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Abstract—Identification of common molecular mechanisms in interrelated diseases is essential for better prognoses and targeted

therapies. However, complexity of metabolic pathways makes it difficult to discover common disease genes underlying metabolic

disorders; and it requires more sophisticated bioinformatics models that combine different types of biological data and computational

methods. Accordingly, we built an integrative network analysis model to identify shared disease genes in metabolic syndrome (MS),

type 2 diabetes (T2D), and coronary artery disease (CAD). We constructed weighted gene co-expression networks by combining gene

expression, protein-protein interaction, and gene ontology data from multiple sources. For 90 different configurations of disease

networks, we detected the significant modules by using MCL, SPICi, and Linkcomm graph clustering algorithms. We also performed

a comparative evaluation on disease modules to determine the best method providing the highest biological validity. By overlapping

the disease modules, we identified 22 shared genes for MS–CAD and T2D–CAD. Moreover, 19 out of these genes were directly or

indirectly associated with relevant diseases in the previous medical studies. This study does not only demonstrate the performance of

different biological data sources and computational methods in disease-gene discovery, but also offers potential insights into common

genetic mechanisms of the metabolic disorders.

Index Terms—Gene expression, gene ontology, gene-disease association, protein-protein interaction, metabolic syndrome, type 2 diabetes,

coronary artery disease

Ç

1 INTRODUCTION

METABOLIC disorders consist of a large set of inherited or
acquired genetic diseases characterized by enzyme

deficiencies that disrupt the normal metabolic process by
causing abnormal chemical reactions in the body. Most of
the metabolic disorders derive from metabolic syndrome
(MS) which is a combination of pathological conditions
including insulin resistance, hypertension, hyperlipidemia,
and abdominal obesity. Patients with MS have three-fold
increased risk of developing cardiovascular diseases (CVDs)
and five-fold increased risk of developing diabetes melli-
tus [1], [2]. The International Diabetes Federation (IDF) esti-
mates that 25 percent of the global population has MS [3],
while 8.8 percent has diabetes [4], and the annual health-care
expenditures exceed USD 727 billions, as of 2017 [5]. On the
other hand, coronary artery disease (CAD), which accounts
for 80 percent of all CVD diagnoses, is referred as the leading
cause of death globally [6].

Understanding the underlying molecular mechanisms of
metabolic disorders is crucial not only to reveal the cause of
the disease but also to design targeted drug therapies. In
this respect, identifying the shared disease genes for multi-
ple metabolic disorders provides a potential insight into the
state of the disease while enhancing the accuracy of the

early diagnoses. However, identifying the common genes
or protein complexes is a challenging task because of the
fact that the metabolic disorders act on so many pathways
that produce a large number of potential risk factors [7].
Therefore, it requires us to develop some integrative bioin-
formatics models combining multiple biological data sour-
ces and computational methods to establish valid and
reliable results using reasonable amount of resources.

Identifying the shared genes by utilization of an integra-
tive model requires the same essential data-mining proce-
dures that a conventional disease-gene discovery practice
requires, such as preprocessing, mapping, integration, fea-
ture selection, clustering, classification, and validation. In
addition, parameterization and selection of the computa-
tional methods should be handled carefully since the per-
formance of the model is highly dependent on the data sets
and computational methods used. Thus, it is usually needed
to perform a comparative evaluation on as many methods
and configurations as possible.

In this paper, we suggest an integrative and comparative
bioinformatics approach that combines multiple biological
data sources and computational methods to identify shared
disease genes in MS, T2D, and CAD. First, we construct
weighted gene co-expression networks (WGCNs) for each
disease group by integrating peripheral blood gene expres-
sion data of 29 subjects, protein-protein interaction (PPI)
networks, and Gene Ontology (GO) information. Then, we
execute different network clustering algorithms to cluster
90 disease networks, which are constructed using different
parameters, and detected the disease modules for each dis-
ease group. After comparatively evaluating the clustering
results, we overlap the networks establishing the highest
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biological homogeneity and stability, and thus we obtained
the most significant common disease modules. Finally, we
validate the proposed gene-disease associations (GDAs) on
several publicly available microarray data sets and the exist-
ing literature data in DisGeNET platform [8]. In doing so,
we aim to explore novel disease genes shared between MS,
T2D, and CAD, as well as to compare and evaluate the per-
formance of different PPI networks, GO semantic similarity
measures, and graph clustering algorithms, in disease-gene
identification.

2 RELATED WORK

2.1 Medical Studies on MS, T2D, and CAD

Over the past three decades, many medical researches have
been carried out to reveal the relationship between meta-
bolic disorders, and their results clearly demonstrated the
tie between the MS, T2D, and CVDs. In 2001, Isomaa
et al. [1] found that MS was present in 80 percent of subjects
with T2D and the presence of MS increased the risk of coro-
nary heart disease (CHD) three-fold and increased the risk
of cardiovascular mortality and morbidity by 1.8-fold. In
2004, Grundy [9] described obesity-induced MS as a multi-
dimensional risk factor for atherosclerotic cardiovascular
disease (ASCVD) and T2D. Again in 2004, Grundy et al. [10]
reported that in patients with MS, the risk of developing
ASCVD increases at least twice, and the risk of developing
T2D increases five times, regardless of gender. In 2005, Wil-
son et al. [11] observed that MS accounts for up to one third
of CVD in men and approximately half of new T2D over
eight years of follow-up. Many other studies [12], [13], [14],
[15], [16] demonstrated the association and parallel inci-
dence of MS, T2D, and CAD.

2.2 Computational Studies on MS, T2D, and CAD

Despite the biological complexity of the problem, several
bioinformatics approaches have emerged to reveal common
molecular mechanisms of MS, T2D, and CAD, by means of
the recent developments in the post-genomic era. As well as
these approaches get use of biological interaction data, gene
expression data, sequence data, or GO information, they
also combined multiple data sources to improve the integ-
rity and reliability of the results. With an integrative analy-
sis on biological pathways and networks, Chan et al. [17]
discovered multiple biological pathways and key regulatory
genes involved in CVD and T2D development. Ko et al. [18]
proposed a novel approach that utilizes underlying molecu-
lar pathways and common disease-related genes to identify
comorbid diseases through molecular interaction networks.
Liu et al. [19] performed a weighted gene co-expression net-
work analysis (WGCNA) to identify specific hub genes and
modules associated with CAD; and they associated 3711
genes in 21 modules with CAD. Shu et al. [20] conducted a
broad integrative analysis based on five multi-ethnic
genome-wide association studies; and they identified the
common disease sub-networks and metabolic pathways in
T2D and CVD. Zhao et al. [21] performed a genome-wide
study on multiple ancestry groups including 265,678 T2D
and 260,365 CHD subjects; and they reported new genetic
loci that are shared by CHD and T2D.

On the other hand, these studies mostly focused on
exploring the genetic similarities or differences between a
pair of diseases rather than examining many-to-many rela-
tionships in a disease set. Besides, they typically rely on sin-
gle computational method and validation strategy even
though they diversify the utilized data sources. In this study,
we propose a new pipeline to integrate multiple biological
data sources, computational methods, and validation met-
rics for extensive analysis of many-to-many relationships
betweenmultiple diseases. Besides, we comparatively evalu-
ate the performance of these sources, methods, and metrics
in disease gene discovery. Main novelty of the proposed sys-
tem is integration of disease transcriptome data and gene
semantic similarity into PPI networks to obtain more reliable
genemodules relatedwithMS, T2D, andCADas an outcome
of network clustering algorithms.

3 METHOD

3.1 System Overview

Weprovide the pipeline of the proposed system as a pseudo-
code (Supplementary S1 available online). We also present a
general overview in Fig. 1. In step A, after removing invalid
and null rows, we apply a logarithmic normalization. Then,
we filter out the duplicated rows (i.e., probes) and obtain
24,279 unique genes out of 50,400 probes. In step B, we detect
DEGs by considering both significance scores of t-tests and
fold-change (FC) values.

In step C, we reduce the size of the STRING [22] and INet
[23] PPI networks. We first map the proteins in both net-
works to the gene symbols in our expression data set. By

Fig. 1. Detection of commondisease genes in six steps. (A) Preprocessing,
normalization, and aggregation of gene expression data. (B) Detection of
DEGs. (C) Preprocessing and filtering of PPI data. (D) Construction of dis-
ease networks by integrating gene expression, GO, and PPI data. (E) Iden-
tification of disease modules by use of different clustering algorithms and
network configurations. (F) Determination of the best method and identifi-
cation of common significant genes.
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using the medium-confidence threshold, we shrink both net-
works to the 10 percent of their initial sizes. In step D, we
construct disease networks by integrating the gene expres-
sion, GO, and PPI data. We map the protein identifiers of the
STRING and INet networks to gene symbols of DEGs for
each disease group. On the resulting topology, we assign GO
semantic similarity scores as edge weights to generate bio-
logically meaningful clusters. In step E, we separately exe-
cute the MCL [24], SPICi [25], and Linkcomm [26] graph
clustering algorithms on each disease network and obtain
the significant disease modules. In step F, we measure the
biological homogeneity (BHI) and cluster stability of each
network. Thus, we determine the best network construction
parameters and clustering algorithm to be used in the extrac-
tion of common diseasemodules. Then, we identify the over-
lapping disease modules that are expected to include shared
disease genes forMS, T2D, and CAD.

At the end of the six steps, we validate our results on the
literature and other data sets. By utilizing the DisGeNET,
we identify the functional relationships of the revealed
genes with each other and their associations with relevant
disease classes, and thereby present the biological validity.
On the other hand, we partially reproduce the results on 17
different validation sets to test the model consistency.

3.2 Gene Expression Analysis

We obtain gene expression profiles for 29 subjects (CTRL=9,
MS=6, T2D=8, CAD=6) from GSE23561 peripheral blood
gene expression data set [27] which is publicly available in
Gene Expression Omnibus (GEO). The series matrix file pro-
vided under GSE23561 consists of 50,400 oligonucleotide
probes and their expression values for each subject. We first
apply log 2-based normalization on the F635 median values.
Then, we remove the invalid and null rows in the data set
and perform median-based aggregation for multiple probes
corresponding to the same gene by mapping probe identi-
fiers to gene symbols (Symbol v12) using GPL10775 plat-
form. As a result, we obtain 24,279 log transformed gene
expression values for each one of the 29 samples.

We separately identify the DEGs for each disease group
by utilizing both t-tests and FC values. First, we compare the
mean of each disease group with the control group using
two-sample t-tests and filter out the genes where p > 0:05.
The number of the resulting genes are 307, 435, and 2679 for
MS, T2D, and CAD, respectively. Then, we calculate the FC
for each gene i by FCðiÞ ¼ jmCTRLðiÞ �mDISEASEðiÞj, where
mCTRLðiÞ denotes the mean of log-normalized expression val-
ues in control (CTRL) group and mDISEASEðiÞ denotes the
mean of log-normalized expression values in a disease group
(i.e., MS, T2D, or CAD). After applying the fold-change cut-
off, FC � 1, the number of DEGs for MS, T2D, and CAD
appears as 190, 414, and 1635, respectively.

3.3 Protein-Protein Interaction Network Analysis

To construct the disease network topologies, we utilize
STRING [22] and INet [23], those are the databases providing
the highest coverage in humanPPINs. STRING is a functional
protein association network that consists of 19,576 unique
proteins and 5,676,528 unique interactions between them. On
the other hand, INet is an integrated network including infor-
mation of four weighted human gene association networks
(FunCoup, HumanNet, HIPPIE, and STRING) and it consists
of 19,290 unique genes and 7,077,509 unique interactions.

We perform mapping over official gene symbols of
expression data set and protein identifiers of PPINs by use
of org.Hs.eg.db package [28] in R-Bioconductor. By elimi-
nating the unmapped nodes and the interactions between
them, we filter out 27 percent of nodes and 34 percent of
edges in the STRING; and 28 percent of nodes and 33 per-
cent of edges in the INet.

Then, we choose the significant interactions by using a
medium-confidence cutoff which is 0.400 for STRING and
0.175 for INet. The initial and resulting number of nodes
and edges for each network are shown in Table 1. To obtain
the disease networks, we also eliminate the nodes that are
not represented in the DEG sets. The size of the remaining
networks are listed in Table 2.

3.4 GO Similarity Analysis

On each disease network, we calculate GO semantic similar-
ity scores for connected gene pairs using GoSemSim R pack-
age [29]. GOSemSim generates GO semantic similarity
scores by using different similarity measures, combination
methods, and orthogonal ontologies. The similarity measure
is either one of four information content (IC) based method
(Jiang, Lin, Resnik, Rel) or a graph-based method (Wang)
that are used in determination of the semantic similarity of
two GO terms. The combination strategy is one of the max,
avg, rcmax, or best-match average (BMA) and needed to
calculate overall semantic similarity score on all pairs of
two GO term sets. On the other hand, the reference orthogo-
nal ontologies can be biological process (BP), cellular com-
ponent (CC), or molecular function (MF).

To combine GO terms, we select BMA which has been
suggested as the best combination method in previous stud-
ies [30], [31]. On the other hand, we repeat our analyses for
each type of similarity measure (Jiang, Lin, Resnik, Rel,
Wang) and each type of orthogonal ontology (BP, CC, MF)
to perform a comparative evaluation.

3.5 Clustering

Clustering algorithms can be classified according to 5 main
features: (1) strategy: the algorithmic approach they based on,
(2) weight consideration: operability on weighted networks,

TABLE 1
Size of the STRING and INet topologies (I: initial, R: Reduced)

STRING INet

Nodes Edges Nodes Edges

I 19,576 5,676,528 19,290 7,077,509
R 13,969 (61%) 568,020 (10%) 12,264 (64%) 710,660 (10%)

TABLE 2
Number of Nodes and Edges in Each Disease Network

STRING INet

Nodes Edges Nodes Edges

MS 34 25 22 21
T2D 106 107 53 41
CAD 786 3,786 608 5,645
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(3) overlap: whether generating intersecting or discrete clus-
ters, (4) coverage: whether including each element in a cluster
or not, (5) scalability: ability to deal with large data. We run
three clustering algorithms with different characteristics
(MCL, SPICi, Linkcomm).MCL [24] is a stochastic flow-based
clustering algorithm providing full coverage, SPICi [25] is a
heuristic local clustering algorithm with high scalability, and
Linkcomm [26] is a link similarity-based hierarchical graph-
cut algorithm that generates overlapping clusters. On the
other hand, each algorithm can operate on undirected
weighted graphs. The main features of each algorithm are
presented in Table 3.

3.5.1 Implementation Details

We use MCL [32] and Linkcomm [33] R packages, and SPICi
[25] python library to generate clusters. We execute mcl, get-
LinkCommunities, and spici functions for MCL, Linkcomm,
and SPICi, respectively. For each method, we set the input as
an undirected and weighted graph without self loops. In
SPICi, we set theminimum cluster density (d) to 0.5, the min-
imum support threshold (g) to 0.5, the minimum cluster size
(s) to 2, and graph mode to 0 (sparse graph). On the other
hand, we use the default parameters inMCL and Linkcomm.
All executions are performed on a computer with Intel Core
i5-4200U processor, 8 GB of RAM, and Ubuntu 18.04 operat-
ing system.

3.5.2 Execution Time and Memory Consumption

We present the average execution time and maximummem-
ory consumption of each algorithm in Table 4. As it is
expected, SPICi is significantly faster and memory efficient
(i.e., scalable), especially in large networks such as CAD.

3.6 Validation

3.6.1 BHI

The Biological Homogeneity Index (BHI) indicates to what
extent the genes placed in the same statistical clusters
belong to the same functional classes [34]. It is a useful mea-
sure to compare the performance of a number of competing
clustering algorithms applied to the same data set.

For two annotated genes x, y that belong to the same sta-
tistical cluster D, CðxÞ is a functional class containing gene
x. Similarly, CðyÞ contains gene y. The indicator function
IðCðxÞ ¼ CðyÞÞ ¼ 1 if CðxÞ and CðyÞ match. As genes x and
y are in the same statistical cluster, it is expected that the
two functional classes to match. The biological similarity of
the statistical clusters are

BHI ¼ 1

k

Xk

j¼1

1

njðnj � 1Þ
X

x 6¼y2Dj

IðCðxÞ ¼ CðyÞÞ;

where k is the number of statistical clusters, nj ¼ nðDj \ CÞ
is the number of annotated genes in cluster Dj, and nðAÞ is
size of any set A.

3.6.2 Stability of Disease Modules

In addition to biological homogeneity, we also evaluate the
stability of the disease modules obtained. We adapted for
our purposes the method offered by Hopcroft et al. to mea-
sure the stability of network communities [35]. We obtain
20 perturbed networks of each disease network by ran-
domly removing 5 percent of all its nodes and the edges
connected to these nodes. Here, the selected nodes and
edges are arranged to be random and disjoint with each
other. Then, we run the clustering algorithms for each per-
turbed network and calculate the stability of the modules
based on the average best-match values. Here, the best-
match value for the cluster C0 in the perturbed network P
is defined as

bestmatchðC0; P Þ ¼ max
C2O

(
min

jC0 \ Cj
jCj ;

jC0 \ Cj
jC0j

� �)
;

where C is a cluster in the original network O. The average
best-match value of P with respect to O is the mean of best-
match values obtained for each cluster in P .

3.6.3 DisGeNET

DisGeNET [8] is an integrative database collecting gene-dis-
ease association (GDA) data from different data sources
including animal models (M), GWAS catalogs (I), expert
curated repositories (C), and scientific literature (L). DisGe-
NET v6.0 contains 628,685 GDAs, between 17,549 genes and
24,166 diseases. It is a useful platform for the validation of
computationally predicted disease genes through the inves-
tigation of existing knowledge about them. DisGeNET gives
a score (S) for each GDA based on the supporting data sour-
ces, which is calculated by S ¼ C þM þ I þ Lwhere

C ¼

0:6 if Nc > 2

0:5 if Nc ¼ 2

0:4 if Nc ¼ 1

0 otherwise

8
>>><

>>>:
L ¼

0:1 if Np > 9
Np

100 if Np � 9

(

M ¼ 0:2 if Nm > 0

0 otherwise

�
I ¼ 0:1 if Ni > 0

0 otherwise.

�

TABLE 3
Main Features of MCL, SPICi, and Linkcomm

Clustering Algorithms

Algorithm Strategy Weight Overlap Coverage Scalability

MCL Flow-based Yes No Partial Low
SPICi Heuristic Yes No Partial High
Linkcomm Hierachical Yes Yes Full Low

TABLE 4
Average Execution Time (t: sec) and Memory

Consumption (m: Mb)

MCL Linkcomm SPICi

t m t m t m

MS 0.2 1.2 1.6 0.1 0.006 3.7
STRING T2D 1.2 19.2 2.1 2.2 0.005 3.8

CAD 37.4 2298 32.6 4289 0.02 4.8

MS 0.8 0.9 1.5 0.2 0.006 3.7
INet T2D 1.2 4.6 1.5 0.3 0.006 3.7

CAD 28.5 1642 331 609 0.02 5.2
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Here, Nc is the number of curated sources, Nm is the
number of model organisms, Ni is the number of inferential
sources, and Np is the number of publications supporting
the GDA.

3.6.4 External Validation

We downloaded 17 publicly available microarray data sets
(1 for MS, 9 for T2D, and 7 for CAD) that include gene
expression analyses in adipose, muscle, blood, heart, and
liver tissues. We could not find exactly the same setup
with the original microarray data set (GSE23561), which
covers all three diseases and samples were composed as
peripheral blood gene expression. Therefore, we per-
formed individual analysis of 17 data sets. We run our
DEG detection pipeline on each data set and then examine
the commonality of DEGs detected in each data set and
disease-genes revealed by the original data set GSE23561.
The details of each data set are given in Table 10 (Supple-
mentary S2 available online).

4 RESULTS

4.1 Biological Homogeneity and Stability
Evaluations

N is the total number of disease networks constructed. It is a
combination of diseases (D), topologies (T ), similarity meas-
ures (M), orthogonal ontologies (O), and clustering algo-
rithms (A). To select the most significant network
construction method, we comparatively evaluate the biolog-
ical homogeneity (BHI) achieved by each configuration.

We represent the average BHI scores in Table 5. In 92 out
of 135 disease networks (68 percent) for each topology the
INet outperforms the STRING network. On the other hand,
the STRING is better in 19 cases (14 percent), while they are
equally successful in 24 cases (18 percent).

GO similarity measures provide very close BHI scores.
On MS and T2D, Wang outperforms the others (Jiang, Lin,
Rel, and Resnik). Although Resnik generates slightly more
homogeneous clusters on CAD, it is significantly worse on
MS and T2D. Therefore, the Wang measure providing the
best homogeneity on average, it is the best alternative

D : 3

MS

CAD

T2D

8
><

>:
T : 2

STRING

INet

�

M : 5

Jiang

Lin

Rel

Resnik

Wang

8
>>>>>><

>>>>>>:

A : 3

MCL

Linkcomm

SPICi

8
><

>:
O : 3

BP

CC

MF

8
><

>:
:

On the disease networks constructed by use of the Wang
measure and the INet topology, we also compare the
orthogonal ontologies (BP, CC, and MF). The results show
that MF outperforms the BP and CC.

Lastly, we run the clustering algorithms on the disease
networks constructed by use of the INet topology, the Wang
measure, and the MF ontology. The performance of SPICi
and Linkcomm are very close and better than MCL. Thus,
we select both SPICi and Linkcomm to verify the results and
not to miss out any significant clusters revealed by one of the
algorithms.

The stability of disease modules found by different clus-
tering algorithms are given in Table 6. The modules identi-
fied by MCL and SPICi are highly stable, the best stable
algorithm is the Linkcomm with an average best-match sta-
bility value of 0.96. As a conclusion, both BHI and stability
scores are concordant for three clustering algorithms.

4.2 Discovered Disease Modules

We report the genes of the same disease module in a list for-
mat within the curly brackets. Linkcomm generated two
modules for MS: {ANAPC2, VPS28, PCGF6, HCFC1} and
{RSP9, ARPC1B, POLR2L, ANAPC2}, four modules for T2D:
{SP1, POU2F1}, {HBD, ALAS2}, {PLEKHG5, RAC3, ARH-
GAP10}, {DYNC1I1, SPTBN2, RILP}, and 137 modules with
532 unique genes for CAD. On the other hand, SPICi gener-
ated one module for MS: {GSPT2, RPS9, POLR2L, ANAPC2},
six modules for T2D: {SP1, POU2F1}, {HBD, ALAS2}, {PELI3,
MAP3K14}, {RAC3, NRBP1}, {TXNRD2, SAMM50, BCS1L},
and 68moduleswith 296 unique genes for CAD.

4.3 Common Disease Modules

We overlapped a total of 143 disease modules produced by
the Linkcomm algorithm for MS, T2D, and CAD. As a result,
we identified two modules, {ARPC1B, ANAPC2, RPS9,
POLR2L} and {VPS28, PCGF6, HCFC1, ANAPC2}, and 12
individual genes, (TNFSF13, TNFRSF13B, NFKBIB, FRG1,
S100A8, ENTPD2, SIX3, LHX2, GSPT2, ISYNA1, COX5A,
GLUD2), shared by MS–CAD (Fig. 2A). Besides, we found a
single shared gene, SP1, alongside a sharedmodule with two
genes, {ALAS2, HBD}, for T2D–CAD (Fig. 2B).

TABLE 5
BHI Comparison

MS T2D CAD Average

Topology STRING 0.308 0.449 0.467 0.408
INet 0.407 0.458 0.481 0.449

Similarity

Jiang 0.425 0.492 0.477 0.465
Lin 0.415 0.491 0.482 0.463
Rel 0.441 0.491 0.481 0.471
Resnik 0.300 0.326 0.484 0.370
Wang 0.456 0.492 0.481 0.476

Ontology
BP 0.442 0.486 0.478 0.468
CC 0.444 0.490 0.481 0.472
MF 0.480 0.498 0.483 0.487

Clustering
MCL 0.441 0.493 0.467 0.467
SPICi 0.500 0.500 0.492 0.497
Linkcomm 0.500 0.500 0.490 0.497

TABLE 6
Stability of the Disease Modules

MS T2D CAD Average

MCL 0:91� 0:09 0:96� 0:03 0:85� 0:03 0:91� 0:05
SPICi 0:96� 0:14 0:97� 0:04 0:83� 0:04 0:92� 0:07
Linkcomm 0:98� 0:03 0:95� 0:05 0:94� 0:01 0:96� 0:03

526 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on July 27,2022 at 13:01:15 UTC from IEEE Xplore.  Restrictions apply. 



Similarly, we overlapped a total of 75 disease modules
produced by the SPICi algorithm for three diseases. As a
result, we identified one module, {GSPT2, ANAPC2, RPS9,
POLR2L}, and 15 individual genes, (TNFSF13, TNFRSF13B,
NFKBIB, FRG1, S100A8, ENTPD2, SIX3, LHX2, ISYNA1,
COX5A, GLUD2, VPS28, PCGF6, HCFC1, ANAPC2), shared
by MS–CAD (Fig. 3A). As similar with Linkcomm, one com-
mon module, {ALAS2, HBD}, and one common gene, SP1,
revealed for T2D–CAD pair (Fig. 3B).

Unlike MS–CAD and T2D–CAD, we could not detect a
shared module for the MS–T2D using neither the SPICi nor
the Linkcomm algorithms. Therefore, our analyses did not
reveal a disease module shared by three diseases.

4.4 Evaluation of the Gene-Disease Associations

SPICi and Linkcomm identified 19 unique genes (ANAPC2,
ARPC1B, COX5A, ENTPD2, FRG1, GLUD2, GSPT2, HCFC1,
ISYNA1, LHX2, NFKBIB, PCGF6, POLR2L, RPS9, S100A8,
SIX3, TNFRSF13B, TNFSF13, VPS28) shared between MS–
CAD and three unique genes (ALAS2, HBD, SP1) shared
between T2D–CAD. For these 22 genes, 1,136 GDAs have
been reported in DisGeNET (Table 7).

In nutritional and metabolic diseases (NMD) class, we
identified 11 genes (APC2, COX5A, FRG1, HCFC1, ISYNA1,

NFKBIB, S100A8, TNFSF13, ALAS2, HBD, SP1) with 57
GDAs reported by 82 articles (Table 8). In diabetes and dia-
betic complications (DIAB) sub class, we identified 4 genes
(ISYNA1, S100A8, SIX3, SP1) with GDAs reported by 15
articles (Table 8). In cardiovascular diseases (CVD) class, we
found 11 genes (ALAS2, APC2, COX5A, ENTPD2, ISYNA1,
RPS9, S100A8, SIX3, SP1, TNFRSF13B, TNFSF13) with 60
GDAs reported by 88 articles (Table 8).

Five out of 19 genes (APC2, COX5A, ISYNA1, S100A8,
TNFSF13) identified for MS–CAD were already associated
with both NMD and CVD class diseases. On the other hand,
three genes (FRG1, HCFC1, NFKBIB) were only associated
with NMD, three genes (ENTPD2, RPS9, TNFRSF13B) were

Fig. 2. Overlapping modules and genes of the Linkcomm clustering. (A)
Two modules with seven genes and 12 individual genes are shared by
MS–CAD pair. (B) One module with two genes (ALAS2, HBD) and the
SP1 gene are shared by T2D–CAD pair. The gray nodes represent the
common genes that are either unclustered or diversely clustered in each
network. The edge thicknesses denote the GO similarity value of two
genes. The modules with common nodes are shown in the same color.

Fig. 3. Overlapping modules and genes of the SPICi clustering. (A) One
module with four genes and 15 individual genes are shared by MS–CAD
pair. (B) One module with two genes (ALAS2, HBD) and the SP1 gene
are shared by T2D-CAD pair. The gray nodes represent the common
genes that are either unclustered or diversely clustered in each network.
The edge thicknesses denote the GO similarity value of two genes. The
modules with common nodes are shown in the same color.

TABLE 7
Total Number of GDAs (Ntotal) Reported for Each Gene

Gene Symbol Description Ntotal

ANAPC2 APC2, WNT signaling pathway regulator 82
ARPC1B actin related protein 2/3 complex subunit 1B 6
COX5A cytochrome c oxidase subunit 5A 75
ENTPD2 ectonucleoside triphosphate diphosph 2 12
FRG1 FSHD region gene 1 47
GLUD2 glutamate dehydrogenase 2 5
GSPT2 G1 to S phase transition 2 4
HCFC1 host cell factor C1 43
ISYNA1 inositol-3-phosphate synthase 1 95
LHX2 LIM homeobox 2 16
NFKBIB NFKB inhibitor beta 12
PCGF6 polycomb group ring finger 6 1
POLR2L RNA Polymerase II Subunit L 0
RPS9 ribosomal protein S9 2
S100A8 S100 calcium binding protein A8 199
SIX3 SIX homeobox 3 84
TNFRSF13B TNF receptor superfamily member 13B 118
TNFSF13 TNF superfamily member 13 90
VPS28 VPS28, ESCRT-I subunit 1

ALAS2 5’-aminolevulinate synthase 2 59
HBD hemoglobin subunit delta 26
SP1 Sp1 transcription factor 159

TOTAL 1136

TABLE 8
The Number of GDAs in Related Disease Classes
(Nnmd,Ndiab, Ncvd) and the Maximum DisGeNET

Scores (Smax)Reported for Each Gene

Gene Symbol Disease Pair Nnmd Ndiab Ncvd Smax

ANAPC2 MS–CAD 2 0 1 0.100
COX5A MS–CAD 9 0 4 0.340
ENTPD2 MS–CAD 0 0 1 0.200
FRG1 MS–CAD 1 0 0 0.100
HCFC1 MS–CAD 4 0 0 0.100
ISYNA1 MS–CAD 6 6 13 0.030
RPS9 MS–CAD 0 0 1 0.010
NFKBIB MS–CAD 1 0 0 0.010
S100A8 MS–CAD 14 4 13 0.040
SIX3 MS–CAD 0 1 2 0.100
TNFRSF13B MS–CAD 0 0 6 0.450
TNFSF13 MS–CAD 2 0 9 0.060

ALAS2 T2D–CAD 13 0 3 0.600
HBD T2D–CAD 1 0 0 0.100
SP1 T2D–CAD 4 1 7 0.320

TOTAL 57 12 60
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only associated with CVD, and one gene (SIX3) was associ-
ated with DIAB and CVD. The remaining genes (ARPC1B,
GLUD2, GSPT2, LHX2, PCGF6, POLR2L, VPS28) were sug-
gested as novel for MS–CAD, since they were not previ-
ously associated with NMD or CVD (Table 9).

Among three genes (ALAS2, HBD, SP1) identified for
T2D–CAD pair, only SP1 was previously associated with
both DIAB and CVD. ALAS2 was associated with NMD
and CVD, while HBD was associated with NMD (Table 9).
Hence, we also suggest HBD as a novel gene for T2D–CAD.

Although our clustering algorithms could not reveal a
disease module shared by all disease groups, three genes
(ISYNA1, S100A8, SP1) that we identified were associated
with NMD, DIAB, and CVD disease classes. Additionally,
three genes (ALAS2, HBD, SIX3) are potentially shared by
all disease groups, since they were associated with a com-
plementary disease class in the DisGeNET (e.g., DIAB is a
complementary class for a gene shared by MS–CAD). In
pairwise associations, we obtained full-matching (i.e., previ-
ous association with both disease classes) for six genes and
half-matching (i.e., previous association with one of the dis-
ease classes) for eight genes. In addition, we identified eight
novel genes that have no previous association with any of
the disease classes.

4.5 Functional and Relational Analysis on
Novel Genes

To gain an insight into the functional and biological features
of the eight novel disease genes (ARPC1B, GLUD2, GSPT2,
HBD, LHX2, PCGF6, POLR2L, VPS28), we investigated
their associations with non-metabolic disorders and their
interactions with other genes that have been already associ-
ated with metabolic disorders.

ARPC1B encodes one out of seven subunits of the human
Arp2/3 protein complex which has been implicated in the
control of actin polymerization in cells. In addition, ARPC1B
plays a major role in the regulation of the actin cytoskeleton

and its deficiency causes platelet and immune system abnor-
malities [36]. On the other hand, ARPC1B is not previously
associatedwith ametabolic disorder.

GLUD2 encodes an enzyme localized to the mitochon-
drion and acts as a homohexamer to recycle glutamate dur-
ing neurotransmission. GLUD2 is associated with Parkinson
disease [37], [38]. More importantly, its housekeeping iso-
formGLUD1 is clearly associated with several metabolic dis-
orders and diabetic conditions [39], [40].

GSPT2 encodes a GTP-binding protein which has an
essential role at the G1 to Sphase transition of the cell cycle.
GSPT2 is associated with intellectual disability [41]. It is
closely related to GSPT1 and shown to interact with
PABPC1 [42]. However, none of these genes are previously
associated with metabolic or cardiovascular diseases.

HBD and HBB genes are normally expressed in the
adults and responsible from constitution of the hemoglobin.
Mutations in HBD are associated with Deltathalassemia, an
inherited blood disorder characterized by abnormal hemo-
globin production [43]. On the other hand, HBB is associ-
ated with several CVDs [44], [45].

LHX2 encodes a protein that belongs to a large protein
family, members of which carry the LIM domain and func-
tion as a transcriptional regulator. It is associated with neo-
plastic process, digestive system diseases, and rheumatoid
arthritis [46]. LHX2 is also shown to interact with CITED2
[47] which is strongly associated with several heart diseases
and defections [48], [49].

PCGF6 encodes a Polycomb group (PcG) protein, which
acts as a master regulator to ensure embryonic stem cell
development and differentiation [50]. PCGF6 is most closely
related to PCGF2 that is known as a marker in breast cancer
[51], [52]. However, neither of these genes are previously
associated with a metabolic disorder.

POLR2L encodes a subunit of RNA polymerase II that is
the polymerase responsible for synthesizing messenger
RNA in eukaryotes, and it is shown to interact with
POLR2A [53] which is associated with heart failure and car-
diomyopathy [54].

VPS28 encodes a protein subunit of the ESCRT-I com-
plex, which functions in the transportation and sorting of
proteins into subcellular vesicles. Although there is not a
GDA reported for VPS28 in the literature, VPS37C in the
same subunit (ESCRT-I) is associated with rheumatoid
arthritis and cardiometabolic disorders [55], [56].

Our DisGeNET and literature based analyses present that
five out of eight genes (GLUD2, HBD, LHX2, POLR2L,
VPS28) that we identified as novel disease genes for MS–
CAD and T2D–CAD have some indirect associations with
diseases in NMD and CVD class. On the other hand, there is
no previous metabolic, diabetic, or cardiovascular disorder
association reported for the remaining three genes (ARPC1B,
GSPT2, PCGF6).

4.6 External Validation Results

We overlapped the 22 disease-genes found by the proposed
system with the DEGs of 17 external validation data sets (1
for MS, 9 for T2D, and 7 for CAD) individually. We provide
the validation data sets and detailed results in Table 10 (Sup-
plementary S2 available online). When we consider overall
results, we detected 2 matching genes (ALAS2, S100A8) for

TABLE 9
Matching of Our Results and the Previously Reported GDAs

Gene Symbol Disease Pair GDA reported class(es) Matching

ANAPC2 MS–CAD NMD + CVD Full
ARPC1B MS–CAD – None
COX5A MS–CAD NMD + CVD Full
ENTPD2 MS–CAD CVD Half
FRG1 MS–CAD NMD Half
GLUD2 MS–CAD – None
GSPT2 MS–CAD – None
HCFC1 MS–CAD NMD Half
ISYNA1 MS–CAD NMD + DIAB + CVD Full
LHX2 MS–CAD – None
NFKBIB MS–CAD NMD Half
PCGF6 MS–CAD – None
POLR2L MS–CAD – None
RPS9 MS–CAD CVD Half
S100A8 MS–CAD NMD + DIAB + CVD Full
SIX3 MS–CAD DIAB + CVD Half
TNFRSF13B MS–CAD CVD Half
TNFSF13 MS–CAD NMD + CVD Full
VPS28 MS–CAD – None

ALAS2 T2D–CAD NMD + CVD Half
HBD T2D–CAD NMD None
SP1 T2D–CAD NMD + DIAB + CVD Full
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MS, 10 matches (ALAS2, ARPC1B, HBD, LHX2, NFKBIB,
POLR2L, S100A8, SIX3, SP1, TNFSF13) for T2D, and 7
matches (ALAS2, FRG1, NFKBIB, S100A8, SIX3, SP1,
TNFSF13) for CAD. Thus, we have externally validated 11
out of 22 GDAs (ALAS2, ARPC1B, FRG1, HBD, LHX2,
NFKBIB, POLR2L, S100A8, SIX3, SP1, TNFSF13) which are
discovery of the proposed system.

5 CONCLUSION

Identifying the shared disease genes for multiple diseases
can be very useful for increasing the accuracy of prognosis
and designing targeted therapies. In this respect, we pro-
pose a novel pipeline integrating multiple biological data
sources, computational methods, and validation measures
for analysis of many-to-many relationships between MS,
T2D, and CAD.

We constructed 30 disease networks for each disease
group by use of different PPIN topologies, orthogonal ontol-
ogies, and GO similarity measures. We clustered the
revealed networks using three different clustering algo-
rithms. Then, we evaluated the performance of each config-
uration in terms of stability and biological homogeneity
achieved in the generated disease modules. As a result of
the comparisons, we found that the highest BHI scores were
obtained in networks constructed using the INet topology,
the Wang similarity measure, and the MF ontology. On the
other hand, the SPICi and Linkcomm algorithms were
almost equally successful in generating biologically more
homogeneous clusters, and better than MCL.

We identified 22 shared genes among MS–CAD and
T2D–CAD pairs by overlapping the disease modules that
are generated by use of the best configuration. Eleven of
these genes (ALAS2, ARPC1B, FRG1, HBD, LHX2, NFKBIB,
POLR2L, S100A8, SIX3, SP1, TNFSF13) were observed on
different gene expression experiments related with targeted
diseases, thus we validated novel disease genes by indepen-
dent studies. Fourteen of them were previously associated
with the nutritional and metabolic diseases (NMD), diabetes
and diabetic complications (DIAB), and cardiovascular dis-
eases (CVD) either with a full or partial matching. The
remaining eight genes (ARPC1B, GLUD2, GSPT2, HBD,
LHX2, PCGF6, POLR2L, VPS28) were determined as novel
for the relevant diseases.

In order to interpret the functional and relational connec-
tions of the novel genes, we conducted two analyses: (1) the
associations with non-metabolic disorders and (2) gene-
gene interactions with external genes associated with NMD,
DIAB, or CVD class diseases. As a result, we found that five
of them (GLUD2, HBD, LHX2, POLR2L, VPS28) have some
indirect associations with diseases in NMD and CVD class.
However, no previous association with these diseases
reported for three genes (ARPC1B, GSPT2, PCGF6).

Our study presented the performance of different biolog-
ical data sources, computational methods, and validation
metrics, in disease-gene discovery. Moreover, it provided
some evidences that there are common disease genes under-
lying the MS, T2D, and CAD. Although, the proposed sys-
tem is experimented on these three diseases, it can be
implemented to analyze the relationships between different
diseases with common genetic mechanisms.

APPENDIX

All data sets and source codes related with this study are
available at https://github.com/smtnkc/go-cluster.
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