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Abstract—Incremental tree building (INC) is a new phylogeny estimation method that has been proven to be absolute fast converging

under standard sequence evolution models. A variant of INC, called Constrained-INC, is designed for use in divide-and-conquer

pipelines for phylogeny estimation where a set of species is divided into disjoint subsets, trees are computed on the subsets using a

selected base method, and then the subset trees are combined together. We evaluate the accuracy of INC and Constrained-INC for

gene tree and species tree estimation on simulated datasets, and compare it to similar pipelines using NJMerge (another method that

merges disjoint trees). For gene tree estimation, we find that INC has very poor accuracy in comparison to standard methods, and even

Constrained-INC(using maximum likelihood methods to compute constraint trees) does not match the accuracy of the better maximum

likelihood methods. Results for species trees are somewhat different, with Constrained-INC coming close to the accuracy of the best

species tree estimation methods, while being much faster; furthermore, using Constrained-INC allows species tree estimation methods

to scale to large datasets within limited computational resources. Overall, this study exposes the benefits and limitations of divide-and-

conquer strategies for large-scale phylogenetic tree estimation.

Index Terms—Phylogeny, gene tree, species tree, maximum likelihood, divide-and-conquer
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1 INTRODUCTION

THE estimation of gene trees and species trees is a basic
part of many biological analysis pipelines; gene trees

have implications for trait evolution and the prediction of
protein function and structure (as well as other applica-
tions), while species trees are needed to understand how
species adapt to their environments, to date speciation
events, etc. The estimation of both gene trees and species
trees are based on statistical models of evolution, with gene
trees based on a single locus within the genome of the dif-
ferent species, and species trees based on multiple loci.

Gene tree estimation is generally formulated as a statisti-
cal inference problem in which the sequences given as input
are assumed to have been generated on an unknown (but
fixed) model tree, equipped with a stochastic model of evo-
lution. Species tree estimation in turn assumes that the input
is a set of multiple sequence alignments (one for each locus),
the different loci have gene trees that have evolved within a
common species tree, and the sequences for a given locus
evolve down the gene tree for that locus. Because gene trees

can differ from the species tree due to various biological
processes (e.g., gene duplication and loss, horizontal gene
transfer, and incomplete lineage sorting), statistically con-
sistent estimation of species trees from multiple loci req-
uires methods that address gene tree heterogeneity [1].

One of the fundamental questions in phylogenetic tree
estimation is whether a method is guaranteed to converge to
the model tree as the amount of data increases, and methods
that have this property are said to be “statistically consis-
tent”. Indeed, statistical consistency is widely regarded as a
necessary property of any statistical estimator (see discus-
sion in [2], [3], and references therein), and this is also true in
phylogenetics. It is now well known that maximum likeli-
hood, distance-based methods such as neighbor joining and
balanced minimum evolution (BME), and many other meth-
ods are statistically consistent under the standard statistical
models of sequence evolution, such as Jukes-Cantor [4] and
the Generalised Time Reversible (GTR)models [5].

Although statistical consistency is important, the “sample
complexity” (which evaluates the amount of data that a
method needs to return the true tree with high probability) is
perhaps more important than statistical consistency, since
datasets are of finite length. In [6], [7], [8], the concept of
“Absolute Fast Convergence” was proposed, which we
describe in the context of the Jukes-Cantor [4] site evolution
model. A Jukes-Cantor (JC) model tree is a pair ðT;QÞ, where
T is a rooted binary tree and Q is a set of “branch lengths”,
where le denotes the expected number of times each site
will change on the edge e. The nucleotide at the root of the
tree is drawn uniformly at random from fA;C; T;Gg, and sub-
stitutions on an edge (if they occur) are made to the other
nucleotides with equal probability. All the sites in the
sequence evolve down this JCmodel tree identically and inde-
pendently (i.i.d.). We will say that the phylogeny estimation
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method F is absolute fast converging (AFC) for the JC model if
there is a polynomial pðnÞ such that for all positive �; f; g the
probability of recovering the unrooted topology of the true
tree T given sequences of length pðnÞ is at least 1� � for all JC
model trees ðT;QÞwhere T has n leaves and all edges e satisfy
f � le � g, where le is defined as before. The first provably
AFC methods were presented in [6], [7], and were distance-
based methods that operated by computing quartet trees and
then combining them. By restricting the quartet trees that
were used to a subset (called the “short quartets”) of the full
set of quartet trees, it was shown that the true tree could be
constructed with high probability from polynomial length
sequences. Since then, many other methods have been estab-
lished to be AFC under sequence evolutionmodels, including
maximum likelihood [9].

Recently, a new polynomial time method, INC, was pre-
sented by Zhang et al. [10] and proven to be statistically con-
sistent under GTR. Zhang et al. also presented a variant of
the method called INC-NJ that uses neighbor joining [11]
(NJ) on small subsets, and proved that INC-NJ is also AFC
and has low degree polynomial time. Finally, Zhang et al.
presented a generic technique called constrained-INC that
allows the user to provide a set of disjoint constraint trees,
and then uses INC to combine the constraint trees into a
tree on the full dataset. However, no implementation of
INC was developed, and so INC and its variants were not
explored with respect to empirical accuracy on data.

This paper reports on an extensive study of INC and its
variants, as described in [10], and also explores modifica-
tions to INC to improve accuracy. We explore the design
space of divide-and-conquer strategies using INC for the
purpose of gene tree estimation, and compare the best of
these methods to standard phylogeny estimation methods
on simulated data. We also evaluate variants of Con-
strained-INC for multi-locus species tree estimation, where
gene trees can differ from the species tree due to incomplete
lineage sorting (ILS), an event that can arise when allelic
polymorphism is present in a population and persists even
after speciation events [1].

We compare the best variants of Constrained-INC to
NJMerge [12], another recent method that combines disjoint
trees, on a collection of simulated datasets. We find that
Constrained-INC and NJMerge have similar accuracy (with
a slight advantage to NJMerge for species tree estimation),
but Constrained-INC is much faster. We find that maximum
likelihood using RAxML version 8.2.12 [13] has the best
accuracy for single gene tree estimation, and that the
divide-and-conquer approaches tend to reduce accuracy in
this case. However, we also find that divide-and-conquer
pipelines using both Constrained-INC and NJMerge gener-
ally maintain accuracy for the leading species tree estima-
tion methods for multi-locus datasets when gene tree
discordance due to ILS is present, while being much faster.
Thus, although NJMerge and Constrained-INC are not ben-
eficial for gene tree estimation, they provide advantages for
multi-locus species tree estimation.

Our open-source implementation is available on Github
[14], along with the commands needed to reproduce the
study. All gene tree estimation datasets used in this study
are available on the Illinois Data Bank [15]. Species tree esti-
mation datasets are available at [16].

2 METHODS

2.1 The Incremental Tree Building (INC) Method

We briefly describe the INC method of Zhang et al. [10], and
direct the reader to the original paper for details. The input
to INC is a set of n sequences S in a multiple sequence align-
ment A and an n� n matrix d computed on the alignment.
Given the matrix d, a minimum spanning tree (MST) on the
sequences in S is computed, and then the MST is used to
define an ordering on the sequences so that each added
sequence is adjacent within the spanning tree to exactly one
sequence that precedes it in the ordering. The taxa are
added into a growing tree t, which begins with the first
three taxa in the ordering and then adds each new taxon
into t. To add a new taxon q into t, a set of quartet trees is
computed, and these quartet trees vote on where to place q
into t. The approach in [10] uses the Four Point Method
(FPM) [17], [18] to compute quartet trees and then allows
only “valid quartets” (which are quartets with sufficiently
low interleaf distances, according to the input matrix d) to
vote. Furthermore, all quartet trees have the same voting
power (i.e., each vote has the same weight). When all the
taxa have been inserted, the final tree is returned. Because
of the incremental nature of the approach, the algorithm is
called Incremental Tree Building, or INC.

2.2 Disjoint Tree Merger (DTM) Methods

Zhang et al. [10] showed that INC can be used to combine a
given set of disjoint trees (i.e., constraint trees). This
approach, called Constrained-INC, takes as input a set of
leaf-disjoint trees, and merges the trees together, using an
auxiliary distance matrix. Specifically, Constrained-INC
operates using nearly the same incremental taxon-addition
technique used in INC, but it makes sure never to add a
taxon into the growing tree in such a way that would violate
any of the input constraint trees.

NJMerge [12], TreeMerge [19], and Guide Tree Merger
(GTM) [20], are othermethods that are designed to construct a
tree from a set of leaf-disjoint constraint trees. Each uses auxil-
iary information, with NJMerge and TreeMerge using a dis-
tance matrix computed on the full set of species and GTM
using a guide tree computed on the full set of species. These
three methods have been tested only for multi-locus species
tree estimation, where the three methods displayed similar
accuracy (with a slight advantage ofNJMerge over TreeMerge
[19]). Because these methods combine disjoint trees, they are
referred to as “Disjoint TreeMerger” (DTM)methods.

2.3 Divide-and-Conquer Pipelines

DTMmethods can be used within divide-and-conquer pipe-
lines for tree construction: the input taxon set is divided into
disjoint subsets, trees are constructed on subsets (using a
selected tree estimation method), and then the subset trees
are combined using the DTM method into a tree on the full
dataset.

In [12], [19], [20], the following divide-and-conquer pipe-
line was used for multi-locus species tree estimation. First, a
starting tree is computed from the multi-locus dataset, so
that each leaf in the starting tree corresponds to a species in
the input set. The starting tree can be computed from a dis-
tance matrix computed on the multi-locus dataset or using
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some other technique. We then decompose the species set
into subsets using the recursive centroid edge decomposi-
tion strategy (see SAT�e-II [21] and PASTA [22]) that oper-
ates by by pulling out a “centroid edge” (i.e., an edge that
splits the leafset into two sets of roughly equal size), and
then recursing until all the subsets are small enough.
The leafsets for the different subtrees then define the subsets
of species on which a constraint tree will be computed.
A selected base method is then used to construct a species
tree for each subset of species, using all the available data
for that species set, and the set of these constraint trees is
then passed to the DTM method (NJMerge, TreeMerge, or
GTM), which also computes the auxiliary information it
needs directly from the input data.

2.4 Statistical Consistency

Here we discuss statistical consistency of the methods we
examine under different evolutionary models, focusing on
the estimation of the unrooted true tree.

Recall that the GTR site evolution model describes how a
single site evolves down a model tree, and is extended to
sequence evolution by assuming that all the sites evolve
identically and independently (i.i.d.). Similarly, the MSC
+GTR model [23] describes how a multi-locus dataset
evolves: there is a rooted binary species tree T with branch
lengths (representing time in coalescent units), gene trees
evolve down the species tree under the multi-species coales-
cent (MSC) model, and then sequences evolve down each
gene tree under the GTR model.

For a given model of evolution F (i.e., F could be the
GTR sequence evolution model or the MSC+GTR hierarchi-
cal model) and tree estimation method M, we will say that
M is “statistically consistent under F” if, for all model trees
ðT;QÞ under F, the probability that M returns the unrooted
version of T converges to 1 as the amount of data increases.

For GTR and other sequence evolution models, by saying
“as the amount of data increases” we mean the number of
sites increase, while for MSC+GTR we mean that the num-
ber of sites and the number of genes both increase.

2.4.1 Statistical Consistency Under the GTR Model

Maximum likelihood (ML) is statistically consistent under
the GTR model (and all its submodels) if solved exactly [24].
Since ML is NP-hard [25], heuristics, such as RAxML [13],
IQtree [26], PhyML [27], and FastTree2 [28], are used to
search for local optima. Neighbor joining [11], balanced
minimum evolution, and other distance-based methods are
also statistically consistent under the GTR model if used
with properly corrected distances, such as the log-det dis-
tance [29]. Specifically, for each of these methods, if they are
given a dissimilarity matrix as input that is close enough
under the L1 metric to an additive matrix for the model
tree, then they are guaranteed to return the model tree
topology (see [30] for the theorem regarding Neighbor Join-
ing and [31] for a general discussion).

2.4.2 Statistical Consistency Under

the MSC+GTR Model

Many methods are statistically consistent under the MSC
+GTR model. For example, ASTRAL [32], [33], ASTRID [34],

and several other summarymethods (i.e., methods that com-
bine gene trees to estimate the species tree) are statistically
consistent. Methods that estimate the species tree from site
patterns in the concatenated alignment, such as SVDquartets
[35], SVDquest [36], and SNAPP [37], are also statistically
consistent. Finally, some methods, such as StarBEAST [38],
co-estimate gene trees and species trees from the multi-locus
dataset, and are also statistically consistent. However, stan-
dard maximum likelihood analyses applied to the concaten-
ated alignments (whether partitioned [39] or unpartitioned
[23]) are not statistically consistent.

2.5 Our Experimental Study

2.5.1 Overview

We performed a sequence of experiments to evaluate meth-
ods for gene tree and species tree estimation. Our first
experiments evaluated INC and INC-NJ for gene tree esti-
mation. Our next experiments explored the design space
of divide-and-conquer strategies using Constrained-INC
for gene tree experiment. After this, we compared the best
variants of Constrained-INC to standard gene tree esti-
mation methods, and to NJMerge using the same divide-
and-conquer strategies. Then we turned to evaluating
Constrained-INC for multi-locus species tree estimation,
where gene trees can differ from the species tree due to
incomplete lineage sorting. In summary, we have the fol-
lowing experiments:

� Experiment 0: Evaluating INC and INC-NJ for gene
tree estimation

� Experiment 1: Exploring the design space for
Constrained-INC for gene tree estimation using
divide-and-conquer

� Experiment 2: Comparing the best variants of
Constrained-INC to leading gene tree estimation
methods

� Experiment 3: Comparing the best variants of
Constrained-INC to NJMerge for gene tree estima-
tion in divide-and-conquer strategies

� Experiment 4: Evaluating Constrained-INC for multi-
locus species tree estimation in divide-and-conquer
strategies

Each experiment uses simulated datasets, some of which
are for single genes and otherswhich are formulti-locus data-
sets where gene trees differ from the species tree due to ILS.

The Robinson-Foulds (RF) error rate is the most com-
monly used method for evaluating phylogeny estimation
methods, as it reflects the proportion of the monophyletic
groups (i.e., clades) in the true tree that are not recovered in
the estimated tree. However, when the true tree or the esti-
mated tree is not fully resolved, then the RF error rate is
inappropriate, for reasons that we describe below. Further-
more, for such cases, the use of the False Negative (FN)
error rate is preferable. We define both these metrics here,
and explain why we focus on the FN error rate.

Every edge e in a tree T with leafset S defines a bipar-
tition pe on S, produced by deleting the edge (but not its
endpoints) from T . Furthermore, each tree T is uniquely
identified by its set of bipartitions, which is denoted by
CðT Þ ¼ fpe : e 2 EðT Þg. Then, the Robinson-Foulds dis-
tance, also referred to as the bipartition distance, between
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two trees T and T 0, both on the same leafset, is given by
jCðT Þ~CðT 0Þj (i.e., the symmetric difference between the
sets of bipartitions). Furthermore, given the model tree T
and an estimated tree T̂ , the RF error rate is the RF distance
between T and T̂ divided by 2ðn� 3Þ, where n is the number
of leaves in the trees. However, in some cases the estimated
tree may not be fully resolved, which makes the RF distance
inappropriate. Another case where the RF distance can be
inappropriate is where the model tree is either not binary or
may has zero-event branches (meaning, branches on which
no changes occur), so that recovering those branches is not
possible. The “potentially inferrable model tree” (PIMT) is
the model tree with all zero-event branches collapsed. In this
study, our estimated trees in general are generally fully
resolved, but some of the PIMTs may differ (in a given repli-
cate) from the model tree (due to very short branches). For
these reasons, instead of reporting the RF error rate with
respect to the model tree, we report the missing branch rate,
also referred to as the false negative rate, with respect to the
PIMT: this is the fraction of bipartitions that appear in the
PIMT that do not appear in the estimated tree. Note that
when the PIMT and estimated tree are both fully resolved,
then the FN error and the RF error are identical.

We note that the FN error rate can be inappropriately
high when the dataset includes rogue taxa (i.e., taxa that
can be attached to the tree in many different locations,
which can occur when the taxon is attached to the tree by a
very long branch). For such conditions, other metrics, such
as the quartet tree error rate (i.e., the normalized quartet dis-
tance, which is the proportion of sets of four leaves on
which the two trees induce different quartet trees) are more
suitable than the RF error rate. Although our experimental
conditions do not include rogue taxa, for the sake of an
alternative view, we also examine quartet tree error rates,
using software described in [40], for Experiments 1 and 4.

Finally, we also record the running time used to estimate
trees. All analyses for all methods and datasets were per-
formed on Blue Waters (a supercomputer at the National
Center for Supercomputing Applications) and were limited
to 48 hours.

2.5.2 Gene Tree Datasets for Experiments 0-3

We analyzed several collections of aligned sequence datasets
under a range of model conditions so that they varied in
terms of difficulty. We explored datasets that evolved under
model trees with a strict molecular clock (i.e., the expected
number of changes is proportional to time, so that the model
tree is ultrametric) and others where the evolutionary pro-
cess deviates from the strict molecular clock. We also varied
the number of sequences, sequence length, substitution
model, branch lengths, whether or not the sequence evolu-
tion model has insertions and deletions (“indels”), and over-
all rate of evolution. This last issue (overall rate of evolution)
is reflected in the average and maximum p-distances (i.e.,
normalized Hamming distances, which is the proportion of
sites in which two aligned sequences differ, see Table 1),
with the most difficult datasets being the ones with the larg-
est average andmaximump-distances.

Furthermore, three of the model conditions have many
very short internal branches, making them difficult to infer
correctly. Some of the model trees come from prior

publications and others were generated by us; see [14],
[15] for more information. In all cases, we used the true
alignment.

101-Taxon Datasets. The model tree has very short inter-
nal branches, reflecting a rapid radiation, and evolve under
the GTR model without indels (20 replicates). These are not
ultrametric.

1000L1 Datasets. We use the true alignments from 20 rep-
licates from the 1000L1 datasets studied in [22]. These data-
sets have a high rate of evolution with both substitutions
and long indels, with average gap length 13.6, and do not
have short branches. The model tree is not ultrametric. The
average percentage of the true alignment that is gapped
(i.e., gappiness) is 73.2 percent.

1000-Taxon (SB) Datasets. The model gene trees for these
datasets have very short branches (SB), representing a rapid
radiation. The model trees, which are not ultrametric, were
studied in [12]. 20 replicate datasets were simulated with
INDELible [41] with the same model parameters as in [12].

10K. This model tree has 10,000 leaves and is ultrametric
(i.e., the sequence evolution is under a strict molecular clock)
with many short branches. We use 10 replicate sequence
datasets that evolved down the tree using INDELible.

2.5.3 Multi-Locus Species Tree Datasets

for Experiment 4

We use multi-locus datasets from [12], which have 1,000
species and 1,000 exon-like genes where true gene trees dif-
fer from the true species tree due to ILS. Each of these data-
sets was analyzed using the same basic divide-and-conquer
strategy we describe here, but with NJMerge used to com-
bine the constraint trees rather than INC.

The datasets we explore have two levels of ILS, which
we describe in terms of the average normalized Robinson-
Foulds distance (AD) between true gene trees and true spe-
cies trees: moderate ILS with average AD of 10 percent and
very high ILS with average AD of 69 percent. In both cases,
the speciation is close to the root. Each of the two model con-
ditions has 20 replicates. The moderate ILS datasets have
average gene tree estimation error (GTEE), measured using
Robinson-Foulds, of roughly 42 percent, and the very high
ILS datasets have GTEE of roughly 64 percent. These GTEE
rates are likely representative of phylogenomic studies,
where loci from across the genomes of the organisms are
used so that many of the loci have low phylogenetic signal,
as reflected in the bootstrap support of the estimated gene
trees. For example, the Avian Phylogenomics project that
estimated species trees on 48 avian species reported that the
average bootstrap support of the gene trees was only about
25 percent [42]. Similar trends are shown in general for
empirical phylogenomic datasets (see Table 1 in [43]).

TABLE 1
Empirical Statistical (average and maximum p-distances, i.e.,
normalized Hamming distances, max = 1.0) of the Simulated

Gene Tree Datasets for Experiments 0-3

Datasets 1000L1 101 1000(SB) 10K

Avg. p-distance 0.70 0.13 0.21 0.19
Max p-distance 0.77 0.33 0.32 0.30
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As mentioned above, [12] explored the same basic
divide-and-conquer strategy, but used NJMerge to combine
the constraint trees. To enable a direct comparison between
INC and NJmerge, we use the same constraint trees pro-
duced in [12], which were computed using either ASTRAL
or RAxML, as follows (see [12] for full details). The con-
straint subsets were produced by the recursive centroid
edge decomposition strategy applied to a specified starting
tree, recursing until each subset had at most 120 taxa. To
compute the RAxML constraint trees on a given species sub-
set, the gene sequence alignments for each gene (restricted
to that specified set of species) were concatenated into one
large alignment, and then a tree was computed on the
concatenated alignment in an unpartitioned GTRGAMMA
analysis using RAxML. To compute the ASTRAL constraint
trees on a given subset of species, [12] first used FastTree2
to compute the gene trees using all the species; then, for the
given subset of species, the gene trees were restricted to the
subset and ASTRAL was then used to compute a species
tree from the set of gene trees restricted to that specific
subset.

3 RESULTS

3.1 Results for Experiment 0: Evaluating INC and
INC-NJ for Gene Tree Estimation

INC and INC-NJ are both AFC under the GTR model. Maxi-
mum likelihood, if solved exactly, is also absolute fast con-
verging [9], but it is unlikely that heuristics for ML are AFC.
We compare INC and INC-NJ to two maximum likelihood
heuristics (FastTree2 version 2.1.10 [28] and RAxML version
8.2.12 [13]) and two distance-based methods (BME, bal-
anced minimum evolution, within FastME version 2.1.5 [44]
and Neighbor Joining within PAUP* version 4.0a163 [45]).
We explore their relative performance on 20 datasets with
1,000 sequences that evolve under a high rate of evolution
(the 1000L1 model from [22]).

FastTree2 and RAxML are runwith default settings under
the GTRmodel of sequence evolution [5]. The distance-based
method BME is run within FastME2 [44] using NNI and SPR
moves and NJ is run in default settings within PAUP*; both
distance-based methods are given logdet distance matrices
computed by PAUP*.

Due to the upper limit of 48 hrs for all methods and all
datasets, some RAxML analyses did not complete within
that time; we use checkpointing and report the best ML
solution found within the 48 hour time limit in such cases.
Even so, some RAxmL analyses failed to return any trees at
all within that time period.

INC and INC-NJ both have very high error rates of 91
and 70.7 percent, respectively, and the other methods have
much lower error rates (Table 2). The best accuracy is
obtained using the two maximum likelihood heuristics
(error rates under 12 percent), and the two distance-based
methods have moderate error rates (43.4 percent for NJ and
30.7 percent for FastME). Thus, INC is much less accurate
than INC-NJ and INC-NJ is much less accurate than NJ.
Since NJ is not AFC [46] and both INC and INC-NJ are AFC,
this result is disappointing (to say the least). However, this
experiment does not address whether using ML heuristics
to compute constraint trees would result in improved

accuracy compared to other methods. Exploring this ques-
tion is the purpose of the next section.

3.2 Results for Experiment 1: Exploring the Design
Space for Constrained-INC for Gene Tree
Estimation

This experiment explores the design space of constrained-
INC on 20 replicates of the 1000L1 datasets, evaluating the
impact of the following algorithmic parameters: (a) initial
tree and decomposition size, (b) how constraint trees are
computed, (c) how quartet trees (for merging constraint
trees) are computed, and (d) the weight of the votes (i.e.,
identical weights for all quartets, or weights that depend on
the specific quartet tree).

In our first experiment, we compare divide-and-conquer
strategies that use INC.We use the centroid edge decomposi-
tion (but changing the target subset size) to define the subsets,
construct trees on the subsets using different techniques, and
then combine the subset (constraint) trees using different
ways of running constrained-INC, including specific changes
to its algorithm design. We explore these variants on the
20 replicates of the 1000L1 datasets.

Unless specified otherwise, we use the following settings
for all methods: INC-ML uses FastTree2 as a starting tree,
uses a centroid edge decomposition, constructs the con-
straint trees using FastTree2 under the GTR model, and
employs unweighted voting restricted to the valid quartets.
Neighbor joining is run using PAUP*, BME is run using
FastME2 [44] with NNI and SPR searches, and FastTree2
and RAxML are run in default mode under the GTR model.

3.2.1 Impact of Subset Size

We began by evaluating the impact of size of the subsets
produced by the centroid edge decomposition strategy,
using FastTree2 to compute the constraint trees on the dis-
joint subsets. As shown in Table 3, the largest subsets pro-
duce the best accuracy for both FN and quartet tree error
rates. Since the largest subsets also have the highest running
time, we explore results using maximum subset size of 200
for the remaining studies in Experiment 1.

3.2.2 Impact of the Choice of the Initial Tree

Next we study the impact of the choice of the initial tree.
The result of this experiment (Table 4) shows that using
FastTree2 to compute the initial tree gives the overall best

TABLE 2
Results for Experiment 0: False

Negative (FN) Tree Error Rates for
INC, INC-NJ, and Standard Methods

on 20 Replicates of the 1000L1
Model Condition

Method FN Tree Error Rate

INC 0.910
INC-NJ 0.707
FastTree2 0.109
NJ 0.434
FastME 0.307
RAxML 0.117
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accuracy; hence, we use FastTree2 for the initial tree in our
remaining experiments.

3.2.3 Impact of Voting Scheme

The original voting scheme, presented in [10], allows only
valid quartets to vote, and each vote has the same weight.
Given the new taxon q to add and growing tree tg, each
internal node i defines a quartet Qi ¼ fu1; u2; u3; qg and all
valid quartets (as defined in [10]) have unit weight. Further-
more, given a valid quartet tree u1u2ju3q, this identifies a
subtree of the growing tree into which q can be added. The
quartet tree adds one vote to each edge in that subtree. The
implementation of this voting scheme is performed with a
straightforward breadth-first-search [10].

We modify this strategy by changing which quartets are
allowed to vote and redefining the weight of their votes; we
also consider schemes that have two phases. Since increases
in the diameter of a quartet (which is defined by the dis-
tance matrix d) are known to increase the error rate in the
estimated quartet tree [18], we consider weighting schemes
that depend on the diameter of the quartet. Overall, we
evaluate the following five protocols.

Voting Protocol 1 (VP1). The valid quartets are used with-
out weights to identify a set of edges that have the maxi-
mum total support. If there is more than one edge with
maximum total support, the first edge encountered with
that maximum support is selected.

Voting Protocol 2 (VP2). This protocol uses two phases.
The first phase is as with the first protocol in that the valid
quartets without weights vote to identify a set E� of edges
that have the maximum total support. Then, the valid quar-
tets are used with weights to select from among the set E�

of identified edges. If there is still a tie, the first edge
encountered with that maximum support is selected. For a

quartet Q, with diameter (maximum distance between any
two leaves) dQ, we define its weight as either 1

dQ
(VP2.1) or

1
d2
Q

(VP2.2).

Voting Protocol 3 (VP3). This protocol uses one phase. All
valid quartets vote with weights (see below), and the set of
edges that have maximum total support is identified. If
there is a tie, the first edge encountered with that maximum
support is selected. For a quartet Q with diameter dQ, we
define its weight as 1

d2
Q

.

Voting Protocol 4 (VP4). This protocol uses two phases. In
the first phase, all valid quartets vote with weights (see
below), and the set E� of edges that have maximum total
support is identified. If there is a tie, then all quartets are
allowed to vote (but only on the set E�) with weights; this
produces a subset of E� that has the maximum total sup-
port. If there is still a tie, then the first edge encountered
with that maximum support is selected. For a quartet Q
with diameter dQ, we define its weight as 1

d2
Q

in both rounds.

Voting Protocol 5 (VP5). This protocol uses one phase. All
quartets vote with weights (see below) and the set of edges
that have maximum total support is identified. If there is a
tie, the first edge encountered with that maximum support
is selected. For a quartet Q with diameter dQ, we define its
weight as 1

d2
Q

.

As shown in Table 5, VP3-VP5 produced slightly better
accuracy than VP1, VP2.1, and VP2.2. Of the three better
voting schemes, VP3 and VP5 have the advantage of using
only one phase, and VP3 has a (slight) running time advan-
tage over VP5 in that it only allows valid quartets to vote.
Therefore, in subsequent analyses we used VP3.

3.2.4 Impact of How Constraint Trees are Computed

We examine three ways of computing constraint trees:
RAxML used to estimate the constraint tree for each subset,
FastTree2 used to estimate the constraint tree for each subset,
and the induced tree on the specified subset of the FastTree2
tree on the full set of taxa. Table 6 shows that using the
induced trees on each subset using FPMproduces poor results
for FN error compared to the two ML methods (FastTree2-
induced and RAxML), and using either of the two ML meth-
ods produces very similar FN error rates. In addition,
although using RAxML for quartet trees produces lower quar-
tet tree error, the differences in terms of quartet tree error
between the two ML methods are small. Since RAxML as
used here (once for every four leaves) ismore computationally

TABLE 3
Results for Experiment 1: The Impact of Maximum Sub-
set Size on the False Negative (FN) and Quartet Tree

Error Rates (max. 1.0) for INC-ML

Maximum subset size FN error Quartet tree error

20 0.70 0.61
50 0.50 0.56
100 0.37 0.49
200 0.26 0.36
500 0.17 0.24

Results shown are mean error rates over 20 replicates of the 1000L1
model condition.

TABLE 4
Results for Experiment 1: The Impact of the Starting
Tree on False Negative (FN) Error and Quartet Tree

Error Rates (max. 1.0) for INC-ML (max 1.0);
Results Shown are Averages Over 20 Replicates of

the 1000L1 Model Condition

Starting Tree FN error Quartet tree error

FastTree2 0.261 0.361
FastME (BME) 0.272 0.428
NJ 0.277 0.447

TABLE 5
Results for Experiment 1: The Impact of Voting
Schemes on Tree Error Rates (max. 1.0, means
over 20 replicates) for INC-ML on the 1000L1

Datasets

Voting scheme FN error Quartet tree error

VP1 0.266 0.361
VP2.1 0.269 0.364
VP2.2 0.269 0.364
VP3 0.249 0.351
VP4 0.249 0.353
VP5 0.249 0.351
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expensive than using FastTree2-induced, we use FastTree2-
induced approach in our subsequent studies.

3.2.5 Impact of How Quartet Trees are Computed

We then explored how the quartet trees are computed. We
explored three techniques: the Four Point Method (FPM, the
default in [10]), RAxMLon each quartet, andusing the induced
quartet tree from the FastTree2 tree on the full dataset. The best
result was obtained using the induced tree from FastTree2
(Table 7). Hence, for subsequent experiments, we compute
quartet trees by restricting the FastTree2 tree to each quartet.

3.2.6 Summary of Experiment 1

Experiment 1 showed that changes to the Constrained-INC
design could result in improved accuracy, with some algo-
rithmic parameters having large impacts. In particular: the
size of the constraint trees was important (with larger sub-
sets better), how quartet trees are computed was important
(with the Four Point Method much less accurate than Fast-
Tree2-induced quartet trees), and other parameters provid-
ing a small improvement.

3.3 Results for Experiment 2: Evaluating Two
Variants of INC-ML

In Experiment 2, we maintained the settings selected in
Experiment 1. Since we use ML heuristics to compute the
constraint trees, we refer to these variants as INC-ML, and
we explore two variants of INC-ML: one (INC-ML (fast))
that is designed for speed and the other (INC-ML (slow))
that is slower and designed for improved accuracy. Both
variants use the same divide-and-conquer strategy, differ-
ing only in the ML heuristic they use to construct trees on
subsets (RAxML for the slow variant and FastTree2 for the
fast variant). Each method uses FastTree2 to compute an ini-
tial tree, divides the dataset into subsets with at most n=5
taxa (where n is the number of taxa in the input set) using
the centroid edge decomposition, and constructs ML trees

on each subset. Each method uses induced quartet trees
from the FastTree2 starting tree for the quartet trees (only
on the valid quartets) and voting scheme VP3.

FN tree error rates under the basic model conditions are
shown in Table 8, and results as we scale the branch lengths
in eachmodel tree for the 10K-taxon datasets (bymultiplying
each branch length by the selected scaling factor) are shown
in Fig. 1. While results on individual model conditions can
vary, the overall most accurate results are obtained by
RAxML, with FastTree2 in second place, then the two ver-
sions of INC-ML, and finally NJ.We also note that error rates
increase for all methods as the scaling factor increases. Inter-
estingly, Constrained-INC with FastTree to compute con-
straint trees is about as accurate as FastTree2 in most cases
(and is less accurate for one model condition), while Con-
strained-INC with RAxML to compute constraint trees is
always less accurate than RAxML (Table 8). Thus, the impact
on accuracy of using Constrained-INC is generally neutral
for FastTree2 and detrimental for RAxML, and so depends
onwhichML heuristic is used to compute constraint trees.

Runtimes are shown in Table 9. Unsurprisingly, NJ is the
fastest of the methods, completing in less time than the
other methods, and FastTree2 is the next fastest method.
The slowest method by far is RAxML, which does not com-
plete on any of the 10K datasets within 48 hours. Finally, as
expected, INC-ML(slow) is slower than INC-ML(fast).

3.4 Results for Experiment 3: Comparison Between
Constrained-INC and NJMerge for Gene Tree
Estimation

In this experiment, we compare Constrained-INC and
NJMerge in the context of gene tree estimation, given the

TABLE 6
Results for Experiment 1: The Impact on Tree Error Rates
(max. 1.0) of How Constraint Trees are Computed: RAxML,

FastTree2, or the Induced Subtree of the FastTree2 Tree on the
Full Set of Taxa (i.e., “FastTree2-induced”)

Constraint tree method FN error Quartet error

FastTree2 0.249 0.351
RAxML 0.255 0.361
FastTree2-induced 0.247 0.350

Results shown are averages over 20 replicate datasets from the 1000L1 model
condition.

TABLE 7
Results for Experiment 1: Impact of Quartet Tree Methods

on Average Tree Error Rates (max. 1.0, across 20 replicates)
INC-ML for the 1000L1 Datasets

Quartet Tree Method FN error Quartet tree error

FPM 0.247 0.350
FastTree2-induced 0.109 0.359
RAxML 0.137 0.335

TABLE 8
Results for Experiment 2: FN Error Rates of Two Variants of

INC-ML, Two ML Heuristics, and NJ Under Different Model Con-
ditions (over 10 replicates for the 10K-taxon condition and 20

replicates for each other model conditions)

Datasets 101 1000L1 1000(SB) 10K

INC-ML (Fast) 0.453 0.266 0.170 0.130
INC-ML (Slow) 0.453 0.253 0.212 0.155
FastTree2 0.453 0.109 0.180 0.131
NJ 0.500 0.434 0.421 0.271
RAxML 0.375 0.117 0.123 0.096

Fig. 1. Results for Experiment 2: FN error rates on the 10K datasets for
two variants of INC-ML, two ML heuristics, and NJ, as the model tree
branch lengths are scaled from a low rate of evolution (scaling factor 1)
to a high rate of evolution (scaling factor 50).
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same set of constraint trees (each computed using RAxML).
As shown in Table 10, although error rates increase for both
methods with the scaling factor, the two methods are not
distinguishable across any of these scaling factors.

3.5 Results for Experiment 4: Evaluating
Constrained-INC for Species Tree Estimation

We now examine the impact of Constrained-INC for use in
species tree estimation from multi-locus datasets, where
gene trees can differ from the species tree due to ILS. For
this experiment, we use multi-locus datasets with 1,000 spe-
cies and 1,000 exon-like genes from [12] (see Section 2.5.3).

We examine variants of Constrained-INC on these data-
sets, varying some of the algorithmic parameters, but
always using the ASTRID distance matrix (i.e., the average
internode distance matrix used in both NJst and ASTRID to
compute the species tree), as this converges to an additive
distance matrix for the species tree as the number of genes
increases [47]. For voting protocol, we use VP3 (which we
selected from the earlier experiments), setting d to be the
quartet tree diameter computed using the ASTRID/NJst
distance matrix (i.e., the average internode distance matrix).

We vary the remaining two algorithmic parameters: how
we compute constraint trees and how we compute quartet
trees. For constraint trees, we use ASTRAL and RAxML, the
two methods that had the best accuracy for constraint trees
in [12], each applied to the full set of loci for the specified
subset of species. For quartet trees, we use either the Four
Point Method or trees induced on guide trees computed
using either NJst or ASTRID (i.e., using BME or NJ within
FastME on the internode distance matrix).

We compare these variants of Constrained-INC to other
species tree estimation methods (ASTRAL, ASTRID, NJst,
and RAxML)with respect to topological accuracy on two dif-
ferentmodel conditions: onewith very high ILS and onewith
low/moderate ILS, eachwith 1,000 species and 1,000 genes.

3.5.1 Impact of Quartet Tree Method

Using the ASTRAL constraint trees, we now vary the way
quartet trees are computed. To compute quartet trees, we
compared the Four Point Method to the induced subtree
from either the NJst or ASTRID trees. Results (Fig. 2 and
Table 11) under the high ILS condition indicate that using
quartet trees induced by the ASTRID guide trees gives the
best accuracy, and that the FPM has the highest error. We
choose quartet trees induced in the ASTRID guide tree for
both low and high ILS conditions, noting however that
other techniques (such as a fast maximum likelihood heuris-
tic) might provide better results, but would be more compu-
tationally intensive.

3.5.2 Comparison Between Constrained-INC,

NJMerge, and Base Methods for Species

Tree Estimation

We compare Constrained-INC to NJMerge on the same set of
constraint trees under both low/moderate ILS and high ILS
conditions, each with 1,000 species and 1,000 exons. For both
conditions, we use the ASTRID distance matrix and guide
tree (to compute quartet trees) as input to Constrained-INC.

TABLE 9
Results for Experiment 2: Average Runtime (seconds) of INC-
ML (both variants) and Standard Methods on Different Datasets

Datasets 101 1000L1 1000(SB) 10K

INC-ML(fast) 26 376 182 4182
INC-ML(slow) 29 1121 750 48385
FastTree2 7 233 75 4071
NJ 0 2 3 2212
RAxML 32 4187 2827 (*)172800

Results shown here are for 10 replicates of 10K model condition and 20 repli-
cates on the other model conditions. The asterisk (*) for RAxML on the 10K
model condition reflects that we used checkpointing to return a tree for
RAxML (at the end of 48 hours), as it could not complete on any of the 10 rep-
licates within 48 hrs.

TABLE 10
Results for Experiment 3: FN Tree Error Rates on the 1000-Taxon Short Branch Datasets for Constrained-INC and NJMerge on

RAxML Constraint Trees, as a Function of the Scaling Factor Applied to the Branch Lengths

Scaling factor 0.2 0.5 1 2 5 10 20 50

Tree error rate for Constrained-INC 0.16 0.18 0.21 0.19 0.20 0.22 0.23 0.26
Tree error rate for NJMerge 0.16 0.18 0.19 0.20 0.20 0.22 0.23 0.26

Fig. 2. Results for Experiment 4: Impact of quartet tree method for Con-
strained-INC for species tree estimation on 1,000-species 1,000-gene
datasets with very high ILS (20 replicates). Results are shown for three
variants of Constrained-INC, differing only in the method used to com-
pute quartet trees.

TABLE 11
Results for Experiment 4: The Impact of the Quartet Tree
Method on the Quartet Tree Error Rate (max 1.0) for Con-

strained-INC; Results Shown are Averages Over 20 Replicates
of the 1000-Taxon 1000-Gene High ILS Datasets

Quartet Tree Method Quartet tree error

Induced from full NJst tree 0.156
Induced from full ASTRID tree 0.106
FPM 0.429
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We also explore other species tree estimation methods,
whichwe run on the full datasets.

For the high ILS datasets, we use ASTRAL to compute the
constraint trees based on our earlier experiment. ASTRAL
only completedwithin the 48 hour allowed time on one repli-
cate of these high ILS datasets. Fig. 3 shows FN error rates for
all the methods other than ASTRAL and Fig. 4 shows result
for the single replicate that ASTRAL completes. Results on
the single replicate where ASTRAL completes show that
ASTRAL has slightly higher error than Constrained-INC,
NJMerge, and ASTRID, but is more accurate than NJst.
Results on the full set of replicates (Fig. 3) shows that
Constrained-INC is slightly less accurate than NJMerge and
ASTRID on these high ILS datasets, andmatchesNJst. Differ-
ences between themethods are very small in both cases. Sim-
ilar results are shown for quartet distances (see Table 12).

For the low/moderate ILS datasets, we use RAxML to
compute the constraint trees, since this is the constraint tree
method found in [12] to produce the best results for
NJMerge under low/moderate ILS conditions. RAxML
failed to return any trees on 3 of the 20 replicates within the
allowed 48 hours. Fig. 5 shows FN error rates for all repli-
cates (without RAxML) and Fig. 6 shows FN error rates for
the 17 replicates for which RAxML returns a tree. The

comparison between Constrained-INC and NJMerge across
all 20 replicates show nearly identical accuracy (with a
slight advantage to Constrained-INC), and both are more
accurate than ASTRID (in third place) and NJst (in last
place). A comparison on the 17 replicates where we report
results for RAxML show slightly different trends: ASTRID
and NJst are still in third and fourth places, respectively,
but now NJMerge is slightly better than Constrained-INC.
Also, RAxML is tied with NJMerge. Overall, NJMerge and
Constrained-INC have very similar accuracy, and both

Fig. 3. Results for Experiment 4: Average species tree FN error rates for
multi-locus species tree estimation on 1000-species 1000-gene datasets
with very high ILS (over 20 replicate datasets). NJMerge and Con-
strained-INC are given the same set of ASTRAL constraint trees, and
Constrained-INC is given the ASTRID distance matrix and induced quar-
tet trees. Results for ASTRAL are not shown, because it only completed
on one replicate.

Fig. 4. Results for Experiment 4: Average species tree FN error rates on
multi-locus species tree estimation on 1,000-species 1,000-gene data-
sets with very high ILS on the single replicate where ASTRAL completes
within 48 hours. NJMerge and Constrained-INC are given the same set
of ASTRAL constraint trees, and Constrained-INC is given the ASTRID
distance matrix and induced quartet trees.

TABLE 12
Results for Experiment 4: Average Quartet Tree Error

Rate (max. 1.0) for Multi-Locus Species Tree Estimation on
1,000-Species 1,000-Gene Datasets With Very High ILS

(over 20 replicate datasets)

Species Tree Method ASTRAL complete Remaining replicates

Constrained-INC 0.079 0.107
NJMerge 0.078 0.115
ASTRAL 0.066 n/a
ASTRID 0.079 0.107
NJst 0.079 0.125

The single replicate that ASTRAL completed on is shown separately from the
remaining 19 replicates.

Fig. 5. Results for Experiment 4: Average FN error rates on 1,000-spe-
cies 1,000-gene datasets with low/moderate ILS, without RAxML
(results averaged across all 20 replicates). Constrained-INC and
NJMerge both use the same set of RAxML constraint trees and con-
strained-INC uses the ASTRID distance matrix and the ASTRID guide
tree to derive quartet trees.

Fig. 6. Results for Experiment 4: Average FNerror rates on 1,000-species
1,000-gene datasets with low/moderate ILS, restricted to those 17 repli-
cates for which we are able to report a tree for RAxML (the best tree found
in 48 hours). Constrained-INC and NJMerge are given the same set of
RAxML constraint trees, andConstrained-INCwas given the ASTRID dis-
tancematrix and the ASTRID guide tree to derive quartet trees.
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come close to the accuracy of RAxML for these low/moder-
ate ILS conditions. A comparison of these methods with
respect to quartet tree error rates shows very similar trends,
but RAxML has lower error rates than the other methods
(Table 13). This is an interesting difference, but the quartet
error rates are low for all methods, so that the differences
may not be meaningful.

3.5.3 Running Time

We now compare the running times for Constrained-INC
and NJMerge, given a set of constraint trees. NJMerge and
Constrained-INC both need to compute the ASTRID dis-
tance matrix, but Constrained-INC also needs to compute
the ASTRID tree on the full dataset (as it uses this to com-
pute quartet trees); we therefore report the time to compute
the ASTRID tree in the time reported for Constrained-INC,
but show this part separately in Table 14. We also do not
report the time to compute the constraint trees, as this is
common to both methods (and a standard part of most phy-
logenomic pipelines).

Table 14 shows these times on the datasets with 1,000 spe-
cies and 1,000 genes, under both ILS levels. Note that run-
ning times do not changewith the ILS level, and that for both
conditions Constrained-INC uses less than 10 percent of the
time used by NJMerge. Furthermore, the vast majority of the
time used for Constrained-INC is calculating the ASTRID
tree; the merger step itself is a very small part of its total
time. Thus, Constrained-INC ismuch faster thanNJMerge.

3.5.4 Summary of Experiment 4

In general, we find that Constrained-INC and NJMerge have
similar accuracy for species tree estimation (with a slight

advantage to NJMerge), but that Constrained-INC is faster.
Under low/moderate ILS conditions (where we used con-
straint trees computed using RAxML), both NJMerge and
Constrained-INC were similar in accuracy to RAxML (with
Constrained-INC slightly less accurate), but both were much
faster than RAxML. Under high ILS conditions, ASTRAL
and the twoDTMmethods (Constrained-INC andNJMerge),
both using ASTRAL for constraint trees, had nearly identical
accuracy, but ASTRAL was much slower than NJMerge and
Constrained-INC. Also, ASTRAL and RAxML failed to com-
plete within the allowed time onmany replicate datasets, but
using these methods within the divide-and-conquer pipe-
lines allowed them to complete on all replicates.

3.6 Theoretical Results

We examine statistical consistency for pipelines using
Constrained-INC under the GTR and MSC+GTR models.

Theorem 1. LetF be a model of evolution. Suppose that ðT;QÞ is
a model tree under F (so that T denotes the tree topology and Q
denotes the numeric parameters) and let S denote the set of spe-
cies for the leaves of T . Suppose that S ¼ S1 [ S2 . . . [ Sk is a
partition of S into pairwise disjoint sets. Let MQ the method
used to construct quartet trees and MC the method used to con-
struct the constraint trees on Si, i ¼ 1; 2; . . . ; k. IfMQ and MC

are statistically consistent for unrooted tree topology estimation
under F, then the pipeline obtained by any decomposition of S
into disjoint sets, followed by using MQ;MC and Constrained-
INC, is a statistically consistent method for estimating the
unrooted version of T .

Proof. Under the assumption that MQ and MC are statisti-
cally consistent under F, then as the amount of data
increases (e.g., we assume the number of sites increases if
F is the GTR model and that the number of sites and
number of genes both increase if F is the MSC+GTR
model), with probability converging to 1, the output from
the pipeline will include a set of unrooted constraint trees
and quartet trees that are correct (i.e., identical to the
model tree topology). Now consider any ordering of the
taxa (including the one defined by Constrained-INC,
based on its computed distance matrix). Inductively, it is
easy to see that each taxon is added into a growing tree in
exactly the correct location, when the quartet trees are
correct. Hence, given such an input, Constrained-INC
will combine the constraint trees into the true tree T , and
so the pipeline is statistically consistent under F. tu
The proof given here is nearly identical to Theorem 3

from [20], but did not use any properties about the taxon
addition ordering; in fact, as we show here, any such pipe-
line is statistically consistent for any taxon addition order-
ing. However, the choice of taxon addition ordering does
have an impact on the sample complexity, and this is why
the algorithms described in [10] carefully constrain the
taxon addition ordering.

Note that Theorem 1 immediately implies that many
pipelines we have proposed using Constrained-INC to com-
bine constraint trees are statistically consistent estimates of
gene trees under the GTR model; for example, using NJ or
FastME on logdet distance matrices to compute constraint
trees, and many methods (e.g., the FPM method or NJ on

TABLE 13
Results for Experiment 4: Average Quartet Tree Error Rate
(max. 1.0) for Multi-Locus Species Tree Estimation on 1,000-

Species 1,000-Gene Datasets With Low/Moderate ILS
(over 20 replicate datasets)

Species Tree Method RAxML complete Remaining replicates

Constrained-INC 0.077 0.043
NJMerge 0.072 0.024
RAxML 0.023 n/a
ASTRID 0.075 0.028
NJst 0.083 0.035

Results for the 17 replicates that RAxML gave an output tree are shown sepa-
rately from the remaining 3 replicates.

TABLE 14
Results for Experiment 4: Average Runtime (in seconds) �

Standard Deviation for Constrained-INC and NJMerge on 1,000
Species and 1,000 Genes

Datasets ASTRID guide + Constrained-INC NJMerge

Moderate ILS ð17:7� 0:1Þ þ ð1:0� 0:05Þ 1939� 66

Very high ILS ð17:7� 0:1Þ þ ð1:0� 0:05Þ 1950� 283

Both methods are given the same set of constraint trees (computed by
ASTRAL). The time shown for Constrained-INC is restricted to the merging
step, and does not include the time to compute the ASTRID tree (nor the time
to compute the distance matrix). Note that calculating the ASTRID tree takes
the vast majority (95 percent) of the total merging time.
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logdet distances, or maximum likelihood or Bayesian esti-
mation under GTR) to compute quartet trees would be sta-
tistically consistent under the GTR model.

Corollary 1. Consider a pipeline for species tree estimation from
multi-locus datasets that has the following steps: it (i) computes
gene trees using a method that is statistically consistent under
GTR, (ii) computes the average internode distance matrix based
on the gene trees, (iii) uses quartet trees induced by the ASTRID
tree (computed on average internode distance matrix), (iv) com-
putes constraint trees using any method that is statistically con-
sistent under the MSC+GTR model, and then (v) combines the
constraint trees using Constrained-INC in conjunction with
some taxon addition ordering (e.g., computed using the inter-
node distance matrix). Then the pipeline is statistically consis-
tent for estimating the unrooted species tree topology under the
MSC+GTRmodel.

Proof.Wewill show that (a) themethod for computing quar-
tet trees is statistically consistent under the MSC+GTR
model, and (b) and the method for computing unrooted
constraint trees is statistically consistent under the MSC
+GTR model. Hence, by Theorem 1, the pipeline will be
statistically consistent for estimating unrooted species trees
under the MSC+GTR model. Since the gene trees are com-
puted using a method that is statistically consistent under
the GTR model, then with probability converging to 1, as
the number of sites per gene increases each gene tree will
be correct. When the gene trees are correct, then as the
number of genes increases, the average internode distance
matrix will converge to an additive matrix for the true
species tree [47]. The quartet trees are estimated using
ASTRID on the average internode distance matrix, which
(because the internode distance matrix converges to an
additive matrix for the true species tree) is established to
be statistically consistent under the MSC+GTRmodel [34];
hence, (a) is true. By assumption, the constraint trees are
computed using methods that are statistically consistent
under the MSC+GTR model; hence (b) is true. Hence (a)
and (b) are established, and the result follows. tu
Note that this corollary implies that using the average

internode distance matrix, computing gene trees using max-
imum likelihood, using ASTRID (on the internode distance
matrix) to compute quartet trees, and using ASTRAL to
compute constraint trees, is statistically consistent under the
MSC+GTR model. Note also that we did not rely on any
property about the taxon addition ordering to establish sta-
tistical consistency.

4 DISCUSSION

In our study, the divide-and-conquer pipeline using
Constrained-INC was highly beneficial for computational
and scalability issues, but had mixed impact on topological
accuracy. Specifically, we saw that Constrained-INC used
with even the best performing base methods (e.g., RAxML)
never matched the accuracy of RAxML for gene tree estima-
tion, and in fact generally was less accurate. On the other
hand, the impact of using Constrained-INC in species tree
estimation was more favorable, in that it came close to the
accuracy of its basemethod that is used to compute constraint

trees on subsets. Thus, for low ILS conditions, the best base
method was RAxML, and for high ILS conditions the best
base methodwas ASTRAL, and using Constrained-INCwith
the appropriate base method came close to the accuracy of
that basemethod in our study.

To understand the difference between gene tree estima-
tion and species tree estimation, we begin with a review of
the prior studies that examined other DTMmethods for spe-
cies tree estimation [12], [20]. For example, Figure 10 in [12]
showed that divide-and-conquer using RAxML for con-
straint trees followed by NJMerge matched or improved
on the accuracy of RAxML on the full dataset when ILS
was high, and matched its accuracy for low/moderate ILS
conditions. Furthermore, these studies showed that using
NJMerge and GTM with ASTRAL came close to the accu-
racy of ASTRAL trees on the full dataset, a trend that is also
observed in this study for Constrained-INC.

Hence, divide-and-conquer has the potential to improve
accuracy in some cases, but not all. Here we conjecture that
improvement is possible when the constraint trees are computed
using methods that are not optimized for the specific estimation
problem, but otherwise is likely to lead to a reduction in accuracy
(or at best maintain accuracy).

We begin by considering gene tree estimation, where
sequences evolve under the GTR model. For this condition,
neither NJMerge nor Constrained-INC was able to match
the accuracy of RAxML. The most likely explanation for this
trend is that RAxML (which is regarded as possibly the
most accurate method for gene tree estimation, and a lead-
ing maximum likelihood software) has superb accuracy that
is hard to improve on. In particular, although maximum
likelihood is NP-hard to solve, it may be that RAxML is able
to find very good local optima (or perhaps even global
optima) on these simulated datasets (which are all simu-
lated under the same model that RAxML uses for its estima-
tion model). Furthermore, maximum likelihood has been
proven to have optimal sample complexity if solved exactly
[9]. Together, these points suggest that RAxML may just be
hard to improve on, in terms of accuracy. Interestingly,
although FastTree2 is not generally considered as reliable as
RAxML, it has also been shown to produce very accurate
tree topologies under some conditions [48], and this may
also explain why using divide-and-conquer with FastTree2
sometimes resulted in worse trees.

Now consider species tree estimation under MSC+GTR,
so that genes evolve down a species tree under the MSC
model and sequences evolve down each gene under the
GTR model. Maximum likelihood under GTR, applied to a
concatenation of the alignments for each gene, is not statisti-
cally consistent under this model (as noted earlier), and so
RAxML is not optimized for this estimation problem.
ASTRAL has the advantage over RAxML of being statisti-
cally consistent, but we argue it is also not optimized for the
MSC+GTR tree estimation problem: its statistical consis-
tency and excellent sample complexity [49] under the MSC
+GTR model depends on having true gene trees, which is
not generally achievable given finite length sequences per
gene [23]. However, its empirical performance depends on
other factors, such as how the set of allowed bipartitions is
computed from the input, which could be impacted (favor-
ably) through divide-and-conquer. Hence, neither of these
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methods is optimized for accuracy under the MSC+GTR
model, and there is a potential for divide-and-conquer to
provide some benefit–even with respect to accuracy.

We now address the basic question of whether there are
inherent limitations in divide-and-conquer strategies. It is
well known that dense taxonomic sampling improves accu-
racy when phylogenies are estimated using good methods,
such as maximum likelihood [50], so that the subset trees
computed within any divide-and-conquer pipeline are
unlikely to attain the same accuracy as a good ML heuristic
applied to the entire dataset, and then restricted to the speci-
fied subset. Thus, although divide-and-conquer approaches
(such as the one we explore here) can reduce running time,
they can also reduce accuracy when the base method (used
to construct the constraint trees as well as the entire tree on
the full dataset) is highly accurate for the statistical infer-
ence problem. In such a case, there is a definite potential for
divide-and-conquer to result in reduced accuracy.

That said, there is a very clear benefit to using divide-and-
conquer strategies: they enable highly accurate methods that
are computationally intensive to run on larger datasets with
limited resources. Our study showed this clearly. Further-
more, phylogeny estimation is one of the most computation-
ally intensive problems commonly attempted, with many
phylogenomic datasets taking tends to hundreds of CPU years
(e.g., the Avian phylogenomics project, which analyzed 48
bird genomes [42]). In addition, some of the most interesting
methods for phylogeny estimation are too computationally
intensive to use on evenmoderate sized datasets; the Bayesian
method, StarBEAST2, is an example of such a method. Thus,
divide-and-conquer approaches such as thesemay also be use-
ful for improving scalability of powerful statistical approaches,
and future research should investigate this.

5 CONCLUSION

Phylogeny estimation is a computationally challenging
problem, with many moderate sized datasets taking years
of CPU time. Prior divide-and-conquer strategies for phy-
logeny estimation have followed a natural design, where a
dataset of species is divided into overlapping subsets, trees
are computed on the subsets, and then merged together into
a tree on the full dataset. DACTAL [51] is one such example,
and has been shown to be useful for both gene tree estima-
tion from unaligned sequences [51] and for multi-locus spe-
cies tree estimation [52]. However, the final step requires
methods for supertree construction, and all the best current
methods (e.g., FastRFS [53]) are based on heuristics for NP-
hard optimization problems and do not scale well to large
datasets [54]. This was the motivation for the Disjoint Tree
Merger approach, which combines a set of disjoint trees,
and so can be used in divide-and-conquer pipelines without
having to rely on supertree methods.

The method we explored, Constrained-INC, is one such
DTM method, and was presented in [10] for gene tree esti-
mation. In this study, we explored different ways of run-
ning Constrained-INC within an established divide-and-
conquer pipeline, and evaluated the impact of these variants
on both gene tree and species tree estimation. We also com-
pared Constrained-INC to NJMerge, a prior method for
combining constraint trees.

Constrained-INC has two advantages over NJMerge. The
first is that Constrained-INC, unlike NJMerge, is guaranteed
algorithmically to return a tree, but the same is not true for
NJMerge. Instead,NJMerge uses a heuristic to decidewhether
to make a pair of leaves into siblings, and this heuristic can
make mistakes (see discussion in [12] abut why NJMerge
can fail, and see [12], [19], [20] for empirical evidence that it
can fail). The second is running time: Constrained-INC is
much faster than NJMerge; on the multi-locus datasets with
1,000 species and 1,000 genes, it used less than 10 percent of
the time used byNJMerge, and on average finished in under a
minute for each dataset.

One major benefit for using DTMmethods within divide-
and-conquer pipelines is that they can enable computation-
ally intensive methods to complete on datasets given limited
resources, whereas otherwise they might not be able to com-
plete.We observed this in our study, where all analyses com-
pleted for Constrained-INC, while RAxML and ASTRAL
were unable to complete on some inputs given limited
computational resources. Hence, Constrained-INC improves
scalability and speed for both ASTRAL and RAxML, while
largely maintaining accuracy, and provides a running time
advantage over NJMerge, the previousmost accurate DTM.

We also established theoretical properties about the
Constrained-INC method and its use within the divide-and-
conquer pipeline. We proved that a divide-and-conquer
pipeline using Constrained-INC with ASTRAL constraint
trees and the ASTRID distance matrix and quartet trees is
statistically consistent under the MSC+GTR model.

This study contributes to a growing body of research
exploring divide-and-conquer strategies used with DTM
methods in phylogenomic estimation. Our results show that
Constrained-INC is similar in performance (i.e., impact on
accuracy, running time, and scalability) to other DTM meth-
ods, which is noteworthy, since the different DTM methods
eachuse very different specific techniques tomerge sets of dis-
joint trees. Thus, divide-and-conquer using DTM is a promis-
ing general algorithmic strategy that should be explored
further. At the same time, our study showed conditionswhere
these divide-and-conquer strategies can reduce accuracy, and
reveals challenges to (and possibly inherent limitations of)
divide-and-conquer strategies for statistical phylogenetics.
Future research is needed to explore these techniques under a
wider range of model conditions, in order to better assess the
value and potential of these approaches.
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