 3 show that AUC and AP

scores of all 31 experiments were improved by integrating
the conservation scores with raw RNA sequences.

3.3 Competing Methods

We compare the proposed model RBPCNN with the follow-
ing methods:

3.3.1 Oli [18]

They designed their features based on tetranucleotide fre-
quency of the RNA sequence. The SVM was used for
classification.

3.3.2 GraphProt [15]

They designed their features from the RNA sequence and
the secondary structure and then passed them to the SVM
classifier.

3.3.3 DeepBind

This is a deep learning-basedmodel in which the authors pre-
dicted the binding sites using the rawRNA sequences only.

3.3.4 iDeepS [37]

This is also a deep learning-based model in which the
authors predicted the binding sites using the integration of
the raw RNA sequences and the secondary structure.

3.3.5 MSCGRU [38]

This is another deep learning model in which authors
designed a multi-scale convolution neural network with the
gated recurrent neural network.

The comparison results show that the proposed model
outperformed the aforementioned methods significantly in
terms of AP and AUC as shown in Table 3. The average
AUC was improved by 2.67 percent and the average AP
was improved by 8.03 percent. The comparison results
are shown graphically in Figs. 4 and 5. In more detail, the
average AUC of RBPCNN outperformed Oli, GraphPort,
DeepBind, iDeepS, MSCGRU by 13.03, 9.69, 7.34, 4.10, and
2.67 percent, respectively. On the other hand, the average
AP of RBPCNN outperformed Oli, GraphPort, DeepBind,

Fig. 2. A scatter plot comparing the achieved AUC of the proposed
model RBPCNN using raw RNA sequences only and by integrating con-
servation scores to raw RNA sequences.

Fig. 3. A scatter plot comparing the achieved AP of the proposed model
RBPCNN using raw RNA sequences only and by integrating conserva-
tion scores to raw RNA sequences.
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iDeepS, MSCGRU by 25.80, 24.59, 18.61, 10.29, 8.03 percent,
respectively. Since the dataset is imbalanced the AP is a
more important metric to consider. Thus, it is clear that the
performance of the proposed model is better than the other
state-of-the-art models with a big margin.

The box plots for the 31 experiments for the proposed
model RBPCNN and the competing methods are shown in
Fig. 6 for AUC and Fig. 7 for AP. These results indicate that the
proposed model RBPCNN outperforms the competing meth-
ods in almost all 31 experiments in terms ofAUC andAP.

The detailed results of the proposed RBPCNN model and
other competing methods for the 31 experiments are shown in
(Table I supplementary file, which can be found on the Com-
puter SocietyDigital Library at http://doi.ieeecomputersociety
.org/10.1109/TKDE.2020.2981333.) for AUC and (Table II sup-
plementary file, available online) for AP. From these tables, we

can see that adding conservation scores improved the perfor-
mance significantly for almost all experiments. In more detail,
and by looking at achieved AP results in (Table II supplemen-
tary file, available online) , we can see that the Ago proteins
family were improved remarkably by 12.75� 28.36 percent by
using conservation scores. The eIF4AIII-1 and eIF4AIII-2 were
improved by 4.31 and 7.27 percent, respectively. All ELAVL1
protein family were improved andmore remarkably ELAVL1-
MNase which was improved by 15.39 percent. In general, the
AP of all proteins in this study were improved except
hnRNPC-1 and hnRNPC-2 did not show improvement by
using the conservation scores.

3.4 The Learned Motifs

The most important advantage of the proposed model over
other machine learning-based ones -such as Oli and Graph-
Port- is its ability to visualize the learned motifs easily. The
machine learning-based methods require complex post-
processing steps however, the learned convolution filters of
the proposed model can be easily converted to position
weight matrices (PWMs) (the motifs and conservation
scores visualization are explained in the supplementary file,
available online). Motifs visualization help in obtaining bio-
logical insights into the results. Fig. 8 shows examples of the
detected sequence motifs. The full list of the detected motifs
can be downloaded from https://home.jbnu.ac.kr/NSCL/

TABLE 3
The Comparison of the Performance of RBPCNN

With Other State-of-the-Art Methods

Method AUC AP

Oli 0.7741 0.5174
GraphPort 0.8075 0.5295
DeepBind 0.8310 0.5893
iDeepS 0.8634 0.6725
MSCGRU 0.8777 0.6951
RBPCNN 0.9044 0.7754

Fig. 4. The comparison of the performance of RBPCNN with other state-
of-the-art methods in term of average AUC.

Fig. 5. The comparison of the performance of RBPCNN with other state-
of-the-art methods in term of average AP.

Fig. 6. The box plot of the performance of RBPCNN and other state-
of-the-art methods in term of AUC.

Fig. 7. The box plot of the performance of RBPCNN and other state-
of-the-art methods in term of AP.
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RBPCNN.htm. The proposed model was able to detect
already reported motifs in CISBP-RNA database [87]. Thus,
the RBPCNN has the potential to discover new sequence
motifs. The predicted motifs have been compared with the
known ones reported by the CISBP-RNA database using the
TOMTOM tool [84] with significant E-value cutoff 0.10.

When we inspected the visualized conservation scores for
all the kernels in all 31 experiments we found that when
average maximum activation of the binding class is greater
than the average maximum activation of the no binding
class, the average conservation scores of the kernel is usually
more than 70 percent. Fig. 9 shows examples of some of the
learned kernels in the Ago2-1 protein experiment. Figs. 9a
and 9b show the learned kernel 33 and kernel 58 where the
average maximum activation of the binding class is higher

than the average maximum activation of the no binding
class. Thus, the average conservation scores for these two
kernels is higher than 70 percent. On the other hand, Figs. 9c
and 9d show the learned kernel 4 and kernel 66 where the
average maximum activation of no binding class is higher
than the average max activation of the binding class. Thus,
the average conservation scores for these two kernels is less
than 70 percent. These patterns were observed in almost all
kernels of all experiments. These results show that the
nucleotides in the binding sites are highly conserved which
agrees with the biological studies that show the transcription
factor binding sites are highly conserved [52], [53], [54], [55],
[56]. The full list of the learned conservation scores by the
proposed model can be downloaded from https://home.
jbnu.ac.kr/NSCL/RBPCNN.htm.

Fig. 8. Examples of the learned motifs by RBPCNN (a) ELAVL1-2 protein and (b) ELAVL1-1 protein. The first row represents the reported motifs by
the CISBP-RNA database. The second row represents the learned motifs by our model. The third row shows the average conservation scores.

Fig. 9. Examples of the learned conservation patterns in the Ago2-1 protein experiment. The (a) and (b) show examples of the kernels that have the
average maximum activation of binding class-class_0- greater than the average maximum activation of no-binding class -class_1- and the corre-
sponding conservation scores patterns. The (c) and (d) show examples of the kernels that have the average maximum activation of no-binding
class-class_1- greater than the average maximum activation of binding class -class_0- and the corresponding conservation scores patterns.
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4 CONCLUSION

Accurate identification of RNA transcription factor binding
sites is a very important step for a better understanding of
different biological tasks. In this paper, we have introduced
a simple and efficient deep learning model that integrates
the evolutionary information with raw RNA sequences.
This integration helped in achieving outstanding results
compared with state-of-the-art methods. In addition, we
have visualized the learned motifs by the RBPCNN model
and matched them with already reported ones in the
CISBP-RNA database. Moreover, we have visualized the
average conservation scores learned by the deep learning
kernels. The datasets and results can be downloaded from
https://home.jbnu.ac.kr/NSCL/RBPCNN.htm
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