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Abstract—The majority of clinical trials fail due to low efficacy of investigated drugs, often resulting from a poor choice of target protein.

Existing computational approaches aim to support target selection either via genetic evidence or by putting potential targets into the

context of a disease specific network reconstruction. The purpose of this work was to investigate whether network representation

learning techniques could be used to allow for a machine learning based prioritization of putative targets. We propose a novel target

prioritization approach, GuiltyTargets, which relies on attributed network representation learning of a genome-wide protein-protein

interaction network annotated with disease-specific differential gene expression and uses positive-unlabeled (PU) machine learning for

candidate ranking. We evaluated our approach on 12 datasets from six diseases of different type (cancer, metabolic,

neurodegenerative) within a 10 times repeated 5-fold stratified cross-validation and achieved AUROC values between 0.92 - 0.97,

significantly outperforming previous approaches that relied on manually engineered topological features. Moreover, we showed that

GuiltyTargets allows for target repositioning across related disease areas. An application of GuiltyTargets to Alzheimer’s disease

resulted in a number of highly ranked candidates that are currently discussed as targets in the literature. Interestingly, one (COMT) is

also the target of an approved drug (Tolcapone) for Parkinson’s disease, highlighting the potential for target repositioning with our

method. The GuiltyTargets Python package is available on PyPI and all code used for analysis can be found under the MIT License at

https://github.com/GuiltyTargets. Attributed network representation learning techniques provide an interesting approach to effectively

leverage the existing knowledge about the molecular mechanisms in different diseases. In this work, the combination with positive-

unlabeled learning for target prioritization demonstrated a clear superiority compared to classical feature engineering approaches. Our

work highlights the potential of attributed network representation learning for target prioritization. Given the overarching relevance of

networks in computational biology we believe that attributed network representation learning techniques could have a broader impact in

the future.

Index Terms—Artificial intelligence, neural networks, bioinformatics
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1 INTRODUCTION

DRUG discovery is a time consuming, expensive and com-
plicated process in which there are two major steps

prior to in vivo pre-clinical and clinical trials [1], [2], [3], [4].
The first is the identification, prioritization, and validation

of a target with suitable physical properties whose modula-
tion could affect disease pathways. The second is to identify
and optimize compounds which bind to the target and
modulate its biological activity (Fig. 1). Even though both
have proven crucial for the discovery of efficacious drugs,
many still fail in clinical studies due to low efficacy [5], [6],
[7]. While computational methods for compound-target
interaction prediction have been widely-studied [8], com-
puter based target prioritization remains less so.

Traditionally, scientists identified targets by searching
through the relevant literature, following clues from mRNA
and protein expression, integrating expression data with
pathway analyses, experimenting with knockoutmice, inves-
tigating somatic mutations, gene fusions, and copy number
variations, and using the accumulated knowledge from mul-
tiple experimental studies to generate a hypothesis on how
proteins or other macromolecules might work as targets [2],
[9], [10]. However, manually interpreting many data sources
is prone to biased identification of targets as it limits the
potential to use all available and helpful data. By computa-
tionally integrating multiple biological data sources to ana-
lyze prior knowledge, it should be possible to make target
identification process faster, less biased, and more informed.
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Computational target prioritization approaches thus aim
for improving target identification process by ranking pro-
teins based on their likelihood of being targets in the context
of a specific disease [11], [12], [13], [14], [15], [16], [17], [18].
Most of them integrate biological networks with other data
sources into a knowledge graph that can help to prioritize
targets [9], partially in particular for infectious diseases [12],
[13], [14], cancers [15], [16], [17], or neuro-degenerative
diseases [18].

In addition to network based approaches, statistical
genetic evidence from phenome-wide association studies
(PheWAS) has received an increasing attention for identify-
ing targets [19]. However, selecting targets purely based on
genetic evidence is likely to narrow the view towards a sub-
set of indications and possible targets. Moreover, such an
approach is agnostic against the wealth of known biological
mechanisms and existing data.

Another approach is to employ machine learning meth-
ods that learn features of known targets within a given dis-
ease area or a closely related one in order to prioritize
future candidates. Emig et al. proposed a method in which

for each protein a number of network topological features
are combined with proximity to differentially expressed
genes in a given disease of interest [11]. All features are sub-
sequently combined into a logistic regression model for
ranking proteins as candidate targets. The authors success-
fully tested their approach with data from 30 different dis-
eases. Ferrero et al. used features provided by the Open
Targets database [20] and combine them into one ranking
score using support vector machines [21].

In this paper, we propose GuiltyTargets, a novel guilt-by-
association approach for prioritizing protein targets using a
combination of unsupervised attributed network representa-
tion learning [22] and PU learning [23], [24], [25], [26].
GuiltyTargets first embeds a genome-wide protein-protein
interaction (PPI) network annotated with differential gene
expression information in a euclidean space using Gat2Vec,
an attributed network representation learningmethod [27]. It
then learns to rank candidate targets, leveraging network
representation learning techniques to implicitly learn rele-
vant features to represent a protein-protein interaction net-
work together with mapped data rather than manually
engineering various topological network attributes in a time
consuming process thatmight still miss relevant information.
Our approach is thus data driven, and to the the best of our
knowledge it has not been used for target prioritization so
far. The proposed approach is compared to the approaches
from [11] and [9] based on 12 datasets from six diseases, dem-
onstrating its superior ranking performance. Finally, we
present a case study on Alzheimer’s disease (AD), in which
we show howGuiltyTargets can be used to reposition known
targets from other neurological indications.

2 METHOD

2.1 Overview of GuiltyTargets

An overview of the GuiltyTargets workflow is presented in
Fig. 2. First, a disease-specific differential gene expression

Fig. 1. Overview about the pharmaceutical drug development process:
Target prioritization / selection is of relevance before the actual start of com-
pound development. Compound-target interaction prediction focuses on
understanding a compound’s mode of action. Drug repositioning or repur-
posing aims for finding new indications for existing drugs on themarket.

Fig. 2. GuiltyTargets approach: A genome-wide protein-protein interaction network is labeled with information about known drug targets and with dif-
ferential gene expression (up-regulated, down-regulated, not differentially expressed). The attributed network is subsequently embedded into an
euclidean space, in which a (penalized) logistic regression is trained via PU learning. The class conditional probabilities that are calculated by the
classifier are then used for ranking of candidate targets.
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profile is discretized such that down-regulated genes are
assigned a label of �1, up-regulated genes are assigned 1,
and unregulated genes are assigned 0. Then, a genome-
wide protein-protein interaction (PPI) network is annotated
using these labels and input to Gat2Vec, which embeds the
nodes in the attributed network into a euclidean space [27]
for downstream machine learning tasks.

Following a positive-unlabeled (PU) learning scheme,
known disease specific protein targets are assigned positive
labels, and the remaining proteins are regarded as pseudo-
negatives to train a classifier that ranks a candidate protein
according to its similarity to known targets for the given dis-
ease. More details are described as follows.

2.2 Network Representation Learning

GuiltyTargets relies on network representation learning of an
annotated PPI network via Gat2Vec, where node attributes
represent discretized gene expression log2 fold changes. In the
first step, two separate graphs, the structural and the attribute
graph, are constructed from the original labeled PPI network,
where the structural graph corresponds to the PPI network,
and the attribute graph is a bipartite graph between protein
nodes and discretized log2 fold changes. For each node in
each of these networks, a low dimensional embedding is cal-
culated using Gat2Vec algorithm using the parameters given
in Table S1. In Gat2Vec algorithm, first, random walks are
generated in both structural and attribute networks. These
random walks are interpreted as a sentence that can be
embedded into an euclidean space using a SkipGram neural
network, which is an essential part of Word2Vecmethod [28].
When calculating the low dimensional embedding, Gat2Vec
model accordingly aims tomaximize the probability of a node
v’s structural and attribute contextsR andW within a contex-
tual window of length 2c:

LðvÞ ¼
X

r2R

Xjrj

i¼1

X

�c � j � c

j 6¼ i

log pðrj j riÞ

þ
X

w2W

Xjwj

i¼1

X

�c � t � c

t 6¼ i

log pðwt jwiÞ;
(1)

Here ri and wi denote the ith word (i.e., node or mixed node
/ attribute sequence) generated by a random walk. pðrj j riÞ
is the output of the SkipGram neural network that is defined
with a softmax function

pðrj j riÞ ¼
exp�ðhvi; vjiÞP

�c�j�c exp�ðhvi; vjiÞ ; (2)

where vi; vj are vector representations of words ri and rj in
the hidden layer. An equivalent definition holds for
pðwt jwiÞ. Notably, the SkipGram neural network is trained
with one-hot vector encoding of word pairs as input. The
network aims for learning the probability of observing
word rj in the context (i.e., in the “neighborhood”) of ri (the
same holds true for wt and wi) by maximizing

P
v LðvÞ over

all nodes v in the original PPI network. We refer to [28] for
more details about SkipGram.

2.3 Target Candidate Ranking

The features retrieved using network representation learn-
ing of the annotated PPI networks are used together with
the labeling of proteins as known disease-specific targets to
train an ‘2 penalized logistic regression classifier. Following
a PU learning scheme known targets are assigned positive
labels, and the remaining proteins are treated as if they
were negatives. The model is then used to rank unlabeled
proteins via the conditional probability (likelihood score)

P ðy ¼ 1 j xÞ ¼ 1

1þ expð�hx; wiÞ ; (3)

with w being the learned parameters, y an indicator for a
protein being a target and x the feature vector obtained
from deep network representation learning. It is worthwhile
mentioning that due to the fact that unlabeled samples con-
tain an unknown fraction of positive samples the class con-
ditional probability shown in the equation is most likely
biased compared to the Bayes optimal one. Some authors
therefore proposed to down-weight unlabeled samples
accordingly [29]. Alternatively, other authors suggested to
abstain from a probabilistic classifier and train a biased Sup-
port Vector Machine instead [30], or sub-select from the set
of all unlabeled samples those, which are most likely nega-
tives, see [31] for a review. According to [29] the effects of
these methods on pure ranking performance (which is our
primary objective here) are small, and hence we chose to
rely on our comparably simpler approach with a conven-
tional ‘2 penalized logistic regression classifier here.

For our implementation we used the LogisticRegression
class from linear_modelmodule andOneVsRestClassifier class
frommulticlassmodule in Python library scikit-learn [32].

2.4 Evaluation and Comparison Against
Existing Methods

We compared GuiltyTargets against two alternative meth-
ods: a) the machine learning approach by Emig et al. and b)
the network based Local Radiality (LR) score suggested by
Isik et al., which does not employ machine learning. More
specifically, the LR score of node n in graph G (here: the PPI
network) is defined as:

LRðnÞ ¼
P

dg2G jspðn; dgÞj
DG

; (4)

where jspðn; dgÞj denotes the length of the shortest path con-
necting node n with differentially expressed gene dg, and
jDGj is the total number of differentially expressed genes.

In agreement with Emig et al. the performance of our
approach and both competing methods were compared
within a 10 times repeated stratified 5-fold cross validation
schemewith the area under ROC curve (AUROC) as the eval-
uation criterion. This assessed the probability of each method
to rank in an independent test set (comprising known targets
as well as unknown candidates) a true known target higher
than an unknown protein. Since there are far less known
targets than unknown candidates in our data, stratified cross-
validation was used. More specifically, stratification ensured
that each independent test set inside the repeated cross-
validation procedure contained approximately the same num-
ber of known targets. Importantly, tuning of the ‘2 penalty for

MUSLU ET AL.: GUILTYTARGETS: PRIORITIZATION OF NOVEL THERAPEUTIC TARGETS WITH NETWORK REPRESENTATION LEARNING 493



the logistic regression classifier was performed within the
cross-validation procedure. This was done via a grid search
over different regularization strengths (0.01, 0.1, 1, 10), where
each candidate value was evaluated via an inner 5-fold strati-
fied cross-validation.

Due to the imbalance between positive and unlabeled
examples we also considered the possibility to weigh samples
from each class differently. More specifically, we considered
the following options: no class weighting, weighting of sam-
ples inversely to the class size (i.e., samples from smaller class
are up-weighted), class weight for smaller class 17, 100, 333,
2000 fold the one of the larger class. Once again, each of these
candidate options was evaluated within an inner 5-fold strati-
fied cross-validation.

3 DATA AND RESOURCES

3.1 Gene Expression Data

Gene expression data for acutemyleoid leukemia (GSE30029),
hepatocellular carcinoma (GSE36411), idiopathic pulmonary
fibrosis (GSE24206), liver cirrhosis (GSE36411) and multiple
sclerosis (GSE32988) was obtained from Gene Expression
Omnibus (GEO) [33], and differential gene expression was
assessed via GEO2R [34], Biobase [35], GEOquery [36] and
limma [37] using multiple testing correction via the false dis-
covery rate [38]. Only disease statuswas considered as predic-
tor in the linearmodel.

For AD, RNASeq data from the AM-PAD Knowledge Por-
tal (AM-PAD) was used [39]. In particular, MSBB, ROSMAP,
and MayoRNASeq studies were utilized. Differential gene
expression was assessed by applying DESeq2 to the normal-
ized RNAseq data for each brain region. Table S2 shows more
detailed information about AM-PADdata, including the num-
ber of subject samples and the potentially confounding factors
that were considered in the differential gene expression analy-
sis as additional covariates (e.g., age, gender, tissue source).

In every case differential gene expression was declared
belowa false discovery rate threshold of 5 percent plus an addi-
tional log2 fold change cutoff, whichwe varied in our analysis.

3.2 Protein-Protein Interaction Networks

As PPI networks, HIPPIE v2.0 [40] and STRING v10.5[41]
were used since both of these networks are created by combin-
ing multiple sources of PPIs and provide confidence scores.
HIPPIE and STRING differ in the type of interactions they
contain (Table S3): HIPPIE relies on physical protein-protein
interactions, whereas STRING captures more broadly func-
tional interactions. Hence, STRING has a much larger size
than HIPPIE. The analyses on this paper only included the
interactions between human proteins. STRING locus identi-
fiers were mapped to Entrez identifiers using the mappings
provided by STRING.

The accompanying Excel sheet shows information about
the number of differentially expressed genes (at different
log2 fold change cutoffs and falsed discovery threshold of
5 percent), which could be mapped to the STRING and HIP-
PIE network, respectively.

3.3 Target Databases

Information about disease-specific known targets of com-
pounds that are approved drugs or are currently tested in

clinical trials were obtained from two databases: The Thera-
peutic Target Database (TTD) [42] and Open Targets [20]
(see: Table S4). In general, the number of targets found in
Open Targets was significantly larger than in TTD. For liver
cirrhosis and idiopathic pulmonary fibrosis we only found
1 and 6 targets in TTD, respectively. Therefore, for these dis-
eases we only considered Open Targets.

Target identifiers in TTD database were mapped to Uni-
Prot identifiers using the conversion file provided by TTD.
These identifiers were then mapped to Entrez gene IDs using
R packages AnnotationDBI and org.Hs.eg.db. In addition to
TTD, known protein targets were retrieved from Open Tar-
gets, by filtering by proteins that have known connections to
drugs. HGNC symbols were converted to Entrez identifiers
using R packagesAnnotationDBI and org.Hs.eg.db.

3.4 Validation Approach

We performed target prioritization analyses for six different
diseases using corresponding gene expression data for acute
myeloid leukemia, hepatocellular carcinoma, idiopathic pul-
monary fibrosis, liver cirrhosis, multiple sclerosis and AD.
The choice was made based on the following criteria: First,
five of these diseases have also been evaluated in the publica-
tion by Emig et al., which we used for comparison here. Sec-
ond, the number of available known targets for each disease
was expected to be relatively high for a statistically meaning-
ful validation. Finally, we added AD to investigate the appli-
cability of our approach to a highly challenging disease, in
which so far most attempts to establish new drugs have failed
[43]. Notably, for AD we investigated brain region specific
RNASeq data from different cohorts (MSBB [44], MayoRNA-
Seq [45], ROSMAP [46]).

To investigate the prediction performance of GuiltyTar-
gets we employed two protein-protein interaction networks
(STRING[41], HIPPIE [40]), two target databases (Open Tar-
gets [20] and Therapeutic Target Database[42]) and different
cutoffs to discretize differential gene expression via log2 fold
change thresholds (0, 0.5, 1.0, 1.5) while requiring a false dis-
covery rate of less than 5 percent.Moreover, we tested the sit-
uation that no gene expression data was employed at all
(technically realized by setting the log2 fold change threshold
to1).

4 RESULTS

4.1 GuiltyTargets Outperforms Existing Methods

The approaches by Emig et al. and Isik et al. were re-imple-
mented using the same PPI network resources and target
databases as used by GuiltyTargets. Comparisons were ini-
tially only performed with log2 fold change cutoffs 0.5, 1.0,
1.5 for differential gene expression, but additional thresholds
0 and 1 were investigated separately for GuiltyTargets in
Section 4.2.

Results shown in Table 1 and the accompanying Excel
sheet demonstrate a dramatic performance increase of up to
41 and 36 percent by GuiltyTargets compared to the meth-
ods by Emig et al. and Isik et al. respectively. Notably,
AUROC values found by our re-implementation of were
not identical (but typically close) to the ones reported in the
original paper. This was likely due to the fact that not the
same PPI network and target database resources have been
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used. More specifically, Emig et al. employed the commer-
cial MetaBase database as PPI network and proprietary tar-
get database Integrity, whereas here we purely rely on
public resources.

We employed Wilcoxon signed rank tests (comparing
GuiltyTargets against each of the two competing methods) to
assess the statistical significance of our findings in each sce-
nario. This confirmed a significant improvement of GuiltyTar-
gets compared to both competing methods in almost every
dataset and tested scenario (p < 0:05 after Holm’s correction

for multiple testing , see Supplementary Excel sheet). Fig. 3
shows the AUROC of all three compared methods averaged
over all tested scenarios. The overall averaged AUROC
improvement by GuiltyTargets was 19 percent compared to
Emig et al. and 21 percent compared to Isik et al..

4.2 In-Depth Analysis of Influence Factors
on GuiltyTargets Performance

We wanted to better understand the dependency of the per-
formance of GuiltyTargets on the different tested influence

TABLE 1
Performance of GuiltyTargets, Emig et al.Method, and Isik et al.Method, in Terms of Cross-Validated AUROC (� Standard Error)

The results on this table has been obtained using the following parameters: Target DB: Open Targets, PPI Network: STRING, Confidence Threshold:0, Differen-
tial Gene Expression: FDR < 0.05 and Log2 Fold Change Cutoff: 1.5 (in agreement to Emig et al.). Further results can be found in Table S6. The column “Emig
et al. (original)” shows the AUROC values reported by Emig et al. and the column “Emig et al.” shows the AUROC values obtained by the reimplementation of
their method. CBE = cerebellum; TCX = temporal cortex; BM = Broadmann area

Fig. 3. Comparison of GuiltyTargets versus approach by Emig et al. and Isik et al. (Local Radiality).: The barplots show AUROC values averaged
over possible hyper-parameter choices (log2 fold change cutoff (0.5, 1.0, 1.5), target database (Open Targets, TTD), PPI network (HIPPIE,
STRING), PPI network confidence cutoff (0.0, 0.63).
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factors, which we had varied individually in our cross-vali-
dation analysis:

� PPI network (STRING, HIPPIE), including different
confidence level thresholds

� Target database (Open Targets, Therapeutic Targets
Database)

� Thresholds for log 2 fold changes
For this purpose we fitted a robust linear model with all

possible influence factors (i.e., PPI network, target database,
fold change threshold, PPI confidence level cutoff) and the
dataset as a further factor. We used R-package “robust” for
this purpose. Table 2 demonstrates that the employed PPI
network is the most relevant influence factor for GuiltyTar-
gets: Using STRING significantly increased the AUROC com-
pared to using HIPPIE by 7.6 percent on average. A more
conservative confidence threshold for the STRING network
yielded a drop in prediction performance by 2.1 percent.
The use of the Open Targets versus the Therapeutic Target
Database significantly increased the ranking performance of
GuiltyTargets by 2 percent, hence underlining the relevance
of a larger number of known targets for learning the ranking
model in the embedded network space.

When averaging over all previously mentioned influence
factors (i.e., network resource, target database, disease), the
chosen log2 fold change threshold seemed to have no signifi-
cant influence on AUROC (p ¼ 0:36, robust ANOVA). How-
ever, fixing the PPI network to STRING with default
confidence threshold and the target database to Open Targets
showed a clearly significant positive effect (p ¼ 0:0061). To
further investigate this fact we analyzed the performance of
our GuiltyTargets only across our tested AD gene expression
datasets, which again confirmed a highly significant influence
of fold change cutoff on the AUROC (p ¼ 1:633e� 09). In
addition, the dataset factor in the robust linear model has a
clearly significant effect (p ¼ 1:125e� 11). Both findings
together imply that gene expression data does have a statisti-
cal effect on the ranking performance of GuiltyTargets, but
indeed effect sizes are small and highly dataset dependent
(Fig. S1). Based on the observation thatwith a sufficiently con-
servative log2 fold change threshold prediction performances
on average improved, we altogether recommend the use of
gene expression datawith ourmethods.

4.3 GuiltyTargets Learns from Known Targets

We tested whether the performance of GuiltyTargets was
dependent on known targets or whether also with a random
set of proteins a similar performance could have been
achieved. For this purpose we trained GuiltyTargets for

each disease with 100 randomly drawn sets of targets of the
same size as the actual ones, which we incorrectly labeled
as “targets”. Prediction performance was evaluated using
the same cross-validation procedure as before. Table S6 con-
firms that the AUROC for random proteins drops to about
50 percent, i.e., chance level. Hence, GuiltyTargets indeed
learns properties of known targets.

4.4 GuiltyTargets Allows for Target Repositioning
Across Related Diseases

We explored whether GuiltyTargets could transfer properties
learned from known targets in one disease to another one,
hence allowing for repositioning of targets. To address this
question we trained GuiltyTargets with all known targets of
neurodegenerative diseases obtained fromOpenTargets,while
excluding known AD targets. We then ran a hypergeometric
test on the resulting prioritization to see if known AD targets
where statistically overrepresented at the top of the list. The
resultswere significantwhen at least 2 percent of the top candi-
dates were considered (Fig. 4). This shows that GuiltyTargets
could help for repositioning targets across related disease areas.

4.5 Case Study: GuiltyTargets Predicts New
Candidate Targets for Alzheimer’s Disease

Despite 179 therapeutic targets listed in the Open Targets
database, the AD field urgently requires new and more effec-
tive medications that either prevent, mitigate, or reverse its
progression. We therefore picked out AD as a test case for
GuiltyTargets to prioritize new target candidates. We used
post-mortem gene expression data from brain tissue from the
ROSMAP study and combined it with STRING network and
Open Targets as a resource for known targets. ROSMAP data
was chosen because of its comparably large number of sam-
ples (495 AD patients and 438 controls). Table 3 shows the top
0.1 percent of a ranked list of novel candidate targets obtained
with GuiltyTargets. EnrichedGO termswere calculated using
DAVID [47], indicating that candidate targets are mostly
related to synaptic transmission and ion transport, in line
with the neurological characteristics of AD. Furthermore, the
GO terms “learning” and “memory” was enriched, which
shows that the proposed targets cover the basic properties of
AD. Detailed results of our enrichment analysis can be found

TABLE 2
In-Depth Analysis of Different Influence Factors on

the Performance of GuiltyTargets

The table shows the result of contrasts extracted from coefficients of a robust
linear model fit and a robust ANOVA, respectively. The difference in AUROC
is shown in column 3 together with the corresponding p-value in column 4.

Fig. 4. Target repositioning potential of GuiltyTargets: The barplot shows
the result of a hypergeometric test conducted on the top p% of a ranked list
of candidate proteins when looking for overrepresentation of known AD tar-
gets. GuiltyTargetswas trainedwithout any knownAD targets here.
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TABLE 3
Target Prioritization for AD Using ROSMAP Gene Expression Data

This list shows the top 0.1 percent candidate proteins. The last column shows either known drugs (including indications) against the respective target or the
classification as “druggable” using the information from DGIdb [49] and TTD [42].

Fig. 5. Interactions between known and candidate targets, with confidence scores higher than 0.7. Clusters of nodes were calculated using MCL clus-
tering [59] with inflation parameter of 3.4 and the nodes were colored based on the clusters they are in. The transparency of the links shows the confi-
dence score of the interaction. If a node has some known or predicted 3D structure, it is filled with a structure image. Highlighted nodes show the
proposed candidates, whereas the rest show the known targets. Image generated using STRING [41].
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in the Supplementary Excel sheet. Fig. 5 visualizes candidate
proteins and their interactions with known target proteins,
demonstrating a higher than expected interaction rate (PPI
enrichment p < 1:0E � 16, calculated using STRING web
interface) meaning that candidates likely address the same or
a similar disease biology as the known targets. According to
the Therapeutic Target Database [42] and DGIdb [48] data-
bases, all but two candidates are labeled as “druggable”, i.e.,
they could be used as targets for drugs using the current drug
developmentmethods.

Many of the candidate targets are receptors, namely four
acetylcholine receptors (three nicotinic, one muscarinic), and
three glutamate receptors (two metabotropic, one ionotropic),
in agreement with the observation that receptors constitute a
large portion of known targets for small molecule drugs [49].
The remaining candidates were identified as ion channels.
The top candidate CHRNB4 is the target of the compound
SIB-1553A, which has been tested in a phase 2 clinical trial for
AD, but discontinued (source: Therapeutic Target Database).
Out of the other top candidates we found CHRFAM7A,
GRM1,GRM3, ITPR1, HTR7, andCOMTparticularly interest-
ing: CHRFAM7A is an alpha-7 nicotinic cholinergic receptor
subunit interacting with amyloid-b, whose aggregates (i.e.,
plaques) are one of the hallmarks of AD [50]. CHRFAM7A
may promote neuronal survival and function, and subunits
are expressed by astrocytes participating in synaptic commu-
nication [51].

GRM1 is the target of the compound PF-1913539, which
has been discontinued in a phase 3 AD trial [42].

GRM3 (mGlu3) is found in astrocytes as well as neuronal
cells, and have been observed to have neuroprotective proper-
ties. Its agonists and positive allosteric modulators were
reported to be potentially helpful for AD treatment [52]. Glial
mGlu3 receptors regulate the production of neurotrophic fac-
tors such as nerve growth factor, brain-derived neurotrophic
factor and glial-derived neurotrophic factor [52]. BCI-632, a
compound that targets GRM3, is currently being tested in a
phase 1AD trial [42].

ITPR1, an intracellular Ca 2+ channel, mediates calcium
release from the endoplasmic reticulum, triggering apopto-
sis, and its deletion has been linked to spinocerebellar ataxia
type 15, a neurodegenerative disease [53], [54].

Single nucleotide polymorphisms (SNPs) rs73310256 in
HTR7 [55] and rs4680 in COMT have been associated with AD
[56]. COMT is currently discussed as a target for AD [57]. It is
the target of the anti-Parkinson drug Tolcapone (source: Thera-
peutic Target Database), supporting our previous finding that
GuiltyTargets can re-propose targets from related diseases.

5 CONCLUSION

We presented a network representation learning based
approach for target prioritization, GuiltyTargets. The main
advantage of network representation learning over traditional
feature engineering is that these methods directly learn useful
network features from a combination of network topology
and experimental data. To our knowledge such an approach
has not been applied to target prioritization so far. Our
approach uses a protein-protein interaction network, a differ-
ential gene expression profile and a list of known targets to
prioritizes proteins as targets for a particular disease. We

showed that GuiltyTargets is highly robust and significantly
outperforms the methoda by Emig et al. and Isik et al. in terms
of ranking performance. As demonstrated by our validation
studies, it is applicable to various types of diseases, including
cancers, metabolic and neurodegenerative diseases. We dem-
onstrated that GuiltyTargets can be used to repurpose existing
targets from a different (but related) disease area. Application
of GuiltyTargets to AD showed that several of the highest
ranked candidates are indeed proposed in the literature for
AD (but are not included into the Open Targets database),
and three of themhave been targeted by candidateADdrugs.

We have developed GuiltyTargets with the classical view
of targets being proteins inmind. However, it should be men-
tioned that nowadays also other structures are considered as
targets, e.g., non-coding RNA molecules (ncRNAs) [59], [60].
Since ncRNAs, specifically miRNAs, have a regulatory influ-
ence on gene expression, these molecules could potentially be
integrated into a PPI network, and therefore GuiltyTargets
may also be able to rank miRNAs. However, this will require
more detailed investigation in future research.

GuiltyTargets as well as other machine learning based tar-
get prioritization methods (including the one by Emig et al.)
learn properties of known targets in the same or a related dis-
ease to rank candidate proteins. Hence, these approaches rely
on available data and knowledge about known targets [61].
Because of this dependency GuiltyTargets has in principle the
same limitations as all machine learningmethods: The perfor-
mance is dependent on the quality of existing data and
employed network resource. PPI networks are never com-
plete, and there might exist biases, because some proteins are
better functionally characterized than others. Furthermore, it
is unlikely to discover completely novel disease and target
biology with a machine learning based target prioritization
approach. Instead, the rationale is a) to address the incom-
pleteness of any available target database by allowing to fill
gaps, and b) to allow for repurposing targets from related dis-
ease areas. Despite its limitations GuiltyTargets showed
promising results for both use cases, including our case study
for AD. Hence, we see GuiltyTargets as a promising tool to
support the decision process in the context of target identifica-
tion in pharmaceutical research in addition to PheWAS based
approaches. In particular, GuiltyTargets can provide hints to
interesting targets in indication areas, where genetic evidence
is (still) missing.

From a broader perspective our work demonstrates the
potential of network representation learning in the bioinfor-
matics field. Given the overarching relevance of networks in
computational biology we believe that attributed network
representation learning techniques could have a broader
impact for other applications in the future.
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