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Abstract—Cryo-electron tomography, combined with subtomogram averaging (STA), can reveal three-dimensional (3D)

macromolecule structures in the near-native state from cells and other biological samples. In STA, to get a high-resolution 3D view of

macromolecule structures, diverse macromolecules captured by the cellular tomograms need to be accurately classified. However, due

to the poor signal-to-noise-ratio (SNR) and severe ray artifacts in the tomogram, it remains a major challenge to classify

macromolecules with high accuracy. In this paper, we propose a new convolutional neural network, named 3D-Dilated-DenseNet, to

improve the performance of macromolecule classification. In 3D-Dilated-DenseNet, there are two key strategies to guarantee

macromolecule classification accuracy: 1) Using dense connections to enhance feature map utilization (corresponding to the baseline

3D-C-DenseNet); 2) Adopting dilated convolution to enrich multi-level information in feature maps. We tested 3D-Dilated-DenseNet

and 3D-C-DenseNet both on synthetic data and experimental data. The results show that, on synthetic data, compared with the state-

of-the-art method in the SHREC contest (SHREC-CNN), both 3D-C-DenseNet and 3D-Dilated-DenseNet outperform SHREC-CNN. In

particular, 3D-Dilated-DenseNet improves 0.393 of F1 metric on tiny-size macromolecules and 0.213 on small-size macromolecules.

On experimental data, compared with 3D-C-DenseNet, 3D-Dilated-DenseNet can increase classification performance by 2.1 percent.

Index Terms—Cryo-electron tomography, image classification, convolution neural network

Ç

1 INTRODUCTION

THE cellular process is performed by the cooperative
interaction of macromolecules [1], [2]. To get a better

insight into the cellular process, native structures and spa-
tial organizations of these macromolecules require to be
understood. Some macromolecular complexes are com-
posed of molecules with strong interactions, which leading
to macromolecular complexes owns a stable structure. For
these macromolecular complexes, traditional structural biol-
ogy methods such as x-ray are amenable to reveal their
structure [3]. However, many macromolecular complexes
are not stable enough, and their ultrastructure in the native
state remains to be solved. To address this issue, Cryo-Elec-
tron Tomography (cryo-ET), with the ability to reveal the
structure of macromolecular complexes in a near-native

state at the sub-molecular resolution, is proposed[4]. Specif-
ically, cryo-ET has been widely applied and discovered
many important structures such as SARS-COV-2 [5], S.
pombe mitotic chromosomes [6], and primary cilia [7].

In cryo-ET, the frozen-hydrated sample is placed on the
transmission electron microscopy stage and progressively
tilted to different angles from �60� to þ60� with 1�, 2�, or 3�

increments (Fig. 1 A). Meanwhile, two-dimensional (2D)
projection images (tilt series) are collected by a camera at
each tilt angle. These tilted images are then aligned to recon-
struct a three-dimensional (3D) cellular tomogram at a sub-
molecular resolution [8] (Fig. 1 B). The reconstructed tomo-
gram can contain tens of thousands of macromolecules in
the crowded cellular environment. As high-energy electrons
can damage biological samples, the total electron dose is
limited, which leads to a low signal-to-noise ratio (SNR) of
the tomogram. And, because of the absence of tilt angles
from 60� to 90� and �60� to �90�, the reconstructed tomo-
gram always has severe ray artifacts (missing wedge). To
further obtain a 3D view with higher SNR and resolution,
multiple copies of the identical macromolecule (subtomo-
gram) need to be detected, classified, aligned, and aver-
aged [9], [10], [11], [12], [13] (Figs. 1 C and 1 D), which is
called subtomogram averaging (STA) [14]. However, due to
the low SNR and severe ray artifacts caused by the missing
wedge effect, it remains a significant challenge to classify
macromolecules.

For macromolecules with known structures, the template
matching method can help recognize macromolecules
by calculating the cross-correlation of the template with
the subtomogram [15]. However, because the template
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matching-based method severely depends on templates,
this method has poor robustness. When the targets contain
additional bound components or conformational changes,
templates will misfit targets. Besides, targets and templates
from different organisms can also affect matching accuracy.
Thus, to overcome the above limitations, template-free clas-
sification methods are proposed [16], [17]. The common
template-free framework recognizes macromolecules by
iteratively clustering macromolecules to similar groups.
However, clustering large quantities of subtomogram is
very computationally intensive and time-consuming. There-
fore, the clustering-based methods are only suitable for a
small amount of data with few categories.

Recently, several machine learning methods have been
proposed for macromolecule classification [19], [20], [21],
[22]. One classical method is the support vector machine
(SVM) combined with template matching [19]. The method
uses two types of manually designed features to train the
SVM. One is the correlation coefficient features computed
from templates, and the other is the invariant rotation fea-
tures. However, these manually designed features limit
model generalization. With the blowout of cryo-ET data
amount and computer performance breakneck growth,
supervised deep learning methods based on the convolu-
tional neural network (CNN) model become popular [19],
[20]. The CNN-based methods recognize macromolecules in
two steps: feature extraction and feature classification. The
CNN-based method first encodes the input subtomogram
into high-dimensional feature maps. Based on these feature
maps, the feature classifier outputs the category of input
subtomogram. Thus, for the CNN-based method, discrimi-
native features are the key to macromolecule classification.
However, due to low SNR and severe ray artifacts, it is a

significant challenge to obtain accurate visual features of
macromolecules. Although previous studies have proved
that the CNN model with deep convolution layers can
extract useful features, this kind of deep model is comput-
ing resource waste when subtomograms can be classified
with shallow layers.

In this article, we proposed a novel convolution neural
network, named 3D-Dilated-DenseNet, to improve classifi-
cation performance. The main idea of 3D-Dilated-DenseNet
is to enrich multi-level information of feature maps and
increase feature map utilization. To enrich multi-level infor-
mation of feature maps, we adopted the dilated convolu-
tional layer [23]. By expanding kernels with zeros, the
dilated convolution layer can enlarge the receptive field and
convolve feature maps with gaps. To increase feature map
utilization, we used dense shortcuts between all convolu-
tional layers [24]. Each convolutional layer can use multi-
level feature maps of all preceding convolutional layers as
input. However, the increased amount of feature maps in
dense connection can lead to more model parameters and
extend training time. To address this issue, we designed a
bottleneck component to reduce the model size and
improve model training efficiency.

To prove the performance of our method, we tested 3D-
Dilated-DenseNet on both synthetic data and experimental
data. The synthetic data is published in the SHREC con-
test [25], which contains twelve categories of macromole-
cules. And SHREC classified these twelve category
macromolecules into four groups: large, medium, small, and
tiny according to molecular weight. The experimental data
contains seven categories of macromolecules that are manu-
ally extracted from EMPIAR [26]. On synthetic data, the
results show that, compared with the state-of-the-art CNN

Fig. 1. The workflow of STA. (A) The collection of tilt-series images. (B) The reconstruction of the tomogram. (C) Macromolecule detection and classi-
fication in STA. (D) Macromolecule alignment and average in STA. The green high resolution structure represents urease from the pathogen
Yersinia [18].
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method in the SHREC contest (SHREC-CNN) [25], the 3D-
Dilated-DenseNet improves 0.393 of F1 metric on tiny-size
macromolecule and 0.213 on small-size macromolecules. To
explore the contribution of the key components: dense con-
nection, bottleneck component, and dilated convolutional
layer, we provided an ablation study. Based on the simple
3D-CNN (3D-base-CNN), we gradually add each key com-
ponent and obtained three more CNNmodels: 3D-DenseNet,
3D-C-DenseNet, and 3D-Dilated-DenseNet. The obtained
results show that compared with 3D-base-CNN, the dense
connection can increase classification performance by 5.30
percent. Compared with 3D-C-DenseNet, the dilated convo-
lution can overall increase classification performance by 3.95
percent. Because 3D-C-DenseNet is well outperforming
SHREC-CNN, we make 3D-C-DenseNet as a baseline model
and tested both 3D-C-DenseNet and 3D-Dilated-DenseNet
on experimental data. The results show that compared 3D-C-
DenseNet, 3D-Dilated-DenseNet increases classification
accuracy by an average of 2.1 percent. Overall, both dense
connection and dilated convolutional layer can increase clas-
sification performance, which gives us guidance for design-
ing a macromolecule classification CNNmodel.

2 METHODS

2.1 3D-Dilated-DenseNet Framework

In this section, we describe our macromolecule classification
CNN model, 3D-Dilated-DenseNet, in detail. We first
defined the input and output of the 3D-Dilated-DenseNet.
The input is a 3D subtomogram data, represented as Sn�n�n.
One subtomogram contains only one complete macromole-
cule. The output is the category of the macromolecule that
is a four digits ID number recorded in the protein data bank

(PDB) (noted as PDB ID) [27]. Next, we introduce our model
framework. As shown in Fig. 2 A, our model contains three
main modules: feature extractor, feature transition block,
and feature classifier. For a given input subtomogram, after
the first convolutional layer and a series of feature extractors
and transition blocks, the input subtomogram can be
encoded into highly-dimensional feature maps. Then, based
on these feature maps, the classifier can output the category
of the macromolecule. The brief introduction of each mod-
ule is at the following.

The feature extractor (Fig. 2 B) (Section 2.2) can learn
multi-level feature maps of the given subtomgoram. As
shown in Fig. 2 B, the feature extractor includes a cascade of
composite layers with dense connections. The composite
layer includes a 1� 1� 1 convolutional layer followed by a
3� 3� 3 dilated convolutional layer. Before each convolu-
tional layer, there is a batch normalization (BN)-ReLU. As
the dense connection and dilated convolution are two criti-
cal components in the feature extractor, we also name the
feature extractor dilated-dense block. The detailed information
of dense connection and dilated convolutional layer are
shown separately in Sections 2.2.1 and 2.2.2.

The transition block can compress feature maps for fur-
ther forward propagating. Due to dense connection in
dilated-dense block, all feature maps in the block remains
the same size. The input of the transition block is the concat-
enation of the previous dilated-dense block input and the
output of each composite layer in the same dilated-dense
block. However, such large-size input feature maps can
cause a great increase of model parameter size. To address
this issue, the transition block is designed with a bottleneck
component: BN-1� 1� 1 convolutional layer (Section 2.3)
followed by an average pooling layer.

Fig. 2. The architecture of 3D-Dilated-DenseNet. (A) The model framework of 3D-Dilated-DenseNet. (B) The detailed information of the feature
extractor module. (C) The detailed information of the transition block. (D) The detailed information of the classifier. Here, BN means batch
normalization.
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The classifier classifies the extracted feature maps in two
steps: 1) mapping the extracted high-dimensional feature
maps into a 1D category vector; 2) taking the item with the
highest probability in the category vector as output. When
mapping high-dimensional features into a 1D vector, to
increase the non-linearity of the classifier, the traditional
classifiers usually include two fully connected (FC) layers.
However, due to FC layers cover the most parameters of the
model, the traditional classifier, with two FC layers can
result in model size increment and making model easily
overfit. To reduce the number of FC layers, we use Global
Average Pool (GAP) (Section 2.4) module to compress high-
dimensional feature maps before the FC layer. Therefore,
our classifier is BN-ReLU-GAP, followed by the FC layer.

2.2 Dilated-Dense Block

2.2.1 Dense Connection in Dilated-Dense Block

In the macromolecule classification CNN model, stacking
deep convolutional layers is a simple and straightforward
way to obtain advanced feature maps. However, this kind
of method has two disadvantages. First, for some macromo-
lecules with large size and noticeable geometry features, a
shallow CNN model is enough for classification. Thus, it is
a waste of computing resources to adopt a deep CNN
model. Second, deep CNN models are generally accompa-
nied by the gradient disappearance problem, which is not
good for model training. Dense connections, with the ability
to enhance feature utilization, can help reduce the model
depth and avoid gradient vanishing problems. Therefore,
we adopted dense connections in the feature extractor. As
shown in Fig. 2 B, each composite layer of the dilated-dense
block has dense shortcuts with other composite layers,
which means each layer receives the feature maps of all pre-
ceding layers as inputs and propagates its own feature-
maps into all subsequent layers.

Here, we define the computation of dense connection in
the dilated-dense. We denote the input of the kth dilated-
dense block as x0

k (k ¼ 1; 2; 3), the ith composite layer and
its corresponding output of the kth dilated-dense block as
Fi
kð�Þ and xi

kði ¼ 1; . . . ; 4Þ. With dense shortcuts connecting
each composite layer, the composite layer Fi

k receives the
feature maps from the input of the kth dilated-dense block
and the output of its all preceding composite layers
(x1

k; . . . ; x
i�1
k ). Thus, the output of Fi

k is computed by Eq. (1)

xik ¼ Fi
kðx0

k; x
1
k; . . . ; x

i�1
k Þ: (1)

2.2.2 Dilated Convolution in Dilated-Dense Block

In the macromolecule classification task, representative fea-
ture maps are essential to guarantee classification perfor-
mance. Therefore, we adopted dilated convolutional layers
with different dilation rates [23] to extract multi-level fea-
tures, which can enhance model feature representation and
improve model robustness. Figs. 3 A, 3 B, and 3 C show a
2D dilated convolution example with different dilation rates
(noted as r). In Fig. 3 A, when r ¼ 1, the dilated convolution
is standard convolution. In Figs. 3 B and 3 C, dilated convo-
lution is to insert r� 1 zeros in every two adjacent weights
of the standard convolution. The area covered by the dilated

convolutional kernel is named as receptive field. For the
stacked dilated convolutional layers, the receptive field of
the lth dilated convolutional layer can be computed by
Eqs. (2) and (3). Here, R denoted the size of the receptive
field, Si is the stride of the ith dilated convolution and w is
the kernel size. In our dilated-dense block, each composite
function contains 3� 3� 3 dilated convolutional layer with
stride 1. If the r of all 3� 3� 3 dilated convolutional layer is
2, the receptive field of the 3th and the 4th dilated convolu-
tional layer is 13� 13� 13 and 17� 17� 17. As the smallest
macromolecule in our data just covers 8 pixels, such a large
receptive field is ineffective to fine-grated structures. Thus,
it is best for the receptive field of the stacked dilated convo-
lutional layer not to exceed the size of the smallest macro-
molecule

R�R ¼ ð2rþ1 � 1Þ � ð2rþ1 � 1Þ (2)

Rl ¼ Rl�1 þ
Yl�1

i¼1

Si � ðw� 1Þ: (3)

Besides having an appropriate receptive field, the
stacked dilated convolutional layers need to avoid gridding
artifacts [28]. Here, we illustrate the reason for gridding arti-
facts. Figs. 3 D, 3 E, and 3 F represent three feature maps
that are gradually convolved by three stacked dilated con-
volutional layers. All dilated convolutional kernels are 3� 3
with r ¼ 2. First, we look into the first feature map (noted as
F1) (Fig. 3 D) that is convolved by only one dilated convolu-
tional layer. In F1, the central pixel (marked as red) is com-
puted from the nearby 5� 5 region (marked as blue) of the
input image. With the F1 further forward propagating, the
followed dilated convolutional layers outputs feature map
F2 and feature map F3 (Figs. 3 E and 3 F). In F2 and F3, we
can see that the computation of red pixel in each feature
map is always at a checkboard pattern (darker blue pixels
means more contribution while lighter blue pixels means
less contribution). Thus, in the final output feature map,
each pixel is computed from entirely separate sets of the
input unit, which can lead to gridding artifacts. To address
this issue, we designed the dilation rates of the dilated-
dense block based on the hybrid dilated convolution rule
(HDC) [28]. First, the common divisor of the dilation rates

Fig. 3. A 2D example of dilated convolution layer with 3 x 3 kernel. A-C
are the dilated convolution layers with dilation rates: 1, 2, 3. D-F illustrate
the reason for gridding artifacts.
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should only be 1. Second, the dilation rates should be
designed as a zigzag structure such as [1, 2, 3, 1, 2, 3]. After
testing four dilated-dense blocks with different dilation
rates (Section ), the final dilation rates of our dilated-dense
block is [1, 2, 1, 1].

2.3 Bottleneck Component

In 3D-Dilated-DenseNet, both dilated-dense block and tran-
sition block adopt the bottleneck component. The key mod-
ule of the bottleneck component is the 1� 1� 1
convolution, which can compress feature maps by channel-
wise pooling and further improve model training efficiency.
Here, we show quantitative analysis of adopting the 1� 1�
1 convolutional layer in dilated-dense block and transition
block separately. First, we analyze dilated-dense block with-
out bottleneck component. Let each composite layer outputs
m feature maps, so the input feature map of the Fi

k is m0 þ
m� ði� 1Þ (here, m0 is the input feature map amount of the
kth dilated-dense block), and the number of the 3� 3� 3
convolutional kernel parameters of the ith composite layer
is 3� 3� 3� ðm0 þm� ðl� 1ÞÞ � . Here, we define m as
12, m0 as 24. Thus, the input feature map channel of F 4

k is
24þ ð4� 1Þ � 12 ¼ 60, and the parameter number of the
convolution layer is 3� 3� 3� 60� 12 ¼ 19440. When we
adopted the bottleneck component in the composite layer
and set the channel-wise pooling value as 0.5, for the same
3� 3� 3 convolutional layer, the input feature map channel
and convolutional layer parameters can be reduced to 30
and 1� 1� 1� 60� 30þ 3� 3� 3� 30� 12 ¼ 11520. That
means the parameter number of 3� 3� 3 convolutional
layer is reduced by 22.2 percent.

Similarly, for transition block, we denote jth transition
block as tj, and t0j as the input of tj. Because the input of the
transition block includes the input of the previous dilated-
dense block and the output of all composite layers of the
same block. Thus, t0j ¼ x0

i þ � � � þ x4
i (i ¼ j). For transition

block without bottleneck component, the input feature map
channel is 24þ ð5� 1Þ � 12 ¼ 72. After adopted the bottle-
neck component, the channel of the input feature map can
be reduced to half 36, though it adds convolution parame-
ters. The number of additional parameters is
t0j � ðt0j=2Þ � 1� 1� 1:

2.4 Global Average Pooling

In the classifier of our 3D-Dilated-DenseNet, we apply a
global average pooling (GAP) followed by one FC layer to
substitute the traditional classifier, which only contains FC
layers. For the trained classifier, the input is K high-dimen-
sional feature maps. After GAP, each kth input feature map
(fkðx; y; zÞ)) is compressed into a point by Eq. (4). Then, the
FC layer, with learned weight matrix (a 2D array noted as
w), maps the output of GAP to a category vector, noted as c.
Each item in the category vector shows the probability that
the input subtomogram belongs to the corresponding cate-
gory, and the item with the largest probability value is con-
sidered as the output. For our classifier, suppose there are
96 input feature maps with size 4� 4� 4, and the output is
a 1� 12 category vector. Compared with traditional classi-
fier with only one FC layer, the parameters are reduced
from 96� 4� 4� 4� 1� 12 ¼ 73728 to 96� 1� 12 ¼ 1152.

Besides reducing model parameters, GAP can help visu-
alize class activation mapping (CAM) [29]. Because the
CAM clearly shows discriminative regions that have a con-
tribution to category prediction, the visualization of CAM
enhances the interpretability of CNN methods. Here, we
illustrate the computation of CAM. The CAM is a weighted
summation of all final extracted feature maps ((Eq. (5))).
The weight matrix, noted as wc, is a 1D weight vector of the
FC layer, which shows the contribution of each input fea-
ture map to the classification

Fk ¼
X

x;y;z

fkðx; y; zÞ (4)

CAMcðx; y; zÞ ¼
X

k

wc
kfkðx; y; zÞ: (5)

Due to CAMc is the weighted summation of the high-
dimensional feature maps, the size of CAMcðx; y; zÞ is
smaller than the input subtomogram. However, when these
two images are of different sizes, it is inexact to analyze the
effective regions of the extracted feature maps with refer-
ence to the input subtomogram. Thus, for discussion conve-
niently, CAMcðx; y; zÞ is upsampled to the size of the input
image with bicubic interpolation.

3 EXPERIMENTS AND RESULTS

3.1 Data Preparation

Here, we introduce the synthetic data and experimental
data in our work. The synthetic data is the public subtomo-
gram data set released by SHREC[25], [30] (noted as
SHREC-data). The SHREC-data contains ten reconstructed
3D tomograms and their corresponding ground truth table.
Each tomogram, with the size of 512� 512� 512 (1 voxel
equals 1 nanometer), contains macromolecules which are
uniformly distributed at random Euler angles (Fig. 4 A).
The ground truth table records the detailed information of
each macromolecule: three-dimensional coordinates, Euler
angle, and category. According to the ground truth table,
we extracted 20785 subtomograms from the tomogram, cov-
ering 12 categories. Each subtomogram, with the size of
32� 32� 32, contains only one complete macromolecule
(Fig. 4 A). Each category contains �1700 macromolecules
and is further classified into large, medium, small, and tiny
macromolecule according to their molecular weight by
SHREC (Table 1). The density map of each macromolecule
is showned in Fig. 5

As shown in Fig. 4 A, the SNR of SHREC-data is
extremely poor. For the convenience of observing the details
in tomograms, we generated noise-free tomograms. First,
we downloaded the structure information of 12 categories
of macromolecules from PDB bank [27]. Then, with the ref-
erence of the tomogram resolution in SHREC-data, we gen-
erated density maps of 12 categories of macromolecules by
IMOD [31] and an empty 512� 512� 512 volume. Finally,
according to each macromolecule information in the ground
truth table: location and Euler angle, we put the generated
density map into the empty volume. The method of generat-
ing noise-free subtomograms is the same.

The experimental data consists of seven tomograms,
which are reconstructed from 2D tilt series. These tilt series
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are published by EMPIAR [26] with the index of 10172,
10169, 10143, 10135, 10133, and 10131. Each tilt-series con-
tains only one category of macromolecules. According to
the sort of above EMPIAR index, the macromolecules cate-
gories are insulin-bound insulin receptor, hemagglutinin,
apoferritin, T20S proteasome, DNAB helicase-helicase, glu-
tamate dehydrogenase, and rabbit muscle aldolase. Here,
we denote experimental data as EMPIAR-data. To obtain
subtomograms, first, we applied the difference of Gaussians
(DoG) [32] to denoise tomograms. Then we manually
picked up 400 macromolecules from each tomogram with

size 28� 28� 28. In Fig. 6, we present each slice of the 3D
subtomogram, and we can see that the SNR of EMPIAR-
data is higher than SHREC-data. As experimental data does
not have ground-truth information, we can not generate
noise-free EMPIAR-data.

3.2 Training Details

All CNN models in this work are implemented with
Pytorch and trained and tested on 2 GTX 1080ti GPUs. In
the training stage, for hyperparameters, the batch size is 64,
the training epoch is 30, the optimizer is Adam, and the ini-
tial value of the learning rate is 0.1. After every ten epochs,
the learning rate is linearly scaled to 0.1 times the original
value. To better convergence, we applied the Xavier algo-
rithm to initialize the networks [33]. For FC layers and con-
volution layers, the weights are random values that obey

TABLE 1
Macromolecular Complexes Information of SHREC-Data, Including PDB ID, Name and Molecular Weight

PDB 3gl1 3qm1 1s3x 3h84 2cg9 3d2f

Name Ssb1, Hsp70 LJ0536 S106A Hsp70 ATPase GET3 Hsp90-Sba1 Sse1p, Hsp70

Mol. weight (kDa) 84.61 62.62 42.75 158.08 188.73 236.11

PDB 1u6g 3cf3 1bxn 1qvr 4d8q 4b4t

Name Cand1-Cul1-Roc1 P97/vcp Rubisco ClpB TRiC/CCT 26S proteasome

Mol. weight (kDa) 238.82 541.74 559.96 593.36 1309.28 1952.74

Fig. 4. The example of synthetic data. (A) The middle slice of one 512� 512� 512 tomogram. The right 32� 32 slices are the consecutive slices of a
subtomogram with PDB ID 4d8q. The number of the right corner is their slice index. (B) Ground truth corresponding to Fig.A.

Fig. 5. The density map and its size of each macromolecule in SHREC-
data.

Fig. 6. The example of experimental data. Each slice corresponds to a
depth of 3D subtomograms.
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[-a, a] uniform distribution, where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

6
ninþnout

p
, nin and nout

is the channel size of input and output feature maps. For
the batch normalization layer, y is set as 1, b is set as 0, and
all biases are set as 0.

3.3 The Experiments of 3D-Dilated-DenseNet on
Synthetic Data

3.3.1 The Classification Performance of

3D-Dilated-DenseNet

Here, we show the performance of 3D-Dilated-DenseNet on
SHREC-data. First, we tested 3D-Dilated-DenseNet on
SHREC-data and compared 3D-Dilated-DenseNet with the
state-of-the-art method on the SHREC contest (SHREC-
CNN) [25]. Second, we provided a confusion matrix to ana-
lyze the bottleneck of 3D-Dilated-DenseNet.

Because the F1 metric can show the balance of accuracy and
recall, the F1 metric is commonly used to evaluate the perfor-
mance of classification methods. Also due to the SHREC con-
test only provides the F1 metric of the state-of-the-art method,
we adopted the F1 metric (Eq. (6)) to compare the performance
of SHREC-CNN and 3D-Dilated-DenseNet (Table 2)

F1 ¼ 2 � recall � precision
recallþ precision

¼ 2TP

2TPþ FNþ FP
: (6)

In Eq. (6). TP means true positive, FN means false negative
and FP means false positive.

The results of Table 2 show that, first, compared with
SHREC-CNN, 3D-Dilated-DenseNet highly improves the
classification performance, especially for tiny- and small-size
macromolecules. Second, the classification performance has
a high relationship to macromolecule size. To further explore
this relationship, we averaged the F1 score of macromole-
cules that belong to the same size (Fig. 7). From Fig. 7, we can
see that for both 3D-Dilated-DenseNet and SHREC-CNN,

the larger the macromolecule size, the better the model classi-
fication performance. For large-size macromolecule, the F1
score of both networks is higher than 0.9. And the F1 score of
3D-Dilated-DenseNet is almost close to 1. For small-size mac-
romolecules, the model performance gets poorer. The classifi-
cation performance on tiny-size macromolecules is the worst.
This makes sense because, when extracting highly abstract
features by a series of convolution and pooling processes,
larger macromolecules can keep more structural information
and is easier to be classified.

Here, to explore the performance bottleneck of 3D-
Dilated-DenseNet, we provide a confusion matrix (Fig. 8).
The confusion matrix can describe the accuracy of the classi-
fication model, especially to see if the model confuses two
types of categories. The row of the confusion matrix repre-
sents the predicted category, while the column represents
the truth category. From Fig. 8 A, we can see that 3D-
Dilated-DenseNet easily confused 3qm1 with the other two
tiny-size macromolecules: 1s3x and 3gl1. To improve classi-
fication accuracy on macromolecule 3qm1, we increased the
sampling weight of 3qm1 at the training stage. The result
(Fig. 8 B) shows that increasing the sampling weight of
3qm1 does help improve the classification accuracy of
3qm1. However, it makes the model confuse 1s3x and 3gl1
into 3qm1. The main reason for this is that, first, it is hard
for the CNN model to extract representative structure fea-
tures in tiny-size macromolecules that have low SNR. Sec-
ond, �1700 samples of each category macromolecule are
not enough. Much more training data is needed for improv-
ing tiny-size macromolecule classification.

3.3.2 Ablation Studies

Our 3D-Dilated-DenseNet contains three key components:
dense connection, 1x1x1 convolution layer of bottleneck

TABLE 2
Each Macromolecule Classification F1 Score on SHREC-Data

Model PDB ID

tiny small medium large

1s3x 3qm1 3gl1 3d2f 1u6g 2cg9 3h84 1qvr 1bxn 3cf3 4b4t 4d8q

SHREC-CNN 0.154 0.193 0.318 0.584 0.522 0.343 0.332 0.8 0.904 0.784 0.907 0.951

3D-Dilated-DenseNet 0.684 0.485 0.675 0.778 0.652 0.565 0.635 0.855 0.971 0.846 1 0.997

Fig. 7. The averaged F1 score of the SHREC-CNN model and 3D-
Dilated-DenseNet on different size.

Fig. 8. The confusion matrix of the 3D-Dilated-DenseNet. (A) The confu-
sion matrix of equal sampleing weight at the training stage (B) The con-
fusion matrix with increased 3qm1 sampling weight at the training stage.
The y-axis represents truth label, and the x-axis represents predicted
label. A brighter pixels means that the model is more likely to classify the
macromolecule to the category of the x-axis.
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module, and dilated convolution layer. Here, we provide an
ablation study to explore the contribution of each key
component. There are four CNN models tested in the abla-
tion study, and each model is updated by adding a new
component. First, we designed a base CNN model and
noted it as 3D-base-CNN. In 3D-base-CNN, the feature
extractor module only contains stacking composite func-
tions: BN-ReLU-3� 3� 3 convolutional layer, the transition
module only has BN-average pooling layer, and the classi-
fier is the same as the 3D-Dilated-DenseNet. Based on 3D-
base-CNN, we connected each convolution layer with dense
shortcuts and updated 3D-base-CNN to 3D-DenseNet. Then
based on 3D-DenseNet, we applied a 1� 1� 1 convolu-
tional layer in the transition module and composite func-
tions of each feature extractor and got the new model 3D-C-
DenseNet. Finally, we used a dilated convolution layer to
substitute the standard convolution layer and obtained the
3D-Dilated-DenseNet. Table 3 shows the performance con-
tribution of each key component to different size macromo-
lecules. Here, the F1 metric is adopted to evaluate the
model performance. We first computed the F1 score of each
category of the macromolecule. Then averaged the F1 scores
of the same size macromolecule. The results shown in
Table 3 helped us verify the two following things.

Dense connection and dilated convolution both have a sig-
nificant contribution to macromolecule classification tasks.
From Table 3, for each model, because extracting discrim-
inative features for large-size macromolecules is easy, the
results show no difference in large-size macromolecules
classification. The F1 scores on large-size macromolecules
are all close to 0.99. Here, we pay more attention to the
classification performance of tiny- and small- macromole-
cules. By comparing 3D-base-CNN with 3D-DenseNet,
we can see that 3D-DenseNet averagely increased classifi-
cation performance by 8.5 percent on tiny-size macromol-
ecule, 7.3 percent on small-size macromolecule, and 2.7
percent on medium-size macromolecule. Due to the 1�
1� 1 convolutional layer is mainly adopted to improve
model training efficiency, it shows no significant perfor-
mance improvement. By comparing 3D-C-DenseNet with
3D-Dilated-DenseNet, the result shows that the dilated
convolutional layer averagely increased classification
performance by 5.3 percent on tiny-size macromolecule,
6.8 percent on small-size macromolecule, 3.7 percent on
medium-size macromolecule.

The 1� 1� 1 convolutional layer of the bottleneck module sig-
nificantly improves model training efficiency. To explore the effi-
ciency of adopting 1� 1� 1 convolutional layer, we
compared the parameter size, GPU memory, and training
time of each model (Table 4). As the 3D-base-CNN does not
contain dense shortcuts, the parameter size, GPU memory,

and training time of 3D-base-CNN are the least. For 3D-Den-
seNet, as we adopted dense shortcuts to enhance feature
map utilization, the number of channels shows multiple
increases. Further, the parameter size and the GPU memory
of 3D-DenseNet are apparently growing, and the training
time expands to 1.38h. For 3D-C-DenseNet, after applying
1x1x1 convolution, the parameter size of 3D-C-DenseNet has
been reduced from 1:62MB to 0:98MB, which further leads
to the training time of 3D-C-DensNet reduces to 1.03h. For
3D-Dilated-DenseNet, as the difference between 3D-C-Den-
seNet and 3D-Dilated-DenseNet is using dilated convolution
layer to substitute standard convolution layer. The parameter
size, GPUmemory as well as training time of 3D-C-DenseNet
and 3D-Dilated-DenseNet are almost the same.

3.3.3 The Studies of Dilated-Dense Block With Different

Dilation Rates

Here, to explore the effect of different dilation rates on the
macromolecule classification performance, we designed four
kinds of dilated-dense blocks. Then we tested four 3D-
Dilated-DenseNets, each 3D-Dilated-DenseNet only contains
one kind of dilated-dense block. Table 5 records the detailed
dilation rates of each tested 3D-Dilated-DenseNet and their
classification performance on the same size macromolecules,
evaluated by the averaged F1 score. Each item of the dilation
rate group separately represents the dilation rates of four

TABLE 3
The Ablation Study of Each Network Component

Model Name dense connection bottleneck component dilated convolution tiny small medium large

3D-base-CNN 0.498 0.520 0.840 0.992

3D-DenseNet @ 0.583 0.594 0.870 0.999

3D-C-DenseNet @ @ 0.581 0.586 0.853 0.999

3D-Dilated-DenseNet @ @ @ 0.615 0.658 0.890 0.999

TABLE 4
The Params Size, GPU Memory and Traning Time of

Each Model

Params
size(MB)

GPU memory
(MiB)

Training
Time(h)

3D-base-CNN 0.39 3904 0.58

3D-DenseNet 1.62 9270 1.38

3D-C-DenseNet 0.98 11642 1.03

3D-Dilated-DenseNet 0.98 11642 1.03

TABLE 5
Dilated-Dense Block With Different Dilation Rates

Test ID Dilation rates in the
dilated-dense block

Tiny Small Medium Large

Test 1 1-1-1-1 0.562 0.590 0.853 0.997

Test 2 1-2-1-1 0.621 0.619 0.851 0.997

Test 3 1-1-2-1 0.593 0.585 0.865 0.997

Test 4 2-2-2-2 0.561 0.577 0.881 0.998
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3� 3� 3 dilated convolutional layer in the dilated-dense
block. For example, 1� 1� 1� 1 represent that the dilation
rates of all dilated convolutional layers in the block is 1.

From Table 5, first, by comparing the result of test 1 with
the others, we verify that the dilated convolutional layer
can increase the macromolecule classification performance.
Second, test 2-4 shows that the dilation rate group: 2� 2�
2� 2 has the worst performance on tiny- and small-size
macromolecules and has the best performance on medium-
and large-size macromolecules. This makes sense because,
for this kind of block, the receptive field of the 3rd, and 4th
dilated convolution layer is too large to extract structure fea-
tures for small-size macromolecules. On the contrary, it can
enrich multi-level features for large-size macromolecules.
But overall, we find that the dilated-dense block with the
dilated convolutional layer in the front position shows bet-
ter performance.

3.3.4 The Class Activation Mapping of

3D-Dilated-DenseNet

In this experiment, we visualized the class activation map-
ping (CAM) of both 3D-C-DenseNet and 3D-Dilated-Dense-
Net to observe the features extracted by models. Good
feature maps can generally show the region where the mac-
romolecules are located and their representative structure
information. Due to poor SNR of the input subtomograms,
for visualizing convenience, we compare the CAM of 3D-C-
DenseNet and 3D-Dilated-DenseNet with the noiseless
ground truth image (Fig. 9). In Fig. 9, each row represents
one kind of macromolecule. From left to right, the displayed
images are the input subtomogram, the noiseless ground

truth, CAM of 3D-C-DenseNet, and 3D-Dilated-DenseNet.
As all data in Fig. is 3D data, we only present the center
slice of the 3D view. In the input subtomogram, the black
cluster region represents the macromolecule, which is at the
center. In the noiseless ground truth image, the black areas
represent the background while the white areas represent
macromolecules. In the CAM of 3D-C-DenseNet and 3D-
Dilated-DenseNet, the bright white regions represent acti-
vation regions that have a contribution to classification.
And, the area with higher brightness means more contribu-
tion during classification.

The results in Fig. show that the CAM of 3D-Dilated-
DenseNet presents more representative features. First, com-
paring with CAM of 3D-C-DenseNet, the CAM of 3D-
Dilated-DenseNet clearly shows the areas where contain a
macromolecule. Second, the CAM of 3D-Dilated-DenseNet
presents clear boundaries and has a similar shape feature to
the macromolecules in noiseless ground truth image.

3.4 The Experiments of 3D-Dilated-DenseNet on
Experimental Data

Here, we tested 3D-Dilated-DenseNet on experimental data.
Due to SHREC does not provide reproducing details of
SHREC-CNN, here, we make 3D-C-DenseNet as the base-
line model to explore the effect of the dilated convolution
on experimental data. Table 6 records the classification per-
formance of these two models, which is evaluated by the F1
metric. Due to experimental data has high SNR and large-
size macromolecules, the F1 scores on experimental data are
obviously higher than synthetic data. Especially for DNAB
helicase-helicase and apoferritin, the F1 score is 1, which
means FP and FN is equal to 0. For classification

Fig. 9. Class activation mapping image of 3D-C-DenseNet and 3D-Dilated-DenseNet. Each row represents one category of macromolecule. And the
column images are raw input data, noiseless ground truth, CAM images of 3D-C-DenseNet and 3D-Dilated-DenseNet
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performance on other categories, the result shows that com-
pared with 3D-C-DenseNet, dilated convolution averagely
increase classification performance by 2.1 percent.

4 DISCUSSION AND CONCLUSION

In STA, macromolecule classification is essential for obtain-
ing a macromolecular structure with sub-molecular resolu-
tion. In this work, we proposed a macromolecule
classification CNN model (3D-Dilated-DenseNet) to
improve macromolecule classification performance. Our
3D-Dilated-DenseNet, with dense connection and dilated
convolution, can extract multi-level feature maps and fully
utilize feature map to get better feature representation. Con-
sidering the large model size introduced by dense connec-
tion, we also design a bottleneck component. We tested 3D-
Dilated-DenseNet on both synthetic data and experimental
data to verify model performance. On synthetic data, the
results show that our 3D-Dilated-DenseNet significantly
outperforms the state-of-the-art model on the SHREC con-
test. To quantify the contribution of each key component,
we provide an ablation study. The result shows that both
dilated convolution and dense connection have a significant
contribution to the classification performance. And the bot-
tleneck component can reduce the model size and improve
training efficiency. To further demonstrate the validity of
dilated convolution in the macromolecule classification
task, we explored four dilated-dense blocks that contain dif-
ferent dilation rates and visualized the feature map of 3D-
C-DenseNet and 3D-Dilated-DenseNet. The results show
that first, it is best that the receptive field of the stacked
dilated convolution not exceed the macromolecule size. Sec-
ond, the dilated convolution layer can help the model
extract a much more representative feature map. On experi-
mental data, compared with 3D-C-DenseNet, the 3D-
Dilated-DenseNet also improved macromolecule classifica-
tion by 2.1 percent. In our future work, we will focus on
breaking through the classification performance of tiny- and
small-size macromolecules and exploring model perfor-
mance with more experimental data.
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