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Abstract—Finding epistatic interactions among loci when expressing a phenotype is a widely employed strategy to understand the

genetic architecture of complex traits in GWAS. The abundance of methods dedicated to the same purpose, however, makes it

increasingly difficult for scientists to decide whichmethod is more suitable for their studies. This work compares the different epistasis

detectionmethods published during the last decade in terms of runtime, detection power and type I error rate, with a special emphasis on

high-order interactions. Results show that in terms of detection power, the only methods that performwell across all experiments are the

exhaustivemethods, although their computational cost may be prohibitive in large-scale studies. Regarding non-exhaustivemethods,

not one could consistently find epistasis interactions whenmarginal effects are absent. If marginal effects are present, there aremethods

that performwell for high-order interactions, such as BADTrees, FDHE-IW, SingleMI or SNPHarvester. As for false-positive control, only

SNPHarvester, FDHE-IW and DCHE show good results. The study concludes that there is no single epistasis detection method to

recommend in all scenarios. Authors should prioritize exhaustivemethods when sufficient computational resources are available

considering the data set size, and resort to non-exhaustivemethods when the analysis time is prohibitive.

Index Terms—Detection power, high-order epistasis, false positives, genetic interaction, review, survey
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1 INTRODUCTION

AN important challenge in geneticmedicine, and in genet-
ics in general, is the correct assessment of the genetic

basis of a disease or phenotypic effect. Current Genome-
Wide Association Studies (GWAS) analyze data sets com-
prised of hundreds of thousands of genetic markers geno-
typed for thousands of individuals. However, despite this
huge amount of information, our understanding of the
genetic architecture of complex traits and diseases is still lim-
ited [1]. The identification of the genetic cause of some traits
and diseases may be hindered, among others, by epistasis.
Originally, epistasis was defined as the interaction of two or
more loci for a specific phenotype [2] so that the effect of a
mutation can be different depending on the genetic context.
In the genomic era, epistasis may involve the interaction of
different loci and/or different markers within the same loci.
If epistasis involves more than two loci it is called high-order
epistasis [3]. Epistasis has important evolutionary implica-
tions with an impact in gene prediction, molecular evolution
and infectious diseases. It may also have an effect on the evo-
lution of drug resistance as antibiotic resistance [3] and HIV
drug resistance [4]. Understanding how mutations in patho-
gens interact should improve the prediction of pathogen

evolution and vaccine development. Epistasis is also impor-
tant in personalized medicine and biotechnology, and can
improve protein design by informing about protein structure
and interaction.

Most genetic studies are not able to detect high-order epis-
tasis despite possibly being present in many proteins, from
viral to mammalian, thus making it difficult to determine its
importance in heritable phenotypes. Detecting the high-order
interactions in a genome-wide scale implies the computa-
tional challenge of evaluating the huge number of loci combi-
nations plus the statistical challenge of a high dimensional
problem [5]. Therefore, the fact that most reported genetic
interactions involve only two loci is due to technical limita-
tions rather than the underlying biology [6], [7], [8].

Prior to this work, there have been several review studies
that compared different strategies for epistasis detection
from various perspectives. Some are focused entirely on
their methodology, comparing the different approaches,
their advantages and limitations [9], [10], [11], [12], [13],
[14], [15]. Other studies go further by also including an
empirical comparison from simulation studies, although the
number of methods included in these studies is more lim-
ited [16], [17], [18], [19], [20]. There are also previous publi-
cations regarding the selection of epistatic detection
methods and how to integrate them in the different stages
of a genetic study [21], [22], [23]. Nevertheless, there is no
previous comparison study with an emphasis on the inter-
action order.

In this work, we compare the epistasis detection methods
published during the last ten years with a special interest in
high-order interaction detection. To accomplish that, we
have selected those methods that, first, support epistasis
detection for qualitative phenotypes and for more than two
loci (in the form of Single Nucleotide Polymorphisms, or, in
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short, SNPs); second, offer an implementation freely avail-
able to the scientific community and finally, their execution
can be completed within a week. Table 1 lists all methods
included. We decided to also consider MDR and StepPLR,
despite being published more than ten years ago, due to
their relevance in the field. For each method, its detection
power and error rates were measured using more than
5,000 synthetic data sets, each one involving different simu-
lation conditions in order to make a fair comparison.

2 METHODS

This section provides a brief description of the selectedmeth-
ods to highlight their similarities and differences, and to
have a better understanding of the results that each program
yields. We refer to the authors’ original works for a more
complete and in-depth explanation. The selected methods
have been grouped into six categories, attending at how the
search space is explored: exhaustivemethods, filteringmeth-
ods, depth-firstmethods, swarm intelligent methods, genetic
algorithms and random-search-basedmethods.

2.1 Exhaustive Methods

Exhaustive methods apply the brute force technique to the
association search problem, exploring all possible combina-
tions of genetic markers up to a defined size or order. The
computational cost of exploring all possible combinations is
exponential with the number of genetic markers considered
and the combination size. Therefore these methods cannot
be applied to large data sets with high epistatic factors.

MDR [42] and MPI3SNP [45] fall under this category.
MDR partitions the individuals in the data set into different

k-fold cross-validation groups. Combinations are evaluated
through a prediction model which labels the different allele
combinations as high-risk (if the number of cases exceeds the
number of controls for that particular combination) or as
low-risk (if it does not). For each combination, k different
models are created (one per cross-validation partition) and
its prediction accuracy is averaged across partitions. At the
end of MDR, the combination corresponding to its best-aver-
aged prediction accuracy is reported. MPI3SNP, instead,
enumerates all third-order combinations and sorts them
using Mutual Information, returning the top-ranked ones.
The version of MPI3SNP used in this study is a modification
of the tool described in [45], allowing the user to specify the
order of the combinations explored.

2.2 Filtering Methods

Filtering methods discard a large number of SNPs or combi-
nations of SNPs to reduce the computational burden. The
most direct approach is to filter the individual SNPs of the
data set before attempting to combine them, drastically
decreasing the number of combinations. EpiMiner [34] and
Mendel [44] follow this approach. EpiMiner ranks individ-
ual SNPs by their Co-Information Index (CII) and retains
the top ranked ones. The number of retained SNPs can be
fixed or selected on a case-by-case basis through a Support
Vector Machine (SVM). The retained SNPs advance to a sec-
ond stage where all possible combinations among them are
evaluated using permutation-based Co-Information, and
combinations whose p-values surpass a certain threshold
are reported as interactions. Computing the Co-Information
Index requires calculating the index for all the combinations
which contain a certain SNP up to a certain order, which

TABLE 1
Alphabetically Sorted List of the Different Methods Included in this Work, Together With the Strategy Followed,

the Implementation Language Used, the Year That They Were Published and Their Websites
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still supposes a costly step, therefore EpiMiner allows us to
approximate its value through Monte Carlo sampling. Men-
del uses a lasso penalized logistic regression model to quan-
tify the association between the SNPs, used as predictor
variables, and the phenotype, used as the regression class.
The interaction search process begins by pre-screening the
SNPs in the data set in a first stage using a simplified regres-
sion model and an absolute score criterion. Then, the num-
ber of SNPs selected is further reduced by tuning the
constant �, which increases the lasso penalty and, in turn,
leaves many predictors out of the logistic regression model.
Finally, when the number of retained SNPs is very small,
the penalty is removed and the model coefficients are re-
estimated. Using this final model, p-values of individual
and combinations of SNPs are assessed following a leave-
one-out procedure and thus the associated combinations
are identified.

Other methods perform the filtering step on low-order
combinations. HiSeeker [37] and MECPM [43] enumerate
all possible 2-SNP combinations and select a group of candi-
dates for further analysis. HiSeeker filters these combina-
tions by applying Pearson’s x2 test with eight degrees of
freedom, assessing the association between each combina-
tion and the phenotype. Combinations that meet a relaxed
Bonferroni-corrected p-value threshold proceed to a second
stage for a higher-order analysis. HiSeeker offers the possi-
bility of performing an exhaustive search during the second
stage to find high-order interactions, or using an Ant Col-
ony Optimization (ACO) algorithm if the number of combi-
nations to be tested is still unreasonably high. ACO
algorithms will be covered in detail in Section 2.4. In the
end, the non-relaxed Bonferroni-corrected p-value thresh-
old is used to filter false positives. MECPM creates a maxi-
mum entropy classification model and uses the Bayesian
Information Criterion (BIC) to quantify the association
between genotypes and the phenotype under study. For
this purpose, MECPM first creates a pool of promising SNP
combinations and iteratively adds combinations to the
model until the BIC cost is minimum. The pool is con-
structed following two approaches: a complete approach
where all single SNPs and combinations of two SNPs serve
as seeds, and successive SNPs are appended to each seed
measuring the change in BIC cost with each addition; and a
greedy approach where the initial selected seeds are
reduced to the top-ranking single and combinations of two
SNPs using the relative entropy, and successive SNPs are
appended maximizing this metric. MECPM reports the SNP
combinations included in the model.

DCHE [30], EDCF [32] and SingleMI [47] use clustering
techniques to filter combinations of SNPs. Both DCHE and
EDCF recursively apply a clustering algorithm over the pop-
ulation frequencies of all allele combinations, starting from
2-SNP combinations up to a selected order. These clusters
are then tested using Pearson’s x2 test to measure its associa-
tion with the phenotype. DCHE implements a clustering
algorithm named Dynamic Clustering which reduces the 3k

frequencies associated with a combination of k SNPs in a
biallelic population to a number between 3 and 6, merging
the two least significant allele combinations in each step.
DCHE retains a different fixed number of top-ranking com-
binations depending on the combination order being

explored and applies a p-value threshold at the end of the
algorithm to filter out irrelevant combinations. EDCF,
instead, creates three groups from all allele combination fre-
quencies: G0, or combinations which occur more frequently
in cases than in controls; G1, or combinations which occur
more frequently in controls than in cases; and G2 with the
combinations left. Clusters are then evaluated using a per-
mutation test and the corresponding SNP combination is dis-
carded if their p-value does not meet a certain threshold.
Again, a fixed number of top-ranking SNP combinations
(using the aforementioned x2 test) are retained from each
combination size and its Bonferroni-corrected p-value is
finally used as the threshold to decide the result of the
method. SingleMI uses a clustering algorithm in a very dif-
ferent manner from the previous two. Individual SNPs are
clustered following a K-Means clustering method, where the
distance between SNPs and the centroid of each cluster is
measured using Mutual Information. Markers that are
strongly interacting pair-wise tend to be placed in different
clusters. Therefore, after creating the K clusters, a user-
defined number of SNPs from different clusters are analyzed
exhaustively using the sameMutual Informationmetric.

LAMPLINK [39] follows a completely different filtering
approach from previous methods. Individual SNP geno-
types are first categorized into two classes following a domi-
nant or recessive exclusive model: risk and non-risk classes.
Then, a modified version of the pattern mining algorithm
called Linear time Closed itemset Miner (LCM) [51] is used
to prune the SNPs combinations that, taking into account
their frequency, cannot show a significant association with
the phenotype. Finally, the non-pruned combinations are
evaluated using a Fisher’s exact test or a chi-squared test
and the obtained p-value is corrected according to the num-
ber of testable combinations.

2.3 Depth-First Methods

This group is made of methods that explore the combination
space using a depth-first search method, incorporating
SNPs on each iteration while maximizing some measure-
ment until convergence is detected. This search is repeated
successively until a certain number of combinations is
reached or no more significant combinations can be found.
FDHE-IW [35], LRMW [40], BADTrees [26], StepPLR [50]
and SNPRuler [49] follow this procedure.

FDHE-IW implements a search algorithm which con-
structs SNP combinations incrementally, starting with the
empty set and repeatedly adding the SNP that maximizes
the Symmetrical Uncertainty of the set until a maximum set
size is reached. A G-Test is applied after achieving a num-
ber of combinations to obtain a p-value associated with the
combinations. LRMW uses decision trees to represent can-
didate interactions and employs its associated Area Under
the ROC Curve (AUC) to measure significance. The method
starts with an empty tree and progressively generates more
complex ones until an AUC value of 1 is reached. Then, a
10-fold cross-validation is carried out to select the most
complex model which still improves the AUC compared to
the previous one. Decision trees are also used in BADTrees
to represent interaction among SNPs and a method called
bagging is introduced to increase the signal-to-noise ratio of
the interacting SNPs. Bagging consists in bootstrapping a
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number of data sets from the original one, constructing a
tree in each of the sets and finding similarities among them.
In BADTrees, the most frequent SNPs among the trees are
reported as associated with the phenotype.

StepPLR uses a penalized logistic regression model to
quantify the association between the selected SNPs and the
phenotype. It is an iterative algorithm where, based on a
cost-complexity statistic which integrates either the Akaike
Information Criterion or the BIC, SNPs or combination of
SNPs are added or removed from themodel in a series of for-
ward selection and backward deletion steps. Themodel with
the minimum cost is selected and the SNPs or combinations
of SNPs included in the model are reported. Lastly, SNPRu-
ler uses a rule-based classification model which introduces
the concept of rule utility and its derived upper bound to
identify whether a rule can be further improved to increase
its classification accuracy or not. SNPRuler begins by build-
ing a search tree to guide the search of interactions, where
nodes represent SNPs and edges represent interactions
between SNPs. The tree is built avoiding unnecessary expan-
sions of child nodes, i.e., those whose utility’s upper bound
is lower than a certain threshold or its parent’s utility. After
the search tree is built, SNPRuler finds a number of top-
ranked interactions (paths from the root to the leaf nodes)
sorted by its utility measurement, calculates their p-value
using the x2 statistic andwrites the list to an output file.

2.4 Swarm Intelligent Methods

Swarm intelligence (SI) is a group of methods that falls
under the category of metaheuristics. Metaheuristics are
high level heuristic methods for exploring the search space,
applicable to domains where the computational power of
the information systems is insufficient, or the domain infor-
mation is limited [52]. Swarm intelligence, as many of the
metaheuristics, are nature-inspired methods that rely on the
problem-solving ability that emerges from the interactions
of simple information-processing units, or agents [53].
These are multi-agent, decentralized and self-organized sys-
tems where the individual agents that integrate the system
follow a rule-set that determines their behaviour.

ACO is the most exploredmetaheuristic in epistasis detec-
tion. It relies on artificial ants (independent decision-making
agents) to iteratively explore the SNP combination space.
Pheromones are an implicit communication mechanism that
ants use to guide the search.Whenever an ant explores a com-
bination, it deposits a certain number of pheromones propor-
tional to the association strength between the phenotype and
the specific combination. Pheromones also evaporate over
time, progressively reducing its effect. A probability function
is used to decide which combination an ant should explore
next based on the pheromone levels present on the combina-
tions. The probability function also considers selecting a ran-
dom combination under specified odds to avoid being
trapped in local optima. After a fixed number of iterations are
completed, the algorithm ends, and the result is a list of the
most promising combinations visited by the ants. MAC-
OED [41], IACO [38], epiACO [33] and HiSeeker [37] imple-
ment this method faithfully, only exchanging the association
measure and how the results are treated. MACOED uses the
Pareto Optimal Set to select a group of candidate combina-
tions from all explored and then applies a Pearson’s x2 test to

quantify its association. IACO and epiACO use the ratio
between the Mutual Information and the Bayesian Network,
and the ratio between the Mutual Information and the K2
score, respectively, to measure association. Both methods
then proceed to calculate an inflexion point on the associa-
tion value to separate significant from irrelevant combi-
nations. HiSeeker, as explained in Section 2.2, runs the
ACO algorithm on a filtered group of SNPs. It uses
Pearson’s x2 test to evaluate the association, and the top-
ranked combinations reported by the ACO algorithm are
evaluated using the x2 test again to provide a Bonfer-
roni-corrected p-value metric.

AntMiner [24] and EACO [31] innovate over the generic
ACO algorithm by incorporating a heuristic into the probabil-
ity function. AntMiner includes the addition of the Symmetri-
cal Uncertainty and Spatially Uniform ReliefF onto the
probability function, and segregates the ants into sub-colonies
each exploring combinations of different sizes. It uses
Pearson’s x2 test as the association measurement. All
explored combinations that surpass a certain x2 threshold are
kept in what they call a Candidate Set, which is post-proc-
essed at the end to reduce false positives. EACO, on the other
hand, uses the Multiple Threshold Spatially Uniform ReliefF
as the heuristic of choice, and uses the ratio between Mutual
Information and Gini index to assess association. Similarly to
IACO and epiACO, significant combinations are identified by
calculating an inflexion point on the associationmetric.

CINOEDV [29] andNHSA-DHSC [46] use different swarm
intelligence methods from the extensively seen ACO.
CINOEDV implements the Particle Swarm Optimization
(PSO) algorithm, where agents consist of particles with a
defined position and velocity. The position represents the
selected SNP combination, and from each position, its fitness
or degree of association with the phenotype can be obtained
using three different metrics: Co-Information, Normalized
Co-Information and Contribution Co-Information. The veloc-
ity of each particle determines the next position to be
explored. It depends on the current velocity, the best position
found by the current particle and the best global position
found by all particles. The algorithm initializes all particles’
positions and velocities randomly and iterates for a fixed
number of steps, storing the best position found on each itera-
tion. It returns the list of positions sorted by the selected met-
ric. The NHSA-DHSC method consists of two stages, a
searching step that implements the Niche Harmony Search
Algorithm combining a Harmony Search (HS) algorithm
with a niching technique, and a second stage where all
found candidates are evaluated. HS is a music-inspired
swarm intelligent algorithm that mimics the improvisation
process used by skilled musicians, where harmonies repre-
senting SNP combinations are iteratively explored follow-
ing an improvisation process and the best harmonies are
kept in a harmony memory [54]. The improvisation of new
harmonies consists in choosing between pitch-adjusting
previous harmonies and randomly exploring new ones.
When the algorithm is stuck in a local optimum the nich-
ing algorithm is triggered, and the centroid and radius of
the optimum point are included in a taboo table to be
avoided by all future solutions, forcing the HS algorithm
to explore new areas in the solution space. NHSA-DHSC
uses three different association metrics, kept in separate
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harmony memories, which are the K2-score, the Gini index
and the joint entropy. After the NHSA algorithm ends, the
three memories are joined into a common candidate pool
and a G-test is performed on the resulting combinations to
check for association with the phenotype.

2.5 Genetic Algorithms

Genetic Algorithms (GA) are another group of metaheuris-
tic methods which mimic the biological evolution process.
GAs begin with a population of random solutions to a prob-
lem, encoded as chromosome-like data structures. The algo-
rithm explores the solution space by evolving the current
population into successive generations following a repro-
ductive function. Reproduction consists of evaluation, selec-
tion, recombination and mutation steps. Solutions are
evaluated using a fitness function, and reproductive oppor-
tunities are given proportionally to each individual accord-
ing to its fitness. Selected individuals create offspring in a
recombination operation, in which the two encoded solu-
tions create two new offspring by selecting a (random)
recombination point and swapping the subsequent frag-
ments. Finally, a mutation step modifies some bits of the off-
spring following a specific probability function. The method
evolves the population until a certain fitness of the solutions
is achieved or the number of generations reaches the
limit [55]. GALE [36] and ATHENA [25] use GAs to detect
epistatic interactions.

GALE creates a rule-based classification system using a
GA to generate a rule set. The solutions of the population
are ordered rule sets from which a rule-based classifier can
be built. The fitness of a solution is measured as the average
accuracy of its classifier in a k-fold cross-validation parti-
tion. GALE introduces the concept of spatial awareness to
GAs by representing the population of solutions in a 2D
grid and modifying the reproductive selection to take into
account the proximity between solutions in the grid [56].
The final rule set obtained at the end of the GA is the solu-
tion provided by GALE.

ATHENA introduces Grammatical Evolution Neural
Networks to the epistasis detection problem. Grammatical
Evolution is a GA dedicated to the construction of computer
programs, adapting the representation of solutions and the
reproductive methods for this purpose. Solutions are vari-
able length binary strings made of groups of 8 bits named
codons, each encoding an integer. Codons are translated
into rules following a predefined grammar specified in
Backus-Naur Form (BNF), and the translation of a complete
solution is a program which can be evaluated using a fitness
function [57]. ATHENA uses the coefficient of determina-
tion, R2, as the fitness function to evaluate the different solu-
tions considered. These solutions are made up of the SNPs
used as input variables to the neural network, the network
architecture itself and the weights associated to each of the
connections. Using the BNF grammar, the different compo-
nents of the solutions can be translated into a fully func-
tional neural network. ATHENA also replaces the single-
point crossover method from GAs with the Tree-Based
Crossover method, which swaps a complete branch of the
neural network to create offspring in order to avoid the
uncertainty of recombining the network in its binary repre-
sentation. ATHENA applies a 5-fold cross-validation to

construct five different classification models and selects the
model whose SNPs appear more consistently as the best
model.

2.6 Random-Search-Based Methods

Lastly, a group of methods based on the random search
algorithm can be identified. Random search stochastically
samples the solution space for a number of iterations, evalu-
ates each solution using a fitness function and saves the
result with the best fitness value out of all the explored.
SNPHarvester [48], BEAM3 [27] and BHIT [28] are epistasis
detection methods that belong to this group.

SNPHarvester implements an algorithm named Path-
Seeker to explore multiple combinations by the means of
different local search iterations at random points of the
combination space. PathSeeker follows a swapping tech-
nique, testing for all SNPs if any replacement in the combi-
nation can improve the x2 association value until no more
replacements can be made. Once a predefined number of
candidates has been found, a post-processing step is car-
ried out to filter out spurious interactions by fitting a L2

penalized logistic regression and reporting those interac-
tions selected by the regression model. BEAM3 uses a joint
probability model between the SNP collection X, the inter-
acting SNPs X1 and a disease graph G; and the phenotype
Y to determine the association present in the data. G is an
undirected graph where nodes represent non-overlapping
groups of SNPs from X1 and edges represent interactions
between groups. BEAM3 explores the search space using
Monte Carlo Markov Chain (MCMC) sampling to update
the selected SNPs in X1 and its graph representation in G
repeatedly. The sampling process adds or removes SNPs
in or out of X1 and updates the nodes and edges of G
accordingly. After a number of iterations are completed,
the algorithm ends and the best model is returned. BHIT
also resorts to a probability model to assess the association
between genotypes and a phenotype, but this tool divides
the genotype markers into different partitions. BHIT initi-
alizes the partition variable I by placing each SNP into a
different partition and iteratively samples I using MCMC,
maintaining the changes to I between iterations if the
probability of the model increases. When the iterative pro-
cess finishes, BHIT returns the different partitions in
which the SNPs have been divided, the interacting SNPs
being the ones grouped in the same partition as the pheno-
type variable.

3 EVALUATION

The evaluation section of the different epistasis detection
methods is separated into four parts: data simulation
design, runtime evaluation, detection power analysis and
false positive testing. In data simulation design, the pipeline
created for simulating the data sets used in successive sub-
sections is explained in detail. Runtime evaluation briefly
compares how the different methods perform in terms of
execution time. Detection power measures the ability to
locate combinations of SNPs associated with the phenotype
under different simulation conditions. Lastly, false positive
testing measures the ability to discern between significant
and non-significant combinations.
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Parameterization of the methods is consistent across the
whole evaluation. In general terms, parameter selection was
done either using the same values of the evaluation pre-
sented in its original work or following indications from the
authors. The exception to this rule were swarm intelligent
methods, where the number of iterations and agents is com-
mon to all methods in order to ensure a fair comparison. For
mostmethods, there is a clear distinction in parameterization
for third and fourth-order searches.When there is no interac-
tion in the data, the parameters corresponding to the highest
order admissible are selected. Section 1 of the supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2020.3030312, covers, in detail, how the different
parameters were chosen for each program.

3.1 Data Simulation Design

A large number of data sets were developed for the evalua-
tion of the methods, with varying features from one another
in order to model different characteristics of the simulated
population. The design goal of the simulation process was
to generate a wide variety of data sets resembling real popu-
lations, therefore the parameterization used for modelling
the population was chosen using estimates from real traits.

The simulation was carried out using GAMETES [58]. In
GAMETES, epistatic interactions are described as penetrance
tables, which define the penetrance of all possible allele
sequences in a specific loci combination. In this study, we
considered model-driven interactions showing marginal
effects, andmodel-free interactionswith nomarginal effects.

Penetrance tables with no marginal effects can be
obtained natively through GAMETES, which follows a sto-
chastic generation procedure to find epistatic relation-
ships [58] under no model assumption. Model-driven
penetrance tables, on the other hand, cannot be calculated
within GAMETES and thus were obtained from Toxo [59], a
MATLAB library which can compute penetrance tables
from epistasis models. In this study, we employed the
widely used additive and threshold models proposed by
Marchini et al. in [60], two models that define epistatic inter-
actions with marginal effects.

Both GAMETES and Toxo calculate penetrance tables
meeting a certain parameterization. The following list
describes what these parameters are, and what criteria we
used to select values:

� Minor Allele Frequency. The frequency at which the
second most common allele occurs in a given popu-
lation. The distribution of observed susceptibility
SNPs is skewed towards higher minor-allele fre-
quencies (MAF > 20 percent) [61] and there is an
increasing difficulty of detecting disease-causing
variants with low MAF [62]. An accepted standard
of MAF is 0.1, thus we have assayed values in the
range [0.1, 0.4].

� Heritability. The degree to which individual genetic
variation accounts for the population phenotypic
variation [63]. Heritability estimates of human traits
for several medical conditions usually cluster in
functional domains with its highest values between
70 and 80 percent and the lowest ones between 20

and 30 percent [64]. Therefore, we selected heritabil-
ity values from the range [0.1, 0.8].

� Prevalence. The proportion of individuals from a pop-
ulation that carries a specific trait or suffers from a
disease. Diseases can be categorized as rare if their
prevalence is under 0.0005 (fewer than 1 in 2,000
people), and ultra-rare if it is under 2E-05 (fewer
than 1 in 50 000 people) [65]. For this simulation
study, we have restricted prevalence values to be
greater than 1E-06.

Table 2 lists all the parameters of the penetrance tables
used throughout the evaluation. The criteria were to create
penetrance tables of third and fourth-order, with MAF val-
ues of 0.10, 0.25 and 0.40 and heritabilities of 0.10, 0.25, 0.50
and 0.80 whose prevalence is above 1E-06. Model-driven
tables cannot be obtained for every combination of MAFs,
prevalence and heritability due to restrictions in the under-
lying mathematical model [59], resulting in a different num-
ber of tables according to the model. GAMETES, on the
other hand, follows a probabilistic approach, which has
problems to find model-free tables when increasing the
interaction order, decreasing the MAF and increasing the
heritability. Consequently, many combinations could not be
obtained in a reasonable time.

From each penetrance table, 100 data sets were generated
containing 500 SNPs from 2,000 individuals (1,000 cases
and 1,000 controls). Non-interacting loci were simulated
using a MAF randomly sampled from the interval [0.05,
0.5]. In total, the data collection is comprised of 55 different
epistatic relationships, 5,500 data sets, 2.75 million SNPs
and 11 million individuals.

Lastly, for the false positive testing, we also simulated
100 data sets with 500 SNPs from 2,000 individuals (1,000
cases and 1,000 controls) containing no interaction. Loci for
these data sets were also sampled from the MAF interval
[0.05, 0.5].

All the simulation configurations, epistasis models, pene-
trance tables and data sets are publicly available at Github.1

3.2 Runtime Evaluation

The runtime for each of the method’s implementation was
measured and compared using a single core of an Intel
Sandy Bridge 2660 from the Pluton cluster (Supplementary
Table S1, available online). SingleMI is the only exception,
since it uses NVIDIA GPUs, and thus it was run on an NVI-
DIA Tesla K20m, also available at the Pluton cluster. Fig. 1
compares the average runtime of all the studied tools for
third and fourth-order analyses, across five repetitions. The
first data set of the additive model using MAF = 0.25 and
heritability = 0.25, both for third and fourth-order, was arbi-
trarily chosen for this purpose.

MDR, EpiMiner and CINOEDV’s runtimes could not be
measured due to a restriction on the maximum allocatable
time equal to three days. HiSeeker’s runtime for fourth-order
searches could not be measured as well, due to errors in the
programwhich are not present during third-order searches.

Results show a clear distinction in runtime between
exhaustive and non-exhaustive methods: exhaustive meth-
ods are largely influenced by the interaction order, while

1. https://github.com/UDC-GAC/epistasis-simulation-data
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non-exhaustive methods generally remain unaffected when
moving from third to fourth-order. The only exceptions are
EpiMiner and CINOEDV methods, which already show an
extraordinarily large runtime despite using a data set of
moderate size, a runtime that is dependant on the combina-
tion size used during the search.

3.3 Detection Power

Using the simulated data, the detection power of the differ-
ent methods can be measured as the ratio of data sets for

which the epistatic interaction is correctly identified. Twodif-
ferent detection power metrics were used in the evaluation:
the detection power considering all interactions reported by
each method, and the detection power when only the first
interaction reported is considered. Some implementations
provide its output as a list of combinations in no particular
order, therefore only the detection power of all reported
interactions is obtainable. These methods include BADTrees,
StepPLR,MACOED, NHSA-DHSC, ATHENA and BHIT. On
the other side, somemethods only report a single interaction,

TABLE 2
Interaction Orders, Minor Allele Frequencies (MAF), Prevalence Values (P ðDÞ) and Heritability Values (h2) of the Penetrance

Tables Used During the Data Simulation

Fig. 1. Average runtime, in seconds, of the different methods for third and fourth order interactions.
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thus both detection powers will be identical. These methods
areMDR, LRWM,GALE and BEAM3.

All the programs were executed using a total of 192 CPU
cores from the clusters described in Supplementary Table S1,
available online. Since programs are executed repeatedly
using different data, program-level parallelism can be
exploited by runningmultiple instances of the sameprogram
using different CPU cores. All the results from each of the
programs shown during the evaluation could be obtained
within a week’s time. MDR, EpiMiner and CINOEDV were
excluded from fourth-order evaluation due to their unrea-
sonably high runtimes. HiSeeker was also excluded from the
fourth-order evaluation due to errors during execution.

Given the large number of configurations used, it is
impractical to present all the individual results. Therefore,
in this evaluation, the results are grouped by the interaction
order and by the type of epistatic relationships, since these
two account for most of the variation between results from
the same method. The complete results are available in
Tables S2, S3 and S4 of the Supplementary material, avail-
able online.

Epistasis With Marginal Effects Following an Additive Model
Fig. 2 shows the detection power of all methods when the

data contains epistatic interactions displaying marginal
effects under the additive interaction model. The first sub-
figure represents the detection power from each method
when all the reported interactions are considered, and the
second subfigure represents the same detection power
when only the first reported interaction is considered.

Exhaustive methods reliably find the epistatic interaction
in virtually all cases, and the correct interaction is the one
always reported first. Conversely, genetic algorithms almost
always miss the epistatic interaction. The remainder of the
methods show mixed results and have to be discussed
individually.

Out of the filtering methods, EDCF and SingleMI per-
form best with maximum detection powers even when con-
sidering only the first reported interaction. MECPM follows
closely, although its detection power takes a toll when
increasing the interaction order or when only the first
reported interaction is considered. LAMPLINK and Epi-
Miner’s success can only be seen in third-order interactions
when all of the reported are considered, DCHE shows medi-
ocre results, and Mendel and Hiseeker cannot locate interac-
tions whatsoever.

Depth-first methods show polarizing results. On the one
hand, FDHE-IW perfectly identifies the correct interaction.
BADTrees also shows a good detection power, although its
output includes noise SNPs that do not contribute to the phe-
notypic outcome. LRMW, StepPLR and SNPRuler, on the
other hand, obtain very low (if not zero) detection powers.

Swarm intelligent methods show quite different results
attending to the order of the interaction, with the only excep-
tion of IACO. This is coherent with the parameterization
employed, since the number of iterations and agents (which
control how much of the search space is explored) is kept
constant throughout the evaluation despite the search space
growing when the interaction order is increased. Swarm
intelligent methods are also the most affected ones when
only the first interaction is considered. IACO obtains almost
perfect detection powers when all reported interactions are

considered, however its detection power significantly drops
when only the first one is used. epiACO and NHSA-DHSC
also obtain high detection powers for third-order interac-
tions, but their performance drops significantly when mov-
ing to fourth-order. EACO obtains mediocre results for third
order, which also drop for fourth-order, andMACOED, Ant-
Miner and CINOEDV obtain poor results.

Lastly, random-search based methods also obtain
mixed results. SNPHarvester reports the correct interac-
tion as the first one in almost all data sets. BEAM3 obtains
relatively good results, and BHIT is not capable of finding
interactions.

Epistasis With Marginal Effects Following a Threshold Model
Fig. 3 shows the detection power of all methods when the

data contains epistatic interactions displaying marginal
effects under the threshold interaction model. The two sub-
figures represent the detection power when all interactions
or only the first reported are considered, respectively.

Results for the threshold epistatic model are remarkably
similar to those of the additive epistatic model, with some
minor differences. Exhaustive methods noticeably drop
their detection power, while genetic algorithms again fail to
find any epistatic interaction.

Out of the filtering methods, HiSeeker DCHE and
LAMPLINK present the most drastic changes. HiSeeker
goes from not being able to detect interactions at all under
the additive epistatic model to reporting the correct interac-
tion as the first one in almost all cases, and DCHE approxi-
mately doubles its previous detection power. LAMPLINK,
on the contrary, drops its detection power down to zero.
EpiMiner and EDCF slightly drop their detection powers.
SingleMI and Mendel obtain very similar results compared
to previous additive model results, the former with high
powers and the later with powers next to zero.

Depth-first methods obtain similar results compared to
their previous values, with the only exception of StepPLR.
FDHE-IW and BADTrees obtain almost the same detection
powers as with the additive model, while LRMW slightly
improves it. StepPLR, on the contrary, increases its detec-
tion power from next to zero to next to one.

Swarm intelligent algorithms show slight variations from
their previous detection powers, with epiACO, AntMiner,
CINOEDV and NHSA-DHSC showing similar results while
EACO significantly increasing its detection power and
IACO and MACOED showing a noticeable decrease.

Random-search based algorithms also show minor varia-
tions compared to the results with the additive model.
SNPHarvester noticeably drops its detection power for
fourth-order interactions, both when all and only the first
reported interactions are considered, while maintaining its
third-order power. BEAM3, on the opposite, increases its
detection power, and BHIT remains near zero.

Epistasis With no Marginal Effects Under no Interaction
Model

Fig. 4 shows the detection power of all methods when the
data contains epistatic interactions displaying no marginal
effects under no interaction model.

Detection powers when no marginal effects are present
show a completely different story than the previous two
interaction models. Out of all the methods tested, only
exhaustive approaches are capable of consistently locating
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interactions that show no marginal effects. The only other
methods that show a detection power above zero for third-
order interactions are DCHE, EDCF and SNPRuler. DCHE
and EDCF show a detection power much lower than in sce-
narios with marginal effects. SNPRuler, however, was
unable to find any interaction in previous interaction mod-
els and now it is one of the three methods capable of finding
the interaction in a fraction of all data sets.

3.4 False Positive Testing

False positive testing evaluates whether or not non-interact-
ing loci are reported when searching for epistasis. To mea-
sure false positive detection the Family-Wise Error Rate
(FWER) was used, defined as the ratio of data sets where
any combination of non-interacting SNPs is reported.

FWER was measured using the previously presented
data sets that contain epistatic interactions showingmarginal

Fig. 2. Detection power of all methods, considering all (a) and only the first (b) reported interactions, for data sets containing epistasis with marginal
effects following an additive interaction model. Results not available are labeled accordingly.
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effects following additive and threshold models, as well as
those showing no marginal effects under no model assump-
tion. Additionally, FWER was also measured on data sets
containing no epistatic interactions.

FWER could not be measured for all epistasis detection
methods and for all scenarios presented. Implementations
that are forced to return any number of unordered SNP
combinations could not be included in this evaluation. This

includes LRMW, BADTrees, StepPLR and ATHENA. The
FWER for programs that return a fixed number of ordered
combinations was measured considering only the first
reported interaction. In this scenario, the FWER is the comple-
mentary measure of the detection power when only the first
reported interaction is considered, and cannot be measured
when there is no epistasis. This includes MDR, MPI3SNP,
MECPM, SingleMI andCINOEDV.

Fig. 3. Detection power of all methods, considering all (a) and only the first (b) reported interactions, for data sets containing epistasis with marginal
effects following a threshold interaction model. Results not available are labelled accordingly.
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Fig. 5 represents the FWER for the methods evaluated.
The figure shows that false positives have a significant pres-
ence in most of the methods. These results can be divided
into three categories: methods that report a large number of
false positives regardless of the data, methods that report a
small number of false positives and methods that show
very different results depending on the epistasis model or
presence/absence of epistasis.

Most of the methods fall under the first category. Epi-
Miner, Mendel, HiSeeker, EDCF, IACO, epiACO, AntMiner,
EACO, CINOEDV, NHSA-DHSC and GALE almost always
include false positives in its output. On the opposite, MDR,
MPI3SNP, SNPRuler, MACOED and BEAM3 keep their
FWER under control.

As for methods showing different results depending on
the dataset, the most common behaviour is to report false

Fig. 4. Detection power of all methods, considering all (a) and only the first (b) reported interactions, for data sets containing epistasis with no mar-
ginal effects and under no interaction model. Results not available are labelled accordingly.
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positives on the presence of marginal effects. DCHE, LAMP-
LINK, SNPHarvester, BEAM3 and BHIT report almost no
false positives when there are no marginal effects or there is
no interaction. On the other hand, MECPM and SingleMI
show an erratic behavior of the FWER for different data sets.

4 DISCUSSION

It is clear from the previous detection power results that
current epistasis detection methods, outside of the exhaus-
tive approach, rely on the existence of marginal effects to
locate the epistatic interaction. The best non-exhaustive
approach for interactions showing no marginal effects is
DCHE, with a detection power of 24.14 percent for third-
order interactions which completely disappears when the
order is increased.

Table 3 summarizes the results for epistatic interactions
withmarginal effects. For each program the average detection
power is calculated, differentiating between third and fourth-
order. FDHE-IW, MPI3SNP, SingleMI, SNPHarvester, BAD-
Trees, MECPM, EDCF and BEAM3 show average detection
powers above 80 percent, both for third and fourth-order epis-
tasis search. IACO, NHSA-DHSC, epiACO and EACO
despite showing detection powers above 80 percent for third-
order searches, immediately drop by more than 20 points
when moving to fourth-order. MDR, on the other hand, can-
not obtain fourth-order results in a reasonable runtime, and
therefore its success is also limited to third-order.

Genetic algorithms are the only family of methods that is
not represented on the upper half of the table. Swarm intel-
ligent methods, despite their mediocre results for fourth-
order searches, demonstrate good results for third-order,
indicating that the number of agents and iterations selected
has to take the order of the interactions into consideration.
Genetic algorithms, on the other hand, do not find any suc-
cess under any of the conditions presented.

Table 4 synthesizes the results for false positive testing,
showing the average FWER while differentiating between
the presence or absence of epistasis. The table shows that,
when looking for epistasis, only five methods report false

Fig. 5. FWER of all applicable methods, using data sets containing interactions showing marginal effects and following an additive and threshold
model, containing interactions showing no marginal effects and under no epistasis model, and containing no interactions.

TABLE 3
Average Detection Power Results for Third and Fourth Order

Epistatic Interactions With Marginal Effects

Rank Third-order Fourth order

Method Power Method Power

1 FDHE-IW 100.00 % BADTrees 97.90 %
2 MPI3SNP 100.00 % FDHE-IW 97.85 %
3 SingleMI 99.88 % SingleMI 91.90 %
4 SNPHarvester 99.71 % SNPHarvester 91.60 %
5 BADTrees 99.50 % MPI3SNP 89.45 %
6 MECPM 93.29 % MECPM 88.00 %
7 IACO 92.17 % EDCF 87.00 %
8 EDCF 91.67 % BEAM3 80.00 %
9 NHSA-DHSC 90.38 % IACO 69.75 %
10 BEAM3 85.92 % DCHE 62.60 %
11 MDR 85.54 % StepPLR 52.80 %
12 epiACO 83.67 % EACO 49.70 %
13 EACO 81.29 % epiACO 29.55 %
14 EpiMiner 73.25 % LRMW 20.55 %
15 DCHE 72.88 % LAMPLINK 20.25 %
16 StepPLR 51.33 % NHSA-DHSC 11.60 %
17 HiSeeker-ACO 50.00 % Mendel 9.05 %
18 HiSeeker-E 50.00 % AntMiner 1.65 %
19 LRMW 44.67 % MACOED 0.55 %
20 LAMPLINK 43.50 % ATHENA 0.30 %
21 MACOED 17.13 % BHIT 0.05 %
22 ATHENA 7.75 % GALE 0.00 %
23 Mendel 6.46 % SNPRuler 0.00 %
24 CINOEDV 4.46 % CINOEDV -
25 AntMiner 1.42 % EpiMiner -
26 BHIT 0.38 % HiSeeker-ACO -
27 GALE 0.00 % HiSeeker-E -
28 SNPRuler 0.00 % MDR -
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positives in less than 25 percent of the data sets tested.
These methods are SNPRuler, MPI3SNP, MDR, BEAM3 and
MACOED. Only three of these five methods show good
detection powers, which questions if the good false positive
results of SNPRuler and MACOED are linked to their lack
of detection.

When epistasis is not present, eight methods can obtain
FWER close to zero. Out of these eight, half obtains reason-
ably high detection powers when epistasis is present,
including DCHE, FDHE-IW, BEAM3 and SNPHarvester.
The other half, composed of BHIT, MACOED, SNPRuler
and LAMPLINK, obtains poor detection powers which,
again, questions if the good false positive results are linked
to their weak detection ability.

Results also suggest a possible two-stage strategy for
finding new epistatic interactions with marginal effects, in a
reasonable execution time and with a low probability of
including false positives: combining FDHE-IW with
MPI3SNP. FDHE-IW could be used first to discern whether
or not a data set contains epistasis, due to its high detection
power, low runtime and low FWER under the assumption
of no epistasis. If any candidate combination is reported,
MPI3SNP would then be used to analyse only the reported
SNPs due to its high detection power and low FWER, under
the assumption of epistasis, while circumventing the high
runtime associated with exhaustive methods due to the pre-
vious filtering step.

To conclude the evaluation, it is worth mentioning that
BADTrees, a method that achieves very good results in
terms of detection power, does not implement any statistical
method that allows the elimination of false positives, which
detracts from the tool’s applicability.

5 CONCLUSION

Epistasis detection is an area of GWAS under active research.
High-order epistasis has been speculated to be the source of
complex traits, however there is no extensive study that
empirically compares the state-of-the-art methods in this
regard. This work provides an overview of the current meth-
ods dedicated to high-order epistasis detection, as well as a
comparison of the results achieved by the different imple-
mentations in terms of detection power and type I error rate.

Results show that many of the current epistasis detection
methods, regardless of the strategy used, can reliably find
the epistatic interaction when marginal effects are present,
although their detection power generally decreases with the
order of the interaction. The only exception are genetic algo-
rithms, as none of the two methods implementing this strat-
egy can consistently find interactions.

Non-exhaustive methods, however, behave very poorly
when marginal effects are absent. In this scenario the only
option that seems to reliably locate the interactions is the
exhaustive strategy, with the subsequent exponential run-
time complexity associated with the order of the interaction
searched.

False positives evaluation speaks of a different story. Out
of the 27 methods compared, BEAM3 is the only method
capable of reliably finding epistasis while keeping type I
errors to a minimum. Moving forward, authors should give
more importance to type I error control. Methods that con-
sistently report false positives lose much of their value,
since their usability is restricted to the verification of previ-
ous findings. Looking for new epistatic interactions requires
implementing a tight false positive control in order to avoid
reporting false associations.

Outside of the results, there are other considerations to
make out of this study:

� The difficulty of appropriately using the programs.
Most of the programs require user input to select a
number of configuration parameters. These parame-
ters can have a direct impact on the detection power
of the tool, as made evident by ACO methods.
Despite this, most of the programs have insufficient
documentation on what each parameter does or how
to select them. Authors should either pay more
attention to the documentation so that a better-
informed decision can be made or avoid leaving the
choice to the user by automatically selecting these
parameters based on the problem size or previous
results.

� The lack of standardization in the input format used
by the different tools. Each author arbitrarily decides
the format used in his/her program, with no regards
towards integrability with other software tools or
ease of use for the end-user. Wewould also like to see
more standardization in the whole process for these
types of studies. Agreeing on a format to use would
facilitate the incorporation of newly developed soft-
ware in existing pipelines for analysis of genotype
data, without the need of adding layers of scripts to
transform one format into another or interpret the
results differently depending on the program used.

TABLE 4
Average FWER Results When Epistasis is Present and Absent

Rank With epistasis Without epistasis

Method FWER Method FWER

1 SNPRuler 0.29% BHIT 0.00%
2 MPI3SNP 5.44% DCHE 0.00%
3 MDR 11.19% FDHE-IW 0.00%
4 BEAM3 16.11% MACOED 0.00%
5 MACOED 18.84% SNPRuler 0.00%
6 SingleMI 25.18% LAMPLINK 1.00%
7 MECPM 29.47% BEAM3 3.00%
8 BHIT 35.60% SNPHarvester 3.00%
9 LAMPLINK 51.98% EpiMiner 77.00%
10 SNPHarvester 76.62% AntMiner 100.00%
11 DCHE 79.18% EACO 100.00%
12 FDHE-IW 79.98% EDCF 100.00%
13 NHSA-DHSC 87.42% epiACO 100.00%
14 EpiMiner 93.03% GALE 100.00%
15 CINOEDV 96.35% HiSeeker-ACO 100.00%
16 GALE 99.98% HiSeeker-E 100.00%
17 AntMiner 100.00% IACO 100.00%
18 EACO 100.00% Mendel 100.00%
19 EDCF 100.00% NHSA-DHSC 100.00%
20 epiACO 100.00% CINOEDV -
21 HiSeeker-ACO 100.00% MDR -
22 HiSeeker-E 100.00% MECPM -
23 IACO 100.00% MPI3SNP -
24 Mendel 100.00% SingleMI -
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� The lack of agreement on how to evaluate the perfor-
mance of the tools. Each author, in his ownwork, either
develops an ad-hoc benchmarking data set to compare
his new program with some other epistasis detection
tools, or reuses the data from the simulation study of
some other comparison. This evaluation methodology
makes the contrast of different epistasis studies difficult
since the simulation conditions are mostly different.
Developing a common benchmark of data sets to
employ during the evaluationwould allow for the com-
parison of all published epistasis tools without the need
for repeating the analysis in each of the evaluations.
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