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Synergy Between Embedding and Protein
Functional Association Networks for Drug Label

Prediction using Harmonic Function
Mohan Timilsina, Declan Patrick Mc Kernan, Haixuan Yang, and Mathieu d’Aquin

Abstract—Semi-Supervised Learning (SSL) is an approach to machine learning that makes use of unlabeled data for training with a
small amount of labeled data. In the context of molecular biology and pharmacology, one can take advantage of unlabeled data. For
instance, to identify drugs and targets where a few genes are known to be associated with a specific target for drugs and considered as
labeled data. Labeling the genes requires laboratory verification and validation. This process is usually very time consuming and
expensive. Thus, it is useful to estimate the functional role of drugs from unlabeled data using computational methods. To develop such
a model, we used openly available data resources to create (i) drugs and genes, (ii) genes and disease, bipartite graphs. We
constructed the genetic embedding graph from the two bipartite graphs using Tensor Factorization methods. We integrated the genetic
embedding graph with the publicly available protein functional association network. Our results show the usefulness of the integration
by effectively predicting drug labels.

Index Terms—Label Propagation, Networks, Prediction, Embeddings, Harmonic

F

1 INTRODUCTION1

The genome-wide identification of all target proteins of2

drug candidate compounds is a demanding issue in drug3

discovery. Researchers in pharmaceutical science assessed4

a tremendous amount of protein groups and developed5

methods for analyzing essential targets. Understanding the6

molecular biology of the protein is crucial for designing7

specific and selective inhibitors or ligands to adjust protein8

activity. The early recognition of protein activity, and active9

site information through the identification of selective drug10

targets can be cost-effective measures in the drug discovery11

process.12

Currently, recognizing drug-target interactions has dra-13

matically escalated in drug development. The publicly avail-14

able drug databases, such as DrugBank and KEGG, contain15

experimentally verified information about drug-target inter-16

actions [1]. This known information to identify the drugs17

and the targets using in silico method, which reduces the18

time and cost of drug development. In recent years network-19

based analysis has brought considerable attention in drug20

repositioning to decrease the cost of new drug development21

[2]. The network-based methods are well explored to un-22

derstand the network of drugs, disease, genes, and drug23

side-effects [3].24
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The functional classification or node classification on 25

networks, also known as a collective classification, has been 26

one of the most active and influential research fields in Ar- 27

tificial Intelligence (AI) [4], [5]. It is due to semi-supervised 28

learning require less human interference and gives higher 29

certainty. There are different variants of graph-based label 30

propagation algorithms proposed that can be applied for 31

node classification problems [4], [5], [6], [7], [8], [9]. 32

Similarly, in recent years, along with the topology- 33

based methods, network embedding methods [10], [11] has 34

drawn significant attention in node feature learning from 35

the graphs. These methods are successfully applied in phar- 36

macological studies. Such methods have shown promising 37

results in polypharmacy [12] and drug side-effect prediction 38

[3]. While both the topology-based methods and embedding 39

methods claim encouraging performances in some appli- 40

cations, a combination of both methods has drawn little 41

attention. Such a combination is especially useful when 42

there are heterogeneous data available that can provide 43

complementary information for a given task. In this pa- 44

per, we focus on the problem of drug label prediction by 45

integrating three heterogeneous networks of two bipartite 46

graphs of drug-gene interactions and tumor samples-gene 47

association and one protein functional association graph. 48

We expect to achieve such a task by a novel integrative 49

method by employing both topology-based methods and 50

network embedding methods. Thereby the two bipartite 51

graphs are transformed into a ”homogeneous” graph for a 52

natural combination with the protein functional association 53

graph. 54

2 THE PRESENT STUDY 55

The focus of our study is on a prediction of the ”Mechanism 56

of Action (MOA)” of the drugs. MOA refers to the drug- 57
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binding capacity or interaction to the same biological targets58

[13] proteins. Every drug has molecular or biological targets59

to which the drug binds, such as receptors or enzymes.60

Receptors, activities comprise of agonist, antagonist, inverse61

agonist, or modulator, while for enzyme includes activator or62

inhibitor. Ion channel modulators consist of opener or blocker.63

The prediction of these activities is crucial because it can64

guide better drug development and help to prevent late-65

stage drug failures [14].66

MOA of drugs can be determined by (i) Microscopy67

(ii) Biochemical and (iii) Computational methods [15]. The68

first two methods are expensive and time-consuming as69

it is tedious to conduct experiments and interpret data70

manually. Thus the computational method can be useful71

to systematically and quickly generate a few hypotheses.72

Therefore these hypotheses can be tested for later laboratory73

validation and verifications. With the application of machine74

learning techniques, the computational model learns pat-75

terns of drugs and target genes from data and then predicts76

target genes of existing or new drugs.77

The potential drug targets that the pharmaceutical in-78

dustry can exploit are apprehended in the intersection79

between the druggable genome and those genes related80

to disease [16]. The encoding of the proteins in a shared81

space between drugs and disease can be extracted using82

embedding methods. The embedding graphs and protein83

functional association graph are two different types of infor-84

mation complement each other, which we have investigated85

using the following research questions (RQ):86

• RQ1: Does an integrative approach of combining genetic87

embeddings with the combined protein interactions net-88

work improve prediction of the Drug MOAs?89

• RQ2: Do all protein interactions network provide similar90

accuracy for the prediction of the Drug MOAs?91

• RQ3: Can genetic embeddings graph perform better than92

the individual protein functional association graph for93

predicting MOA?94

3 DATASETS95

3.1 Tumor-Gene data96

The tumor is a disease caused by abnormal cell cycle and97

linked to a series of changes in the activity of genes. We98

used COSMIC (Catalogue Of Somatic Mutations In Cancer)99

Methylation Data in our analysis because the DNA methyla-100

tion is considered an excellent target for anticancer therapies101

and the drugs which are targeted for DNA methylated gene102

have been developed to increase efficacy, stability and to103

decrease toxicity [17]. The epigenetic modifications such104

as DNA methylation alter gene expression at the level of105

transcription by upregulating, downregulating, or silencing106

genes completely. Therefore, recognizing drugs MOA’s for107

epigenetic modifications are of great clinical interest [18].108

The COSMIC1 database uses the expert-curated informa-109

tion of somatic mutations in human cancers and is freely110

available. The processed data has the fields: id, sample111

name, location, and gene names. Each sample name is a112

tumor sample of the patient extracted from a particular113

location of the body; for instance, ”TCGA-CV-A6JN-01” is114

1. http://cancer.sanger.ac.uk/cosmic/analyses

a tumor sample and anatomical position is ”Upper Aerodi- 115

gestive Tract.” From this data, we are interested in tumor 116

samples and gene names. The tumor samples are taken from 117

ten different anatomical locations. The edges between the 118

tumor samples and genes are based on the fact reported in 119

the cosmic differential methylation data. The gene names 120

used in the methylation data are the accepted HGNC2
121

(HUGO Nomenclature Committee) identifier that gives the 122

unique gene symbols and names for the human loci. We 123

labeled this relationship as ”hasGene” for example, Tumor- 124

[”hasGene”]-Genes where tumor and genes are the nodes, 125

and ”hasGene” is the edge type. Hence, we constructed a 126

Tumor sample and Gene bipartite graph. 127

3.2 Drug-Gene data 128

For the drug-gene data, we used the Drug-Gene Interac- 129

tion Database (DGIdb). The interaction types describe the 130

MOA between a small molecule and a protein. The term 131

”MOA” and ”interaction” are interchangeably used in this 132

study. In DGIdb, a drug-gene interaction is defined as 133

”a known interaction (e.g., inhibition) between a known 134

drug compound (e.g., lapatinib) and a target gene (e.g., 135

EGFR).” This database is a publicly available druggable 136

genome resource [19]. DGIdb has improved its usefulness 137

as a resource for mining clinically actionable drug targets 138

using expert curation and mined from multiple resources 139

such as DrugBank, therapeutic target database (TTD), Phar- 140

mGKB, and ClinicalTrials.gov. DGIdb acts as resources to 141

generate hypotheses for the mutated genes that might be 142

therapeutic targets or prioritized for anticancer drug de- 143

velopment [20]. From this database, we queried drugs for 144

the genes that have an association with Tumors from our 145

tumor-gene bipartite graph using HGNC gene symbols and 146

DGIdb API3. The term interaction type between genes and 147

drugs, used by DGIdb are based largely on literature mining 148

and obtained from existing publicly available reviews and 149

databases [20]. We extracted the drugs name and interaction 150

type that specify how the drug interacts with the gene. We 151

labeled each interaction type of drugs as the drug functions. 152

There are seven different types of interaction we observed 153

in our graph, namely, Blocker, Antagonist, Agonist, Activator, 154

Inhibitor, Channel Blocker, and Binder. The drug and gene 155

nodes are connected by the ”target” relationship. The set of 156

known interaction type is noted as the ’gold standard’ data 157

in this study, and is used for evaluating the performance 158

of the semi-supervised machine learning algorithm in the 159

cross-validation experiments as well as training data in the 160

prediction. The detailed summary of the nodes and edges 161

after the construction of the graph is in Table 1. 162

3.3 Gene-Gene interaction data 163

For the Gene-Gene interaction data, we used publicly 164

available STRING4 version 10.5 protein-protein interaction 165

database. The interaction links are for the homosapiens 166

class. STRING provides uniquely comprehensive coverage 167

and ease of access to both experimental as well as predicted 168

2. https://www.genenames.org/
3. http://dgidb.org/api/
4. https://string-db.org/
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Property Value

Number of tumor samples 3397
Number of genes 1048
Number of drugs 3884
Number of relations between drugs and genes (actions) 10301
Number of relations between tumor samples and genes (hasGene) 58079
blocker (Label) 186
antagonist (Label) 528
agonist (Label) 525
activator (Label) 216
inhibitor (Label) 688
channel blocker (Label) 183
binder (Label) 202
gene-gene embeddings network number of edges 9872

TABLE 1
Summary of the tumor samples-gene, drug-gene and gene-gene

embeddings networks.

genetic interaction information. To convert the protein inter-169

action network into a gene interaction network for STRING,170

we performed the following steps: (i) Protein names were171

mapped to their encoding genes by parsing of EnsEMBL172

files. (ii) In the case of genes encoding multiple proteins, we173

took the edge of maximum (integrated) weight connecting174

any pair of proteins encoded by such genes. A similar175

technique for protein to gene mapping has also used in the176

prior studies [21].177

There are eight different variants of interaction chan-178

nels available in STRING, which are as follows: co-179

expression, co-occurrence, database, experimental, fusion, neigh-180

borhood, textmining, and combined. The combined protein func-181

tional association network is based on combining the prob-182

abilities from the different interaction channels. The brief183

description of the interaction channel is given in Supple-184

mentary Table 3. The links in the channels are all weighted185

and modeled as an undirected network. Due to very few186

links in the Fusion interaction channel, we omitted the187

fusion genetic interaction in our studies. The number of188

edges in the interaction channels is demonstrated in Table 2.189

Interaction Channels Value

co expression 208,470
cooccurence 1,166
textmining 322,883
database 23,169
neighborhood 18,929
fusion 20
experimental 170,642
combined 358,627

TABLE 2
The number of protein functional association network extracted from

the STRING Database.

The edge weight between the genes means confidence190

scores, which are scaled between zero and one. They refer191

to the estimated likelihood that a given interaction is bio-192

logically meaningful, specific, and reproducible, given the193

supporting evidence [22].194

4 SOLUTION APPROACH195

The main aim of this study is to classify the MOA’s of drugs196

by combining genetic interaction and genetic embeddings197

network. For this, we need the graph as input. The input198

graph is the genes with few labeled information about199

the drugs. For this purpose, we combined the embedding 200

gene graph constructed from the tumor-gene and drug-gene 201

bipartite graph with a real protein functional association 202

graph. It is shown in the input process in Figure 1. Once 203

we have the input graph, then we propagate the drugs 204

label information in these networks using the harmonic 205

function. Harmonic function propagates the drug label in 206

the unlabeled nodes. Those nodes which are unlabeled in 207

the beginning are now labeled after the propagation. After 208

the propagation is over, we get the label propagation scores 209

of every drug for the respective genes. Using these scores, 210

we evaluated the efficiency of the harmonic function. The 211

whole input, process, and output are shown in Figure 1. 212

5 METHODS 213

5.1 Construction of Gene-Gene Embeddings Graph 214

We have two bipartite graphs (i) tumor samples and gene 215

graph (ii) drugs and gene graph, as shown in Figure 1 216

first input graph. These two graphs with two different 217

relationships can also be viewed as a multi-relational graph. 218

The multi-relational graph is a tuple G := (V,E,L) where 219

V is a set of nodes, L is a set of relationships and E ⊆ 220

V XV XL set of edges. The set of nodes and edge label in 221

our graphs are V = {tumor samples, drugs, genes} and 222

L = {actions, hasGene}. The multi-relational graph can be 223

modeled as tensors, which are n-modal generalizations of 224

matrices. The features of the nodes in the multi-relational 225

graph can be extracted using tensor factorization. We ex- 226

tracted the features of genes using the tensor factorization 227

method. To do so, we employed the RESCAL framework 228

[10]. RESCAL can embed multiple types of edges and 229

perform collective learning through latent components of 230

the model. In our graph, the genes are shared between the 231

tumor samples and the drug. The shared nodes represen- 232

tation in RESCAL captures the similarity of the nodes in 233

the relational domain. Thus, the genes with many similar 234

observed relationships have similar latent representations. 235

In matrix notations, RESCAL tensor factorization can be 236

expressed as: Fk = EWkE
T , where Fk ∈ RNeXHe . The 237

symbol E is the Entity embedding matrix of size NeXHe, Ne 238

is the number of entities or nodes, He is the number of latent 239

feature for entities. Similarly, symbol Wk is the asymmetric 240

weight matrix for relation k of size HeXHe. The matrix Fk 241

captures all scores for the k relationship and the i-th row 242

of E ∈ RNeXHe captures the latent representation of ei 243

which is the latent feature representations of entity ei. Once 244

the latent representation of gene nodes are extracted, then 245

it is used to construct gene-gene similarity graphs using 246

different machine learning kernel method. 247

In this work, we used the K-NN method to construct 248

the gene-gene graph from the extracted feature vectors. 249

The K-NN method to construct graphs is considered as the 250

established data structure in data mining [23] and machine 251

learning. Moreover, in the situation with datasets without 252

explicit graph structure, it is desirable to use the K-NN 253

graph construction for the network analysis method [24]. 254

Thus in the context of our work two genes (gi, gj), are con- 255

nected if one of the genes is among the other gene’s nearest 256

neighbor and the edge weight is 1, i.e, wi,j = 1 else the edge 257

weight is 0, i.e, wi,j = 0. We used ’euclidean’ distance metric 258
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COSMIC 
Methylation Data 
(Tumor samples 
and Gene) Gene 

Interaction 
Data 

Drug Gene 
Interaction Data 

  

Drug Target Label Propagation in Genes using Harmonic Function

  (L1,L2)

InputInput

Output

Gene feature vector
Drug-Gene interaction

Tumor-Gene association
 Drug

Gene

Tumor

Gene-Gene graph from embeddings
Gene-Gene interaction graph from 
STRING database 

∑

Summation

L1

L2

L1 L2

  (L1,L2)    Drug Labels    

∑

Fig. 1. The two bipartite graph is constructed using two different data source (i) Cosmic methylation data for tumor samples and genes (ii)Drug
Gene interaction from DGIdb database. From these 2 bipartite graphs, the gene encodes the features shared between tumor samples and drugs.
From the encoded features, Gene-Gene graph is constructed. The third data is from the STRING database for genetic interaction. The harmonic
function is applied to the Gene-Gene graph for the genes which have a drug label. The output is the genes that are classified as the for drugs
function.

to calculate the distance between the data points because259

it is considered as the best method for continuous feature260

vectors [25], [26]. The optimum K is chosen from the 5 fold261

cross validation in training sets.262

5.2 Semi Supervised Learning Using Harmonic Func-263

tion264

Semi-Supervised Learning (SSL) is halfway between super-
vised and unsupervised learning. A semi-supervised learn-
ing algorithm is exposed to both unlabeled and labeled data.
SSL using harmonic functions is a method of classifying
data by considering the data group as a graph. Let us
assume a weighted graph G with n nodes indexed as 1, ..., n.
A symmetric weight matrix, denoted as W, represents the
strength of linkage. All weights are non-negative (wij ≥ 0),
and if wij = 0, there is no edge between nodes i and
j. We assume that the first l training nodes have binary
label, y1, y2, ..., yl, where yi ∈ {−1, 1}. The remaining is the
unlabeled nodes given as u = n−l also known as test nodes.
Thus the goal here is to predict the label for the unlabeled
nodes for yl+1, yl+2, ..., yn. The underlying assumption used
here is that the label of an unlabeled node is likely to be
similar to the label of its neighboring nodes. Mathematically,
to find a function f(x) ∈ {−1, 1} on the vertices, such that

f(xi) = yi. In the graph context, a harmonic function is
a function that has the same values as given label on the
labeled data, and satisfies the weighted average property
on the unlabeled data: f(xi) = yi, i = 1, ...l;

f(xj) =

∑l+u
k=1 wjkf(xk)∑l+u

k=1 wjk

, j = l + 1...l + u.

This iterative procedure will converge to a harmonic 265

function, regardless of the initial values on the unlabeled 266

vertices. The unnormalized graph Laplacian matrix L is 267

defined as: 268

L = D −W (1)

where D is the degree matrix and W is the weight of 269

edges between the nodes. The normalized graph Laplacian 270

is given by [27]: 271

L = D−1L (2)

L has close connection to random walk processes on 272

graphs [28]. The normalized Laplacian matrix can be sub- 273

divided into 4 submatrix as L is an (l + u) x (l + u) matrix 274

with labeled ones are listed first. 275

L =

[
Lll Llu

Lul Luu

]
276



5

The function f can be partitioned into functions of la-277

beled and unlabeled nodes (fl, fu), and let yl = (y1, ..., yl).278

Then solving the constrained optimization problem using279

Lagrange multipliers with matrix algebra, the harmonic280

solution is fl = yl and,281

fu = −L−1
uuLulyl (3)

5.3 Zoom-in View of the Label Propagation282

To demonstrate the label propagation mechanism in a real283

genetic interaction, we took the co-expression protein func-284

tional association graph. The red node is gene PIK3CB which285

is the seed node in Figure 2. This node is labeled as the286

target of ”inhibitor” drugs. We extracted the one-hop ego287

network around the PIK3CB seed gene limiting only ten288

genes for demonstration purposes. We set the status vector289

for the PIK3CB gene as 1 and other genes as 0 and apply the290

harmonic function.291

From Figure 4, we can see that as the time passes the292

weight of the seed nodes starts to decrease whereas the other293

neighboring node starts to increase. After time t > 1 all294

the nodes reach to a uniform distribution of the weight. It295

means the neighboring nodes will adopt the same label as296

seed node.297

5.4 Combining Multiple Graphs298

As we have multiple graphs, it is natural to incorporate299

them as supplementary information sources. For instance,300

protein interactions can be represented as various types301

of graphs according to their co-expression, co-occurrence,302

fusion, or other relationships. To incorporate all the graphs,303

one can straightforwardly combine the normalized Lapla-304

cian matrix of the various graphs [29], [30]:305

Lcomb =
m∑

k=1

Lk

where m is the number of graphs to incorporate,Lcomb is the306

combined normalized Laplacian matrix. Thus using Lcomb307

in Equation 3 we get the score for unlabeled nodes as,308

fu = −L−1
uucomb

Lulcobmylcomb
(4)

We used Equation 4 from here onwards in all our exper-309

iment.310

6 EXPERIMENTS311

The experiment was conducted on the combined and in-312

dividual protein functional association network. The brief313

description of the label or MOAs is shown in Supplementary314

Table 3. First of all, the 1048 genes were labeled as a target315

for drug functions using DGIdb, which is a database that316

annotates the genes for drug-gene interactions and potential317

druggability. This database allows the search of interaction318

for drugs-genes by gene or drug names. As this is a multi-319

label classification problem, we took the strategy of One Vs.320

Rest approach that comprises of training a single classifier321

for each class, with the samples of that class as positive322

samples and all other samples as negatives. Using this strat-323

egy, we computed the accuracy of the model. The detailed324

summary of all the networks used in the experiment is in 325

Table 1. 326

We used ten-fold cross-validation to evaluate our ap- 327

proach. We randomly partitioned the nodes into training 328

and testing sets. The ROC (receiver operating characteris- 329

tic) score is calculated and then averaged over all the ten 330

partitions. ROC score measures the overall quality of the 331

ranking induced by the classifier, rather than the quality of 332

a single value of threshold in that ranking [31]. ROC score 333

of 0.5 corresponds to random guessing, and a ROC score of 334

1.0 implies that the algorithm succeeded in putting all of the 335

positive examples ahead of all of the negatives. The value 336

of parameter k for the nearest neighbor was determined by 337

ten-fold cross-validation in a training set of the data. 338

Reproducibility The datasets and the codes used in this 339

study is available in: 340

https://github.com/timilsinamohan/closed form 341

harmonic function 342

6.1 Comparison with Embeddings, Combined Genetic 343

Interaction and Combined Genetic Interaction + Embed- 344

dings Graphs 345

In this experiment, we demonstrated the prediction perfor- 346

mance of harmonic function using (i) Embeddings (EMB), 347

(ii) Combined Genetic Interaction (CGI) (iii) Combined ge- 348

netic interaction with Embedding (CGI+EMB) graph. The 349

accuracy of label prediction is reported in terms of mean 350

AUC-ROC scores. 351

The result of the experiment is demonstrated in Figure 352

5. We used 30% randomly picked labeled data and 70% 353

unlabeled data. Of the seven drug functions prediction, we 354

observed that the (CGI+EMB) method outperformed the in- 355

dividual graph in predicting Blocker, Antagonist, Inhibitor, 356

Channel Blocker, and Binder label. We performed the 357

paired t-test for ten-fold cross-validations results between 358

(i) CGI+EMB versus EMB (ii) CGI+EMB versus CGI. The 359

result of the test is shown in Table 3. From the test, we 360

observed a significant difference between CGI+EMB with 361

CGI (P = 2.329e-4) and CGI+EMB with EMB (P = 1.59e-5) 362

for predicting Blocker label. We observed a similar predic- 363

tion for the Antagonist label (P = 1.544e-2) by CGI+EMB 364

versus CGI and (P = 2.927e-3) by CGI+EMB vs. EMB. The 365

predictions performed by CGI+EMB graph is significantly 366

different from EMB graphs in the prediction of all the label 367

whereas CGI+EMB has non-significant P-values with CGI 368

graphs in predicting all the label except Antagonist and 369

Blocker label. 370

6.2 Comparison with Individual protein functional as- 371

sociation network 372

We have six individual protein functional association net- 373

work. For each graph, we applied the harmonic functions 374

using 30% randomly picked labeled data. The performance 375

of the label prediction by each graph is in Figure 6. The 376

results showed that the text mining, database, and exper- 377

imental protein functional association network have mean 378

AUC-ROC score of more than 0.6 for predicting the (i) 379

Binder (ii) Blocker, (iii) Channel blocker, (iv) Agonist and 380

(v) Antagonist versus all drug label. 381

https://github.com/timilsinamohan/closed_form_harmonic_function
https://github.com/timilsinamohan/closed_form_harmonic_function
https://github.com/timilsinamohan/closed_form_harmonic_function
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Fig. 2. A co-expression Network, with one seed
node PIK3CB labeled as red.

Fig. 3. Zoom-in view of the seed node PIK3CB
with 10 neighbors
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Fig. 4. Label propagation around the neighbors
of gene PIK3CB
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Fig. 5. The bar chart shows the Mean AUC-ROC score of 10 fold cross-
validation to predict different drug functions. Each barchart shows the
mean AUC-ROC score using different graphs for predicting one drug
function versus all. The error bar is the standard deviation obtained from
the 10-fold cross-validation for the AUC-ROC score.

CGI EMB

CGI+EMB
(Blocker) 2.329e-4** 1.591e-5 ***

CGI+EMB
(Antagonist) 1.544e-2 * 2.927e-3 **

CGI+EMB
(Agonist) 6.149e-1 9.686e-3 **

CGI+EMB
(Channel Blocker) 2.975e-1 8.101e-1

CGI+EMB
(Inhibitor) 1.412e-1 3.783e-3 **

CGI+EMB
(Activator) 3.408e-1 2.229e-3 **

CGI+EMB
(Binder) 1.498e-1 4.226e-2 *

TABLE 3
Result of the paired t-test between CGI+EMB Vs CGI and EMB graphs
predicting the label. The figure displayed in the table is the P-value at α
= 0.05, *** p < 0.05 refers highly significant. ***: Highly Significant, **:

Moderately Significant, *:Lowly Significant.

From individual protein functional association network,382

the Coexpression, Experimental, Textmining, and Database383

graphs have performed better compared to Cooccurrence384

and Neighborhood graphs. For Blocker Vs. All Coexpres-385

sion graph leads to a marginal improvement of the AUC-386

ROC score in comparison to Experimental and Textmining 387

graphs. To perform the significant test among the protein 388

functional association network, we chose the Coexpression 389

graph with all the protein functional association network. 390

It is because the coexpression network is constructed using 391

similar mRNA expression data profiles; this makes the co- 392

expression genes as the target for a particular drug function 393

[32]. 394

For predicting the Antagonist label, there is no signif- 395

icant difference observed in the prediction between Coex- 396

pression Vs. Experimental (P = 3.228e-1), Coexpression Vs. 397

Textmining (P = 6.136e-1), and Coexpression Vs. Database 398

(P = 7.27e-1) graphs. Similarly, a non significant difference 399

is observed in predicting Agonist label using Coexpression 400

Vs Experimental (P = 1.649e-1), Coexpression Vs Textmining 401

(P = 2.307e-1) and Coexpression Vs Database (P = 8.01e-1) 402

graphs. It also holds for predicting the Activator label where 403

Coexpression Vs. Experimental (P = 5.5e-1) and Coexpres- 404

sion Vs. Textmining (P = 6.86e-1). In the case of predicting 405

the Inhibitor label, Coexpression Vs. Experimental (P = 406

4.89e-2) has a weakly significant difference but no significant 407

difference in Textmining and Database with Coexpression 408

graphs. For Channel Blocker label prediction, we observed 409

the significant difference in Coexpression Vs. Experimental 410

(P = 6.336e-3) but no significant difference between Coex- 411

pression Vs. Textmining (P = 7.54e-1) graphs. Finally, in 412

predicting the Binder label, we observed a non-significant 413

difference between Coexpression Vs. Experimental (P = 5.8e- 414

1) and Coexpression Vs. Textmining (P = 1.004e-1) graphs. 415

We have provided detail results of the paired t-test in 416

Supplementary Table 1. 417

6.3 Comparison between Embeddings and protein in- 418

teractions Graphs 419

The embedding graph is quite different from the protein 420

functional association network because they are constructed 421

using only relational information of tumor samples, genes, 422

and drugs. Therefore, we performed the paired t-test be- 423

tween the protein functional association network to find if 424

there is a significant difference in the prediction of the label 425

between the embeddings graph and other protein functional 426
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Fig. 6. The bar chart shows the Mean AUC-ROC score of 10 Fold cross validation to predict different drug functions. Each figure shows the mean
AUC-ROC score using different protein interactions graphs for predicting one drug functions versus all. The error bar is the standard deviation
obtained from the 10-fold cross validation for AUC-ROC score.

association network. For the prediction of the Blocker label,427

there was a significant difference between Cooccurrence (P=428

8.28e-5), Neighborhood (P= 1.06e-5), and Database (P = 3.5e-429

2) with the Embedding graph.430

For Channel Blocker, there is a significant difference431

between Cooccurrence (P= 1.315e-3) and Neighborhood432

(P= 4.624e-3) with the Embedding graph. For Binder label433

prediction a significant difference between Cooccurrence434

(P= 1.51e-2) and Neighborhood (P=1.82e-3) with Embed-435

ding graph. Similarly, the difference was significant with436

Cooccurrence (P= 2.117e-4) and Neighborhood (P= 3.332e-437

5) with the Embedding graph for the Antagonist label.438

For Agonist and Inhibitor Label prediction, the Embedding439

graph was borderline significant with Textmining (P= 5.09e-440

2) and Database (5.5e-2), respectively.441

The Embedding graph showed significant difference in442

predicting Activator label with Coexpression (P = 7.32e-4),443

Experimental (P =3.45e5), Textmining (P = 3.576e-4) and444

Database (P = 6.596e-3) graphs. The detail results of all the 445

paired t-test are in Supplementary Table 2. 446

6.4 Ablation study 447

We conducted an ablation study to investigate the combi- 448

nation of different protein functional association network to 449

predict the drug mechanism of action. For each label(MOA), 450

we have 57 genetic interaction combinations. To demon- 451

strate all the 399 (57 X 7) protein interactions for seven labels 452

will be huge to report in the manuscript. Thus we have pro- 453

vided the results of all the combinations in Supplementary 454

Table 4. However, in Table 4, we have provided the results 455

of all the genetic interaction combinations along with the 456

top 2 AUC ROC score for each label prediction. 457

We observed that for all the label predictions, there is an 458

equal or very marginal improvement in the AUC-ROC score 459

for the prediction of drug MOA’s using ”All interaction” 460

and other various genetic interaction combinations. For 461



8

predicting ”blocker,” ”antagonist,” ”channel blocker,” MOA462

combining all the protein functional association network463

(”All interaction”) underperform slightly marginally, and464

the difference is not very significant. Whereas, for ”in-465

hibitor” and ”binder,” combining all the protein functional466

association graph (”All interaction”) equals to the perfor-467

mance of other genetic interaction combinations. It provides468

us the information that even if we combine all the graphs,469

we do not lose significantly in terms of the AUC-ROC score.470

Interaction Combination Drug Actions AUC ROC

All interaction blocker 0.701 ± 0.011
coexpression, cooccurence,
database, experimental,
textmining

blocker 0.719 ± 0.011

coexpression , cooccurence,
experimental blocker 0.718 ± 0.012

All interaction antagonist 0.665 ± 0.010
coexpression, cooccurence,
database antagonist 0.675 ± 0.091

coexpression, database,
textmining antagonist 0.674 ± 0.006

All interaction channel blocker 0.662 ± 0.01
coexpression, cooccurence,
database, textmining channel blocker 0.669 ± 0.006

coexpression, database channel blocker 0.665 ± 0.013

All interaction agonist 0.659 ± 0.015
coexpression, database,
textmining, neighborhood agonist 0.664 ± 0.013

coexpression, database,
neighborhood agonist 0.662 ± 0.013

All interaction inhibitor 0.618 ± 0.011
cooccurence, database inhibitor 0.618 ± 0.012
cooccurence, database,
textmining inhibitor 0.617 ± 0.018

All interaction binder 0.603 ± 0.013
coexpression, database,
experimental binder 0.603 ± 0.023

coexpression, cooccurence,
database, experimental binder 0.602 ± 0.022

All interaction activator 0.592 ± 0.023
cooccurence, database,
textmining activator 0.599 ± 0.021

cooccurence, database,
experimental, textmining activator 0.596 ± 0.027

TABLE 4
Ablation study to find the best combination of protein functional

association network to predict drugs mechanism of action. The result
reported is the AUC-ROC score for ten-fold cross-validation for
predicting drug MOA. The figure behind ± sign is the standard

deviation. All interaction means combining all the protein functional
association network.

471

6.5 Performance of the Harmonic Function in an Em-472

bedding and Combined protein functional association473

graph using Different Label percentage474

To demonstrate the robustness of the harmonic function, we475

used different percentages of the labeled data in training sets476

ranging from 10% to 90%. For each percentage of the labeled477

data, we ran 10 Fold cross-validation. For the optimum K,478

we estimated it from the training set in cross-validation479

and applied that K to construct the embedding graph. The480

performance of the algorithm is shown in Figure 7.481

We observe that the algorithm performed better in pre-482

dicting Blockers in comparison to other drug labels. The483

other key observation is that even if we used the different484

percentages of labeled data, there is not so much of a signif-485

icant difference in the accuracy. For instance, in predicting486

the Blocker label, if we used only 30% of the labeled data,487

then the algorithm gives the mean AUC-ROC score of 0.81488

and using 60% labeled data the AUC-ROC score is 0.84. The489
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Fig. 7. Label Propagation using Harmonic Function in a EMB + CGI
Graph with different label proportion.

difference is minimal. Also, for predicting the Antagonist 490

label, the prediction using 30% and 80% label is almost the 491

same. It means that the harmonic function makes use of the 492

graph structure to exploit the information of unlabeled data 493

for the classifications problem. 494

6.6 Performance of the Harmonic Function with other 495

Disease Gene Association Database. 496

In this study, we have extracted the embeddings of the 497

genes shared between tumor samples and drugs. The tumor 498

samples and gene associations are taken from the COSMIC 499

database. We use this database because it is the most com- 500

prehensive source of information on somatic mutations and 501

their frequencies in human cancers. Of course, we can apply 502

this approach to any other disease and gene associations. We 503

have implemented the harmonic function algorithm using 504

30% labeled data in popular OMIM, DisGeNet, and eDGAR 505

database. The result of the experiment is shown in Table 5. 506

Label DisGenet eDGAR OMIM

Blocker 0.80 ± 0.024 0.87 ± 0.014 0.89 ± 0.006
Antagonist 0.72 ± 0.056 0.80 ± 0.015 0.80 ± 0.008
Agonist 0.69 ± 0.012 0.81 ± 0.007 0.82 ± 0.011
Activator 0.60 ± 0.017 0.76 ± 0.012 0.77 ± 0.018
Inhibitor 0.61 ± 0.011 0.72 ± 0.015 0.73 ± 0.017
Channel blocker 0.68 ± 0.012 0.82 ± 0.013 0.83 ±0.019
Binder 0.64 ± 0.022 0.75 ± 0.019 0.77 ± 0.013

TABLE 5
Harmonic function label propagation experiments on general

disease-gene association data sources, using 30% training labeled
data. The scores are the AUC-ROC and the figure in the parenthesis is

the standard deviation by 10 Trials.

In these datasets, we observed that the algorithms per- 507

form better in predicting most of the MOA than in the 508

COSMIC cancer database. One of the reasons for that is 509

cancer is a complicated disease that cannot be explained 510

by individual pathways, but rather the interaction among 511

multiple pathways [33]. Also, COSMIC data we used is a 512

patient’s tumor sample and gene assosciation; therefore, dif- 513

ferent genetic backgrounds among different patients make 514
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it even more complicated to predict such MOA’s with high515

accuracy.516

7 COMPARISON WITH THE STATE OF ART METH-517

ODS518

We compared the result of Harmonic Function (HMN) with519

the state of the art graph-based label propagation algorithm520

namely: (i) Heat Diffusion (HD) [8], (ii) Local and Global521

Consistency Method (LGC) [6], (iii) OmniProp (OMNI)522

[5], (iv) Confidence Aware Modulated Label Propagation523

CAMLP [9] (v) Katz [7] and (vi) PageRank [34].524

We divided 30% nodes into a training set and 70% nodes525

as testing sets and used precisely the same trails for all the526

state of the art algorithms. The results are compared by527

ten trials using randomly constructed 10 test sets for the528

networks to compute the AUC-ROC score using the ”one529

versus all” strategy of multilabel classification.530

Similarly we used non-graph based classification algo-531

rithms like Logistic, K-nearest neighbor and Support Vector532

Classification with linear and radial kernel. The embeddings533

of gene nodes are extracted from the RESCAL framework534

and trained these classifer in using the same setting as 30%535

data points into a training set and 70% data points as testing536

sets by using 10 trials.537

From Table 6, we observed that HMN outperforms or538

equals to the state of the art algorithms. HMN method539

performs slightly better than the PageRank algorithm. Both540

the PageRank algorithm and HMN is based on the essence541

of a random walk on a graph, resting on the assumption542

that similar nodes are more likely to take similar labels.543

However, HMN has the best AUC-ROC score in Blocker and544

Binder labels. Note that HMN does not use any parameters545

and perform long-range or global diffusion on the graphs,546

and therefore, it is the simplest model with good AUR-ROC547

score in comparison to other algorithms. We also observed548

that the HMN outperforms the non-graph based supervised549

methods in predicting all the drug mechanism of actions.550

8 INVESTIGATION OF THE HARMONIC FUNCTION’S551

DRUG MOA PREDICTION552

We performed a literature-based evaluation of the predic-553

tion of drug MOA by harmonic function. Our task is to eval-554

uate the quality of harmonic function’s predictions about555

classifying genes based on drugs MOA. For this purpose,556

we trained harmonic function with 30% labeled data and557

ranked the top prediction based on the predicted harmonic558

scores 4. We explored the ten highest ranked predictions in559

the list. We searched the biomedical literature to see if we560

can find supporting evidence for these predictions561

Table 7 shows harmonic function’s predictions and liter-562

ature evidence supporting these predictions. We note that563

the cited literature investigates interactions between the564

drug MOA and the target genes. For example, harmonic565

function classifies the gene SCN11A as the ”antagonist”566

target for the drugs (Table 7, 5th highest ranked prediction567

for antagonist MOA). In fact, the work by Emery et al. [36]568

have found sodium channel ”antagonists” involvement of569

SCN11A genes in treating most pain syndromes. Similarly,570

the gene KCNH3 (Table 7, 1st highest ranked prediction for571

blocker MoA) are used for silent voltage gated ”blockers” of 572

K+ channels which may have potential benefit in diseases 573

involving immune cell activation and proliferative diseases, 574

such as cancer, fibrosis, atherosclerosis, and restenosis [35]. 575

The analysis here shows the possibilities of harmonic func- 576

tions predictions for gene classification. 577

9 DISCUSSION 578

For the first research question, we found that the har- 579

monic functions with combining CGI+EMB network predict 580

Blocker with high accuracy in comparison to other drug 581

functions in our datasets. The combined CGI+EMB network 582

also performed better for Antagonist and Channel Blocker 583

labels. Moreover, the Antagonist drugs are also called block- 584

ers, for instance, alpha-blockers, beta-blockers, and calcium 585

channel blockers [42]. The studies also showed that Blocker 586

drugs appear to have a beneficial clinical effect in cancer 587

pathology. In our data, we incorporated the tumor’s infor- 588

mation; this might have helped for the higher prediction 589

of the Blocker label. In clinical settings, blocker interactions 590

are used to reduce the rates of progression of different solid 591

tumors. The Blockers drug could potentially result in a 57% 592

reduction in the risk of metastasis and a 71% reduction in 593

the 10-year mortality rate in a breast cancer [43]. 594

Similarly, another interesting observation from our study 595

is the prediction of the Antagonist label. The prediction 596

accuracy was third highest for Antagonist label prediction 597

after Blocker and Channel Blocker using the harmonic 598

function applied on CGI+EMB network. In drug design, 599

Antagonistic drug combinations are mostly used to avoid 600

the development of drug resistance. Furthermore, combi- 601

nation therapies are being used to combat drug resistance 602

in cancer patients under chemotherapeutic agents [44]. This 603

enhances the discovery of novel efficacious combinations of 604

drugs and targets. Not only the drug resistance but also the 605

antagonist drugs bindings can inhibit the specific cases like 606

gastrointestinal cancer [45]. 607

For the second research question, the results showed 608

that using Coexpression graphs in the majority of the label 609

prediction performed better than the other protein func- 610

tional association network. The dynamic change of protein- 611

protein interaction, such as co-expression networks, is the 612

critical determinant of the disease state. Due to this, co- 613

expression networks are richly targeted for drug design. 614

Not only the Coexpression graphs but also the Textmining 615

graphs showed similar performance in label prediction. The 616

text mining methods are extensively used to extract genetic 617

interaction form scientific literature to enrich drug-therapy 618

networks [46] and disease studies. 619

For the third research question, we found that the EMB 620

graph leads to a mean AUC-ROC score above 0.6 for pre- 621

dicting Blocker, Antagonist, Agonist and Channel Blocker 622

label, as shown in Figure 5. The EMB graphs provided 623

better prediction for Blocker, Antagonist, Agonist, Inhibitor, 624

Channel Blocker, and Binder label than Cooccurrence and 625

Neighborhood protein functional association network. By 626

combining GGI+EMB graphs, the prediction performance 627

has improved for the label Blocker, Antagonist, Channel 628

Blocker, Inhibitor, and Binder. It means that the EMB graphs 629
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Blocker Antagonist Agonist Channel Blocker Inhibitor Activator Binder
LR 0.74 ± 0.016 0.64 ± 0.020 0.61 ± 0.012 0.64 ± 0.023 0.59 ± 0.019 0.55 ± 0.024 0.60 ± 0.019
KNN 0.65 ± 0.022 0.61 ± 0.018 0.57 ± 0.028 0.58 ± 0.024 0.54 ± 0.025 0.50 ± 0.020 0.55 ± 0.022
SVC (RBF) 0.75 ± 0.017 0.50 ± 0.134 0.50 ± 0.011 0.58 ± 0.111 0.53 ± 0.062 0.53 ± 0.049 0.62 ± 0.021
SVC (Linear) 0.74 ± 0.012 0.64 ± 0.017 0.58 ± 0.065 0.55 ± 0.128 0.54 ± 0.059 0.53 ± 0.043 0.62 ± 0.029
HD 0.76 ± 0.012 0.71 ± 0.013 0.68 ± 0.009 0.67 ± 0.020 0.62 ± 0.015 0.51 ± 0.010 0.56 ± 0.023
LGC 0.75 ± 0.012 0.71 ± 0.013 0.68 ± 0.009 0.67 ± 0.018 0.62 ± 0.023 0.51 ± 0.017 0.56 ± 0.022
OMNI 0.79 ± 0.015 0.70 ± 0.019 0.57 ± 0.015 0.72 ± 0.017 0.53 ± 0.009 0.54 ± 0.011 0.60 ± 0.023
CAMLP 0.65 ± 0.0211 0.52 ± 0.006 0.54 ± 0.089 0.65 ± 0.021 0.54 ± 0.012 0.51 ± 0.009 0.53 ± 0.017
Katz 0.73 ± 0.016 0.71 ± 0.007 0.68 ± 0.009 0.65 ± 0.018 0.61 ± 0.013 0.52 ± 0.021 0.54 ± 0.017
PageRank 0.81 ± 0.014 0.72 ± 0.008 0.69 ± 0.012 0.70 ± 0.03 0.60 ± 0.017 0.55 ± 0.017 0.61 ± 0.027
HMN 0.82 ± 0.013 0.72 ± 0.009 0.69 ± 0.011 0.72 ± 0.024 0.60 ± 0.015 0.55 ± 0.015 0.63 ± 0.028

TABLE 6
Comparison of Harmonic Function with state of the art Graph-Based Semi-Supervised machine learning algorithms. The result reported is the

AUC-ROC score for ten trails for predicting drug MOA. The figure behind ± sign is the standard deviation.

k Mechanism of Action Gene names Evidence
1 Blocker KCNH3 Wickenden et al. [35]
5 Antagonist SCN11A Emery et al. [36]
1 Agonist GABRQ Li et al. [37]
1 Activator SCN9A Drenth et al. [38]
2 Inhibitor NMBR Zhao et al. [39]
3 Channel Blocker CACNA1F MCRory et al. [40]
2 Binder GABRA4 Reddyet al. [41]

TABLE 7
Genes classified based on the drug’s MOA’s using harmonic function.
The genes are assigned the highest scores by the harmonic function.

For each prediction, we include its rank k in the ranked list of all
predictions and literature evidence.

act as complementary information that enhanced the pre-630

diction performance.631

We have used the RESCAL tensor factorization model for632

learning the node embeddings. This model’s main caveat633

is that we do not know the number of latent components634

in advance. Thus, we need to do a grid search for the635

best parameter, which slows computation time. Another636

limitation in RESCAL based tensor embedding model is that637

the number of parameters grows linearly with the number638

of relationships in the graphs, making it difficult to scale in639

highly-relational graphs [47]. Thus, we consider assessing640

the quality of the state of the arts graph-based embedding641

model for drug label prediction for our future work.642

10 CONCLUSION643

Our study used two different graphs (i) constructed from644

the feature extraction of a tumor, genes, and drugs from645

the multi-relational graph using the k-nearest neighbor ap-646

proach and (ii) protein functional association graph from the647

protein-protein interaction STRING database. We combined648

these two graphs and applied harmonic function to classify649

seven different drug labels, namely Blocker, Antagonist,650

Agonist, Activator, Inhibitor, Channel Blocker, and Binder.651

The harmonic function predicted the highest AUC-ROC652

score for the Blocker, Channel Blocker, Agonist and Antag-653

onist label using combined graph embedding and protein654

interactions. The graph-combining method showed better655

results on drug label prediction, performing significantly656

better than any single protein functional association graph657

such as coexpression, co-occurrence, database, experimen-658

tal, neighborhood, and text mining, particularly for predict-659

ing Blocker, Channel Blocker, Antagonist, and Agonist label.660

The graph-combining method provides a straightfor-661

ward way of combining multiple graphs. However, work662

remains for the future. The harmonic functions assume ho- 663

mophily networks, which means nodes with similar charac- 664

teristics tend to connect. The harmonic function propagates 665

signals on the graph using the homophily principles, which 666

sometimes leads to misclassification. For instance, different 667

drug label targets the same genes. In the context of cancer, it 668

is essential to use different drugs for combinational therapy 669

because it targets critical pathways in a simply synergistic 670

manner. It possibly reduces the performance of a harmonic 671

function that assumes label smoothing. We have not looked 672

at this perspective, which is an important feature to address. 673
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