2272

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 19, NO. 4, JULY/AUGUST 2022

Hardware Acceleration of the STRIKE String
Kernel Algorithm for Estimating Protein to
Protein Interactions

Fadi N. Sibai*, Ali EI-Moursy ™, Abu Asaduzzaman, and Sohaib Majzoub

Abstract—Protein-protein interaction (PPI) is an important field in bioinformatics which helps in understanding diseases and devising
therapy. PPl aims at estimating the similarity of protein sequences and their common regions. STRIKE was introduced as a PPI
algorithm which was able to achieve reasonable improvement over existing PPI prediction methods. Although it consumes a lower
execution time than most of other state-of the-art PPI prediction methods, its compute-intensive nature and the large volume of protein
sequences in protein databases necessitate further time acceleration. In this paper, we develop hardware accelerator designs for the
STRIKE algorithm. Results indicate that the weighted STRIKE accelerator execution times are about 10x longer than the unweighted

STRIKE accelerator execution times. To further accelerate the performance of the weighted STRIKE, a parallel module accelerator
organization duplicating the weighted STRIKE modules is introduced, achieving near linear speedups for long sequences of 100 or
more characters. As demonstrated by Verilog simulations and FPGA runs, the weighted STRIKE module accelerator exhibits three
orders of magnitude speed improvement over multi-core and cluster computers. Much higher speedups are possible with the parallel

module accelerator.

Index Terms—Bioinformatics, protein-protein interactions, hardware acceleration architectures, performance analysis

1 INTRODUCTION

PROTEINS are large molecules formed by long chains of
amino acids and play an important role in several cellu-
lar functions. Proteins help regulate the human body’s cells,
organs and tissues and are important ingredients for body
building and repairing. Proteins cooperate with other pro-
teins by forming a large network of protein-protein interac-
tions (PPIs). Estimating and predicting PPI has been the
goal of scientists to understand and diagnose diseases.
Many PPI methods have been developed with potential to
identify functional relationships between proteins. Such
techniques are however costly and very time consuming,
necessitating the development of computational tools capa-
ble of automating PPI identifications. Each of the developed
computational techniques to predict PPI has its own bene-
fits and drawbacks, especially in regard to the method’s sen-
sitivity and specificity.

e Fadi N. Sibai is with the College of Computer Engineering and Science,
Prince Mohammad Bin Fahd University, Al-Khobar 31952, Saudi Arabia.
E-mail: fsibai@pmu.edu.sa.

o Ali EI-Moursy is with Computer Engineering Department, University of
Sharjah, Sharjah, UAE. E-mail: aelmoursy@sharjah.ac.ae.

o Abu Asaduzzaman is with Electrical Engineering and Computer Science
Department, Wichita State University, Wichita, KS 67260 USA.

E-mail: abu.asaduzzaman@uwichita.edu.

o Sohaib Majzoub is with Electrical Engineering Department, University of

Sharjah, Sharjah, UAE. E-mail: smajzoub@sharjah.ac.ae.

Manuscript received 7 January 2020; revised 18 August 2020, accepted 13
March 2021. Date of publication 17 March 2021; date of current version 8
August 2022.

(Corresponding author: Fadi N. Sibai.)

Digital Object Identifier no. 10.1109/TCBB.2021.3066591

Among the techniques for predicting PPI are the Asso-
ciation Method (AM) [1], Maximum Likelihood Estima-
tion (MLE) [2], Maximum Specificity Set Cover (MSSC)
[3] and Domain-based Random Forest (DRF) [4]. In
domain-based methods, molecular interactions are typi-
cally mediated by a wide variety of interacting domains.
Other developed techniques, such as PIPE (Protein-Pro-
tein Interaction Prediction Engine) [5], assume that some
of the interactions between proteins are mediated by a
finite number of short polypeptide sequences. Such
assumption facilitates the identification of short polypep-
tide sequences used repeatedly in different proteins
within the cell, given that these sequences are normally
shorter than the classical domains. However, identifying
domains or short polypeptide sequences is lengthy and
computationally intensive. Domain-based methods and
methods depending on short polypeptide sequences are
also not universal because the accuracy and reliability of
these methods is dependent on the domain information
of the protein partners.

STRIKE [6] is an innovative algorithm which was devel-
oped to estimate and predict protein-protein interactions.
Based on the String Kernel (SK) method with good perform-
ances on text categorization [7] and protein sequence classi-
fication [8], STRIKE compares a pair of protein sequences
by matching common and fixed-length subsequences occur-
ring within this sequence pair. The string kernel is built on
the kernel method introduced by [9] and [10]. The kernel
computes similarity scores between protein sequences, one
score for each pair, without extracting the features. A subse-
quence is defined as any ordered sequence of amino acids
occurring in the protein sequence, where the amino acids

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9677-8911
https://orcid.org/0000-0002-9677-8911
https://orcid.org/0000-0002-9677-8911
https://orcid.org/0000-0002-9677-8911
https://orcid.org/0000-0002-9677-8911
https://orcid.org/0000-0002-3660-6544
https://orcid.org/0000-0002-3660-6544
https://orcid.org/0000-0002-3660-6544
https://orcid.org/0000-0002-3660-6544
https://orcid.org/0000-0002-3660-6544
https://orcid.org/0000-0003-3196-2635
https://orcid.org/0000-0003-3196-2635
https://orcid.org/0000-0003-3196-2635
https://orcid.org/0000-0003-3196-2635
https://orcid.org/0000-0003-3196-2635
mailto:fsibai@pmu.edu.sa
mailto:aelmoursy@sharjah.ac.ae
mailto:abu.asaduzzaman@wichita.edu
mailto:smajzoub@sharjah.ac.ae

SIBAI ET AL.: HARDWARE ACCELERATION OF THE STRIKE STRING KERNEL ALGORITHM FOR ESTIMATING PROTEIN TO PROTEIN...

are not necessarily contiguous, for instance, G _ _ T, GT, and
G _ T. The subsequences are weighted by an exponentially
decaying factor of their full length in the sequence, hence
emphasizing those occurrences that are more contiguous,
i.e.,, with shorter gaps between the subsequence’s charac-
ters. Subsequence similarities between two protein sequen-
ces may not necessarily indicate interaction, but reveal a
high probability for interaction occurrences and helps in
inferring homology.

Multi-core and many-core [11] computers are now pres-
ent in a multitude of hardware vendor products packing
tens to hundreds of processing cores per chip and providing
hundreds of GFLOPS of performance per Watt. Program-
ming languages such as CUDA [12] and OpenCL [13] sup-
port the development of code on many-core GPUs. In [6],
we developed a multithreaded version of STRIKE on multi-
core systems. In [14], we also developed and studied the
performance of parallel STRIKE versions on multicore com-
puters and Message Passing Interface Standard (MPI)-based
clusters. On long protein sequence sets, the execution time
of a parallel implementation of this bioinformatics algo-
rithm was reduced from about a week on a serial uniproces-
sor x86 laptop to about 2 hours on 128 parallel cluster
nodes. This parallel implementation was shown to scale
very well with increasing data size and number of nodes.
While the parallel implementation on multi-cores and com-
puter clusters greatly improved STRIKE’s execution time,
because of the huge number of sequence matchings
required in large protein databases, we seek further perfor-
mance improvements and present, in this paper, two differ-
ent, unweighted and weighted, hardware versions of the
STRIKE algorithm.

This paper is organized as follows. In Section 2, we sur-
vey the PPI literature. In Section 3, we briefly explain the
serial version of the STRIKE algorithm. Section 4 reviews
the parallel STRIKE algorithm on multi-core computers. In
Section 5, we review the multithreaded and message-pass-
ing implementations of STRIKE and summarize their per-
formance. In Section 6, we present the unweighted and
weighted STRIKE hardware accelerator designs and parallel
module organization for the Weighted version. Section 7
presents the performances of the three hardware accelerator
designs, unweighted, weighted and parallel module organi-
zation, and compares them to multithreaded and message-
passing versions on multicore computers and computer
clusters, respectively. Results of the Verilog simulation and
FPGA implementation of the weighted STRIKE are also pre-
sented. The paper concludes in Section 8.

2 RELATED WORK

According to [25], protein-protein interactions (PPIs) can
modify the properties of enzymes, play a role in substrate
channeling, inactivate a protein, or change the specificity of
a protein. For these reasons, PPI assists in the identification
of drug targets. Many databases support PPI work such as
BIND, BioGRID, and MIPS [25]. Prior methods for identify-
ing PPIs are both time-consuming and expensive, including
domain knowledge methods, such as AM [1], MLE [2],
MSSC [3] and DRF [4], and methods which focus on short
polypeptide sequences such as PIPE [5]). This is exacerbated

2273

by the large number of very long protein sequences to
match in protein databases. Other novel PPI methods, such
as STRIKE [6], use only the information of protein sequen-
ces and have been parallelized [6], [14], but have potential
to be further accelerated by dedicated and customized hard-
ware accelerators.

Comparing the sensitivity and specificity of these PPI
methods using the same source of data is an effective way
to compare their performance. Sensitivity is the percentage
of protein pairs that are recovered using a certain keyword
or a group of keywords when they are applied back to
the training dataset. Specificity, or precision, is the percent-
age of protein pairs recovered when keywords are applied
to the predicted (i.e., the test) datasets. On Pfam [15], a
protein domain family database, domain-based methods
yielded 39 percent specificity and 79.7 percent sensitivity
[8] outperforming PIPE, which achieved 61 percent sensi-
tivity, 89 percent specificity and 75 percent overall accu-
racy [5]. STRIKE achieved the highest performance results
among all the mentioned algorithms above, scoring 89 per-
cent accuracy, 83.1 percent specificity, and 98 percent recall
sensitivity [16]. Another novel algorithm [17] which exam-
ines information of protein sequences is based on Extreme
Learning Machine and uses a novel representation of local
protein sequence descriptors. When tested on the PPI data
of Pfam, the extreme learning machine method achieved
89.09 percent prediction accuracy, 89.25 percent sensitivity,
and 88.96 percent specificity, hardly an improvement over
STRIKE.

Another PPI method [18] represents each protein seque-
nce by a vector of pairwise similarities against large subse-
quences of amino acids created by a shifting window which
passes over concatenated protein training sequences. One
major drawback of this method is that each protein is repre-
sented by computing the Smith-Waterman (SW) score
against a large subsequence created by concatenating pro-
tein training sequences. In fact, comparing short sequences
to very long ones results in some potentially valuable align-
ments to be missed. However, the SK handles this weakness
by capturing any match or mismatch which exists in the
protein sequence of interest.

Beyond algorithm diversity, hardware acceleration has
been experimented on PPI algorithms. Field Programmable
Gate Arrays (FPGA) acceleration of the HMMER bioinfor-
matics application was discussed in [19] and shown to per-
form competitively with respect to a multithreaded version
of HMMER on quad-core Xeon computer. Local alignment
of protein sequences is performed by the SW algorithm to
obtain similarity results of common regions within the
sequence pairs. Various FPGA-based accelerations of the
SW algorithm were presented in [20]-[23]. Other bioinfor-
matics applications on GPU include BLAST [24]. A GPU-
based implementation of the SW algorithm [25] on nVIDIA
Pascal GPU expedited its execution time by over 300 percent
over an older implementation on nVIDIA Kepler. Hence,
bioinformatics algorithms for pairwise similarity can greatly
benefit from acceleration by customized hardware, multi-
core and manycore processors, GPUs, and FPGAs. While
GPUs and FPGAs can greatly result in impressive speed-
ups, customized hardware such as ASIC design usually
results in the highest speedups.

2274

3 SERIAL IMPLEMENTATION OF THE STRIKE
ALGORITHM

In this section, we briefly describe the serial basic version of
STRIKE [6] using s1 = Igl and s2 = lqal, two strings of char-
acters representing two short protein sequences. Each
sequence is decomposed into a number of substrings or sub-
sequences. The shortest substring to match is two characters
long. In other words, these sequences are implicitly trans-
formed into feature vectors, where each feature vector is
indexed by two characters which need not be consecutive.
Next, we decompose each of the two sequences into 2-char-
acter substrings. Each sequence is decomposed into all pos-
sible ordered (from left to right) combinations of characters
included in the sequence, as follows.

g 11 ql la qa al
sl =1ql A A3 N 0 0 0
s2 =1qal A2 At PN PN A2 P

Above, the 2-character substrings (Iq, 11, and ql) represent
the decomposition of the s1 sequence, while all six 2-charac-
ter substrings represent the decomposition of the second
sequence s2. When a 2-character substring appears in a
sequence such that these 2 characters are consecutive in the
sequence, such as lq, the substring’s degree of matching
(DOM) in that sequence equals A2, where) is a decay factor
less than 1. When these 2 characters are separated by
another single character (gap of 1), such as Il in the first
sequence, the substring’s DOM is A3, Generally, when the
two characters in the appearing substring are further spaced
by gap characters, the DOM is represented by \>* 9. The
DOMs for the substrings of the first sequence and all sub-
strings for the second sequence are computed in that fash-
ion as shown above. The 2-character substrings to match in
the two sequences must appear in both sequences in the
exact same order, but the gap spacings between the charac-
ters of the 2-character substrings need not match in the two
sequences. For instance,] _ q in one sequence matches1q,1 _
q,1__q,andl__ _qin the second sequence, but not ql. To
reflect the degree of matching between the sl and s2
sequences, the un-normalized string kernel (SK) for the
above 2 sequences, k(Iql, lqal), is computed as the dot prod-
uct of all DOMs, ie., XX+ XM XN 0N +00% +
0% = X' + AT+ X\ For a decay factor A of 0.5, k(Igl, 1qal) =
0.102. In general, the higher the un-normalized kernel is, the
higher are the indication of matching and interaction
between the two sequences.

As shown in Fig. 1, the serial STRIKE implementation
consists of a main procedure which reads the input protein
sequences, one from the training sequence set and the other
from the testing sequence set. Then for each sequence in the
training and testing sequences sets, a pairing operation is
done for each amino acid with a subsequent amino acid in
the same sequence. This generates 2-character substrings.
Afterwards, a matching step is conducted, as in the previ-
ous example, between each protein sequence in the training
set and all sequences found in the testing set. This matching
step generates the pairs of matching amino acids and
their inter-distances, and computes the score matrix. The
score matrix contains at row i and column j a number

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 19, NO. 4, JULY/AUGUST 2022

Training => Read all amino acid

Sequence sequences from input files

Set G Set

For each training and testing sequence, pair
each amino acid with one subsequent amino
acid

e ot

Sequence

Match each pairin the training sequence set
with every pairin the testing sequence set
then calculate the score matrix

Fig. 1. Flowchart of the serial STRIKE application.

Node 1 Node 2 Node 3 Node 4
lyq qyla yqla qla
Fig. 2. Allocation of sequences to processing nodes.
Node 1 Node 2 Node 3 Node 4

lyq qyla yqla qla
(dy2) (qy 2) (va2) (q12)
(yq2) 12) (q12) (la2)

(la2) (la 2)
Time

Fig. 3. Decomposition of each protein sequences into substrings of
Length =2 and Gap = 0.

representing the SK score for matching sequence i of the
training set with sequence j from the testing set.

4 PARALLEL STRIKE ALGORITHM

Given the large number of 2-character strings in long pro-
tein sequences, STRIKE is compute-intensive. To speed up
the execution of this algorithm, a parallel STRIKE algorithm
[6] was developed consisting of the following 3 steps: (i)
Decomposition; (ii) Sorting; (iii) Inner Product.

As shown in Fig. 2, in the decomposition step, the amino
acid sequences are first allocated to processing nodes, one
sequence per node. A node could be a core in a multi-core
processor, or a computing node in a parallel computer with
its own CPU. We will refer to either core or node by node.
Assuming that the SKs of the 4 amino acid sequences lyq,
qyla, ygla and qla are computed on four cores to assess
mutual interactions between these 4 sequences.

In parallel in the four nodes, the decomposition of
each protein sequence is conducted. Each sequence is
decomposed into 2-amino acid substrings starting with
adjacent amino acids, i.e., those with a gap of 0, as shown
in Fig. 3. The “2” in (Iy 2) refers to the power of the
weighted decay factor (i.e., \), indicating no gap between
the 2 characters.

Given that the contiguity of the amino acids in the result-
ing substring is not necessary, the decomposition proceeds
for all substrings of gap 1, as shown by Fig. 4.

The “3” in (Iq 3) refers to the power of the weighted
decay factor (i.e., A*), meaning that the] and q are separated

SIBAI ET AL.: HARDWARE ACCELERATION OF THE STRIKE STRING KERNEL ALGORITHM FOR ESTIMATING PROTEIN TO PROTEIN...

Node 1 Node 2 Node 3 Node 4
lyq qyla yqla gla
(dy2) (qy2) (ya2) (q12)
(ya2) (y12) (q12) (la 2)
(Iq3) (la?2) (la2) (qa 3)
(q13) (qa3)
Time (ya 3) (y13)
Fig. 4. Decomposition into substrings of Gap = 1.
Node 1 Node 2 Node 3 Node 4
lyq qyla yqla qla
(dy2) (qy 2) (ya2) (q12)
(ya2) (v12) (q12) (la2)
(1q 3) (la 2) (la2) (qa 3)
(q13) (qa 3)
Time (ya 3) (yl3)
(qad) (yad)
Fig. 5. Decomposition into substrings of Gap = 2.
Node 1 Node 2 Node 3 Node 4
lyq qyla yqla qla
(Iq 3) (la 2) (la?2) (la?2)
dy2) (qa4) (qa 3) (qa 3)
(ya2) (q3) (q12) (q12)
(qy2) (ya4)
Time (ya3) (y13)
(v12) (ya2)

Fig. 6. Content of the nodes after sorting.

by another amino acid y in the sequence lyq. Next, the
decomposition into substrings with a gap of 2 characters
occurs, as shown in Fig. 5.

Nodes 1 and 4 complete the decomposition step ahead of
processing nodes 2 and 3, owing to their shorter length and
immediately proceed to the sorting step, to be later followed
by nodes 2 and 3. In the sorting step, the 2-amino acid sub-
strings generated in the decomposition step are sorted in
parallel, and alphabetically based on their 2-letter string
content. After step 2 completes, the 4 nodes will have for
content the sorted strings shown in Fig. 6.

In the inner product step, the inner products are carried
out on half the nodes (2 in our example) with the largest
substring set cardinality. This choice is made to minimize
the total inter-node communication time. In our example,
nodes 2 and 3 have the highest number of generated sub-
strings. Each of these nodes maintains its 2-amino acid sub-
strings and receives 3 amino acid strings generated by the
node which is allocated the other sequence to match with its
sequence. As a result, data communications occur as shown
in Fig. 7.

During the inter-node communication step, node 1 sends
its generated 2-amino acid substrings to node 2, and node 4
sends its generated 2-amino acid substrings to node 3. After
the communication done, the contents of each node will be
as shown in Fig. 8.

2275
Node 1 Node 2 Node 3 Node 4
lyq qyla yqla gla
(I 3) (la 2) (la?2) (la?2)
(Iy2) =msy (qa4) (qa3) (qa3)
(yq2) (al3) (q12) (q12)
(qy 2) (ya4)
(ya3) 13)
(12) (yq2)
Fig. 7. Inter-node communications.

Node 1 Node 2 Node 3 Node 4
lyq qyla yqla qla
(Iq3) (la 2) (1a2) (la2)

(Iy2) (qad) (qa3) (qa3)

(ya2) (g3 (ql2) (q12)

@v2) (ya4)
(ya3) (13)
12) (v92)

(y13)
(va2)

Fig. 8. Contents of each node after inter-node communications.

Node Result
2 0
3 4,6,4: M+ A0+ A4 = 2 Q400

Fig. 9. Results of inner products on nodes 2 and 3.

Afterwards, nodes 2 and 3 calculate the inner products
between their strings generated in the decomposition step
and the received strings generated by the neighboring node,
as shown in Fig. 9. The inner product (« n). (8 m) succeeds
when the 2 strings match i.e., « = B, producing the number
n+m (representing \"™™). Otherwise when « is different
from B, it is a mismatch (resulting in 0). In our example,
there are no string matches in Node 2. Node 3 produces the
following inner product matches

(la2) . (la2) — 4
(qa3). (qa3) — 6
(al2) . (al2) — 4

At the end of the string matching, the results are presented
by each node involved in the inner product step as follows:

The results on nodes 2 and 3 are then aggregated in node
3 to provide the final score. The parallel STRIKE algorithm
is capable of matching as many sequences in parallel as
desired based on the availability of processing nodes,
achieving excellent performance scalability with increasing
hardware resources.

5 MULTITHREADED IMPLEMENTATION ON
MULTICORES AND MESSAGE-PASSING
IMPLEMENTATION ON CLUSTERS

Experimentation with the parallel STRIKE led to a number
of performance enhancements. To improve the matching
accuracy, we modify the SK to be the weighted inner prod-
uct of the DOMs (a n). (8 m), i.e., from A\"™ to A%t x
matrix(cl) x matrix(c2), where c1 and c2 are the first and
second characters appearing in the matching substrings
a =B ="clc2’, and matrix(cl) is a weight given to charac-
ters, such that characters A, B, C ... can be assigned

2276

different weightage. These weights help in directing the
matching towards specific desired character combinations,
resulting in the SK score emphasizing these combinations.
This will be referred to as the weighted version of STRIKE,
while the procedure described in Section 4 without weights
is referred to as the unweighted STRIKE.

The parallel multithreaded implementation of the
weighted STRIKE algorithm consists of a main procedure
which reads the input protein sequences, one from the train-
ing set and the other from the testing set, and amino acid
weight matrix, launches parallel jobs which are assigned an
equal number of sequences to match and which generate
the pairs of amino acids and their inter-distances and com-
putes the portion of the SK score matrix corresponding to
the sequences assigned to these jobs. The weight matrix con-
tains all amino acid weights corresponding to all characters
in the protein sequence.

For a pair of short protein sequences [6], the code was
optimized as follows. Initially the multithreaded application
took 4.5 minutes on a standard PC to process a test set of 168
protein sequences with an 84-sequence training set. This
was reduced to 50 seconds with compiler options related to
fast code generation and single-instruction multiple-date
vectorization (SSE2 SIMDization) and further down to 2 sec-
onds by limiting the pairs of characters in the 2-character
substring to those with gaps not exceeding 8 protein charac-
ters in step 2, and only matching protein pairs in both
sequences if their resulting distance dist; ; does not exceed 8.
As) is raised to the power dist;;, and A is less thanl, when
dist; ; exceeds 8, A1 becomes negligible. Hence, ignoring
amino acid pairs at such large inter-distances saved a lot of
computation time while not compromising the accuracy of
the protein sequence matching.

Furthermore, the performance of the parallel STRIKE
was evaluated [14] on dual-core and quad-core computers
and on a 16-desktop computer heterogeneous cluster and a
128-node SUN computer cluster. On long protein sequence
sets, it was shown that the execution time of the parallel
implementation of STRIKE was reduced from about a week
on a serial uniprocessor machine to about 16.5 hours on 16
computing nodes, down to about 2 hours on 128 parallel
nodes. The PC cluster with 128 nodes consumed a long
communication time compared to a lower number of nodes,
but it scaled the computation time near linear.

Despite very good scalability of both shared memory and
message passing implementations, it is desirable to further
accelerate the execution time to handle more sequence
matchings and longer sequences, given the huge sequence
databases and daily sequence matching volume. In the next
Section, we describe hardware accelerator designs for the
STRIKE algorithm unweighted and weighted versions (not
based on parallel algorithm of Section 4).

6 HARDWARE ACCELERATOR DESIGN

The hardware accelerator design of the STRIKE algorithm
places the two amino acid sequences to be matched in two
one-directional shift left registers, as shown in Fig. 10. The
second register holding the second string has additional cir-
cular shift capability, i.e., after shifting, the most significant
character becomes the least significant one.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 19, NO. 4, JULY/AUGUST 2022

4-Character Window

S T R 1 N G 1
el [[T T
<3 aolb2|c2fd2] | | | | - |==—
S 7T R 1 N G 2
L p——

Fig. 10. The 2 strings for matching in shift registers.

Four character pairs in a 4-character window on the left
side of the two shift registers are considered at a time in
each iteration. This assumes that a matching of such two 2-
character strings where the characters have a maximum gap
of 2 in each string will produce a minimum partial score of
A3, X% = XS, and that partial scores which are multiple of A
or smaller (A%, X\, ...) are negligible (recall that A\ < 1).
Circular-shifted characters in STRING 2 no longer partici-
pate in the 4-character window matching.

The leftmost character in String 1, al, is matched, one by
one, with all the characters of String 2, starting with a2, and
the partial scores are aggregated. This requires String 1 to
freeze in its position while the circular shift register holding
String 2 makes a full counterclockwise rotation (N shifts
total for an N-character string), where after each shift, al bl
c1 d1 is matched with the 4-character string in the window
below it. After shifting all the characters of String 2, a2
reaches back its position as shown in Fig. 10 and the match-
ing of al with all the characters of String 2 is over. Next, the
top shift register holding String 1 shifts one time to the left,
resulting in b1 occupying al’s position. The same matching
steps, as above, repeat between b1 c1 d1 el and a2 b2 c2 d2,
then bl c1 d1 el and b2 c2 d2 €2, ... until all of String 2 has
made a full rotation.

This 4-character window of Strings 1 and 2 facilitates the
matching of al b1 c1 d1 of String 1 with a2 b2 ¢2 d2 of String
2, and limits the hardware cost. Wider windows increase
the accuracy but require more logic and increase the hard-
ware size and cost. The various combinations of 2-character
substring matches resulting from this window size, and
these two 4-character strings and their unweighted partial
scores (UPS, unweighted version) and weighted partial
scores (WPS, weighted version) are shown in the Table 1 of
the Supplement.

6.1 Hardware Design of the Unweighted STRIKE

The unweighted STRIKE hardware accelerator design is
illustrated in Fig. 11. It assumes 8-bit ASCII characters and
uses eight 8-bit comparators to simultaneously compare al
with a2, b1 with b2, bl with ¢2, b2 with c1, bl with d2, c1
with ¢2, and b2 with d1. If bl and b2 are different, alb1 and
a2 b2 do not match. Similarly, if d1 is different from b2, this
means that ald1 and a2b2 do not match.

If al is different from a2, the 4-character window match-
ing is immediately terminated and the bottom shift register
holding String 2 is shifted once to the left. This is repeated
until the leftmost characters in the two shift registers match,
i.e., al =a2.

SIBAI ET AL.: HARDWARE ACCELERATION OF THE STRIKE STRING KERNEL ALGORITHM FOR ESTIMATING PROTEIN TO PROTEIN...

RESET CLK SLEEP READY ACK

RESUL
STRT INT READ ERR

S TRI1 NG 1 AVAIL

[aaforfea]a T T] [t ‘v¢¢¢ ¢¢f¢f?
<= [REEE 1] l<=
{} ﬁ CONTROL

T T T T
v v
LOAD SHIFT CLR RST .. CLK

al a2 bl b2 ble2 b2 el

@xs @
U U |

bl d2 ¢l 2 b2 di

8o
5 8 A% T s [8-bit Comparators]

WA [

ks

64-to-1
Encoder

3x2b
W Partial Score Register

wyr Final Multipliers Register

Y G

w Score Register

Fig. 11. Datapath for the unweighted STRIKE accelerator.

If al and a2 match, the results of the comparators match-
ing, bl with b2, bl with c2, b2 with c1, bl with d2, c1 with
c2, and b2 with d1, feed the select inputs of a 64x1 encoder.
The data inputs of the encoder are derived from the 7th col-
umn of Table 1 of the Supplement. These encoder inputs are
hardwired as three 2-bit numbers which represent the mul-
tipliers of A%, A3, and A\, respectively. For instance, for input
63 (bottom most input of the encoder, and bottom most row
of Table 1 of the Supplement), 3 A® + 2 A> + * produces 32
1. A Partial Score Register holds these encoder output val-
ues. An adder then accumulates the saved multipliers of the
A%, X%, and A%, held in the Final Score Register, with the
encoder output read values held in the Partial Score Regis-
ter. This keeps going until all the characters of String 2 have
been matched with the characters of String 1: String 2 rotat-
ing circularly, and String 1 shifting by one character to the

2277

RESET CLK SLEep READY ACK

SIRT INT READ ERR
I

P R s

RESULT
AVAIL

Rl TTT <=
{T‘-: [delefel TTT T ¢ﬁ CONTROL
_— T

TT o L J

hbo A A0 4

10D CIR SEL SELD LK
SHIFT RST SELM -

a1 a2 b1 b2 blc2 b2 c1 bld2 clc2 b2 di

& ® &
i] x8 ' ' @ X8
] i Lo L & [;Bg ;sa [8-bit Comparators]

al bl o d1
bi=cy b2=c bi=d2[ci=cZ[b2=d] Jeb Leb Leb Leb

al=a2
\ [ki ml CRN I B
\ MUX SELM|

[o

z
che
>

Lj
=z
&
>

(o)

— >

=

DEMUX sao
12 3

i
[F o e e | Welahes

Register

0

4
Multipliers
Register T
v w

W _Score Register

Fig. 12. Datapath for the weighted STRIKE accelerator.

left. Note that this integer adder adds 3 integers with 3 other
integers given that the decay factor A has not been intro-
duced yet in the computation. When the saved multipliers
have been finalized at the end of the 2 string matching, the
final multipliers are fed to a floating point multiply-add cir-
cuit (MACQ) to multiply the A multipliers with the As, then
add the terms to generate the final score. These long float-
ing-point multiplications happen only once at the end of the
2-character string matchings.

The MAC includes 3 partial product registers (not pic-
tured in Fig. 11) to hold the partial products during the
MAC operations. The contents of the partial products are
then multiplied by the remaining multiplicands in the right
column equations of Table 1 of the Supplement to create the
full product terms which are then added together.

6.2 Hardware Design of the Weighted STRIKE

The Weighted STRIKE controls the matching of specific pro-
tein sequences. The weighted STRIKE hardware accelerator
design is illustrated in Fig. 12. The weighted version pro-
ceeds exactly as the start of the unweighted version. It also
assumes 8-bit ASCII characters and uses 88-bit comparators

2278

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 19, NO. 4, JULY/AUGUST 2022

¥ ¥ T T I T Read Weight Matrix
and Store in CAM
- B = E|E|E |
1 F 3 4 5 N
1] 1 ¥ ¥ ¥ ¥ Read String 1 and Place in STRING 1 Shift Register
Step 2 SNG4 STRiNG 2 RN 3 STRING 4 STriNG 5 STRiNG N Then, Place String 1, String 2, String 3, ..., String N
_ — _ B ce e _ in STRING2 Shift Registers of Different Module Instances
—— i i /|| == || /== i
1 2 3 a 5 N
¥] T ¥ ¥ T Match String 1 in Each Module with
STRING 1 STRING 1 STRING 1 STRING 1 STRING 1 STRING 1 the Other Assigned String
Step 3 STRING 1 SIRNG2 | [SRNG 3 Srrnda | | Sinas | STRING N
1 F3 3 a4 s N
i [} i [} T] Output Score from Each Module
. Sraine 1 Strane 2 Srmine 3 STiNG 2 STRING 5 STiNe N
= a T —_— il e il
1 2 3 4 5 N
) ¥ i ¥)) ¥ Repeat Steps 2-4 for String 2, String 3...., then String N
St 1 Sikin 5 Sriana s i + S 5 Stian N in the STRING1 Shift Register
1 2 3 a4 5 N

Fig. 13. Parallel module organization for further enhanced performance.

to simultaneously compare al with a2, bl with b2, bl with
c2, b2 with c1, b1 with d2, c1 with ¢2, and b2 with d1. If al is
different from a2, the 4-character window matching is ter-
minated and the top shift register holding String 2 is shifted
to the left. This is repeated until the leftmost characters in
the two shift registers match, i.e., al = a2.

If al and a2 match, the results of the comparators match-
ing b1 with b2, bl with ¢2, b2 with c1, b1 with d2, c1 with c2,
and b2 with d1, feed the Select inputs of six multiplexers
(MUX). The multiplexers choose between a power of) as in
row number 2 of Table 1 of the Supplement) when the char-
acters match, and 0 otherwise. The MUX outputs are then
stored in the Multipliers register. Simultaneously as the com-
parator and MUXes are operating, a content addressable
memory (CAM) is searched with the ASCII characters for al,
bl, c1, and d1, to retrieve the weights for these characters,
which are then stored in a Weights register. As the weights
and the powers of) are floating point and not integers, the
hardware above the CAM is integer, while the CAM and X
MUXes and all circuits below support floating point data.

A Multiply Add/Accumulate (MAC) circuit then multi-
plies the powers of A(\% X, \!) in the Multipliers register
by the weights in the Weights Register to calculate the first
term in the equation given in the rightmost column of
Table 1 of the Supplement, stores the partial sum in the
accumulator, computes the next term in the equation in
Table 1 of the Supplement, and adds it to the accumulated
sum, and repeats to fully perform all the MAC operations
for all the terms of the equation in the rightmost column of
Table 1 of the Supplement. This MAC saves the partial
products in a temporary product register (not pictured in
Fig. 12) to hold the partial products of the partial
multiplications.

An adder then adds the sum in the accumulator with the
content of the Score register to accumulate the partial sums
from previous match operations. This keeps going until the
String 2 register makes a full rotation and all characters of

String 2 have been matched with the 4-characted window of
String 1 starting with al. Then String 1 register shifts to the
left and bl becomes the new al. The previous operations
are repeated until all characters of String 1 register have
been matched with all characters of the String 2 register,
and all partial sums accumulated to generate the final score.

6.3 Parallel Modules Organization

To raise the weighted STRIKE performance to the next level,
parallel identical instances of the weighted STRIKE hard-
ware module of Fig. 12 can be organized and operated
together as illustrated in Fig. 13. We illustrate this organiza-
tion with N copies of the Weighted STRIKE hardware mod-
ules, assuming that both training and testing sets each
contain N sequences. A shared bus connects the N parallel
modules to a shared external memory (not pictured). An
identical sequence from the training set will be placed in the
STRING 1 registers of all hardware modules, while STRING
2 registers of all modules will each hold a different sequence
from the testing set. This organization training set with
all sequences of the testing set. Once this is done, another
sequence from the training set replaces the existing
sequence in the STRING 1 registers of all hardware mod-
ules, and this repeats until each sequence of the training set
has had its turn and has been simultaneously matched with
all sequences of the testing set.

In step 1 of Fig. 13, the Weights matrix containing the
weights for each character is read by the modules over the
shared bus and stored in their CAMs. In step 2, String 1 of
the training set is read by the modules and stored in their
STRINGI registers. The N sequences of the testing set are
then read from memory (not pictured) by the hardware mod-
ules, one sequence per module, such that sequences 1, ..., N
are placed in the circular STRING 2 shift registers of Modules
1, ..., N, respectively. In step 3, each module. In step 3, each
module matches the contents of its STRING 1 register, hold-
ing the first sequence of the Training set, with the sequence

SIBAI ET AL.: HARDWARE ACCELERATION OF THE STRIKE STRING KERNEL ALGORITHM FOR ESTIMATING PROTEIN TO PROTEIN...

TABLE 1
Unweighted STRIKE Hardware Times

Step Component Time (clocks)

1 Shift Register (load/shift) 1

2 Load the 2 strings (4 clocks memory (N1+N2) x
write, and 1 clock to shift into Shift (14+1) = 15 (N1+N2)
Register) from external memory
over the shared bus

3 Comparator 1

4 Encoder 1

5 Partial Score Register (load) 1

6 Adder 1

7 Final Multipliers Register (load) 1

8 FP MAC (3 multiplies, 2 adds, 3 x (4+1)+2 x 2+1)
write into product registers) =21

9 Score Register (load) 1

10 Save Score in Score Register into 14

External Memory

stored in its STRING 2 register as described in Section 6.2. In
step 4, each module outputs its final score to be saved in
memory to form the final score matrix.

The next steps repeat Steps 2—4 except that in Step 2, the
second sequence of the training set is read and placed in the
STRING 1 register of all modules. When step 4 completes
for the second time, step 2 is repeated with the third
sequence of the training set being read by all modules and
placed in the String 1 registers. This keeps going until all N
sequences of the training sets have been matched in all
hardware modules by all sequences of the testing set, one
testing set sequence per hardware module, and the com-
plete final score matrix components written in memory.

7 PERFORMANCE EVALUATION

7.1 Unweighted STRIKE

The performance of the unweighted STRIKE accelerator of
Fig. 11 is evaluated in this Section for 2 sequences String 1
of size N1 and String 2 of Size N2. The following hardware
component times are assumed based on 1 GHz commercial
chips.

After the sequences are loaded, there are (N1 — 1) x
(N2 — 1) computation iterations, as at the end of the itera-
tions, at least 2 characters must remain in each shift register
to make a successful 2-character string match. Each compu-
tation iteration consumes 6 clocks (Steps 3-7, and 1 in
Table 1). Therefore,

Computation iterations time = 6(N1 — 1) (N2 — 1) (1)

After adding the iteration times to the times of steps 8, 9,
10 and 1, the total time, in clocks, for the Unweighted
STRIKE accelerator is

Total timeys = 15(N1+ N2) + 6(N1 —1) (N2 — 1)+21+1+ 14
= 15(N1 + N2)4+6(N1 — 1) (N2 — 1)+36

7.2 Weighted STRIKE

The performance of the weighted STRIKE accelerator of
Fig. 12 is evaluated in this Section for 2 sequences String 1
of size N1 and String 2 of Size N2. The following component
times are assumed.

2279

TABLE 2
Weighted STRIKE Hardware Times

Step Component Time (clocks)

1 Shift Register (load /shift) 1

2 Load the 2 strings (14 clocks (NT1+N2) x
memory write, and 1 clock to shift (14+1) =15
into Shift Register) from external (N1+N2)
memory over the shared bus

3 Comparator 1

4 Multiplexer 1

5 Multiplier Register (Ioad) 1

6 CAM Mux 1

7 CAM (write/search) 4

8 CAM DeMux 1

9 Weight Register 1

10 FP MAC (average of 3 6 x (44+1) + 2
partialproducts: 6 multiplies and x (241) =36
2 adds, and load into temporary
product register)

11 Accumulator (load) 1

12 FP Adder 2

13 Score Register (load) 1

14 Save Score in Score Register into 14

External Memory

The 22 CAM entries for the 22 protein characters must be
initially loaded in the CAM (memory read and steps 6-7),
consuming 22 x (14 clocks for external memory read + 1 +
4) = 418 clocks. After the sequences are loaded, there are
(N1 — 1) x (N2 — 1) computation iterations as at the end of
iteration at least 2 characters much remain in each shift reg-
ister to make a successful 2-character string match. Each
computation iteration, the following steps take place
concurrently:

a. Comparing the 2 strings in the window, MUX to
choose power of A or 0, save power of A or 0 in the
Multipliers Register (steps 3-5). This step consumes
1+ 1 +1 = 3 clocks; and

b. Search and read the weights of a1, b1, c1, and d1 from
the CAM, and save the Weights in the Weights Regis-
ter (steps 6-9). This step consumes 1 +4 +1+1=7
clocks for each character, or 28 clocks for 4 characters.

Both steps a and b take max (3, 28) = 28 clocks. Although
the STRING1 weights do not change during the circular
shifts of the STRING2 register, we assume worst case time
of 28 clocks for the concurrent operations of steps a and b.
The MAC operation time depends on which row of Table 1
of the Supplement is involved. On average, there are 3 terms
in the right side equations of Table 1 of the Supplement.
Therefore, the average MAC time is 6 (4+1) + 2 (2+1) = 36
clocks per iteration. Accounting for Table 2 steps 11-13 and
1, the average time per iteration, in clocks, is given by

Computation iteration time = (28 +36 + 1 +2+ 1+ 1)
x(N1—1) (N2 — 1)
= 69(N1 — 1) (N2 — 1)

(3)

After adding the iteration times to the times of step 14,
the CAM loading time, and the string load time (step 2), the
total time for the Weighted STRIKE accelerator, in clocks, is

2280
TABLE 3
Unweighted and Weighted STRIKE Times (clocks)
UNWEIGHTED UNWEIGHTED WEIGHTED WEIGHTED
w/0 mem. with mem. w/omem. with mem.

N1 N2 Total time Total Time Total time Total Time

(clocks) (clocks) (clocks) (clocks)
10 10 522 822 5589 6321
100 10 5382 7032 61479 63561
500 10 26982 34632 309879 317961
1000 10 53982 69132 620379 635961
10 100 5382 7032 61479 63561
100 100 58842 61842 676269 679701
500 100 296442 305442 3408669 3418101
1000 100 593442 609942 6824169 6841101
10 500 26982 34632 309879 317961
100 500 296442 305442 3408669 3418101
500 500 1494042 1509042 17181069 17196501
1000 500 2991042 3013542 34396569 34419501
0 1000 53982 69132 620379 635961
100 1000 593442 609942 6824169 6841101
500 1000 2991042 3013542 34396569 34419501
1000 1000 5988042 6018042 68862069 68892501

Total timews = 15(N1 + N2)+69(N1 — 1) (N2 — 1)+14 4 418
= 15(N1 4 N2)+69(N1 — 1) (N2 — 1)+432
4)

7.3 Parallel Modules

The performance of the Parallel Module accelerator design
based on the Weighted STRIKE of Fig. 13 is evaluated in
this Section. As in Eq. (4), 418 clocks are required to initially
load the CAM weights. One sequence is loaded simulta-
neously onto the STRING 1 register of all N parallel mod-
ules. Different sequences are then loaded onto STRING2 of
each parallel module sequentially over the shared bus from
external memory. Therefore, the sequence load time, in
clocks, assuming no bus contention, is given by

Sequence load time = 15 N1 + 15 N N2 (5)

The computation iterations time 69 (N1 — 1) (N2 — 1) is
consumed by N parallel modules simultaneously. Also,
unlike in Eq. (4), N external memory writes are sequentially
made at the end to save the Score Registers from all N mod-
ules in external memory. Therefore, the total time for the par-
allel modules, in clocks, again assuming no bus contention, is

given by

Total timepy = 15(N1+ N N2)+69(N1 — 1) (N2 — 1)

(6)
+14N + 418

This time is compared to performing the Weighted
STRIKE operation serially (Eq. (4)) N times.

7.4 Performance Evaluation

The performance of the three designs is addressed in this Sec-
tion. Table 3 displays the total times with and without loading
input data and writing output data in external memory for
the Unweighted (Eq. (2)) and Weighted (Eq. (4)) STRIKE.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 19, NO. 4, JULY/AUGUST 2022

7000000

6000000

5000000

“B-N2-10
% 4000000 ——N2=100
G 3000000 —e=N2-500
2000000 2=N2-1000
1000000
0
10 100 500 1000
N1
Fig. 14. Total time of the unweighted STRIKE.
80000000
70000000
60000000 T
., 50000000
N2=100
S 40000000 ks
“ 30000000 ~—N2=500
20000000 —5¢=N2-1000

10000000

0
10 100 500
N1

1000

Fig. 15. Total time of the weighted STRIKE.

The total times of the Unweighted and Weighted STRIKE
accelerator are plotted in Figs. 14 and 15, respectively, for
various values of N1 and N2. The weighted STRIKE times
are about 10 times longer than the unweighted STRIKE
times.

For long sequences with N2 = 1000, the plots of the total
times of the Parallel Module accelerator with N = 8-64
almost overlap, matching the plot of Fig. 15 with N2 = 1000,
although the amount of work, ie., throughput, increases
from 8 parallel string matches (N = 8) to 64 parallel string
matches (N = 64). So the execution times are identical but
the amount of work completed is higher depending on the
number of parallel modules in operation, resulting in higher
throuputs with more parallel modules in operation.

The speedup of the parallel module accelerator over the
single Weighted STRIKE accelerator is given below.

Speedup = total timewg of N string matchings/total timelw)
= N x total timews/total timepy

Eq. (7) is evaluated in Table 4 for N of 8, 16, 32, and 64 mod-

ules, where the total time includes the time to load input

data from memory and store the result in memory.

The speedup is plotted in Fig. 16 for N2 of 1000. Note that
for N of 16, 32, and 64, the speedup starts below N for N1 of
10, and then eventually reaches N for N2 of 1000 and above.
When the speedup is calculated for the times excluding
input data loading and output data writing in external
memory, and exclusively accounting for the computation
time, the speedup approaches N, reaching to high sequence
lengths linear scaling. For N of 8 or lower, the speedup is
relatively flat irrespective of N1.

To evaluate the efficiency of the parallel module accelera-
tor with N modules, we convert the execution times of the

SIBAI ET AL.: HARDWARE ACCELERATION OF THE STRIKE STRING KERNEL ALGORITHM FOR ESTIMATING PROTEIN TO PROTEIN...

TABLE 4
Speedup of N Parallel Modules Over the Weighted STRIKE
N=8 N=16 N =32 N =64
N1 N2 Speedup Speedup Speedup Speedup
10 10,100,500, or 6.7-6.8 11.5-11.8 17.7-184 24.3-25.7
1000
100 10,100,500, or 7.8-8.0 15.4-155 29.6-30.0 55.1-56.2
1000
500, or 10,100,500, or 7.9-8.0 15.9-16.0 31.5-31.8 62.0-63.1
1000 1000
70.00
60.00
50.00
5 40,00 —o=N2=1000; N=8
£ 30.00 —&—N2=1000; N=16
vy

=0=N2=1000; N=32
=8-N2=1000; N=64

20.00
10.00 g

0.00

10 100 500
N1

1000

Fig. 16. Speedup of the parallel module accelerator over the single
weighted STRIKE accelerator.

Weighted STRIKE of Table 3 to nanoseconds, assuming 1
GHz clock frequency, and then normalize to one character-
pair matching, yielding the following Parallel Module accel-
erator times, in clocks, for one character-pair matching

TimePM,one character pair=— Total tiInePM/(l\I x N1 x N2) (8)
where Total timepy, is given by Eq. (6). The parallel module
times for one character-pair matching are displayed in
Table 5 for various sequence lengths (N1, N2) and for vari-
ous numbers of character-pairs (N1 x N2). For equal N1 x
N2 products, the N1 and N2 combinations were sorted
from best to worst.

In general, we observe that for N of 8 or 16 modules, one
character-pair matching times slightly degrade for higher
N1 x N2 products. However, for N of 32 or 64, the reverse
is true. This is a consequence of the serial external memory
access during loading input data and writing the result,
which becomes more significant for large N1 x N2.

Table 6 compares the average length (N1 = N2 = 100)
sequence pair match time of the weighted STRIKE accelera-
tor, running at 1 GHz, to the time of the message-passing
STRIKE software version on 16-node and 128-node com-
puter clusters [14] which a total of 14112 performed
sequence pair matches (168 sequences in testing set x 84
sequences in the training set). From Table 3, the matching of
an average sequence pair with N1 = N2 = 100 consumes
679701 clocks or 0.68 mseconds on the Weighted STRIKE
accelerator. The hardware accelerator speeds up the average
sequence pair matching by 6176 times and 750 times over
16-node and 128-node clusters, respectively, by eliminating
the long cluster inter-node communication time and cluster
overhead times such as operating system times. Further
speedups occur for longer sequence lengths.

Furthermore, when using the parallel module accelera-
tor, Nx additional speedups are possible to make the

2281
TABLE 5
Total Parallel Module Times (ns) for One
Character-Pair Matching
N1 N2 NIxN2 N=8 N=16 N=32 N=64
10 10 100 74 4.0 2.3 14
10 100 1000 7.4 3.7 1.9 0.9
100 10 1000
500 10 5000
10 500 5000 7.8 4.2 2.3 1.4
500 100 50000
500 500 250000
100 100 10000 8.0-8.1 4.04.1 20-21 1.0-1.1
10 1000 10000
1000 10 10000
100 500 50000
1000 100 100000
100 1000 100000
500 1000 500000
1000 500 500000
1000 1000 1000000
TABLE 6

Average Length Sequence Pair Match Times (msec.)
and Speedups (N1 = N2 = 100)

Time (ms) Time (ms) Time(ms) Speedup Speedup
16-node 128-node Hardware 16-node 128-node
cluster cluster Accelerator cluster cluster
4200 510 0.68 6176 750

performance gap even wider. For instance, with N = 32
modules, 32 pairs of average length sequences will be
matched in about 726635 clocks or 0.727 mseconds, i.e.,
29.93 times faster than with a single module. This translates
to speedups of 184K and 22K for the 32 parallel module
accelerator over 16-node and 128-node clusters, respec-
tively. Thus, the proposed designs are very promising for
accelerating protein to protein interactions.

7.5 Verilog Simulation and FPGA Implementation
Note that Egs. 2 and 4 assume that al equals a2 in every iter-
ation and are pessimistic. In the real world, iterations can be
skipped and conclude fast as soon as the comparator step
reveals that al and 2 are different.

We simulated the weighted STRIKE acceleration hard-
ware of Fig. 12 with Table 2 clock information in Verilog
Hadware description Language of ModelSim -Altera 6.5e
Starter Edition, and ran it on 20 different pairs of 100-char-
acter sequences. Loading the CAM with new weights was
also assumed and accounted for in every simulation run.
For two equal strings all with one character repeated 100
times, the Verilog number of clocks was 665945 clocks, com-
pared to 679701 clocks from Eq. (4) with N1 = N2 = 100
which assumes that al = a2, and that there are exactly 3
terms in the Table 1 equation of the Supplement. Averaging
the Verilog simulation times of 20 runs, each with a pair of
random sequences of 100 characters each with randomly
generated characters, yields 220235.85 ns per run (at

2282

1GHz), or 220236 clock cycles per run, below the Eq. (4)
numbers, as many iterations were skipped when al##a2.
According to Table 6, this is 19,000x and 2,351x faster than
16-node and 128-node clusters respectively.

We also implemented the Weighted STRIKE accelerator
on Intel-Altera DE1-SoC FPGA board running at 50 MHZ.
The average measured time for matching 17 pairs of sequen-
ces, 100 characters each, was 9806 clocks or 0.196 msec.
excluding the sequence pair loading time from memory
(done during FPGA programming), very competitive with
Table 6 times. With higher FPGA frequencies, this time will
be much improved. The utilized hardware board resources
were very small: 2 percent logic, and 3 percent DSP blocks
(multipliers, adders).

8 CONCLUSION

Protein to protein interaction (PPI) is an important field in
bioinformatics which identifies physical interactions
between pairs of proteins. This in turn sheds light into how
biochemical processes and signaling paths between cells
take place helping in understanding diseases, modeling
protein structures, and designing therapy. Many PPI algo-
rithms exist but are expensive in time. A novel algorithm
termed STRIKE [6] was also introduced to predict PPI by
comparing pairs of protein sequences by matching common
subsequences of fixed length.

The performance of the parallel STRIKE was evaluated
[6] on multicore computers [6] and PC clusters [14] for a test
set of 168 protein sequences and an 84-sequence training
set with good algorithm scalability. The 128-node PC cluster
performed this matching in about 2 hours compared to
about a week on a single core x86 laptop.

For further performance acceleration, this paper proposed
three hardware-dedicated designs for STRIKE: one for the
unweighted version, one for the weighted version, and a par-
allel module organization for the Weighted version. The
paper also presented performance models for the three hard-
ware accelerators, and evaluated the execution times and
speedups. Results indicate that the weighted STRIKE acceler-
ator times are about 10 times longer than the unweighted
STRIKE accelerator times. Although the weighted STRIKE
accelerator consumes much longer times than the
unweighted version, the weighted version enables the con-
trolling of the matching to match specific protein strings,
while the unweighted version treats all protein strings
equally. To further improve the performance of the weighted
STRIKE, an embarassignly-parallel module STRIKE accelera-
tor organization duplicating the weighted STRIKE accelera-
tor module was proposed achieving near linear speedups for
long sequences, of 100 or more characters. As demonstrated
by Verilog simulations and FPGA runs, the weighted
STRIKE hardware accelerator exhibits 3 orders of magnitude
speed improvement over multi-core and cluster computers.
Furthermore, the parallel module accelerator can achieve
much higher speedups.

ACKNOWLEDGMENTS

Maha Alameddin, Laboratory Engineer at the University of
Sharjah, UAE, developed the Verilog code.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 19, NO. 4, JULY/AUGUST 2022

REFERENCES

[1] E. Sprinzak and H. Margalit, “Correlated sequence-signatures as
markers of protein-protein interaction,” J. Mol. Biol., vol. 311,
pp- 681-692, 2001.

[2] M. Deng, S. Mehta, F. Sun, and T. Cheng, “Inferring domain-
domain interactions from protein-protein interactions,” Genome
Res, vol. 12,2002, pp. 1540-1548.

[3] T.Huang et al., “POINT: A database for the prediction of protein-
protein interactions based on the orthologous interactome,” Bioin-
formatics, vol. 20, 2004, pp. 3273-3276.

[4] C. Xue-Wen and L. Mei, “Prediction of protein—protein interac-
tions using random decision forest framework,” Bioinformatics,
vol. 21, 2005, pp. 4394—-4400.

[5] P. Sylvain et al., “PIPE: A protein-protein interaction prediction
engine based on the re-occurring short polypeptide sequences
between known interacting protein pairs,” BMC Bioinf., vol. 7,
2006, Art. no. 365.

[6] F.N. Sibai and N. Zaki, “Parallel protein sequence matching on
multicore computers,” in Proc. 2nd IEEE Int. Conf. Soft Comput.
Pattern Recognit., Dec. 2010, pp. 285-290.

[7]1 H. Lodhi et al., “Text classification using string kernels,” |. Mach.
Learn. Res., vol. 2,2002, pp. 419-444.

[8] N. Zaki, D. S, and L R. “Application of string kernels in
protein sequence classification,” Appl. Bioinf., vol. 4, 2005, pp. 45-52.

[91 D. Haussler, “Convolution Kernels On Discrete Structures,” Univ.
California Santa Cruz, Santa Cruz, CA, Tec. Rep. UCSC-CRL- 99-10,
1999.

[10] C. Watkins, “Dynamic alignment kernels,” in Advances Large Margin
Classifiers, Cambridge, MA, USA: MIT Press, 2000, pp. 39-50.

[11]]. Sanders and E. Kandrot, CUDA By Example: An Introduction to
General-Purpose GPU Programming, London, U.K.: Pearson, 2010.

[12] nVIDIA, CUDA C Programming Guide v. 9.1, 2018. [Online].
Available: https://docs.nvidia.com/cuda/archive/9.1/pdf/
CUDA_C_Programming_Guide.pdf

[13] A.Munshi, “The OpenCL specification Version 1.2,” 2012. [Online].
Available: https://www.khronos.org/registry/OpenCL/specs/
opencl-1.2.pdf

[14] A. El-Moursy, W. Afifi, F. N. Sibai, and S. Nassar, “Parallel PPI
prediction performance study on HPC platforms,” J. Circuits Syst.
Comput., vol. 24, no. 5, 2015, Art. no. 28.

[15] E. Bateman et al., “The pfam protein families database,” Nucleic
Acids Res., vol. 28, pp. 263-266, 2000.

[16] N. Zaki, W. El-Hajj, H. Kamel, and F. N. Sibai, “A protein—protein
interaction classification approach,” in Software Tools and Algo-
rithms for Biological Systems, Berlin, Germany: Springer, 2011.

[17]1 Z.You, Z. Ming, H. Huang, and X. Peng, “A novel method to pre-
dict protein-protein interactions based on the information of pro-
tein sequence,” in Proc. IEEE Conf. Control Syst. Comput. Eng .,
2012, pp. 210-215.

[18] N. Zaki et al., “Protein protein interaction based on pairwise sim-
ilarity,” BMC Bioinf., vol. 10, pp. 10-150, 2009.

[19] N. Abbas, “Acceleration of a bioinformatics application using
high-level synthesis,” Doctoral Dissertation, L’Universite
Europeene de Bretagne, France, 2012.

[20] I Li, S. W, , and K. Truong, “160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array
(FPGA),” BMC Bioinf., vol. 8,2007, Art. no. 185.

[21] B. Schmidt, “Algorithms and tools for bioinformatics on GPUs,”
nVIDIA GTC Conf., 2012. [Online]. Available: https://on-demand.
gputechconf.com/gtc/2012/presentations /S0008-Algorithms-
and-Tools-for-Bioinformatics-on-GPUs.pdf

[22] L. Ligowski, W. R. Rudnicki, Y. Liu, and B. Schmidt, “Accurate
scanning of sequence databases with the Smith-Waterman algo-
rithm,” GPU Comput. Gems, vol. 1, pp. 155-171, 2011.

[23] Y. Liu, D. L. Maskell, and B. Schmidt, “CUDASW+-+: Optimizing
Smith-Waterman sequence database searches for CUDA-enabled
graphics processing units,” BMC Res. Notes, vol. 2,2009, Art. no. 73.

[24] P. Vouzis and N. Sahinidis, “GPU-BLAST: Using graphics pro-
cessors to accelerate protein sequence alignment,” Bioinformatics,
vol. 27, no. 2, pp. 182-188, 2011.

[25]]. Pérez-Serrano et al., “DNA sequences alignment in multi-GPUs:
Acceleration and energy payoff,” BMC Bioinf., vol. 19, no. 421,
pp- 161-176, 2018.

[26] V. Srinivasa Rao, K. Srinivas, G. N. Sujini, and G. N. Sunand
Kumar, “Protein-protein Interaction detection: Methods and ana-
lysis,” Int. |. Proteomic., vol. 2014, 2014, Art. no. 147648.

https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://on-demand.gputechconf.com/gtc/2012/presentations/S0008-Algorithms-and-Tools-for-Bioinformatics-on-GPUs.pdf
https://on-demand.gputechconf.com/gtc/2012/presentations/S0008-Algorithms-and-Tools-for-Bioinformatics-on-GPUs.pdf
https://on-demand.gputechconf.com/gtc/2012/presentations/S0008-Algorithms-and-Tools-for-Bioinformatics-on-GPUs.pdf

SIBAI ET AL.: HARDWARE ACCELERATION OF THE STRIKE STRING KERNEL ALGORITHM FOR ESTIMATING PROTEIN TO PROTEIN...

Fadi N. Sibai received the BS degree in electrical
engineering from the University of Texas at Aus-
tin, and the MS and PhD degrees in electrical
engineering from Texas A&M University. He
joined Prince Mohammad Bin Fahd University,
Saudi Arabia, in 2019 as dean of the College of
Computer Engineering and Science. Between
2011 and 2019, he worked for Saudi Aramco.
Between 2006 and 2011, he directed the Com-
puter Systems Design program and IBM Cell
Competence Center at the UAE University where
he received IBM’s highest research Award. Between 1996 and 2006, he
managed programs and engineering teams at Intel Corporation, CA.
Between 1990 and 1996, he was an assistant professor of Electrical
Engineering with the University of Akron. He authored or coauthored
more than 230 publications and technical reports and served on the
Organizing or Program Committees of more than 20 Conferences. He
holds PMP, CISSP, CCNA, and CQRM certifications. He is a member of
PMI, (ISC)?, & Eta Kappa Nu.

Ali A. EI-Moursy received the PhD from the Uni-
versity of Rochester, USA, in 2005. He worked for
Software Solution Group, Intel Corp., CA, till early
2007. In 2007, he joined Electronics Research
Institute, Egypt. His research interest include
high-performance computer architecture, and
parallel and cloud computing. He also partici-
pated with IBM Cairo Technology Development
Center, Egypt, as a visitor research scientist for
the period from Feb. 2007 till Jan. 2010. In Sep.
2010, he joined the ECE Department at Univer-
sity of Sharjah, UAE, as an assistant professor, and was promoted to the
associate professor rank in 2017.

2283

Abu Asaduzzaman (Member, |IEEE) received
the PhD and MS degrees in computer engi-
neering from Florida Atlantic University, in
2009 and 1997, respectively. He is an associ-
ate professor with the Department of Electrical
Engineering and Computer Science, Wichita
State University. He received research grants
from NSF KS EPSCoR, NVIDIA, NetApp, Wik-
tronics, and M2SYS. He has authored more
than 70 papers. His research interests include
computer architecture, high performance com-
puting, and embedded systems. He received both the ISERD Excel-
lent Paper, and the IEEE ICAEE best paper awards in 2015. He is
also a member of the ASEE.

Sohaib Majzoub (Member, |IEEE) received
the PhD degree from the University of British
Columbia, Canada. He is an associate profes-
sor with the Electrical Engineering Depart-
ment, University of Sharjah, UAE. He was
previously an Assistant Professor at King
Saud University, and the American University
in Dubai.

il

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

