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AMP0: Species-Specific Prediction of Anti-
microbial Peptides using Zero and Few Shot 

Learning 
Sadaf Gull, Fayyaz Minhas* 

Abstract—Evolution of drug-resistant microbial species is one of the major challenges to global health. Development of new 

antimicrobial treatments such as antimicrobial peptides needs to be accelerated to combat this threat. However, the discovery of 

novel antimicrobial peptides is hampered by low-throughput biochemical assays. Computational techniques can be used for 

rapid screening of promising antimicrobial peptide candidates prior to testing in the wet lab. The vast majority of existing 

antimicrobial peptide predictors are non-targeted in nature, i.e., they can predict whether a given peptide sequence is 

antimicrobial, but they are unable to predict whether the sequence can target a particular microbial species. In this work, we 

have used zero and few shot machine learning to develop a targeted antimicrobial peptide activity predictor called AMP0. The 

proposed predictor called AMP0 takes the peptide sequence and any N/C-termini modifications together with the genomic 

sequence of a microbial species to generate targeted predictions. Cross-validation results show that the proposed scheme is 

particularly effective for targeted antimicrobial prediction in comparison to existing approaches and can be used for screening 

potential antimicrobial peptides in a targeted manner with only a small number of training examples for novel species. AMP0 

webserver is available at http://ampzero.pythonanywhere.com.  

Index Terms— Antibiotic resistance, Antimicrobial peptides, Zero/Few shot learning, Target microbial species. 

 

——————————   ◆   —————————— 

1 INTRODUCTION

ntibiotics play a significant role in protecting humans 
from microbial infections. The discovery and use of 

antibiotics since the 1930s has helped in treating serious 
infections and saved many lives [1]. Resistance against 
antibiotics in microbes was detected in the 1960s and it 
prompted an evolutionary arms race between microbes 
and antibiotics [2]. Antimicrobial resistance is currently a 
major global health crisis. The number of deaths due to 
infections caused by antibiotic resistance annually is in-
creasing and is estimated to reach up to 10 million by 
2050 [3]. The World Health Organization (WHO) has gen-
erated a list of antibiotic resistant bacterial species that are 
a major threat to global health and require urgent devel-
opment of novel therapeutics against them: Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Aci-
netobacter baumannii, Pseudomonas aeruginosa, and Entero-
bacter [4]. 

To handle the issue of antibiotic resistance, the devel-
opment of novel antibiotics is necessary [1]–[5]. In com-
parison to the rate of development of antimicrobial re-
sistance, the pace of discovery or development of new 
antibiotics is very slow: in the last 2 decades only two 
new classes of antibiotics were introduced for clinical use 
[4]. Consequently, the use of vaccines, lysins, antibodies, 

probiotics, bacteriophages and antimicrobial peptides 
(AMPs) is becoming popular in therapeutics as alterna-
tives to antibiotics [1]. For designing new drugs, the use 
of AMPs is rapidly gaining attention [1], [6]–[8]. AMPs 
exhibit different biological activities against microbes, 
e.g., bacteria, viruses, fungi, etc. [1], have higher inhibi-
tion rates than antibiotics, and can potentially slow down 
the evolution of antibiotic resistance as well [8].  

Machine learning approaches and artificial intelligence 
tools can potentially deal more effectively with biological 
data especially proteins [9]–[13]. Numerous machine 
learning based tools/models have been developed for 
predicting protein functions which uses Deep Neural 
Networks (DNN) and Support Vector Machines (SVM) 
[10], [14]–[18]. Potential AMP candidates need to be test-
ed and evaluated experimentally before entering clinical 
trials. The prediction of AMPs using machine learning 
techniques reduces the cost of identifying the effective-
ness of a peptide sequence against microbial species in 
the wet lab by pre-screening potential antimicrobial pep-
tides. A number of machine learning based AMP predic-
tors are available in the literature [19]–[24]. The primary 
issue with these un-targeted predictors is that they are un-
able to predict whether a given peptide sequence will be 
effective against a given target microbial species or not 
(see Fig 1). Only a small number of targeted predictors 
exist in the literature but they are not able to generate 
predictions for novel microbial species [25]–[27]. Vish-
nepolsky et al. developed a predictor for 6 different gram-
negative bacterial strains [26]. The AMP predictor by 
Kleandrova et al. used 70 different gram-negative strains 
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of bacteria in training to predict antimicrobial and cyto-
toxic activity of individual amino acids in a peptide se-
quence for different strains [25]. Although they covered a 
large set of bacterial species, their method can generate 
predictions for only specific strains of gram-negative bac-
terial strains. Unavailability of their predictor for public 
use is also a limitation [25]. The major drawback in target-
ed predictors is their inability of predicting peptide’s an-
timicrobial activity for novel microbial species. The pre-
diction of antimicrobial activity of a peptide without 
knowing the microbial species against which the peptide 
is effective is not meaningful.  

In this work, we have developed a machine learning 
model to overcome this limitation. The proposed model 
takes amino acid sequence of a peptide and the genomic 
sequence of a target microbial species to predict the effec-
tiveness of the peptide against that species in a targeted 
manner. 

A targeted predictor which predicts a peptide’s effective-
ness for species on which model was not trained with 
better accuracy, requires a new strategy in modeling.  
Design of such predictors promoted ZSL strategy to be 
used in modeling. ZSL is a new concept in the field of 
machine learning whose learning strategy learns attrib-
utes of class labels instead of the labels. The concept of 
Zero shot learning (ZSL) is to predict the instances of a 
class whose zero instances were available for training. 
Many variants of ZSL strategies have been proposed from 
which are being used in the field of machine learning 
[28]–[34]. Few shot learning also strengthens the concept 
of ZSL in which it is assumed that very few examples 
were available at training time for a class but the predic-
tion of instances of that class at test time ensures better 
generalization. Different techniques for FSL have also 
been proposed and their results are far better than con-
ventional machine learning models [35]–[39]. The use of 
ZSL/FSL in the field of machine learning for classification 
of objects [34], [38], [40] classification of videos [41], and 
transfer learning [42], [43] is very common. However the 
application of zero-shot/few-shot learning in the biologi-
cal domain is still not very common. This manuscript fo-
cuses on using this strategy for prediction of anti-
microbial peptides by introducing ZSL/FSL in biological 
domain. 

2 METHODS 

2.1 Data collection and preprocessing 

For constructing the dataset used for training and 
evaluation of our machine learning models, we have used 
DBAASP version 2 [44]. DBAASP has been widely used 
in recent studies in this field [25]–[27], [45], [46]. It con-
tains a total of 12, 984 peptide sequences and their exper-
imentally verified minimum inhibitory concentrations 
(MICs) against various target microbial species.  In order 
to construct our dataset from DBAASP, we have used 
peptides with length greater than 5 amino acids whose 
experimentally validated MICs are available in micro mo-
lar (𝜇𝑀) or microgram per milliliter (𝜇𝑔/𝑚𝐿). We also 
ensured that the genomes of the target species are availa-
ble in NCBI [47] and that each peptide in our dataset has 
at least one target species for which its MIC was ≤
 25 𝜇𝑔/𝑚𝐿 [26]. The details of different filtration stages to 
extract the dataset of our interest are given in Table-1. 
DBAASP reports the effectiveness of a peptide sequence 
against multiple strains of a microbial species. We have 
taken the minimum MIC of a peptide across different 
strains of a species as its MIC against that species. All 
MIC values have been converted to 𝜇𝑔/𝑚𝐿 [25]. Our final 
dataset comprises of 5,710 peptides that are effective 
against a total of 336 different microbial species. The de-
tails of individual peptides and their MICs against their 
target species is given in supplementary material.  

As an additional preprocessing step, we have scaled 
the MIC scores using a sigmoidal curve such that MIC 
scores ≤ 25 𝜇𝑔/𝑚𝐿 are mapped onto +1 and those ≥
100 𝜇𝑔/𝑚𝐿 are mapped to -1 (see Fig. 2). For this purpose, 
we have utilized a sigmoid rescaling function which 
maps raw MIC scores 𝑦 as follows:  

𝑦′ = 𝑠 (−
𝑦−55

10
) , with   𝑠(𝑧) = 2 (

𝑒𝑧

1+𝑒𝑧) − 1.  

This rescaling ensures that subsequent processing and 
machine learning models are not affected by large varia-
tions in MICs across different target species and peptides 
which can vary from a few 𝜇𝑔/𝑚𝐿 to more than 2000 
𝜇𝑔/𝑚𝐿. If the MIC of a peptide is not known for a species, 
its rescaled score is set at 0.0. 

 
TABLE 1. 

FILTERING CRITERIA APPLIED TO DBAASP DATABASE TO OB-

TAIN REQUIRED DATASET 

Filtering criteria 
Number of 

peptides 

DBAASP monomer peptides 12,984 

Sequences with length >5 12,517 

Sequences with microbial targets (excluding cancers) 9,890 

Sequences with MIC in (μM) or (μg/mL) 8,045 

Sequences with target species genomes available in 

NCBI [47] 

8,025 

Sequences with at least one target species with MIC ≤

 25 μg/mL 

5,710 

 

  

(a) (b) 

Fig. 1. A general framework of machine learning predictors for (a) 

non targeted and (b) targeted predictions 
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Fig. 2. MICs converted to continuous labels between -1 to +1 using 

bipolar sigmoid function 
 

2.2 Feature extraction 

To predict antimicrobial activity of a peptide against 
given species through machine learning, we need features 
of peptide and genomic sequence of target microbial spe-
cies as discussed below (see Fig. 3).  

 
Fig. 3. Proposed model framework using features of peptide and 
genomic sequences 

Amino Acid Sequence features 

In order to obtain peptide-level features, we have used 
one-hot encoding of the peptide sequence that results in a 
40-dimensional feature vector (frequency count of 20 L-
amino acids and 20 D-amino acids). The feature represen-
tation models the type of amino acid (L and D) in the pep-
tide sequence separately as peptide bioactivity is depend-
ent upon the type of amino acids [48]–[51]. The resulting 
feature vectors for a given peptide is normalized to unit 
norm. We have also analyzed 2-mer composition which 
results in a 402 = 1600-dimensional feature vector [52].  

DBAASP [44] also provides information about N-
terminus and C-terminus modifications of peptides which 
can play a significant role in their antimicrobial activity. 
Modification at N-terminus and C-terminus of peptides 
can change their biological activity [53]. We have used 
one-hot encoding to capture information about C- and N-
terminus modifications in our feature representation. The 
sequence features are concatenated with C and N termini 
features. Details about the different types of C and N ter-
mini modifications are given in supplementary infor-
mation. 
Genomic features 

In order to perform targeted prediction of antimicrobi-
al activity of a peptide sequence against a particular spe-
cies through machine learning, we need to extract species-
level features as well. The literature reports the use of 

mono, di, tri and tetra-nucleotide composition of genomic 
sequences for comparison or clustering of genomes [54]–
[61]. As a consequence, we have extracted features from 
complete genomes of species downloaded from NCBI 
[47]. For feature extraction the counts of 1-mer, 2-mer, 3-
mer and 4-mer are calculated from a given genome se-
quence and normalized to unit norm resulting in a 340-
dimensional feature representation.  

2.3 Prediction Models 
To predict whether a given peptide sequence will be ef-
fective against a target microbial species or not, we have 
proposed a zero-shot machine learning model. We com-
pare the proposed model to a conventional machine 
learning model as a baseline as discussed below. In order 
to aid the reader in understanding our modeling ap-
proach for baseline and zero-shot predictors, we denote a 
peptide sequence by its d-dimensional feature vector xi, 
i = 1, … , 5710 whereas a particular microbial species is 
represented by an a-dimensional attribute vector sj, for 
j = 1, … , 336 based on its genomic sequence. We denote 
the rescaled MIC of a peptide xi against species sj by the 
target variable yij. The prediction problem can then be 
expressed as finding a mathematical function f(xi, sj; Θ) 
parameterized by learnable parameters Θ that can predict 
the effectiveness of a sequence xi for microbial species sj. 
 

Baseline models 
We have chosen Radial Basis Function SVM [62], 

XGBoost [63] , Neural network [64] and k-nearest neigh-
bor [65] as baseline models due to their widespread use 
and ease of modeling. For this purpose, in order to pre-
dict the effectiveness of a given peptide sequence against 
a microbial species, we construct a joint feature represen-
tation 𝝓𝒊𝒋 = [

𝒙𝒊

𝒔𝒋
] by concatenating peptide and species level 

features with the associated training label 𝑦𝑖𝑗 set to +1 
(antimicrobial) if the MIC of peptide 𝒙𝒊 for species 𝒔𝒋 is ≤
25 𝜇𝑔/𝑚𝐿 and -1 (non-antimicrobial) if the MIC is ≥
100 𝜇𝑔/𝑚𝐿. A conventional machine learning model like 
SVM, XGBoost or neural network can then be trained 
over such a data set. 
 
Zero and Fewshot learning 
In this work, we propose to model the problem of targeted 
antimicrobial activity prediction through zero shot learning 
(ZSL) [34]. Widely used in object classification and computer 
vision, ZSL allows a classification model to generate predic-
tions for novel classes which were not available at training 
time [30]–[32]. This is achieved by learning the definition of 
a class through an attribute vector representation instead of 
predicting class labels directly as in conventional classifica-
tion. Many variants of ZSL have been proposed in the litera-
ture [28]–[34]. While ZSL assumes that no examples of a 
novel class presented during testing are available for train-
ing, the related case of few-shot learning aims at building a 
machine learning model such that only a few training exam-
ples are available for the target class [35]–[39]. Few Shot 
Learning (FSL) techniques perform significantly better than 
conventional classification methods when the number of 
training examples is very small [35]–[37].  
The problem of targeted antimicrobial activity prediction is 
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ideally suited to zero and few shot learning: in typical ma-
chine learning guided design of wet lab experiments for 
screening potential peptides that are effective against a tar-
get microbial species, no or very few peptides with known 
labels are available for training. Furthermore, in order to 
predict how effective a peptide is against a novel microbial 
species for which no or very few training examples are 
available, we can model the target microbial species as a 
class represented by an attribute vector based on its genomic 
sequence. In this work, we have used the ZSL scheme given 
by Romera-Paredes and Torr [34]. For predicting the MIC of 
a peptide sequence for a target species, the discriminant 
function used by the ZSL model of Romera-Paredes and 
Torr [34] can be written as f(xi, sj; Θ) = xi

TΘsj with the learn-
able weight matrix Θ ∈  ℝd×a. If the number of peptides and 
species (classes) available during training are m and z, re-
spectively and the rescaled MIC scores for each of the pep-
tide against each microbe is represented by the m × z matrix 
Y ∈ [−1,1]m×z, the learning problem for ZSL can be formu-
lated as the following optimization problem: 

Θ∗ =  ‖XTΘS − Y‖Fro
2 + (

Θ∈ℝd×a

argmin
γ‖ΘS‖F

2 + λ‖XTΘ‖F
2

+  γλ‖Θ‖F
2) 

Here, X ∈  ℝd×m and S ∈ ℝa×z represent matrices of all 
peptide features (m examples each with a d-dimensional 
feature vector) and attributes of microbial species (z clas-
ses each with a attributes), respectively. The first term 
represents the loss function with the aim of minimizing 
the error between predicted and target MICs. The second 
term (γ‖ΘS‖F

2 + λ‖XTΘ‖F
2 +  γλ‖Θ‖F

2) is the regularization 
factor that ensures smoothness of the prediction function 
f(x, s; Θ) and sparsity of the weight matrix Θ through pe-
nalization of the Frobenius norm ‖∙‖F

2 of respective matri-
ces. γ and λ are regularization hyper-parameters. In addi-
tion to better performance over benchmark datasets, an-
other reason for choosing this ZSL implementation is the 
existence of a computationally efficient closed-form solu-
tion of its underlying optimization problem which can be 
written as follows:  

Θ∗ = (XXT + γI)−1XYST(SST + λI)−1 

Once the optimal weight matrix Θ∗ has been obtained, 
the predictions for a peptide (represented by the feature 
vector x) for species (represented by the attribute vector s) 
can be generated by the decision function f(x, s; Θ∗) =
xTΘ∗s. Note that this decision function can be used for 
generating predictions both for novel peptides and novel 
species provided their attribute representation s is availa-
ble. The most likely target species for a given peptide can 
be identified by simply ranking the resulting decision 
function scores across a given list of potential target spe-
cies.  

This formulation can be kernelized for non-linear ker-
nels as well by applying the Representer theorem to the 
underlying optimization problem [34]. For this purpose, 
an m × m sized kernel matrix K with Kij = k(xi, xj) is 
computed over the training data using a kernel function 
such as the radial basis function (RBF) k(a, b) =

exp(−κ‖a − b‖2) with the hyperparameter κ > 0. The 
closed form solution of the kernelized ZSL optimization 
problem requires calculation of an m × a sized instance-
attribute association matrix Α from training data as fol-
lows (see [34] for details): 

Α = (KTK + γI)−1KYS(STS + λI)−1 

For inference or prediction of effectiveness of a peptide 
represented by a feature vector x against a microbial spe-
cies represented by its attribute vector s, an m-
dimensional vector of kernel scores k(x) =
[k(x, x1) k(x, x2) ⋯ k(x, xm)]T of the test example with 
each training example is computed and used in the ker-
nelized prediction function f(x, s; A) = k(x)TAs.  

It is important to note that this framework extends 
seamlessly to FSL by simply adding further training in-
stances for a target class. The hyperparameters of the 
model (γ, λ, κ) are tuned through cross-validation.  
The best performance of the model was found using 𝛾 =
2.0, 𝜆 = 0.0001, and the hyperparameter 𝜅  of RBF kernel 

is set to 2.0.  

2.4 Performance Evaluation 
We consider two practical use-cases of our system: 1) 

Target Species Ranking (TSR): given a set of microbial spe-
cies for which labeled peptide sequences are available for 
training, predict the microbe that is most-likely to be target-
ed by a novel peptide sequence and, 2) Peptide Activity Pre-
diction for Novel Species (PAP): predict whether a peptide is 
effective against a given species or not such that no or very 
few peptide examples for that species are available during 
training (i.e., Zero Shot or Few Shot Learning) (see Fig. 4). It 
is important to note that both these scenarios reflect practical 
use cases for biologists who are interested in machine-
learning guided discovery for targeted antimicrobial pep-
tides. 
In order to evaluate the performance of baseline and pro-
posed machine learning models for TSR, we have used 5-
fold and 10-fold cross validation [66]. In 5 fold the dataset of 
5,710 peptides is divided into 5 non-overlapping folds. A 
given model is trained on labeled examples of all peptides in 

(a) 

 (b) 

Fig. 4. (a)  TSR requires a novel peptide sequence and predicts 
the microbe that is most likely to be targeted by that peptide (out 
of 336 given species); (b) PAP takes inputs of a peptide sequence 
and a novel species genome to predict whether a peptide is effec-
tive against a given species or not. 
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4 folds and tested on the remaining peptides. This process is 
repeated 5 times, once for each fold. For each test peptide in 
a fold, model scores for all 336 species are sorted in descend-
ing order. The rank of the highest scoring microbe that is a 
known target of the given test peptide (positive example) is 
used as a peptide-specific performance metric. This simple 
biologist-centric performance metric called Rank of First 
Positive Prediction (RFPP) is based on the premise that an 
ideal machine learning model should assign high score to a 
known target species of a given peptide sequence and, con-
sequently, rank target species at lower ranks in the sorted list 
in comparison to non-target species [67]. As a result, for an 
ideal machine learning model, the RFPP for all test peptides 
should be 1.0. As discussed in the results section, we report 
the percentile-wise RFPP scores for all test peptides for dif-
ferent machine learning models together with a random 
predictor as experimental control. The RFPP score at a cer-
tain percentile p, henceforth denoted by RFPP(p) is defined 
as follows: RFPP(p)  =  q, if p% test peptides have at least 
one known target microbial species among their top q pre-
dictions (out of 336). Thus, for an ideal classifi-
er RFPP(100) = 1, i.e., for every peptide, the top scoring 
species is a real target species of the given test peptide. RFPP 
is a biologist-centric metric as it tells us directly how often 
top-ranking predictions of a peptide can be expected to cor-
respond to true target species and it can be directly used in 
experiment design. We have performed 10-fold cross valida-
tion but we did not find any significant change in results the 
the RFPP values (see supplementary material for results). 
For PAP, i.e., predicting a peptide’s effectiveness for a novel 
species, our proposed modeling approach takes peptide and 
genomic sequences as input and the score generated by the 
decision function of a machine learning model is used for 
classification of peptide sequences for individual species. In 
order to quantify predictive accuracy, a selected set of 17 test 
species from DBAASP with a small but sufficient number 
(75-180) of known positive and negative peptide examples is 
used (details given in Table-3). For ZSL, the model is trained 
on all examples from other species and its predictive per-
formance is evaluated for individual species in Table-3 using 
area under the receiver operating characteristic curve (AUC-
ROC) as a performance metric [68]. For few shots learning 
(FSL), a few positive and negative examples of a test species 
(1, 2, 4, 8 and half of all available examples for that species) 
are randomly sampled for training together with all exam-
ples from all other species and the model is evaluated on the 
remaining examples of the test species. This process is re-
peated 20 times with different species-level training and test 
examples to get average AUC-ROC scores and their stand-
ard deviation. 

3 RESULTS 

In this section, we discuss the results for the two learning 
tasks below. 
 

3.1 Target Species Ranking (TSR) 

 
Fig. 5. Percentile-wise Rank of First Positive Prediction 
(RFPP) scores for various predictive models. 
 
Fig 5 shows the percentile-wise RFPP scores for all classi-
fiers. As discussed in section 2.4, the ideal RFPP score for 
all peptides is 1.0. For the random classifier that generates 
a random score for a given example, the median RFPP is 
75, i.e., for 50% test peptides in cross-validation, a true 
target species is within the top 75 (out of 336) predictions. 
In contrast, for XGBoost and SVM baseline models, the 
median RFPPs are 50 and 10, respectively. However, the 
proposed model performs much better than these base-
line models: the RFPP for the proposed model at the 75th 
percentile is 1.0, i.e., for up to 75% peptides, the top pre-
diction by the model is correct. This clearly shows the 
effectiveness of the proposed prediction scheme for iden-
tifying the correct target species of a peptide.  
 

TABLE 2. 

RFPP PREDICTION SCORES GENERATED BY VARIOUS BASE-

LINE AND PROPOSED MODEL 

 SVM XGBOOST 

1
-n

e
ar

e
st

 

n
e

ig
h

b
o

r 

N
e

u
ra

l 
n

e
t-

w
o

rk
 

ZSL 

Per-

cen-

tiles 

1-

mer 

2-

mer 

1-

mer 

2-

mer 
1-mer 

1-

mer 

1-

mer 

2-

mer 

0 1 1 1 1 1 1 1 1 

1 1 1 1 1 2 3 1 1 

5 3 3 1 1 4 10 1 1 

10 6 6 1 1 7 18 1 1 

25 23 15 2 1 12 34 1 1 

50 65 50 9 6 24 64 2 2 

75 129 112 40 30 114 115 5 3 

90 176 165 161 139 162 184 37 23 

95 218 213 248 243 217 233 134 113 

99 277 284 328 324 301 302 308 298 

100 333 329 336 336 336 335 336 336 
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We have analyzed the performance of both 1-mer and 2-
mer as features in our proposed model as well as for base-
line models. In the TSR case, both representations are 
used separately whose results are given in Table-2. The 2-
mer representation worked well for baseline models SVM 
and XGBOOST while for nearest neighbor and neural 
network 1-mer worked well. For the proposed ZSL mod-
el, the 2-mer representation gives marginally better re-
sults as shown in Table-2. In the case of PAP the baseline 
model trained using XGBOOST worked well with 1-mer 
representation with 2-mer ZSL giving marginally better 
results. The proposed ZSL approach is also significantly 
better than k-nearest neighbor. For various values of k, 
RFPP scores are given in the supplementary material. 
To ensure that homologous peptides are not in both train-
ing and test folds, we have used CD-Hit [4] to cluster the 
5,710 peptides into 329 clusters with a threshold value of 
40% identity. The cross validation strategy ensures that 
peptides belonging to a cluster are selected in the same 
fold. The results of cluster-wise analysis for various ma-
chine learning models is given below which shows that 
the performance of the proposed ZSL model is still signif-
icantly better than other approaches. These results have 
been added to the supplementary material. 

 
3.2 Peptide Activity Prediction for Novel Species 

(PAP) 
Table-3 shows the results of various machine learning mod-
els for the Peptide Activity Prediction (PAP) task. In this task 
the objective is to evaluate whether a given machine learning 
model can correctly predict peptides that target a novel spe-
cies for which none or very few training examples are avail-
able. For this purpose, we compare the performance of con-
ventional machine learning models (SVM, XGBoost), the 
proposed Zero Shot Learning (ZSL) and Few Shot Learning 
(FSL) models in addition to existing state of the art non-
targeted antimicrobial activity predictors (CAMP [22] [70] 
and AMAP [19]). For this use case, XGBoost with amino acid 
composition features performed significantly better than 
SVM (results not shown for brevity). However, the predic-
tion performance of XGBoost was typically no better than a 
random classifier especially when the number of training 
examples from a given test species was Similarly very small 
(see Supplementary Information for complete results)., exist-
ing state of the art methods such as CAMP [22] and AMAP 
[19] do not give satisfactory predictive performance for the 
chosen species. In contrast, the proposed few shot learning 
model performs significantly better than other methods with 
an expected increase in prediction accuracy when the num-
ber of training examples of a species is increased.  
we have done an additional experiment in which we have 
generated 2000 random peptides whose lengths are between 
6 to 80 (chosen randomly) for testing such that for each test 
species, the number of random peptides is kept the same as 
the number of original negative examples for that species.  
The results of PAP are given in the supplementary material 
which shows that from given 17 species the results of 3 spe-
cies have higher false positive rates: Aspergillus fumigatus, 
Candida glabrata and proteus miriblis. For rest of the species, 
the results remain largely unchanged. We have added re-

sults of this analysis to the supplementary material. 
In order to analyze the performance of the proposed 
method in terms of the genomic distance between train-
ing and test species, we have done an additional experi-
ment. First we define and calculate the genetic distance 
between two species as the Euclidean distance between 
their respective genomic feature representations. Then, 
for a given species at test time, we calculate the genomic 
distance of its closest species which has at least T exam-
ples in training (for T=1 and T=100). In order to study the 
relationship between prediction accuracy and genomic 
distance to training species, we plot the AUC-ROC of ex-
amples for a given test species against the genomic dis-
tance to its closest training species and calculate the corre-
lation coefficient (for T=1 and T=100). Results can be seen 
in the supplementary material, which shows there is neg-
ative correlation between the predictive accuracy and 
genomic distance, i.e., as expected, if the test species is 
similar to a training species, the predictions can be ex-
pected to be more accurate. However, the plot shows that 
the proposed model does not undergo an abrupt degra-
dation in predictive performance when generating pre-
dictions for test species that have no similar species in 
training. These results have been added to the supple-
mentary material accompanying the paper. 
 
3.3 Feature Analysis 
For analyzing the importance of different features, we have 
plotted the corresponding weight values of the d × a param-
eter matrix θ obtained after training (where d is the number 
of protein features and a is the number of attributes for a 
given species). Note that the magnitude of a particular 
weight parameter reflects the relative importance of its cor-
responding feature.  Fig. 6 shows the sum of the absolute 
weight values for each L- (small) and D- type (captialized) 
amino acid in the feature representation. The large magni-
tudes of weights of amino acids G, g, F, f, P, p, and w corre-
lates with literature findings about the importance of these 
amino acids in AMPs. Specifically, the Proline-rich peptides 
(P) have capability of bacterial cell penetration. Cysteine‐rich 
peptides (C) have excessive ability of pore formation in a 
membrane which leads to high antimicrobial activity. Gly-
cine (G) improves antimicrobial activity of peptides and po-
tentially targets fungi, Gram‐negative bacteria, and cancer 
cells. Tryptophan (W) can penetrate a microbial cell mem-
brane and is effective against numerous antibiotic‐resistant 
bacteria. Phenylalanine‐rich (F) AMPs have higher antimi-
crobial activity against Gram‐positive bacteria, Gram-
negative bacteria and yeast without hemolytic activity [3]. 
Cysteine (C) is also an important amino acid in natural an-
timicrobial peptides of vertebrates, invertebrates and plants 
[2], have excessive ability of pore formation in a membrane 
which leads to high antimicrobial activity [3]. We have dis-
cussed the importance of these features in the revised manu-
script.  
 
 



GULL AND MINHAS:  TARGERED PREDICTION OF ANTIMICROBIAL PEPTIDES 

 7 

 

 
3.4 Webserver 
The webserver developed for proposed model is available 
at the URL:http://ampzero.pythonanywhere.com. The 

webserver takes a peptide sequence in FASTA format 
along with any C-terminus and N-terminus modifications 
as input together with the genome of a species in order to 
predict the degree of effectiveness of the peptide against 
the given species. Additionally, the user can upload a list 
of known positive and negative example peptide se-
quences for the given species for generating few shot 
learning based predictions. 

4  CONCLUSION 

We have developed a targeted antimicrobial activity predic-
tor called AMP0 which can predict the effectiveness of a giv-
en peptide sequence against a given target species. The use 
of zero and few shot learning in the proposed model helps in 
overcoming the shortcomings of conventional machine 
learning techniques for this purpose. Our cross-validation 
analysis shows that the proposed model can perform better 
than existing approaches and it can be easily integrated in 
experimental discovery of antimicrobial peptide sequences 
for novel species. 

TABLE 3. 

Results for Peptide Activity Prediction for Novel Species. The first column indicates the type of the different test species used 

in this analysis. The species name together with the total number of positive (P) and negative (N) examples available for that 

species are given in the second column. Results for zero shot learning (ZSL) in which no examples of the given test species are 

included in training are shown for the proposed ZSL model. For few shot learning results for different number of training ex-

amples (1, 2, 4, 8 and Half of all available examples) of the target species are shown. In the interest of relevance and brevity 

results for XGBoost are shown only when half of the available examples are used for training. CAMP and AMAP are existing 

state of the art predictors for antimicrobial activity and the prediction results were obtained using their respective webservers. 

Values in bold indicate the highest prediction performance. Note that the average AUC-ROC across multiple runs is reported 

together with the standard deviation (in parenthesis). 

Species 

Type 

Species Name ↓ 

 

No. of Tr. Examples → 

Machine Learning Models 

ZSL FSL XGBoost CAMP AMAP 

0 1 2 4 8 Half Half 

Fungus Aspergillus fumigatus 

(P: 44, N: 33) 

0.746 

(0.056) 

0.807 

(0.059) 

0.806 

(0.041) 

0.820 

(0.046) 

0.835 

(0.043) 

0.882 

(0.043) 

0.614 

(0.073) 

0.798 

(0.051) 

0.545 

(0.055) 

Candida glabrata 

(P35: , N:47 ) 

0.652 

(0.056) 

0.594 

(0.087) 

0.620 

(0.084) 

0.628 

(0.088) 

0.691 

(0.072) 

0.781 

(0.052) 

0.677 

(0.087) 

0.350 

(0.047) 

0.489 

(0.081) 

Candida parapsilosis 

(P:51 , N:33 ) 

0.430 

(0.088) 

0.473 

(0.094) 

0.507 

(0.106) 

0.562 

(0.093) 

0.663 

(0.089) 

0.789 

(0.055) 

0.639 

(0.120) 

0.660 

(0.069) 

0.662 

(0.075) 

Candida tropicalis 

(P:88 , N:16 ) 

0.755 

(0.078) 

0.712 

(0.072) 

0.735 

(0.076) 

0.771 

(0.078) 

0.803 

(0.071) 

0.865 

(0.042) 

0.669 

(0.066) 

0.703 

(0.076) 

0.561 

(0.058) 

Cryptococcus neoformans 

(P:167 , N:14 ) 

0.504 

(0.102) 

0.497 

(0.110) 

0.487 

(0.104) 

0.518 

(0.103) 

0.628 

(0.068) 

0.628 

(0.068) 

0.541 

(0.078) 

0.576 

(0.089) 

0.581 

(0.084) 

Saccharomyces cerevisiae 

(P:132 , N:36 ) 

0.405 

(0.061) 

0.627 

(0.064) 

0.634 

(0.060) 

0.650 

(0.064) 

0.681 

(0.072) 

0.788 

(0.052) 

0.604 

(0.046) 

0.388 

(0.053) 

0.448 

(0.043) 

Fusarium oxysporum 

(P:125 , N:18 ) 

0.856 

(0.045) 

0.914 

(0.040) 

0.919 

(0.043) 

0.932 

(0.038) 

0.943 

(0.033) 

0.961 

(0.021) 

0.696 

(0.094) 

0.418 

(0.049) 

0.396 

(0.033) 

Gram 

Negative 

Bacteria 

Enterobacter aerogenes 

(P:36 , N:49 ) 

0.468 

(0.061) 

0.588 

(0.084) 

0.599 

(0.063) 

0.646 

(0.088) 

0.731 

(0.078) 

0.826 

(0.051) 

0.773 

(0.069) 

0.550 

(0.067) 

0.443 

(0.069) 

Erwinia amylovora 

(P112: , N:35 ) 

0.478 

(0.059) 

0.385 

(0.062) 

0.450 

(0.068) 

0.543 

(0.069) 

0.714 

(0.069) 

0.892 

(0.047) 

0.907 

(0.032) 

0.877 

(0.021) 

0.385 

(0.046) 

Pasteurella multocida 

(P:37 , N:53 ) 

0.722 

(0.052) 

0.745 

(0.088) 

0.807 

(0.080) 

0.876 

(0.042) 

0.924 

(0.026) 

0.957 

(0.019) 

0.914 

(0.046) 

0.528 

(0.067) 

0.295 

(0.039) 

Proteus mirabilis 

(P:27 , N:105 ) 

0.714 

(0.052) 

0.729 

(0.045) 

0.733 

(0.047) 

0.748 

(0.054) 

0.767 

(0.045) 

0.836 

(0.048) 

0.731 

(0.079) 

0.377 

(0.046) 

0.269 

(0.065) 

Proteus vulgaris 

(P:84 , N:34 ) 

0.710 

(0.038) 

0.780 

(0.050) 

0.794 

(0.050) 

0.818 

(0.050) 

0.840 

(0.045) 

0.909 

(0.030) 

0.667 

(0.071) 

0.465 

(0.048) 

0.567 

(0.048) 

Serratia marcescens 0.782 0.843 0.864 0.883 0.886 0.921 0.571 0.397 0.418 

Fig. 6. Weight plot of ZSL with monomer represen-

tation of peptides 

http://ampzero.pythonanywhere.com/
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(P:48 , N:62 ) (0.040) (0.042) (0.031) (0.028) (0.039) (0.021) (0.068) (0.084) (0.046) 

Gram 

Positive 

Bacteria 

Listeria innocua 

(P:64 , N:36 ) 

0.686 

(0.038) 

0.688 

(0.067) 

0.710 

(0.064) 

0.738 

(0.056) 

0.763 

(0.062) 

0.804 

(0.057) 

0.672 

(0.052) 

0.371 

(0.048) 

0.402 

(0.032) 

Streptococcus mutans 

(P:129 , N:11 ) 

0.437 

(0.119) 

0.570 

(0.118) 

0.597 

(0.116) 

0.616 

(0.136) 

0.825 

(0.045) 

0.825 

(0.045) 

0.767 

(0.108) 

0.472 

(0.099) 

0.706 

(0.083) 

Streptococcus pneumoniae 

(P:86 , N:17 ) 

0.591 

(0.077) 

0.619 

(0.090) 

0.609 

(0.089) 

0.622 

(0.079) 

0.623 

(0.077) 

0.701 

(0.066) 

0.507 

(0.071) 

0.3081 

(0.057) 

0.384 

(0.077) 

Streptococcus pyogenes 

(P:161 , N:09 ) 

0.660 

(0.050) 

0.733 

(0.044) 

0.737 

(0.044) 

0.747 

(0.053) 

0.873 

(0.037) 

0.873 

(0.037) 

0.669 

(0.069) 

0.569 

(0.156) 

0.737 

(0.062) 

 

ACKNOWLEDGMENTS 

Sadaf Gull is supported by a grant under indigenous 5000 
Ph.D. fellowship scheme by the Higher Education Commis-
sion (HEC) of Pakistan. 

REFERENCES 

[1] B. Aslam et al., “Antibiotic resistance: a rundown of a global 

crisis,” Infection and drug resistance, vol. 11, p. 1645, 2018. 

[2] C. L. Ventola, “The antibiotic resistance crisis: part 1: causes 

and threats,” Pharmacy and therapeutics, vol. 40, no. 4, p. 277, 

2015. 

[3] J. M. Blair, “A climate for antibiotic resistance,” Nature Cli-

mate Change, vol. 8, no. 6, p. 460, 2018. 

[4] M. Lakemeyer, W. Zhao, F. A. Mandl, P. Hammann, and S. A. 

Sieber, “Thinking Outside the Box—Novel Antibacterials To 

Tackle the Resistance Crisis,” Angewandte Chemie International 

Edition, vol. 57, no. 44, pp. 14440–14475, 2018. 

[5] C. N. Spaulding, R. D. Klein, H. L. Schreiber, J. W. Janetka, 

and S. J. Hultgren, “Precision antimicrobial therapeutics: the 

path of least resistance?,” NPJ biofilms and microbiomes, vol. 4, 

no. 1, p. 4, 2018. 

[6] F. Kampshoff, M. D. Willcox, and D. Dutta, “A Pilot Study of 

the Synergy between Two Antimicrobial Peptides and Two 

Common Antibiotics,” Antibiotics, vol. 8, no. 2, p. 60, 2019. 

[7] F. Costa, C. Teixeira, P. Gomes, and M. C. L. Martins, “Clini-

cal Application of AMPs,” in Antimicrobial Peptides, Springer, 

2019, pp. 281–298. 

[8] G. Yu, D. Y. Baeder, R. R. Regoes, and J. Rolff, “Predicting 

drug resistance evolution: insights from antimicrobial pep-

tides and antibiotics,” Proceedings of the Royal Society B: Biolog-

ical Sciences, vol. 285, no. 1874, p. 20172687, 2018. 

[9] Z. Teng, M. Guo, Q. Dai, C. Wang, J. Li, and X. Liu, “Compu-

tational prediction of protein function based on weighted 

mapping of domains and GO terms,” BioMed research interna-

tional, vol. 2014, 2014. 

[10] A. Sokolov, C. Funk, K. Graim, K. Verspoor, and A. Ben-Hur, 

“Combining heterogeneous data sources for accurate func-

tional annotation of proteins,” in BMC bioinformatics, 2013, 

vol. 14, p. S10. 

[11] P. Radivojac et al., “A large-scale evaluation of computational 

protein function prediction,” Nature methods, vol. 10, no. 3, p. 

221, 2013. 

[12] A. Valencia, “Automatic annotation of protein function,” 

Current opinion in structural biology, vol. 15, no. 3, pp. 267–274, 

2005. 

[13] B. Rost, J. Liu, R. Nair, K. O. Wrzeszczynski, and Y. Ofran, 

“Automatic prediction of protein function,” Cellular and Mo-

lecular Life Sciences CMLS, vol. 60, no. 12, pp. 2637–2650, 2003. 

[14] T. L. Campos, P. K. Korhonen, R. B. Gasser, and N. D. Young, 

“An evaluation of machine learning approaches for the pre-

diction of essential genes in eukaryotes using protein se-

quence-derived features,” Computational and Structural Bio-

technology Journal, 2019. 

[15] M. Kulmanov, M. A. Khan, and R. Hoehndorf, “DeepGO: 

predicting protein functions from sequence and interactions 

using a deep ontology-aware classifier,” Bioinformatics, vol. 

34, no. 4, pp. 660–668, 2017. 

[16] A. S. Rifaioglu, T. Doğan, M. J. Martin, R. Cetin-Atalay, and 

V. Atalay, “DEEPred: Automated Protein Function Prediction 

with Multi-task Feed-forward Deep Neural Networks,” Scien-

tific reports, vol. 9, no. 1, p. 7344, 2019. 

[17] R. Fa, D. Cozzetto, C. Wan, and D. T. Jones, “Predicting hu-

man protein function with multi-task deep neural networks,” 

PloS one, vol. 13, no. 6, p. e0198216, 2018. 

[18] S. Hua and Z. Sun, “Support vector machine approach for 

protein subcellular localization prediction,” Bioinformatics, 

vol. 17, no. 8, pp. 721–728, 2001. 

[19] S. Gull, N. Shamim, and F. Minhas, “AMAP: Hierarchical 

multi-label prediction of biologically active and antimicrobial 

peptides,” Computers in biology and medicine, vol. 107, pp. 172–

181, 2019. 

[20] P. Bhadra, J. Yan, J. Li, S. Fong, and S. W. Siu, “AmPEP: Se-

quence-based prediction of antimicrobial peptides using dis-

tribution patterns of amino acid properties and random for-

est,” Scientific reports, vol. 8, no. 1, p. 1697, 2018. 

[21] M. Torrent, V. M. Nogués, and E. Boix, “A theoretical ap-

proach to spot active regions in antimicrobial proteins,” BMC 

bioinformatics, vol. 10, no. 1, p. 373, 2009. 

[22] F. H. Waghu, R. S. Barai, P. Gurung, and S. Idicula-Thomas, 

“CAMPR3: a database on sequences, structures and signa-

tures of antimicrobial peptides,” Nucleic acids research, vol. 44, 

no. D1, pp. D1094–D1097, 2015. 

[23] W. Lin and D. Xu, “Imbalanced multi-label learning for iden-

tifying antimicrobial peptides and their functional types,” Bi-

oinformatics, vol. 32, no. 24, pp. 3745–3752, 2016. 

[24] P. Agrawal and G. P. Raghava, “Prediction of Antimicrobial 

Potential of a Chemically Modified Peptide From Its Tertiary 

Structure,” Frontiers in Microbiology, vol. 9, p. 2551, 2018. 

[25] V. V. Kleandrova, J. M. Ruso, A. Speck-Planche, and M. N. 

Dias Soeiro Cordeiro, “Enabling the discovery and virtual 

screening of potent and safe antimicrobial peptides. simulta-

neous prediction of antibacterial activity and cytotoxicity,” 

ACS combinatorial science, vol. 18, no. 8, pp. 490–498, 2016. 



GULL AND MINHAS:  TARGERED PREDICTION OF ANTIMICROBIAL PEPTIDES 

 9 

 

[26] B. Vishnepolsky et al., “Predictive Model of Linear Antimi-

crobial Peptides Active against Gram-Negative Bacteria,” 

Journal of chemical information and modeling, vol. 58, no. 5, pp. 

1141–1151, 2018. 

[27] A. Speck-Planche, V. V. Kleandrova, J. M. Ruso, and M. DS 

Cordeiro, “First multitarget chemo-Bioinformatic model to 

enable the discovery of antibacterial peptides against multi-

ple gram-positive pathogens,” Journal of chemical information 

and modeling, vol. 56, no. 3, pp. 588–598, 2016. 

[28] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell, 

“Zero-shot learning with semantic output codes,” in Advances 

in neural information processing systems, 2009, pp. 1410–1418. 

[29] Z. Zhang and V. Saligrama, “Zero-shot learning via semantic 

similarity embedding,” in Proceedings of the IEEE international 

conference on computer vision, 2015, pp. 4166–4174. 

[30] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot 

learning through cross-modal transfer,” in Advances in neural 

information processing systems, 2013, pp. 935–943. 

[31] M. Norouzi et al., “Zero-shot learning by convex combination 

of semantic embeddings,” arXiv preprint arXiv:1312.5650, 

2013. 

[32] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong, “Transduc-

tive multi-view zero-shot learning,” IEEE transactions on pat-

tern analysis and machine intelligence, vol. 37, no. 11, pp. 2332–

2345, 2015. 

[33] E. Kodirov, T. Xiang, and S. Gong, “Semantic autoencoder for 

zero-shot learning,” in Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2017, pp. 3174–3183. 

[34] B. Romera-Paredes and P. Torr, “An embarrassingly simple 

approach to zero-shot learning,” in International Conference on 

Machine Learning, 2015, pp. 2152–2161. 

[35] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for 

few-shot learning,” in Advances in Neural Information Pro-

cessing Systems, 2017, pp. 4077–4087. 

[36] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. 

Hospedales, “Learning to compare: Relation network for few-

shot learning,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2018, pp. 1199–1208. 

[37] S. Gidaris and N. Komodakis, “Dynamic few-shot visual 

learning without forgetting,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2018, pp. 

4367–4375. 

[38] V. Garcia and J. Bruna, “Few-shot learning with graph neural 

networks,” arXiv preprint arXiv:1711.04043, 2017. 

[39] S. Ravi and H. Larochelle, “Optimization as a model for few-

shot learning,” 2016. 

[40] X. Sun, H. Xv, J. Dong, H. Zhou, C. Chen, and Q. Li, “Few-

shot Learning for Domain-specific Fine-grained Image Classi-

fication,” IEEE Transactions on Industrial Electronics, 2020. 

[41] K. Cao, J. Ji, Z. Cao, C.-Y. Chang, and J. C. Niebles, “Few-shot 

video classification via temporal alignment,” arXiv preprint 

arXiv:1906.11415, 2019. 

[42] B. Liu, X. Wang, M. Dixit, R. Kwitt, and N. Vasconcelos, “Fea-

ture space transfer for data augmentation,” in Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition, 

2018, pp. 9090–9098. 

[43] Z. Luo, Y. Zou, J. Hoffman, and L. F. Fei-Fei, “Label efficient 

learning of transferable representations acrosss domains and 

tasks,” in Advances in Neural Information Processing Systems, 

2017, pp. 165–177. 

[44] M. Pirtskhalava et al., “DBAASP v. 2: an enhanced database 

of structure and antimicrobial/cytotoxic activity of natural 

and synthetic peptides,” Nucleic acids research, vol. 44, no. D1, 

pp. D1104–D1112, 2015. 

[45] M. Youmans, C. Spainhour, and P. Qiu, “Long short-term 

memory recurrent neural networks for antibacterial peptide 

identification,” in 2017 IEEE International Conference on Bioin-

formatics and Biomedicine (BIBM), 2017, pp. 498–502. 

[46] T. S. Win, A. A. Malik, V. Prachayasittikul, J. E. S Wikberg, C. 

Nantasenamat, and W. Shoombuatong, “HemoPred: a web 

server for predicting the hemolytic activity of peptides,” Fu-

ture medicinal chemistry, vol. 9, no. 3, pp. 275–291, 2017. 

[47] N. R. Coordinators, “Database resources of the national cen-

ter for biotechnology information,” Nucleic acids research, vol. 

44, no. Database issue, p. D7, 2016. 

[48] F. Cava, H. Lam, M. A. De Pedro, and M. K. Waldor, “Emerg-

ing knowledge of regulatory roles of D-amino acids in bacte-

ria,” Cellular and Molecular Life Sciences, vol. 68, no. 5, pp. 817–

831, 2011. 

[49] M. L. Mangoni et al., “Effect of natural L-to D-amino acid 

conversion on the organization, membrane binding, and bio-

logical function of the antimicrobial peptides bombinins H,” 

Biochemistry, vol. 45, no. 13, pp. 4266–4276, 2006. 

[50] R. H. Baltz, “Daptomycin: mechanisms of action and re-

sistance, and biosynthetic engineering,” Current opinion in 

chemical biology, vol. 13, no. 2, pp. 144–151, 2009. 

[51] Y. Kawai et al., “Structural and functional differences in two 

cyclic bacteriocins with the same sequences produced by lac-

tobacilli,” Appl. Environ. Microbiol., vol. 70, no. 5, pp. 2906–

2911, 2004. 

[52] C. Leslie, E. Eskin, and W. S. Noble, “The spectrum kernel: A 

string kernel for SVM protein classification,” in Biocomputing 

2002, World Scientific, 2001, pp. 564–575. 

[53] E. Crusca Jr et al., “Influence of N-terminus modifications on 

the biological activity, membrane interaction, and secondary 

structure of the antimicrobial peptide hylin-a1,” Peptide Sci-

ence, vol. 96, no. 1, pp. 41–48, 2011. 

[54] S. Karlin and I. Ladunga, “Comparisons of eukaryotic ge-

nomic sequences,” Proceedings of the National Academy of Sci-

ences, vol. 91, no. 26, pp. 12832–12836, 1994. 

[55] S. Karlin, A. M. Campbell, and J. Mrazek, “Comparative 

DNA analysis across diverse genomes,” Annual review of ge-

netics, vol. 32, no. 1, pp. 185–225, 1998. 

[56] S. Kariin and C. Burge, “Dinucleotide relative abundance 

extremes: a genomic signature,” Trends in genetics, vol. 11, no. 

7, pp. 283–290, 1995. 

[57] S. Karlin, “Global dinucleotide signatures and analysis of 

genomic heterogeneity,” Current opinion in microbiology, vol. 1, 

no. 5, pp. 598–610, 1998. 

[58] H. Nakashima, K. Nishikawa, and T. Ooi, “Di. erences in 

Dinucleotide Frequencies of Human, Yeast, and Escherichia 

coli Genes,” DNA Research, vol. 4, no. 3, pp. 185–192, 1997. 

[59] H. Nakashima, M. Ota, K. Nishikawa, and T. Ooi, “Genes 

from nine genomes are separated into their organisms in the 

dinucleotide composition space,” DNA Research, vol. 5, no. 5, 

pp. 251–259, 1998. 



10 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

[60] D. T. Pride, R. J. Meinersmann, T. M. Wassenaar, and M. J. 

Blaser, “Evolutionary implications of microbial genome 

tetranucleotide frequency biases,” Genome research, vol. 13, no. 

2, pp. 145–158, 2003. 

[61] M. Takahashi, K. Kryukov, and N. Saitou, “Estimation of 

bacterial species phylogeny through oligonucleotide frequen-

cy distances,” Genomics, vol. 93, no. 6, pp. 525–533, 2009. 

[62] C. Cortes and V. Vapnik, “Support-vector networks,” Machine 

learning, vol. 20, no. 3, pp. 273–297, 1995. 

[63] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting 

system,” in Proceedings of the 22nd acm sigkdd international con-

ference on knowledge discovery and data mining, 2016, pp. 785–

794. 

[64] K. Gurney, An introduction to neural networks. CRC press, 

1997. 

[65] T. Cover and P. Hart, “Nearest neighbor pattern classifica-

tion,” IEEE transactions on information theory, vol. 13, no. 1, pp. 

21–27, 1967. 

[66] Z. John Lu, “The elements of statistical learning: data mining, 

inference, and prediction,” Journal of the Royal Statistical Socie-

ty: Series A (Statistics in Society), vol. 173, no. 3, pp. 693–694, 

2010. 

[67] F. ul A. Afsar Minhas, B. J. Geiss, and A. Ben-Hur, “PAIR-

pred: Partner-specific prediction of interacting residues from 

sequence and structure,” Proteins: Structure, Function, and Bio-

informatics, vol. 82, no. 7, pp. 1142–1155, 2014. 

[68] J. Davis and M. Goadrich, “The relationship between Preci-

sion-Recall and ROC curves,” in Proceedings of the 23rd inter-

national conference on Machine learning, 2006, pp. 233–240. 

[69] Y. Huang, B. Niu, Y. Gao, L. Fu, and W. Li, “CD-HIT Suite: a 

web server for clustering and comparing biological sequenc-

es,” Bioinformatics, vol. 26, no. 5, pp. 680–682, 2010. 

[70] M. N. Gabere and W. S. Noble, “Empirical comparison of 

web-based antimicrobial peptide prediction tools,” Bioinfor-

matics, vol. 33, no. 13, pp. 1921–1929, 2017. 

[71] K. Pearson, “VII. Note on regression and inheritance in the 

case of two parents,” proceedings of the royal society of London, 

vol. 58, no. 347–352, pp. 240–242, 1895. 

[72] A. de Breij et al., “The antimicrobial peptide SAAP-148 com-

bats drug-resistant bacteria and biofilms,” Science translational 

medicine, vol. 10, no. 423, p. eaan4044, 2018. 

[73] J.-L. Dimarcq, P. Bulet, C. Hetru, and J. Hoffmann, “Cysteine-

rich antimicrobial peptides in invertebrates,” Peptide Science, 

vol. 47, no. 6, pp. 465–477, 1998. 

[74] J. Wang et al., “Antimicrobial peptides: Promising alternatives 

in the post feeding antibiotic era,” Medicinal Research Reviews, 

vol. 39, no. 3, pp. 831–859, 2019. 
 
 
Sadaf Gull is a PhD scholar in the Department of Computer and 
Information Sciences, Pakistan Institute of Engineering and Applied 
Sciences (PIEAS), Islamabad, Pakistan. She is doing her PhD under 
indigenous PhD fellowship by Higher Education Commission (HEC). 
Her area of research is “Machine Learning in Biomedical Informat-
ics". 

 
Fayyaz Minhas is currently with the Department of Computer Sci-
ence, University of Warwick, Coventry, UK and the Department of 
Computer and Information Sciences, Pakistan Institute of Engineer-
ing and Applied Sciences (PIEAS), Islamabad, Pakistan. Dr. Minhas 
received his PhD degree in Bioinformatics from Colorado State Uni-

versity, USA on a Fulbright Scholarship. He has also been awarded 
the National Youth Award by the Government of Pakistan for his 
contributions to science and technology. His research focuses on 
applications of machine learning in Bioinformatics and the analysis of 
biomedical data 
 
 
 


