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Gene expression (GE) data capture valuable condition-specific information (“condition” can mean a biological process, dis-

ease stage, age, patient, etc.) However, GE analyses ignore physical interactions between gene products, i.e., proteins. Since

proteins function by interacting with each other, and since biological networks (BNs) capture these interactions, BN analyses

are promising. However, current BN data fail to capture condition-specific information. Recently, GE and BN data have been

integrated using network propagation (NP) to infer condition-specific BNs. However, existing NP-based studies result in a

static condition-specific subnetwork, even though cellular processes are dynamic. A dynamic process of our interest is hu-

man aging. We use prominent existing NP methods in a new task of inferring a dynamic rather than static condition-specific

(aging-related) subnetwork. Then, we study evolution of network structure with age – we identify proteins whose network

positions significantly change with age and predict them as new aging-related candidates. We validate the predictions via

e.g., functional enrichment analyses and literature search. Dynamic network inference via NP yields higher prediction quality

than the only existing method for inferring a dynamic aging-related BN, which does not use NP.

1 Introduction

1.1 Motivation and related work

Gene expression data, which have revolutionized our biomedical understanding1, capture valuable condition-specific infor-

mation (“condition” can mean a biological process, disease stage, age, patient, etc.). However, gene expression analyses

ignore connectivities between gene products (i.e., proteins) in a cell (we use terms “gene” and “protein” interchangeably).

Yet, proteins interact to carry out cellular functions, and this is what protein-protein interaction (PPI) networks model. So,

PPI network research can deepen our biomedical understanding2. However, the current PPI network of a species spans many

conditions3. Using the PPI data alone without looking at other condition-specific (typically gene expression) data fails to

capture any condition-specific knowledge.

Hence, recent studies integrated gene expression and PPI data via network propagation (NP), which maps gene activities

(expression levels) onto the corresponding proteins in the PPI network. Then, NP propagates the activities via random walks

or diffusion, to assign condition-specific weights to the nodes (i.e., proteins) or the edges (i.e., PPIs) in the network4. We note

that besides NP methods, there exist other, non-NP types of methods that integrate condition-specific data with PPI network

data, such as kernel, Bayesian, or non-negative matrix factorization methods5,6. We focus on NP methods, and so non-NP

methods are out of the scope of our study. Also, we note that there exists another category of data integration approaches,

which fuse condition-specific data with individual biological pathways as opposed to the whole PPI network7–11. Because we

are interested in the latter, the former approach category is out of the scope of our study.

Existing NP approaches can be grouped into two categories. One category are approaches for condition-specific node

prioritization. These approaches use NP to assign weights to nodes in the network, with a hypothesis that the higher the

weight of a node, the more likely the node is to be related to the condition in question12,13. Approaches of this type typically

do not weigh edges. The other category, which is what we focus on in this paper, are approaches that focus on condition-

specific subnetwork identification. These approaches use NP to assign weights to edges (and sometimes also to nodes) in

the network and then identify highly weighted network regions as a condition-specific subnetwork14–16. Here, condition-

specific gene information can be gene expression data, or it can be gene mutation data on e.g., how many patients have genes

containing significantly associated single nucleotide polymorphisms, indels, etc. Two prominent methods from this category

are NetWalk17 and HotNet218.

NetWalk integrates the condition-specific gene information with network topology immediately, by performing, from all

nodes simultaneously, a random walk on the network biased by the condition-specific gene information. On the other hand,
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HotNet2 first summarizes network topology in the form of a diffusion matrix, by performing, from one node at a time, an

unbiased random walk on the network; this diffusion matrix captures the topological effect of each node on all other nodes in

the network. Only then HotNet2 combines the condition-specific gene information with the topology-based diffusion matrix.

The new (final) diffusion matrix captures both the topological and condition-specific effect of each node on all other nodes.

Also, NetWalk and HotNet2 differ as follows. As its output, NetWalk assigns weights to all edges in the network. The

edge-weighted network can then be used to identify a condition-specific subnetwork, by extracting only the highest-weighted

network regions. However, as a part of its algorithm, NetWalk does not explicitly define a procedure for doing this, and one

needs to devise it on their own. As its output, HotNet2 identifies a given group of nodes and all of their corresponding edges

from the entire PPI network as a condition-specific subnetwork if the nodes in the group have strong mutual effects according

to HotNet2’s final diffusion matrix. Both methods have been used to study cancer, i.e., predict new cancer-related genes or

molecular pathways17–20.

Another NP method exists that identifies each node’s “neighbor-network”, computes condition-specific activity of each

neighbor-network via its enrichment in highly expressed genes, and identifies all significantly active neighbor-networks as a

single condition-specific subnetwork21. We could not consider this approach in our study, because of the unavailability of the

software at the time of our study.

Other types of NP-based subnetwork identification methods exist. NetQTL22 and TieDIE23 hypothesize that for a given

condition, there is a set of source (e.g., transcription factor) genes that affect a set of target (e.g., differentially expressed)

genes, and that the important network paths connecting the source genes to the target genes are a good representation of the

condition-specific subnetwork. Hence, these methods propagate the condition-specific information from the source genes to

the target genes, with the goal of identifying important paths between the source and target genes. Clearly, unlike NetWalk

and HotNet2, NetQTL and TieDIE require two sets of condition-specific genes, i.e., sources and targets, in order to identify a

condition-specific subnetwork. As such, NetQTL and TieDIE are out of the scope of our study.

The existing NP studies obtained a single, static condition-specific PPI subnetwork. This is because they studied an n× 1

vector containing gene expression/mutation information of n genes for a single condition. Or, when they used an n×m matrix

containing information of n genes for m conditions, they used all m conditions to compute a single activity value for the

given gene, thus summarizing the matrix into an n× 1 vector. For example, the authors of HotNet218 analyzed mutation

weights of ∼12,000 (n) genes across ∼3,000 (m) samples related to different cancer types, which they then summarized into

a ∼12,000× 1 vector, where a given position in the vector quantified the likelihood of the corresponding gene being active

in many samples. Then, the summarized vector was used to obtain a single (not necessarily connected) condition-specific

subnetwork, i.e., subnetwork active in several cancer types.

In contrast, cellular processes are dynamic. This includes human aging, which we are interested in studying because the

occurrence of diseases increases with age24–26. Hence, studying aging, a dynamic process, via inference and analysis of a

static aging-related subnetwork, can be limiting. Inferring and analyzing a dynamic aging-related subnetwork is expected to

be more promising when the goal is to study temporal changes of network structure and thus cellular functioning with age.

1.2 Motivation

Currently, there exists only one type of approach for inference of a dynamic aging-related subnetwork, which we refer to as

the induced approach. Given gene expression data for multiple ages and a static PPI network, the induced approach identifies,

for a given age, all proteins that are active (significantly expressed) at that age and all PPIs involving these proteins (i.e.,

it extracts the induced subgraph among the active proteins). This results in a PPI subnetwork that is specific to the age in

question. Repeating this for all ages results in one age-specific PPI subnetwork per age, which combined form a dynamic

aging-related PPI subnetwork.

To the best of our knowledge, only two existing studies inferred a dynamic, aging-related PPI subnetwork, and both

used the induced approach27,28. Several additional studies used the aging-related subnetworks resulting from the induced

approach in various computational tasks, such as alignment of dynamic networks28–30, clustering of a dynamic network31,32,

and studying changes in network positions of nodes (i.e., genes) with age27,33. Moreover, several existing studies inferred

dynamic condition-specific PPI subnetworks relevant for studying biological phenomena other than aging. These include a

study of Prion disease34, as well as studies aiming to identify protein complexes35–39 or disease progression biomarkers37.

Again, all of the existing studies have relied on the induced approach37–39, and they methodologically differ from each other

mainly in how they defined a gene to be active at a given time point.

The induced approach considers all interactions from the static network that exist between only active genes. However,

first, not all interactions between the active proteins might be equally “important”. The induced approach has no mechanism

of identifying only the most important (e.g., highly weighted) of all interactions between the active genes. NP methods

for subnetwork identification, which are able to assign condition-specific weights to edges, can help. Second, it might be
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important to consider both active proteins and non-active proteins that critically connect the active proteins in the network,

which the induced approach fails to do. NP can help, because it propagates activities of highly expressed nodes to other nodes

in the network, thus possibly giving a high weight to a non-active node if e.g., it is surrounded by many active nodes or is on

many paths between active nodes.

To address these drawbacks of the induced approach, we generalize the existing NP methods for static condition-specific

subnetwork identification to their dynamic counterparts. We hypothesize that using NP rather than the induced approach will

improve the quality of the inferred dynamic aging-related PPI subnetwork and thus yield higher-quality aging-related gene

predictions. Note that we do not consider NP methods for node prioritization, because they have a different goal than our goal

of condition-specific subnetwork identification.

Figure 1. Summary of our study. We integrate a static human PPI network with gene expression data at different ages, using

five versions of three approaches, which results in five dynamic aging-related PPI subnetworks. For each dynamic

subnetwork, we study changes in global and local network topology with age. While global network topology does not

change with age, we find significant changes in local network neighborhoods of 392 to 1,996 proteins, depending on the

dynamic subnetwork. We predict such proteins as aging-related candidates. For the five dynamic subnetworks, this results in

five aging-related gene prediction sets. We validate the prediction sets in several ways. For details on each step of our study,

see Section 2.

1.3 Our contributions

We test our hypothesis using NetWalk and HotNet2 NP methods. While one might argue that other NP methods for subnetwork

identification exist that could perhaps be used instead, showing that at least one of these two considered methods improves

upon the induced approach is sufficient to confirm our hypothesis. Using any other potentially superior NP method would

only further strengthen the superiority of NP over the induced approach. We use each of NetWalk, HotNet2, and the induced

approach to integrate aging-related gene expression data with static human PPI network data, in order to construct a dynamic

aging-related subnetwork corresponding to the given approach (Fig. 1).

After we study (dis)similarities between the dynamic subnetworks, we analyze which one is of the highest quality, i.e., the

most relevant for the aging process. This can be done in either unsupervised or supervised manner. An unsupervised approach

does not consider current knowledge about aging when making aging-related predictions but instead considers it only when

evaluating the predictions, while a supervised approach considers a part of the current knowledge about aging when making

aging-related predictions and its other part when evaluating the predictions40,41. In this study, we focus on the former; the

latter is a complementary on-going work by our group41. Specifically, we use an established unsupervised framework for

dynamic network analysis of aging that studies how network positions (network centrality values) of proteins change with

age and predicts proteins that show significant changes with age as aging-related candidates27. We apply the framework to

the dynamic subnetworks corresponding to the different approaches, resulting in a set of aging-related gene predictions for

each approach. We validate, i.e., quantify the quality of, the predicted gene sets by measuring their overlaps with independent

aging-related “ground truth” data and via functional enrichment analyses.

We find that our NP-based predicted gene sets have significant gene or functional overlaps with the ground truth data.

Importantly, the overlaps are better for our NP-based predicted gene sets than for the gene set predicted by the induced

approach. For example, GenAge, a trustworthy aging-related ground truth dataset42, shows an overlap of ∼38% with one of
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the NP approaches (adjusted p-value, i.e., q-value, of 1.3× 10−7), but an overlap of only ∼8% with the induced approach

(q-value of 0.27).

We find that all of the predicted gene sets, including that of the induced approach, contain novel aging-related predictions,

i.e., genes that are not present in any of the ground truth datasets. Since the NP-based predicted gene sets show higher overlaps

with the ground truth data than the induced approach’s predicted gene set, we trust their novel predictions more than the novel

predictions of the induced approach. Also, for each approach, we find some predictions that are unique to it, implying that the

different approaches, i.e., the different dynamic subnetworks, are capturing at least somewhat complementary aging-related

information. This is not surprising given that the node and edge overlaps between the dynamic subnetworks inferred by the

different approaches are low.

We aim to link the novel NP-based predicted genes that are not predicted by the induced approach to aging via literature

search. There are 16 such predictions, of which we validate nine, i.e., a majority of them.

2 Methods

2.1 Static human PPI network data

We integrate a static PPI network with aging-related gene expression data to construct a dynamic aging-related PPI subnetwork.

To study the robustness of our results to the choice of static PPI network, we perform our analyses on two different static PPI

networks, as follows.

We use the human PPI network from HPRD43, the same data used in the dynamic network study of aging via the induced

approach27. We extract the network’s largest connected component, which has 8,938 nodes and 35,900 edges. We denote the

set of 8,938 nodes as StatNetGenes. We use the largest connected component and not the whole PPI network because the NP

methods require a network to be connected. The HPRD PPI network is one of the networks of our interest because we aim

to mimic the existing induced approach’s study in all aspects except how the input static PPI network and aging-related gene

expression data are integrated; that is, we aim to use NP rather than the induced approach for data integration. The induced

approach study focused in depth on the HPRD PPI data, which is why we use the same data here as well.

The induced approach study already showed that the choice of PPI data did not have a major effect on the quality of results

(i.e., aging-related gene predictions). It did so by comparing its results obtained using the HPRD PPI network against its results

obtained using the BioGRID PPI network44. Nonetheless, because in our study we use NP in addition to the induced approach

and because the induced approach study did not consider NP at all, we again test the robustness of our results to the choice of

static PPI network. Specifically, in addition to considering the HPRD PPI network, we use a recent HINT+HI2 PPI network

data that combines two high-quality PPI datasets: the HINT PPI database that compiles high-quality PPI interactions from

eight different PPI databases45 and the human HI2 PPI database46. We extract the network’s largest connected component,

which has 9,858 nodes and 40,704 edges. For informational purposes, 7,037 and 14,902 of these nodes and edges, respectively,

are also in the HPRD network.

We run all of our following analyses on each of the HPRD and HINT+HI2 networks. For simplicity, we explain the follow-

ing methodological analyses for the case of using the HPRD network. Additionally, since we find that results corresponding to

the HPRD network are qualitatively similar to results corresponding to the HINT+HI2 network, for brevity, we report results

for the HPRD network (henceforth referred to as the static PPI network). We discuss key results for the other network in

Section 3.8.

2.2 Aging-related gene expression data

We use the same human aging-related gene expression data that was used in the induced approach study27,47. The data

encompasses 173 samples from 55 individuals’ brains that span 37 different ages between 20 and 99 years. In order to identify

whether a gene is significantly expressed (i.e., active) at a given age, we follow the procedure from the induced approach

study: a gene is defined as active if the p-value for its expression detection is below a threshold (Supplementary Section S1).

Note that the induced approach study accounted for qualitative information (whether a gene is active at a given age or not),

but not for quantitative information about the actual gene expression values. The NP methods require as input the quantitative

information, i.e., assigning scores to genes (see below). So, as gene scores, we use the gene expression values: an age-specific

score for a gene is the average of the gene’s log-scaled expression values across all samples for the given age. For details, see

Supplementary Section S1.

We focus on this gene expression data rather than alternative data because we aim to mimic the induced approach study

in all aspects except how we integrate the input data. The induced approach study focused in depth on this data, which is why
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Figure 2. Illustration of the two different ways of assigning age-specific node scores to the nodes in the static PPI network.

we use it here as well. Also, the induced approach study briefly analyzed an alternative gene expression data48 and found the

results to be qualitatively similar, i.e., the choice of aging-related gene expression data did not have a major effect.

2.3 Integrating static PPI network with gene expression data to obtain dynamic aging-related PPI

subnetworks

We use three methods to construct dynamic aging-related PPI subnetworks: the induced approach, HotNet2, and NetWalk.

Additionally, for each of HotNet2 and NetWalk, we define two versions depending on how we assign age-specific scores to

genes.

The induced approach. To construct a PPI subnetwork specific to a given age, the induced approach selects all proteins that are

active at that age and all PPIs among those proteins. The induced approach’s collection of all 37 age-specific PPI subnetworks

corresponding to the 37 considered ages forms a dynamic aging-related PPI subnetwork that we refer to as Induced.

HotNet2. We run HotNet2 for each age as described below to get a PPI subnetwork specific to the given age. Then, HotNet2’s

collection of all 37 age-specific PPI subnetworks forms its dynamic aging-related PPI subnetwork.

The HotNet2 study18 aimed to identify pancancer-related active PPI subnetwork. To do this, given pancancer mutation data

of ∼19,000 genes across ∼3,000 samples, the HotNet2 study assigned pancancer-related importance scores (i.e., mutation

scores in the form of single nucleotide variations or copy number alterations) to those ∼12,000 genes that were sufficiently

expressed (i.e., active). Finally, the HotNet2 study mapped the mutation scores of these active genes to their respective proteins

in a PPI network and applied the HotNet2 algorithm to identify a single (not necessarily connected) pancancer-related active

subnetwork.

To be able to use HotNet2 to integrate static PPI network data with age-specific gene expression data to obtain an age-

specific subnetwork, we score genes using a similar strategy as that of the HotNet2 study. That is, we assign age-specific

scores (see below) to only those StatNetGenes genes that are active according to the gene expression data (see Section 2.2

for our definition of an active gene). Given that we consider gene expression data as opposed to gene mutation data that the

HotNet2 study considered, we use the active genes’ age-specific expression values (Section 2.2) as their age-specific scores,

as opposed to the mutation scores that the HotNet2 study considered. For each of the StatNetGenes genes that are not active

according to the gene expression data or are entirely missing from the gene expression data, we use as their scores the average

gene expression value of all non-active genes from the gene expression data. We do this because if we did not, i.e., if instead

we ignored these StatNetGenes genes by giving them a score of zero, then HotNet2 would not consider them at all in the

construction of an age-specific subnetwork. We want to avoid this, because it would not allow us to test our hypothesis that

proteins that are not actively present in the gene expression data but that critically connect active proteins should be a part of

the condition-specific subnetwork. We identify this version of HotNet2 as HotNet2.

Note that the definition of whether a gene is active or not depends on the protocol used to identify active genes in a gene

expression data, including but not limited to the p-value cutoff for expression detection49,50. Hence, depending on the p-value

cutoff for example, some genes that are actually important in the gene expression data can be identified as unimportant, which

could bias results. In order to avoid this, we define another version of HotNet2, HotNet2*. In this version, instead of using

gene expression values as scores for only the active StatNetGenes genes but using the average gene expression value of all

non-active genes as scores for all other StatNetGenes (i.e., for non-active StatNetGenes genes and those genes absent from the

gene expression data), we use gene expression values as scores for all of those StatNetGenes genes that are present in the gene

expression data, regardless of whether they are active or not; for the remaining StatNetGenes gene, i.e., those absent from the

gene expression data, we use as their scores the average gene expression value of all non-active genes.

For each of the two ways of assigning age-specific scores to genes (i.e., HotNet2 and HotNet2*), which are summarized

in Fig. 2, we apply the HotNet2 algorithm to obtain the corresponding age-specific subnetwork. Specifically, the HotNet2

algorithm first performs network diffusion to combine gene scores with the network topology. This results in a diffusion matrix
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M where intuitively each value Mi j quantifies the effect of node i on node j. The matrix M contains an entry for each node

pair i and j in the network, independent of whether the two nodes are linked by an edge in the network or not. The HotNet2

algorithm keeps only those matrix values that are greater than or equal to a given threshold and converts all Mi j values below

the threshold to zero. Then, it uses this updated matrix to: 1) create a directed network such that there is a directed edge

from node i to node j if and only if the corresponding value in the updated matrix is not zero; 2) identify strongly connected

components in the directed network; 3) take the union of nodes present in all of the identified strongly connected components;

4) map these nodes to the static PPI network; and 5) extract an induced PPI subgraph on the nodes as the final output, i.e., a

condition-specific PPI subnetwork.

To select a threshold value from matrix M, the HotNet2 algorithm requires the user to specify the desired minimum size of

the strongly connected components of the output subnetwork, as well as the use of a random network model. However, there

is no prior ground truth knowledge about what the size of an age-specific PPI subnetwork should be. Also, using different

random network models can give different results51.

To avoid these problems, we examine 100 different threshold values and generate 100 dynamic aging-related subnetworks,

as discussed below.

We vary the threshold as follows. Ideally, we would have divided all of the matrix M values into 100 equal-size bins, and

used some (e.g., the minimum) value in the given bin as a representative threshold. However, we found that the HotNet2

algorithm’s matrix M values follow an unusual distribution in the sense that considering as a threshold any value that is not

among the top 0.1% highest values would return as the output (i.e., as an age-specific subnetwork) almost the entire, if not the

entire, static PPI network. This would not be useful, because we aim to test whether removing less important regions of the

entire network improves quality of predictions made from the network. That is, the most interesting threshold choices lie only

among the top 0.1% highest matrix values. This is why we only consider these values, by dividing them into 100 equal-size

bins and using the minimum value in each bin as one of the 100 thresholds.

This way, we obtain 100 different dynamic subnetworks corresponding to HotNet2 and 100 different dynamic subnetworks

corresponding to HotNet2*, which we use as discussed in Section 2.9. Algorithm 1 outlines the above procedure of obtaining

100 dynamic subnetworks with a given approach.

Algorithm 1: Given a static PPI network G, a network propagation algorithm P, and all genes’ expressions for ith age

(where, i = 1, 2, ..., 37), return a dynamic subnetwork for each threshold j (where, j = 1, 2, ..., 100).

1 Let DAS be an empty ordered set. // To store dynamic subnetworks

2 Let AS be an empty 2-dimensional matrix. // To store all age-specific subnetworks

3 for ith age from 1 to 37 do

4 Use gene expression values corresponding to ith age to score nodes in G to obtain a node-scored network (Gns
i )

// Fig. 2

5 Apply algorithm P on Gns
i to obtain an edge-weighted network (Gew

i ) Determine 100 edge weights among edge

weights in Gew
i as 100 thresholds // Section 2.3

6 for jth threshold from 1 to 100 do

7 Let AS j be an empty set // To store the age-specific subnetwork for the jth threshold

8 for each edge e in Gew
i do

9 if weight(e) ≥ the jth threshold then

10 AS j = UNION(AS j,e) // Add the edge

11 AS[i][ j] = AS j // Store the age-specific subnetwork for the jth threshold

12 for jth threshold from 1 to 100 do

13 Let DAS j be an empty ordered set // To store the dynamic subnetwork for the jth threshold

14 for ith age from 1 to 37 do

15 DAS j[i] = AS[i][ j] // Add the subnetwork for the jth threshold of the ith age

16 DAS[ j] = DAS j // Store the dynamic subnetwork for the jth threshold

17 return DAS

NetWalk. Just as with the HotNet2 algorithm, we run the NetWalk algorithm for each age to get a PPI subnetwork specific to

the given age. Then, NetWalk algorithm’s collection of the 37 age-specific PPI subnetworks forms its dynamic aging-related

subnetwork.

We assign age-specific scores to genes in the same two ways as we have done it for HotNet2 above, resulting in two

versions of NetWalk: NetWalk and NetWalk* (these are analogs of HotNet2 and HotNet2*, respectively, as shown in Fig. 2).
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For each of the two ways of assigning age-specific scores to genes (i.e., NetWalk and NetWalk*), we apply the NetWalk

algorithm to obtain the corresponding age-specific subnetwork. The output of the NetWalk algorithm is the entire input

network but with each edge (i, j) being assigned two age-specific weights, one from node i to node j, and the other one from

j to i. The NetWalk algorithm does not provide a procedure for extracting a condition-specific subnetwork from the weighted

output network. So, we need to design such a procedure, and we do it as follows.

Given the weighted network with bi-directional edge weights, for each edge, we select the minimum of its two bi-

directional edge weights as the final edge weight. This way, an edge will be included into a subnetwork if and only if both of

its bi-directional edge weights are larger or equal to a given threshold. Then, we divide all of the resulting edge weights into

100 equal-size bins. In each bin, we take the minimum of its edge weight values as a threshold. Then, for each of the 100

thresholds, we keep only those edges whose weights are equal to or greater than the given threshold.

This way (Algorithm 1), we obtain 100 different dynamic subnetworks corresponding to NetWalk and 100 different dy-

namic subnetworks corresponding to NetWalk*, which we use as discussed in Section 2.9.

Note. Only for HotNet2, HotNet2*, NetWalk, and NetWalk* approaches, we can vary their respective thresholds to produce

multiple (in our case, 100) different dynamic subnetworks. This can not be done for the Induced approach, as this approach

does not rely on a threshold or any other parameter that allows for this.

2.4 Aging-related ground truth data

We use three sets of highly trustworthy aging-related ground truth data, possibly the best ones that are currently available.

We use a set of 305 human genes from GenAge that have been implicated in aging mostly because their sequence orthologs

in model species have been shown to be aging-related42. Of these 305 genes, 276 are present in StatNetGenes. We denote the

276 genes as GenAge.

We use two other sets of genes from a recent study that analyzed aging-related genes derived from the Genotype Tissue-

Expression project (GTEx)52. One of the gene sets contains 863 genes that have been shown to be down-regulated (i.e., their

expressions decrease) with age. Of these 863 genes, 469 genes are present in StatNetGenes. We denote the 469 genes as GTEx-

down. The other gene set contains 710 genes that have been shown to be up-regulated (i.e., their expressions increase) with

age. Of these 710 genes, 374 genes are present in StatNetGenes. We denote the 374 genes as GTEx-up. It has been shown that

the two sets of aging-related genes, i.e., GTEx-down and GTEx-up, show very different characteristics. Namely, GTEx-down

genes are more likely to be evolutionary conserved, are significantly enriched in essential genes, are critical for PPIs, and show

gene expression patterns that are not tissue-specific, while GTEx-up genes are less likely to be evolutionary conserved, are

comparatively less enriched in essential genes, are not critical for PPIs, and show tissue-specific gene expression patterns52.

Because GTEX-down genes are critical for PPIs while GTEx-up genes are not, and because we use PPI network data to predict

aging-related genes, we expect our predicted gene sets to overlap more with GTEx-down than with GTEx-up.

2.5 (Dis)similarities between dynamic subnetworks of different approaches

We evaluate (dis)similarities between any two dynamic subnetworks by: (1) measuring their pairwise node and edge overlaps,

(2) comparing their global network properties (average clustering coefficient, average diameter, and graphlet degree distribu-

tion), to see whether the networks have (dis)similar topologies, and (3) evaluating their fit to five graph families or network

models (Erdos-Renyi random graphs (ER), generalized ER with same degree distribution as the data network (ER-DD), geo-

metric random graphs (GEO), scale-free network model (SF), and sticky graph model (Sticky), to see whether the networks

belong to the same or different graph families. For details, see Supplementary Section S2.

2.6 Do global topologies of a dynamic subnetwork change with age?

For each dynamic subnetwork, we evaluate whether its global topology changes with age. Namely, we: (1) measure pairwise

node and edge overlaps between its age-specific subnetworks, (2) compare its age-specific subnetworks with respect to the

three global network properties (see above), and (3) evaluate the fit of each age-specific subnetwork to the five network models

(see above). For details, see Supplementary Section S2.

2.7 Do local topologies of proteins in a dynamic subnetwork change with age?

For each dynamic subnetwork, we study topological positions of nodes (i.e., proteins) in each of its 37 age-specific subnet-

works using six network centrality measures: degree centrality (Degc), clustering coefficient centrality (Clusc), k-coreness

centrality (Kc), graphlet degree centrality (Gdc), closeness centrality (Closec), and eccentricity centrality (Ecc)27, in order to
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predict as aging-related those genes whose centrality values significantly change with age. To do this, we rely on an estab-

lished computational framework for dynamic network study of aging, which was proposed along with the induced approach27.

Given a dynamic subnetwork, the framework computes, for each centrality measure, the centrality value of each node in each

of the 37 age-specific PPI subnetworks. Then, it computes the Pearson correlation between the given node’s centrality val-

ues and the 37 ages, and the statistical significance (i.e., p-value) of this correlation, where the p-value is the percentage of

1,000,000 random runs in which the random correlation is better than the actual correlation, which is then adjusted using the

Benjamini-Hochberg procedure53 to account for multiple testing correction. The framework predicts a gene as aging-related

if for at least one centrality measure, the gene’s q-value is < 0.01, i.e., if its network position (centrality) significantly changes

(increases or decreases) with age.

2.8 Validation of predicted aging-related genes

We validate a given set of predicted aging-related genes in the following ways.

First, we believe that a predicted gene set is relevant for aging if it contains a significant number of genes that are already

known to be aging-related according to independent knowledge that has not been used to make the predictions. Hence, we

examine whether the predicted gene set significantly overlaps with an independent aging-related ground truth gene set (Section

2.8.1).

Second, we believe that a predicted gene set is relevant for aging if the genes in the set are involved in aging-related

biological functions. Hence, we examine whether there is significant overlap between functions of the predicted genes and

functions of aging-related ground truth genes. Specifically, given a gene set (i.e., a set of predicted genes or a set of aging-

related ground truth genes), we identify all Gene Ontology (GO) terms that are significantly enriched (i.e., that annotate

a statistically significant number of genes) in the gene set (Section 2.8.2). Then, given all GO terms enriched in a set of

predicted genes and all GO terms enriched in a set of aging-related ground truth genes, we compute statistical significance of

the overlap of the two sets of GO terms (Section 2.8.3).

Third, we link the predicted genes to aging via literature search (Section 2.8.4).

2.8.1 Overlap between gene sets

As is typically done, we use the hypergeometric test54 to compute the probability (i.e., p-value) of obtaining by chance the

observed or higher overlap between two gene sets. Formally, if S is StatNetGenes, A is one of the two sets, B is the other set,

and O is the overlap between A and B, then the p-value is computed as:

P(X ≥ |O|) = 1−
|O|−1

∑
i=0

(

|S|
i

)(|S|−|A|
|B|−i

)

(|S|
|B|

)

(1)

We compute overlaps for multiple pairs of gene sets, resulting in multiple p-values. To account for multiple hypothesis

correction, we adjust the multiple p-values using the Benjamini-Hochberg procedure53, and obtain the corresponding q-values.

We say that two gene sets overlap statistically significantly if the corresponding q-value is ≤ 0.01.

2.8.2 Gene Ontology (GO) term enrichment in a gene set

We study enrichment of a gene set in a GO term by examining whether the GO term annotates a statistically significant number

of genes in the gene set. We use all of those 9,464 GO terms that annotate at least two genes in StatNetGenes55. As is typically

done, we use the hypergeometric test54 to compute the likelihood of obtaining the given enrichment by chance. Intuitively,

given the observed number of occurrences of a GO term in a gene set of the given size, the hypergeometric test measures the

probability of getting the same or higher number of occurrences of the same GO term in a randomly chosen gene set of the

same size. The latter is selected by chance from a set of background genes; as this set, we use all of those StatNetGenes genes

that are annotated by at least one of the above mentioned 9,464 GO terms. Given multiple enrichment p-values, one p-value

for each of the GO terms that annotates at least one gene in the given gene set, we adjust the p-values into q-values as above,

i.e., by using the Benjamini-Hochberg procedure. We say that a GO term is statistically significantly enriched in the gene set

if its enrichment q-value is ≤ 0.01.
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2.8.3 Overlap between enriched GO term sets

As is typically done, we use the hypergeometric test54 to compute the likelihood of obtaining by chance the observed or

higher overlap between two sets of enriched GO terms (equation 1). Formally, in equation 1, S is now the set of GO terms

that annotate at least two genes from StatNetGenes, A is the set of GO terms enriched in one of the datasets, B is the set

of GO terms enriched in the other dataset, and O is the overlap between A and B. We compute overlaps for multiple pairs

of enriched GO term sets, resulting in multiple p-values. We adjust the p-values into q-values as above, i.e., by using the

Benjamini-Hochberg procedure. We say that two GO term sets overlap statistically significantly if the corresponding q-value

is ≤ 0.01.

2.8.4 Literature validation

We aim to link predicted genes to aging by searching for and closely reading relevant research articles in PubMed (https://pubmed.gov)

or Google Scholar (https://scholar.google.com), using two key search phrases: 1) official symbol of a gene and

“aging” and 2) official symbol of a gene and “Alzheimer’s”.

2.9 Selection of a representative dynamic subnetwork for each of HotNet2, HotNet2*, NetWalk,

and NetWalk*

Recall that for each of HotNet2, HotNet2*, NetWalk, and NetWalk*, we obtain 100 dynamic subnetworks (Section 2.3). To

test our hypothesis that NP can improve upon the induced approach, we need to compare NP-based dynamic subnetwork(s)

with the dynamic subnetwork of the induced approach. Hence, for each of HotNet2, HotNet2*, NetWalk, and NetWalk*, we

ideally wish to select one of their respective 100 dynamic subnetworks that is the most relevant for aging, as follows.

Given 100 dynamic subnetworks, first, we use each of them to predict its respective aging-related genes via the framework

from Section 2.7. Second, to examine which of the 100 resulting predicted gene sets are relevant for aging, we measure the

statistical significance (i.e., q-value) of overlap of each of them with each of the aging-related ground truth datasets (Section

2.4), using the procedure from Section 2.8.1. Then, for each ground truth dataset, we select the dynamic subnetwork whose

prediction set shows the most significant (i.e., lowest) q-value. If more than one prediction set shows such a q-value, i.e., if

there is a tie, then we select the prediction set whose corresponding dynamic subnetwork has the fewest nodes, to keep as

small number of genes in the subnetwork as possible, while capturing as complete aging-related information as possible. If

none of the prediction sets show a significant overlap, then we do not choose any dynamic subnetwork. Thus, we obtain at

most one dynamic subnetwork for each approach and each ground truth dataset combination. The results are:

• For HotNet2, the above procedure does not result in any dynamic subnetwork.

• For HotNet2*, the above procedure results in a dynamic subnetwork corresponding to GenAge, which we refer to as

HotNet2*.

• For NetWalk, the above procedure results in two dynamic subnetworks: one corresponding to GenAge, which we refer

to as NetWalk-1, and another corresponding to GTEx-down, which we refer to as NetWalk-2.

• For NetWalk*, the above procedure results in the same dynamic subnetwork corresponding to both GenAge and GTEx-

down, which we refer to as NetWalk*.

• In total, over all NP approaches, we obtain the four NP-based dynamic subnetworks: HotNet2*, NetWalk-1, NetWalk-2,

and NetWalk*.

3 Results and discussion

We integrate aging-related gene expression data with static human PPI network data using different approaches (HotNet2,

NetWalk, and the induced approach) to obtain five aging-related dynamic subnetworks (HotNet2*, NetWalk-1, NetWalk-2,

NetWalk*, and Induced). Given these dynamic aging-related subnetworks, we first study and compare their global network

topologies (Section 3.1). Second, for each dynamic subnetwork, we study changes in its global network topology with

age (Section 3.2). Third, in order to predict aging-related genes, for each dynamic subnetwork, we study changes in local

topologies of its proteins with age, and predict the significantly-changing nodes as aging-related (Section 3.3). Given the

aging-related gene predictions by the different dynamic subnetworks, we evaluate whether the NP-based dynamic subnetworks

produce higher-quality predictions than the Induced dynamic subnetwork, which is exactly what we observe (Section 3.5). As
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Figure 3. Comparison of the five dynamic subnetworks in terms of node size and density (left), node overlaps (middle), and

edge overlaps (right). In the left panel, each point is the average over the 37 considered ages, and the vertical and horizontal

lines (if visible) represent the corresponding standard deviations. In the middle and right panels, each table cell shows the

average overlap over the 37 ages.

a negative control, we argue that randomized versions of the NP-based dynamic subnetworks should result in fewer predicted

genes than the actual dynamic subnetworks, and this is exactly what we observe (Section 3.6). Because genes present in

multiple prediction sets are more likely to be aging-related, we identify genes present in all four NP-based prediction sets

(resulting from the four NP-based dynamic subnetworks) but absent from every considered aging-related ground truth dataset

as our novel gene predictions, and we aim to validate them using literature search (Section 3.7). Finally, we demonstrate that

our key result – the aging-related predictions made from the NP-based aging-related dynamic subnetworks being of higher

quality than the aging-related predictions made from the Induced dynamic subnetwork – is robust to the choice of static PPI

network data (Section 3.8).

3.1 Dynamic subnetworks contain different nodes and edges but show similar global topologies

Since we use different data integration methods to create the dynamic aging-related subnetworks, we would not be surprised

if the networks are at least somewhat dissimilar. We can expect differences between Induced and any of the four NP-based

dynamic subnetworks (NetWalk-1, NetWalk-2, NetWalk*, and HotNet2*), because of the different algorithmic mechanisms

behind their underlying data integration approaches. Also, we can expect differences between NetWalk-1, NetWalk-2, or

NetWalk* on one side and HotNet2* on the other, because the former three use a different NP algorithm compared to the latter

one. Also, we can expect differences between NetWalk-1 or NetWalk-2 on one side and NetWalk* on the other, because the

former two use a different method to account for age-specific genes scores compared to the latter one (Section 2.3). At the

same time, because NetWalk-1, NetWalk-2 and NetWalk* share the underlying NP algorithm, we can expect some similarities

between these networks.

First, we discuss similarity in terms of sizes (numbers of nodes and densities) of the five dynamic subnetworks. In terms of

the number of nodes, three of the subnetworks, HotNet2*, NetWalk-1, and NetWalk-2, all have ∼1,500 nodes, while the other

two subnetworks, NetWalk* and Induced, have ∼4,000 nodes (Fig. 3 (left) and Supplementary Fig. S1). Thus, surprisingly,

Induced is more size-similar to an NP-based subnetwork than the NP-based subnetworks are to each other. Also, surprisingly,

NetWalk-1 and NetWalk-2 are more similar to HotNet2* than they are to NetWalk*. In terms of density, while HotNet2*,

NetWalk-1, and NetWalk-2 have a similar number of nodes, they have different densities, i.e., some of these subnetworks have

more edges than others. On the other hand, NetWalk* and Induced have not only a similar number of nodes but also a similar

density.

Second, we discuss similarity in terms of node/edge overlaps between the dynamic subnetworks (Supplementary Figs. S2

and S3). First, we focus on overlaps between Induced and the four NP-based dynamic subnetworks. Second, we focus on

overlaps among the NP-based dynamic subnetworks themselves.

When analyzing overlaps between Induced and each NP-based dynamic subnetwork, in terms of node overlaps, we find

that Induced has a relatively high (∼66%) overlap with NetWalk* but relatively low (∼14% to ∼23%) overlaps with NetWalk-

1, NetWalk-2, and HotNet2* (Fig. 3 (middle)). In terms of edge overlaps, we find that Induced has a relatively high (∼53%)

overlap with NetWalk* but relatively low (∼5% to ∼12%) overlaps with NetWalk-1, NetWalk-2, and HotNet2* (Fig. 3

(right)). For NetWalk-1 and NetWalk-2, it is only the case that Induced contains many additional nodes/edges compared to
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NetWalk-1 and NetWalk-2 but not vice versa, while for NetWalk* and HotNet2*, it is both the case that Induced contains

many additional nodes/edges compared to NetWalk* and HotNet2* as well as that NetWalk* and HotNet2* contain many

additional nodes/edges compared to Induced (Supplementary Tables S1 and S2).

When we analyze overlaps between the four NP-based dynamic subnetworks themselves, we find node overlaps to range

from ∼11% to ∼86% (Fig. 3 (middle)). As expected, NetWalk-1 shows the highest overlap with NetWalk-2, and both

NetWalk-1 and NetWalk-2 show higher overlaps with NetWalk* than with HotNet2*. The results for edge overlaps are

similar (Fig. 3 (right)).

Third, we discuss similarity in global properties of the five dynamic subnetworks. We find that their average clustering

coefficients, average diameter, and graphlet degree distributions are similar. An exception is that Induced shows a relatively

higher average clustering coefficient compared to the NP subnetworks, and the other exception is that HotNet2* shows a

relatively higher average diameter compared to the other four subnetworks (Supplementary Figs. S4 and S5). The best-fitting

network models are the same in almost all cases subnetworks. Namely, both GEO and Sticky are the best-fitting models for

all dynamic subnetworks except for HotNet2*, where only GEO is the best (Supplementary Fig. S6).

3.2 Global network topologies do not change with age

In the previous section, we compared the five dynamic subnetworks to each other. Here, for a given dynamic subnetwork, we

compare it to itself at different ages, i.e., we compare its 37 age-specific subnetworks to each other, to see whether its global

network topology changes with age. We observe the following. First, for all of Induced, Netwalk*, and HotNet*, i.e., for a

majority of the considered networks, pairwise node and edge overlaps of the age-specific subnetworks are relatively large (most

are over ∼75% ). For NetWalk-1 and NetWalk-2, pairwise node and edge overlaps are somewhat lower (most are below 60%);

Supplementary Figs. S7 and S8. Second, for all of the dynamic subnetworks, the average clustering coefficients, average

diameters, and graphlet degree distributions of the age-specific subnetworks are overall stable with age (Supplementary Figs.

S4 and S5). Third, for all of the dynamic subnetworks, the age-specific subnetworks belong to the same network model(s)

(Supplementary Fig. S6). So, we conclude that overall the global network topologies do not change with age.

3.3 Local topologies of some proteins change with age, which are predicted as aging-related can-

didates

Mimicking the induced approach study27, for each of the five dynamic subnetworks (NetWalk-1, NetWalk-2, NetWalk*,

HotNet2*, and Induced), we use network centrality measures to study how local topologies of proteins change with age, and

to predict as aging-related those proteins whose network centrality values significantly correlate with age (Section 2.7).

This results in five predicted aging-related gene sets corresponding to the five dynamic subnetworks. For simplicity, we

denote the gene sets just as the corresponding dynamic subnetworks, i.e., NetWalk-1, NetWalk-2, NetWalk*, HotNet2*, and

Induced. The number of predicted genes varies from ∼4% (NetWalk-1) to ∼22% (NetWalk*) of all 8,938 proteins in the static

PPI network (Table 2 and Supplementary Figs. S9 and S10).

3.4 The five predicted gene sets significantly overlap

Since we use the same input data to obtain all five predicted aging-related gene sets, we expect a significant overlap between

them. Indeed, we find that while the overlaps are far from perfect, they are statistically significantly high for all pairs of

predicted gene sets, except for the overlap between Induced and HotNet2* prediction sets, which is still marginally significant

(Fig. 3 and Table 1).

Since we find so many significant overlaps, we expect some genes to be present in multiple prediction sets. Such genes may

be more likely to be aging-related than those present only in single set. Indeed, when considering all 2,684 genes predicted by

any of the five approaches (including Induced), while 1,877 (∼70%) of them are predicted by exactly one of the approaches

(i.e., are in exactly one prediction set), a number of them are predicted by multiple approaches. Namely, 499 (∼19%), 250

(∼9%), 51 (∼2%) and 7 (∼0.3%) of the 2,684 genes are predicted by exactly two, exactly three, exactly four, and exactly five

approaches, respectively (Supplementary Fig. 11). Results are qualitatively similar when considering only those predicted

genes that are absent from any of the aging-related ground truth sets, or those predicted by the four NP approaches but not

Induced, (Supplementary Fig. S12).

Additionally, we examine how many genes are exclusively (i.e., uniquely) present only in a given predicted gene set

but not in any of the others. Observing such genes would indicate that the given gene set (i.e., the corresponding dynamic

subnetwork/data integration approach) is capturing at least some complementary aging-related information compared to the

other prediction sets. We observe between 16 and ∼1,300 such genes, depending on the predicted gene set. While one could
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Table 1. Pairwise gene overlaps between the predicted gene sets. For the given set, its size is in parentheses. For each of the

gene set pairs, i.e., in each table cell, we show (from the top): 1) the number of genes in the overlap, 2) overlap size as the

percentage of the size of the union of the two sets, 3) overlap size as the percentage of the size of the smaller of the two sets,

and 4) the q-value of the overlap. Significant q-values (i.e., q-values ≤ 0.01) are bolded.

NetWalk-1

(396)

NetWalk-2

(422)

NetWalk*

(1996)

HotNet2*

(511)

Induced

(543)

NetWalk-1

(392)

392

100%

100%

1e-300

311

61.8%

79.3%

1e-300

285

13.6%

72.7%

1.4e-105

52

6.11%

13.3%

7.7e-09

59

6.74%

15.1%

6.0e-11

NetWalk-2

(422)

311

61.8%

79.3%

1e-300

422

100%

100%

1e-300

306

14.5%

72.5%

4.5e-113

54

6.14%

12.8%

1.2e-08

60

6.63%

14.2%

3.7e-10

NetWalk*

(1996)

285

13.6%

72.7%

1.4e-105

306

14.5%

72.5%

4.5e-113

1996

100%

100%

1e-300

189

8.15%

37%

7.0e-15

266

11.7%

49%

1.5e-45

HotNet2*

(511)

52

6.11%

13.3%

7.7e-09

54

6.14%

12.8%

1.2e-08

189

8.15%

37%

7.0e-15

511

100%

100%

1e-300

43

4.25%

8.41%

0.016

Induced

(543)

59

6.74%

15.1%

6.0e-11

60

6.63%

14.2%

3.7e-10

266

11.7%

49%

1.5e-45

43

4.25%

8.41%

0.016

543

100%

100%

1e-300

argue that these unique genes could be the result of a statistical bias, for each of the five prediction sets, a considerable number

(>12%) of the unique genes are also present in the ground truth data (Supplementary Figs. S13 and S14), which increases our

confidence in them.

3.5 Validation of predicted aging-related genes

Next, we aim to answer our key question: whether the aging-related gene predictions by at least one of the NP approaches

are better, i.e., of higher quality, than the predictions of Induced. To answer this, we measure overlaps of genes as well as

functions (GO terms) between each considered predicted gene set and each aging-related ground truth dataset. Then, first,

we quantify the statistical significance of the overlaps as described in Section 2.8.1. If the overlaps are higher and more

statistically significant for an NP-based prediction set than for the Induced prediction set, this would yield a positive answer

to the above question. Indeed, as we show next, this is exactly what we find. Second, we express the overlaps between a

predicted gene set and an aging-related ground truth dataset using precision, recall, and F-score measures. Namely, precision

is the fraction of the predicted genes that are present in the ground truth dataset, recall is the fraction of the genes from the

ground truth dataset that are present in the prediction set, and F-score is the harmonic mean of precision and recall. Then, if

precision, recall, and F-score are higher for an NP-based prediction set than for the Induced prediction set, this would yield a

positive answer to the above question. Indeed, as we show next, this is exactly what we find.

Note that for the above analyses, in addition to the five sets of predicted genes corresponding to the five dynamic subnet-

works/data integration approaches (Section 3.3), here, we define and consider an additional prediction set called NP-union

that contains all of the predicted genes present in any of the four NP-based prediction sets. We do so in order to analyze

the quality of all NP-based predictions as a whole. NP-union contains ∼27% of all 8,938 proteins in the static PPI network.

Hence, we now have six prediction sets. Also, for this analysis, we use all three considered ground truth aging-related datasets,

i.e., GenAge, GTEx-down and GTEX-up (Section 2.4).

Gene overlap. We measure the overlap of each of the six predicted gene sets with each of the three ground truth sets. A

significant overlap with GenAge, as well as high precision, recall, and F-score with respect to GenAge, would be encouraging,

because GenAge is considered to be the most trustworthy source of human aging-related knowledge42. Even though GTEx-

down and GTEx-up come from the same study52, they show very different characteristics: GTEx-down is critical for PPIs

while GTEx-up is not (Section 2.4). Because of this, and because we use PPI data to predict aging-related genes, we expect

a good predicted gene set to overlap more with GTEx-down than with GTEx-up, as well as to have a higher precision, recall,

and F-score for GTEx-down than for GTEx-up. In fact, lack of overlap with GTEx-up, as well as low precision, recall, and

F-score for GTEx-up, can be interpreted as passing a negative control check.

Below, we discuss the results (Table 2, Fig. 4, and Supplementary Figs. S15-S19) first from a ground truth dataset-focused

angle and then from a prediction set-focused angle.

From a ground truth dataset-focused angle, GenAge significantly overlaps with all of the prediction sets except with
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Table 2. Gene overlaps between the predicted gene sets (columns) and the aging-related ground truth datasets (rows). The

numbers in the table can be interpreted just as those in Table 1. The table cells with significant q-values that improve upon

Induced are highlighted in gray.

NetWalk-1

(396)

NetWalk-2

(422)

NetWalk*

(1996)

HotNet2*

(511)

Induced

(543)

NP-union

(2442)

GenAge

(239)

28

4.6%

12%

4.8e-6

29

4.6%

12%

5.6e-6

90

4.2%

38%

1.3e-7

28

3.9%

12%

4e-4

18

2.4%

7.5%

0.27

112

4.4%

47%

2e-10

GTEx-

down

(469)

43

5.3%

11%

5.6e-6

47

5.6%

11%

1.9e-6

176

7.7%

38%

6.4e-14

33

3.5%

7%

0.176

43

4.4%

9.2%

6.7e-3

214

7.9%

46%

1.7e-17

GTEx-up

(374)

18

2.4%

4.8%

0.471

12

1.5%

3.2%

0.969

69

3%

18%

0.969

31

3.6%

8.3%

0.035

23

2.6%

6.1%

0.594

94

3.5%

25%

0.934

Figure 4. Accuracy (in terms of precision, recall, and F-score) of the six prediction sets with respect to GenAge ground

truth data. In the figure, a given point (corresponding to the given prediction set) is labeled with two numbers, where the first

number is the F-score of the corresponding prediction set and the second number (in brackets) is the q-value of the overlap

between the prediction set and GenAge. Analogous results for the other two ground truth datasets, GTEX-down and

GTEx-up, are shown in Supplementary Figs. S15 and S16, respectively.

Induced. Since GenAge is our most confident set of aging-related ground truth genes and since it shows significant overlap

with only the NP-based prediction sets, this is the first and major evidence that NP-based aging-related dynamic subnetworks

are more meaningful than the Induced aging-related dynamic subnetwork. GTEx-down significantly overlaps with all of the

prediction sets except with that of HotNet2*. GTEx-up does not show significant overlap with any of the prediction sets, as

expected.

From a prediction set-focused angle, all of NetWalk-1, NetWalk-2, NetWalk*, and NP-union significantly overlap with

GenAge and GTEx-down but not with GTEx-up. HotNet2* shows significant overlap with only GenAge. Induced shows a

significant overlap with only GTEx-down. Hence, at least one, and in fact more than one, of the NP-based prediction sets

(NetWalk-1, NetWalk-2, NetWalk*, and NP-union) overlap with more of the ground truth datasets than the Induced prediction

set. So, this further confirms that NP-based aging-related dynamic subnetworks are more meaningful than the Induced aging-

related dynamic subnetwork.

An additional confirmation is that not only do NetWalk-1, NetWalk-2, NetWalk*, and NP-union significantly overlap

with GenAge, while Induced does not, but even for the GTEx-down that Induced does significantly overlap with, all of the

NetWalk-1’s, NetWalk-2’s, NetWalk*’s, and NP-union’s overlaps with GTEx-down are higher (more significant) than the

Induced’s overlap with GTEx-down (Table 2).

The above result discussion has focused on the statistical significance of the overlaps. The same conclusions hold in terms

of precision, recall, and F-score: multiple NP-based prediction sets are superior to Induced in terms of all three accuracy

measures with respect to GenAge (Fig. 4) as well as GTEx-down (Supplementary Fig. S15), but not with respect to the

negative control-like GTEx-up (Supplementary Fig. S16), confirming superiority of the NP approaches over Induced.

GO term overlap. We find that each of the predicted gene sets is significantly enriched in a number of GO terms, between 10

and 127 of them, depending on the prediction set (Table 3).

When we measure the overlap between GO terms that are enriched in a given predicted gene set and GO terms that
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Table 3. GO term overlaps between the predicted gene sets and the aging-related ground truth datasets. The table can be

interpreted just as Table 2.

NetWalk-1

(73)

NetWalk-2

(85)

NetWalk*

(95)

HotNet2*

(10)

Induced

(29)

NP-union

(127)

GenAge

(686)

33

4.5%

45%

2.1e-17

34

4.6%

40%

4.5e-16

39

5.3%

41%

1.6e-18

10

1.5%

100%

1.7e-11

12

1.7%

41%

1.3e-6

56

7.4%

44%

4.2e-28

GTEx-

down

(66)

19

16%

29%

1.9e-24

15

11%

23%

1e-16

24

18%

36%

1.7e-30

4

5.6%

40%

1e-6

11

13%

38%

1.5e-16

32

20%

48%

2.9e-41

GTEx-up

(15)

1

1.1%

6.7%

0.135

1

1%

6.7%

0.15

2

1.9%

13%

0.015

0

0%

0%

1

2

4.8%

13%

1.5e-3

2

1.4%

13%

0.024

are enriched in a given ground truth dataset, we find that all of the five NP-based prediction sets significantly overlap with

GenAge, and all five of them overlaps with GenAge better (more significantly) than Induced (Table 3). Similarly, all five of

the NP-based prediction sets significantly overlap with GTEx-down, and four of them (NetWalk-1, NetWalk-2, NetWalk*,

and NP-union) overlap with GTEx-down better than Induced. None of the NP-based predictions significantly overlap with

GTEx-up, while Induced does. All of the above results further demonstrate that using NP to create dynamic subnetworks and

produce aging-related gene predictions improves upon using Induced to do so.

Summary. Identifying at least one NP-based dynamic subnetwork that consistently improves upon the Induced dynamic

subnetwork would confirm our hypothesis that NP improves upon the induced approach. In fact, three of the four considered

NP-based dynamic subnetworks, namely NetWalk-1, NetWalk-2, and NetWalk* do so. The remaining NP-based dynamic

subnetwork, HotNet2*, does not always improve upon Induced. So, it seems that the NP-based NetWalk approach performs

better than not just Induced but also the NP-based HotNet2 approach in our aging-related application. This is somewhat sur-

prising, because HotNet2 is a newer approach that NetWalk, because we gave HotNet2 (and NetWalk) the best-case advantage

in terms of method parameter choices, and because the latter has received significant popularity in the literature as a powerful

approach for inference of condition-specific subnetworks. However, HotNet2 was originally proposed and has typically been

used in the context of cancer, which is why it might not generalize well to the context of aging. Nonetheless, NetWalk was

neither originally proposed in the context of aging. Yet, it performs quite well in this application.

3.6 Our NP-based gene predictions are non-random

If our actual NP-based dynamic subnetworks and their respective predictions are meaningful, then when we randomize a

given dynamic subnetwork and use our actual methodology to make predictions from the randomized data, the number of

predictions should be much lower than the number of predictions made from the actual data.

To evaluate whether this is the case, given an actual dynamic subnetwork with 37 age-specific PPI subnetworks, we

randomly rewire the edges within each of its 37 subnetworks and then use this collection of 37 randomized subnetworks as a

randomized dynamic subnetwork. We keep the age-order of the 37 randomized subnetworks the same (i.e., from younger to

older age) as in the actual dynamic network. We perform the randomization procedure 100 times, resulting in 100 randomized

dynamic subnetworks for each of the considered actual dynamic subnetworks. Then, we average the results (i.e., the resulting

numbers of predictions) over the 100 random runs. Because NetWalk-1, NetWalk-2, and NetWalk* are the three dynamic

subnetworks that consistently improve upon Induced while HotNet2* does not (see above), in this analysis, we consider only

the former three dynamic subnetworks.

Indeed, we find that for each of NetWalk-1, NetWalk-2, and NetWalk* dynamic subnetworks, the number of predictions

is much larger (∼600%, ∼800%, and ∼1400%, respectively) from the actual data than from the corresponding randomized

data (Supplementary Fig. S20). We compute the statistical significance of this result as follows. For each of the dynamic

subnetworks, we evaluate the probability of getting from the randomized data the same or higher number of predictions as

from the actual data. To do this, we use the concept of z-scores. Given the 100 prediction counts from the randomized data,

i.e., their average, z-score measures how many standard deviations the actual count is from the average27. The higher the

z-score, the lower the corresponding p-value, and less likely it is to obtain the actual count by chance. Indeed, we observe

extremely high z-scores > 43 and extremely low corresponding p-values < 10−300) for the three dynamic subnetworks. Hence,

our results are non-random.
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3.7 Literature validation of novel NP-based predicted genes

We identify novel NP-based predicted genes, i.e., all genes that are present in each of the four NP-based predicted gene sets

(i.e., NetWalk-1, NetWalk-2, NetWalk*, and HotNet2*) but are absent from all of the aging-related ground truth datasets as

well as from the Induced predicted gene set. There are 16 such genes (Supplementary Fig. S21). We successfully validate

nine of them in the literature as being related to either the aging process directly or to a disease that is known to be aging-

related: ECH1, MAP2K1, SPARCL1, SKP1, BAG1, SNTA1, STX16, DYNLL1, and SHC3 (Table 4). Since all four NP-

based dynamic subnetworks identify these 16 genes as aging-related, and since we validate (using literature search) nine (i.e.,

majority) of these genes as aging-related, the remaining seven genes can be considered as novel gene predictions that are

potentially (if not likely) aging-related. The seven genes are: F8, MED19, MPDZ, NCOA4, PIP4K2A, RAP1GDS1, TF.

Table 4. List of the nine out of 16 genes predicted by all four NP approaches that we validate in PubMed. We show the

PubMed IDs (PMIDs) of the articles that provided the validations.

Gene symbol Description PMID

BAG1 Its under expression with age has been shown in ar-

ticular cartilage, showing evidence of the involve-

ment of BAG1 in the regulation of cartilage aging

15278942

DYNLL1 Its downregulation has been shown in the late onset

of aging-related Alzheimer’s disease

18789830

ECH1 Its orthologous gene ech1 (found in rat) was shown

to be upregulated in the aged basal forebrain cholin-

ergic neurons

17560690

MAP2K1 Its orthologous gene Map2k1 (found in mouse) was

shown to be down-regulated in aged heart

19031007

SHC3 It is has been shown to be a potential therapeutic

target against Alzheimer’s disease

17170108

SKP1 It has been shown to be involved in the regulation

of Caenorhabditis elegans lifespan

17392428

SNTA1 Its down-regulation was shown in old mouse skele-

tal muscle

30089464

SPARCL1 Its upregulation was shown in aged astrocytes of

mouse brain

29437957

STX16 Its downregulation has been shown in the onset of

aging-related Alzheimer’s disease, which has been

related to aging56.

18572275

3.8 Our results are robust to the choice of static PPI network data

Thus far, we have used the static PPI network from HPRD. To verify that our key result – NP-based dynamic aging-related

subnetworks being more meaningful than the Induced dynamic aging-related subnetwork – is robust to the choice of static PPI

network data, we perform all of our above analyses using an alternative human PPI network, i.e., HINT+HI2 (Section 2.1), as

follows.

Given the static HINT+HI2 PPI network, we identify aging-related dynamic subnetworks using the same four versions of

the considered NP approaches (i.e., HotNet2, HotNet2*, NetWalk, and NetWalk*) plus Induced, following the same method-

ology that we have used thus far in the paper (Section 2). This results in a dynamic subnetwork for Induced, no dynamic

subnetwork for HotNet2 or HotNet2*, a dynamic subnetwork for NetWalk, and two dynamic subnetworks for NetWalk*. We

use each of the above four dynamic subnetworks (i.e., one Induced subnetwork and three NP-based subnetworks) to predict

aging-related genes using the same methodology that we have used thus far in the paper. Finally, we examine: 1) overlaps of

the four prediction sets with one another, 2) gene overlaps between each of the predictions sets and each of the three ground

truth datasets, and 3) GO term overlaps between each of the prediction sets and each of the ground truth dataset.

Similar to our results when using the HPRD network, we find the following when using the HINT+HI2 network: 1) all of

the predicted gene sets significantly overlap with each other; 2) at least one of the NP-based predicted gene sets shows a more

significant gene overlap with the ground truth data than the predicted Induced gene set; and 3) at least one of the NP-based

predicted gene sets shows a more significant GO term overlap with the ground truth data than the predicted Induced gene set

(Supplementary Tables S3-S5). Thus, our results are robust to the choice of static PPI network data.

4 Conclusion

We have hypothesized that using network propagation to integrate aging-related gene expression data with static PPI network

data in order to infer a dynamic aging-related PPI subnetwork would result in higher-quality aging-related gene predictions
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from the inferred subnetwork compared to the only existing approach for this purpose, i.e., the induced approach. Indeed, this

is what we have found.

To be able to evaluate the above hypothesis, we had to methodologically extend the existing network propagation ap-

proaches, as they currently allow only for inference of a static but not dynamic condition-specific subnetwork.

As is typically done27,28, we create a dynamic aging-related PPI subnetwork such that each of its age-specific subnetworks

(i.e., temporal snapshots) corresponds to one of the ages present in the gene expression data. Specifically, given 37 ages present

in our considered gene expression data, our dynamic subnetwork is a collection of the 37 corresponding age-specific snapshots.

Alternatively, it may be beneficial to (i) bin the 37 ages into different age groups, by combining adjacent ages that are “similar

enough” into a single age group, (ii) then form one age-specific PPI subnetwork per age group (rather than per individual age),

and (iii) finally combine the age group-specific (rather than individual age-specific) PPI subnetworks into a dynamic, aging-

related subnetwork. However, figuring out a proper “temporal resolution”, i.e., an appropriate time interval length to be used

to construct a temporal snapshot (in our case, an appropriate age interval length to be used to construct an age group-specific

snapshot) is a non-trivial challenge57. For example, should one construct an age group-specific snapshot for each 5 years of the

human lifespan, or each 10 or more years? Should all age group-specific snapshots span equal-length age intervals, or should

some span longer intervals while others span shorter intervals? A possible solution to determining appropriate values of these

parameters may be to computationally identify k time points in the entire time interval where network structure (with respect

to some network structural property) significantly changes, and using the k+1 temporal segments separated by these changing

time points to construct the k+ 1 corresponding temporal snapshots32. However, even in this case, it is unclear exactly which

network structural property to rely on. Moreover, even if the above challenge of determining appropriate age groups would

be resolved, it would still remain an open question of how to use, i.e., combine, gene expression data for multiple ages in a

given group to determine whether two genes should be linked in the snapshot corresponding to that age group. In summary,

examining an appropriate way of choosing the dynamic network construction parameters is a complex research question of

its own that would warrant a separate research study. Consequently, this is out of the scope of this paper and is the subject of

future work.

As a part of our study, we have predicted novel human aging-related genes and validated a majority of them in the literature.

Our framework for dynamic condition-specific inference and analysis introduced in this paper can be applied to studying other

dynamic biological processes, such as disease progression over time.
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57. Meng, L., Hulovatyy, Y., Striegel, A. & Milenković, T. On the interplay between individuals’ evolving interaction patterns

and traits in dynamic multiplex social networks. IEEE Transactions on Network Science and Engineering 3, 32–43 (2016).

Acknowledgements

This work was supported by the National Science Foundation (CAREER CCF-1452795).

Additional information

Competing financial interests: The authors declare no competing financial interests.

18/18


	1 Introduction
	1.1 Motivation and related work
	1.2 Motivation
	1.3 Our contributions

	2 Methods
	2.1 Static human PPI network data
	2.2 Aging-related gene expression data 
	2.3 Integrating static PPI network with gene expression data to obtain dynamic aging-related PPI subnetworks 
	2.4 Aging-related ground truth data 
	2.5 (Dis)similarities between dynamic subnetworks of different approaches
	2.6 Do global topologies of a dynamic subnetwork change with age? 
	2.7 Do local topologies of proteins in a dynamic subnetwork change with age? 
	2.8 Validation of predicted aging-related genes
	2.8.1 Overlap between gene sets
	2.8.2 Gene Ontology (GO) term enrichment in a gene set
	2.8.3 Overlap between enriched GO term sets
	2.8.4 Literature validation

	2.9 Selection of a representative dynamic subnetwork for each of HotNet2, HotNet2*, NetWalk, and NetWalk*

	3 Results and discussion
	3.1 Dynamic subnetworks contain different nodes and edges but show similar global topologies
	3.2 Global network topologies do not change with age
	3.3 Local topologies of some proteins change with age, which are predicted as aging-related candidates
	3.4 The five predicted gene sets significantly overlap
	3.5 Validation of predicted aging-related genes 
	3.6 Our NP-based gene predictions are non-random
	3.7 Literature validation of novel NP-based predicted genes
	3.8 Our results are robust to the choice of static PPI network data

	4 Conclusion
	References

