
1

Leveraging Sequential and Spatial Neighbors
Information by Using CNNs Linked With GCNs

for Paratope Prediction
Shuai Lu, Yuguang Li, Fei Wang, Xiaofei Nan, and Shoutao Zhang

Abstract—Antibodies consisting of variable and constant regions, are a special type of proteins playing a vital role in immune system
of the vertebrate. They have the remarkable ability to bind a large range of diverse antigens with extraordinary affinity and specificity.
This malleability of binding makes antibodies an important class of biological drugs and biomarkers. In this article, we propose a
method to identify which amino acid residues of an antibody directly interact with its associated antigen based on the features from
sequence and structure. Our algorithm uses convolution neural networks (CNNs) linked with graph convolution networks (GCNs) to
make use of information from both sequential and spatial neighbors to understand more about the local environment of target amino
acid residue. Furthermore, we process the antigen partner of an antibody by employing an attention layer. Our method improves on the
state-of-the-art methodology.

Index Terms—CNNs, GCNs, attention, paratope prediction
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1 INTRODUCTION

ANTIBODY, also known as immunoglobulin, is a Y-
shaped protein consisting of two light chains and two

heavy chains[1] , and can bind to a specific surface of the
antigen, named epitope. Amino acid residues of an antibody
directly involved in binding epitope is called paratope[2].
The accurate recognition of paratope on a given antibody
would greatly improve antibody affinity maturation[3]-[5]
and de novo design[6]-[8].

We can get high resolution structure of antibody and
antigen complex by experimental methods, such as X-ray[9],
NRM[10] and Cryo-EM[11]. However, it remains time con-
suming and empirical[12]. As more and more protein struc-
tures including antibody-antigen complexes have been an-
alyzed, the machine learning-based methods can be used
for predicting paratope by learning the paratope-epitope
interaction patterns from known antibody-antigen complex
structures. According to the type of selecting neighbors of
target residue for representing and predicting, the machine
learning-based methods can be divided into two categories,
leveraging sequential neighbors or spatial neighbors. As
for methods leveraging sequential neighbors, a part of the
antibody sequence is used consisting of target residue and
additional forward and backward sequential neighbors. Se-
quential neighbors were selected from the whole sequence
of antibody like the methods in [13]-[15] , and others only
took advantage of the sequence of CDR region[16],[17].
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Although the sequence is always available at the stages of
an antibody discovery campaign earlier than the structure,
machine learning-based methods using spatial neighbors
can provide more precise definition of the paratope. In [18],
the antibody surface patch which was a set of amino acid
residues adjacent to each other on the antibody surface,
were represented by 3D Zernike descriptors. And the state-
of-art method[19] represented an antibody as a graph where
each amino acid residue was a node and K nearest spatial
neighbors were used in the convolution operator.

In this work, we utilize the sequential and spatial neigh-
bors of target antibody residue by using Convolutional Neu-
ral Networks (CNNs) linked with Graph Neural Networks
(GCNs) for paratope prediction. Fig.1 shows a diagram of
our prediction method and illustrates how the sequential
and spatial neighbors information is used to predict binding
probability of the target antibody residue. First, we construct
an antibody residue feature matrix form sequence-based
and structure-based features. Next, we employ CNNs which
take the residues feature matrix with a fixed window size as
input for considering the influence of sequential neighbors.
Then, the output of CNNs are directly fed to GCNs for
learning the local environment of spatial neighbors. At last,
our program predicts the binding probability of each anti-
body residue. We also compare results with other existing
paratope predictors, and our framework achieves the best
performances. Moreover, we add an attention layer to our
best performing model attempting to gain more information
from antigen partner.

2 MATERIALS AND METHODS

2.1 Datasets
We use the datasets the same as [19]. All the complexes in
training set are collected by [18] from the training set used to
train Paratome[13], Antibody i-Patch[15] and Parapred[16]
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predictors. The complexes in test set are fetched from AbDb
database[20]. The antibody-antigen complexes present in
AbDb are split into two categories depending on whether
their antigen is a protein or not. In both training and test
sets, the complexes whose resolution better than 3.0Å or
the antibody sequence which has more than 95% sequence
identity are removed. The training set is further split into
two disjoint sets: a reduced training set and a validation set,
and the validation set is used to tune the hyper parameters
in the predictive model.

Structures with nonprotein-binding antibodies are re-
moved in the state-of-art method[19] resulting in 205 com-
plexes for training, 103 for validation and 152 for testing.
Specifically, the complexes with PDB ID 2AP2 and 2KVE,
only has one chain in antibody which are still retained in
this study. Dataset sizes are shown in TABLE 1. Positive
residues are residue pairs that participate in the interface,
negative residues are pairs that do not. Because in any given
complex the size of positive and negative residues is very
imbalanced, we use a weighted loss function when training
our model.

TABLE 1
Number of complexes and residues in the datasets.

DataSet Complexes Positive residues Negative residues

Train 205 4449 (5.19%) 81283 (94.81%)
Validation 103 2237 (5.24%) 60584 (94.76%)

Test 152 3314 (5.19%) 40480 (94.81%)

2.2 Residue Representation
To construct the input matrix, we encode the 1D antibody
sequence to a 2D numerical matrix with dimension (L,N),
where L is the length of the antibody sequence and N is the
residue features vector dimension (128 here).

As shown in Fig.2, the feature representation for amino
acid residue a is donated by xa. Different components of
the feature representation are denoted by the superscripts.
Each box indicates the program used to extract a given
set of features. All those features can be classified into
two classes according to the source: sequence-based and
structure-based.

2.2.1 Sequence-based Features

One-hot encoding(xOneHot
a ): The type of amino acid residue

(only 20 possible natural types are considered) is encoded to
a 20 dimensional vector, where each element is either 1 or 0
and 1 indicates the existence of a corresponding amino acid
residue.

Seven physicochemical parameters(xPhyChem
a ): Those

parameters are about physicochemical properties of
residues summarized by [21].

Profile features(xPSSM
a , xPSFM

a , xInfo
a ): We run PSI-

BLAST[22] against the nonredundant (nr)[23] database for
every antibody sequence. Then we get the PSSM and PSFM
matrix, both with dimension (L, 20), as well as a 1D vector
related with column entropy with dimension L, where L is
the length of the antibody sequence.

2.2.2 Structure-based Features

Relative accessible surface area(xrASA
a ), Secondary

structure(xSS
a ), Phi(xPhi

a ) and Psi(xPsi
a ) torsion angles

for each residue: Those features are computed using
DSSP[24]. The secondary structure totally has eight classes
and is represented by one-hot encoding.

Half sphere amino acid composition(xHSAAC
a ): HSAAC

captures the amino acid residue composition in the direction
of the side chain of a residue, defined as the number of
times a particular amino acid occurs in that direction within
a minimum atomic distance threshold of 8.0Å from the
residue of interest.

Residue depth(xRD
a ): We calculate the average distance

of the atoms of a residue from the solvent accessible surface
by MSMS[25].

Protrusion Index(xCX
a ): The protrusion index of a non-

hydrogen atom is calculated using PSAIA[26] which is
defined as the proportion of the volume of a sphere with
a radius of 10.0Å centered at that atom that is not filled with
atoms[27]. Each element of this vector is normalized to have
the range from 0 to 1 as in [28].

B-factor(xB
a ): The B-factor (or temperature factor) is an

indicator of thermal motion about an atom. We use the
maximum B-factor of any atom for each residue.

Fig. 1. Network architecture. Here, Lab is the length of antibody sequence and target residue is in deepest blue. The nearer neighbor is in deeper
blue. Dfeat is the dimension of residue feature vector and a fixed window size of sequential neighbors are within the red square. Our CNNs take a
(Lab, Dfeat) matrix as input and our GCNs use their final output as input. The GCNs make an aggregation of the spatial neighbors. Then the fully
connected networks are fed by the output of the final GCN and predict the binding probability for each antibody residue.
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2.3 Antibody Representation and Paratope Definition

We represent an antibody as a graph[19], where each residue
is a node whose features represent the properties of the
residue. We define the spatial neighbors of a residue as a set
of K (20, in our work) closest residues determined by the
mean distance between their heavy atoms [24]. Fig.3 shows
sequential and spatial neighbors of a target residue.

From the analyzed 3D structure of an antibody and
antigen complex, a residue on antibody is judged to be-
long to the paratope if at least one of its heavy atoms is
located within 4.5Å from any antigen atoms like previous
methods[11],[12].

2.4 Convolutional Neural Networks (CNNs) for Pro-
cessing Sequential Neighbors

The sequence of the input antibody with length L is con-
sidered as a set of sequential nodes S and each node is
represented as a 1D vector si, where S = {si}Li=1. All
the nodes of the antibody sequence compose a 2D features
matrix as said in Sectioon 2.2.

In order to leverage sequential neighbors information
of target residue, we consider a window of fixed size in
sequence centered around target residue and concatenate
their features as input which can be shown as si−w:i+w,
where i is the index of target residue and the fixed window
size=11 (w = 5). Before the first and after the last residue of
the antibody sequence, we use a default zero padding. Our

CNNs all have a fixed stride=1 so that the output qi will not
have dimensional change shown as

qi = f(Wcsi−w:i+w + bc) (1)

where f is a non-linear activation function (e.g. ReLU), Wc

is the wight matrix, and the bc is the bias vector. Here we
use residual connections which act as a shortcut connection
between inputs and outputs of some part of a network by
adding inputs to outputs which can be shown as

qi = f(Wcsi−w:i+w + bc) + si−w:i+w (2)

As a result, we apply the function to obtain a set of
hidden vector of every position of the antibody sequence:
Q = {qi

∣∣q1, q2, q3, ..., ql}
2.5 Graph Convolutional Networks (GCNs) for Process-
ing Spatial Neighborhoods
We use the graph convolution[29] which enables aggrega-
tion over spatial neighbors of target residue and together
contributes to the formation of a binding interface.

For a node qi, the structural environment consisting of K
spatial neighbors Gi = {gj}Kj=1 from the input graph, the
graph convolution operation results in a vector zi, which
can be shown as

zi = f(Wtqi +
1

|Gi|

K∑
j=1

Wngj + bn) (3)

Fig. 2. Residue-level feature extraction in this study.
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The parameters of this operation include the aggregation
weight matrix Wt for target node, the aggregation weight
matrix Wn for the neighboring nodes, and the bias vector bn.
The dimensionality of the weight matrices is determined by
the dimensionality of the inputs and the number of filters.

2.6 Classifier

Finally, two fully connected layers perform classification for
each antibody residue zi after processing by CNNs and
GCNs. An inverse logit function transforms each residue’s
output yi to indicate the probability of belonging paratope
shown as

yi = f(Wmzi + b) (4)

2.7 Training Details

We implement our model using PyTorch[30] v1.4. Validation
sets are used to find the optimal set of network training
parameters for final evaluation. The training details of these
neural networks are as follows: optimization: Momentum
optimizer with Nesterov accelerated gradients; learning
rate: 0.001; batch size: 32; dropout: 0.5; sequential neighbors
size: 11 (fixed, including target residue); spatial neighbors
in the graph: 20 (fixed); number of layers in GCNs: 1, 2 or
3; number of layers in CNNs: 1, 2 or 3. Training times of
each epoch vary from roughly 1-10 minutes depending on
network depth, using a single NVIDIA RTX2080 GPU.

For each combination, networks are trained until the
performance on the validation set stops improving or for a
maximum of 250 epochs. GCNs have the following number
of filters for 1, 2 and 3 layers, respectively: (256), (256, 512),
(256, 256, 512). All weight matrices are initialized as in
[29] and biases are set to zero. Training is carried out by
minimizing the weighted cross-entropy loss function[29].

Fig. 3. Sequential and spatial neighbors of a target residue(PDB ID:
1A2Y)

3 RESULTS AND DISCUSSION

3.1 Performances Comparison Between Different
Depth Combination of CNNs and GCNs
In this section, we compute precision and recall by pre-
dicting residues as paratope with probability above 0.5[19].
As the area under the receiver operating characteristics
curve (AUC ROC) is threshold-independent and increases
in direct proportion to the overall prediction performance,
we take it to assess the overall predictive abilities. Beside,
we consider the area under the precision recall curve(AUC
PR). To provide robust evaluation of performance, we have
trained and tested all networks five times, and computed
the mean and standard error.

Results comparing the AUC ROC and AUC PR of var-
ious layers combination of CNNs and GCNs are shown
in TABLE 2 and TABLE 3. Our first observation is that
the all the CNNs linked with GCNs methods, with AUC
ROC around 0.97 and AUC-PR around 0.70, outperform the
individual CNNs or GCNs methods which have distinct
lower AUC PRs, showing that the incorporation of com-
bined information from a residue’s sequential and spatial
neighbors improves the accuracy of interface prediction.
This matches the biological intuition that the region around
a residue should impact its binding affinity[31].

We also observe that the effect of the combination num-
ber of CNNs and GCNs layers is not linear, i.e. more layers
will not achieve better performance. Indeed, in protein in-
terface prediction, networks with more than four layers per-
formed worse in [29]. In addition, one layer GCN achieves
better performance than two layer GCNs about paratope
prediction in task-specific learning in [19]. We agree with
these findings and draw the same conclusions.

TABLE 2
AUC ROC of various layers combination of our networks

Methods
GCN layers

0 1 2 3

CNN layers

0 0.935±0.001 0.969±0.001 0.973±0.000 0.973±0.000
1 0.947±0.002 0.972±0.001 0.975±0.001 0.975±0.001
2 0.951±0.001 0.971±0.000 0.973±0.001 0.973±0.001
3 0.958±0.001 0.974±0.001 0.975±0.001 0.971±0.000

TABLE 3
AUC PR of various layers combination of our networks

Methods
GCN layers

0 1 2 3

CNN layers

0 0.593±0.006 0.687±0.011 0.688±0.005 0.666±0.002
1 0.649±0.010 0.703±0.008 0.696±0.007 0.676±0.005
2 0.662±0.004 0.700±0.003 0.702±0.008 0.657±0.008
3 0.682±0.003 0.705±0.009 0.706±0.005 0.657±0.005

3.2 Comparison Between Different Residue Features
Combination
As said in Secttion2.2, residue features are classified into
two classes: sequence-based and structure-based according
to the source. Furthermore, sequence-based features can

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2021. ; https://doi.org/10.1101/2020.10.15.339168doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.339168
http://creativecommons.org/licenses/by-nc/4.0/


5

be divided into three parts: residue type one-hot encod-
ing(a), profile features(b) and the seven physicochemical
parameters(c) as their different properties. All the structure-
based features are considered as an individual part(d). In
order to find the importance of all these residue features,
we test different residue features combination on our best
model. Because the residue type is the most basic feature,
all combination must include it’s one-hot encoding, e.g. a+b,
a+c, a+d, a+b+c, a+b+d, a+c+d and a+b+c+d(all).

We obtain the best performance form the model with
3 layers CNNs linked with 2 layers GCNs as shown in
TABLE 1 and TABLE 2. Hence, we train this model again
using the other 6 kinds of residue features combination.
Each combination was evaluated by averaging all the AUC
ROC and AUC PR of all antibodies in testing set. Both mean
value and standard deviation are reported in Fig.4 and Fig.5.

Fig. 4. AUC ROC between different residue features combination.

Fig. 5. AUC PR between different residue features combination.

From Fig. 4, we can see that there are three residue
features combination (a+b: 0.968±0.025, a+b+c: 0.953±0.031,
a+b+d: 0.969±0.022) almost achieving the optimal perfor-
mance (0.975±0.019). All of them contain the profile fea-
tures(b). As for the AUC PR in Fig.5, we can see that perfor-
mance vary from all kinds of residue features combination.
The model using all the features still works best.

3.3 Comparison With Existing Predictors of Paratope
Prediction

As shown in Fig. 6. and Fig. 7. , we compare our method
to other existing methods specifically for paratope predic-
tion, i.e. Antibody i-path which pays attention to energetic
importance(AUC ROC:0.840, AUC PR: 0.376)[15], Parapred
which consists of CNN and RNN-based networks(AUC
ROC:0.933, AUC PR: 0.622)[16], model using 3D Zernike
descriptors(AUC ROC:0.950, AUC PR: 0.658)[18] and model
taking advantage of graph convolution and attention mech-
anism(AUC ROC:0.958, AUC PR: 0.703)[19].

Note that these methods only considering sequential or
spatial neighbors of target antibody residue. Our model
achieves greater performance compared to these methods
on both AUC ROC(0.975±0.001) and AUC PR(0.706±0.005).

Fig. 6. AUC ROC between existing predictors of paratope prediction.

Fig. 7. AUC PR between existing predictors of paratope prediction.
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3.4 Adding Attention Layer for Processing Antigen
Partner
An attention layer was used to explore the specific inter-
action between antibody and antigen pairs on paratope
and epitope prediction[19]. In [19], epitopes had a distinct
attention profile compared to other residues on the antigen
and the paratope prediction networks perform significantly
better at predicting epitopes in the cross-task evaluation. In
this study, we add an attention layer the same as [19] to our
best model after the GCNs which take both antibody and
antigen sequence as input and share the same parameter
but resulting in lower performance (AUC ROC: 0.974±0.001,
AUC PR:0.698±0.007) for paratope prediction.

Fig.8 shows the heatmap of attention score between ev-
ery pairs of residues from the complex on which our model
perform best (PDB ID 5K59). But we canot see outstanding
performance as in epitope predictor, which could be caused
by the different environment components of epitope and
paratope[15], [34].

Fig. 8. Attention visualization

4 CONCLUSION

In this study, we design and implement a new structure-
based paratope predictor leveraging sequential and spatial
neighbors of target antibody residue. Our model is trained
on the antibody-antigen complex structures collected from
datasets of some paratope predictors which includes the
most structures. Moreover, we utilize more residue features
consisting of sequence-based and structure-based. Experi-
mental results with a training dataset and an independent
validation dataset demonstrate the efficiency of our method.

The superior performances of our method are due to
several reasons, including a rich dataset, more sufficient
features selection, and careful construction of the prediction
model considering sequential and spatial neighbors at same
time.

We note that our program has two potential disadvan-
tages. First, the predictor needs antibody structure as it
takes structure-based residue features as input. Second, at
the stage of extracting residue features, it consumes long
computer time as PSI-BLAST[22] needs to be performed. In
our future work, we will take adjacent information from
antibody sequence so that the predictor can make use of
GCNs without structure. We will attempt to accelerate the

computation speed by using several servers to concurrently
perform PSI-BLAST[22].

Besides, an attention layer improves the performance
on epitope prediction but results in a lower in our study
due to different environment components of epitope and
paratope[15], [34]. In the future, we will try to design a
better attention score function for paratope prediction.

Biomolecule binding motifs mining is a long-term chal-
lenge for understanding their function. The forming of
incorrect interaction between some critical molecules has
been revealed as one of the important causes for diseases
like COVID-19[32]. The method proposed in this study
is specifically for identifying the antibody-antigen binding
residues. In the future work, we will further investigate the
applicability of our model to other types of molecules bind-
ing residues prediction problem, e.g., drug-target interaction
prediction[33].

ACKNOWLEDGMENTS

This work was supported by the ’Created Major New
Drugs’ of Major National Science and Technology (No.
2019ZX09301-159), and Leading Talents Fund in Science and
Technology Innovation in Henan Province(194200510002).
Xiaofei Nan and Shoutao Zhang are the corresponding
authors for this paper.

REFERENCES

[1] I. S. Mian, A. R. Bradwell, and A. J. Olson, “Structure, function and
properties of antibody binding sites,” J. Mol. Biol., vol. 217, no. 1,
pp. 133–151, Jan. 1991, doi: 10.1016/0022-2836(91)90617-F.

[2] J. W. Stave and K. Lindpaintner, “Antibody and Antigen Contact
Residues Define Epitope and Paratope Size and Structure,” J. Im-
munol., vol. 191, no. 3, pp. 1428–1435, Aug. 2013, doi: 10.4049/jim-
munol.1203198.

[3] D. Hu et al., “Effective optimization of antibody affinity by phage
display integrated with high-throughput DNA synthesis and se-
quencing technologies,” PLoS One, vol. 10, no. 6, Jun. 2015, doi:
10.1371/journal.pone.0129125.

[4] A. K. Mishra and R. A. Mariuzza, “Insights into the structural basis
of antibody affinity maturation from next-generation sequencing,”
Frontiers in Immunology, vol. 9, no. FEB. Frontiers Media S.A., Feb.
01, 2018, doi: 10.3389/fimmu.2018.00117.

[5] J. O. Zhou, H. A. Zaidi, T. Ton, and D. Fera, “The Effects
of Framework Mutations at the Variable Domain Interface on
Antibody Affinity Maturation in an HIV-1 Broadly Neutraliz-
ing Antibody Lineage,” Front. Immunol., vol. 11, Jul. 2020, doi:
10.3389/fimmu.2020.01529.

[6] A. Roy, S. Nair, N. Sen, N. Soni, and M. S. Madhusudhan, “In silico
methods for design of biological therapeutics,” Methods, vol. 131,
pp. 33–65, 2017, doi: 10.1016/j.ymeth.2017.09.008.

[7] G. Nimrod et al., “Computational Design of Epitope-Specific Func-
tional Antibodies,” Cell Rep., vol. 25, no. 8, pp. 2121-2131.e5, 2018,
doi: 10.1016/j.celrep.2018.10.081.

[8] L. Chen et al., “Epitope-directed antibody selection by site-specific
photocrosslinking,” Sci. Adv., vol. 6, no. 14, pp. 1–9, 2020, doi:
10.1126/sciadv.aaz7825.

[9] F. Schotte et al., “Watching a protein as it functions with 150-ps
time-resolved x-ray crystallography,” Science (80-. )., vol. 300, no.
5627, pp. 1944–1947, Jun. 2003, doi: 10.1126/science.1078797.

[10] A. Bax and S. Grzesiek, “Methodological Advances in Protein
NMR,” Acc. Chem. Res., vol. 26, no. 4, pp. 131–138, Apr. 1993, doi:
10.1021/ar00028a001.

[11] Z. H. Zhou, “Towards atomic resolution structural determination
by single-particle cryo-electron microscopy,” Current Opinion in
Structural Biology, vol. 18, no. 2. pp. 218–228, Apr. 2008, doi:
10.1016/j.sbi.2008.03.004.

[12] D. Kuroda, H. Shirai, M. P. Jacobson, and H. Nakamura,
“Computer-aided antibody design,” Protein Eng. Des. Sel., vol. 25,
no. 10, pp. 507–521, 2012, doi: 10.1093/protein/gzs024.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2021. ; https://doi.org/10.1101/2020.10.15.339168doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.339168
http://creativecommons.org/licenses/by-nc/4.0/


7

[13] V. Kunik, S. Ashkenazi, and Y. Ofran, “Paratome: An online tool
for systematic identification of antigen-binding regions in antibod-
ies based on sequence or structure,” Nucleic Acids Res., vol. 40, no.
W1, pp. 521–524, 2012, doi: 10.1093/nar/gks480.

[14] P. P. Olimpieri, A. Chailyan, A. Tramontano, and P. Marcatili, “Pre-
diction of site-specific interactions in antibody-antigen complexes:
The proABC method and server,” Bioinformatics, vol. 29, no. 18,
pp. 2285–2291, 2013, doi: 10.1093/bioinformatics/btt369.

[15] K. Krawczyk, T. Baker, J. Shi, and C. M. Deane, “Antibody i-
Patch prediction of the antibody binding site improves rigid local
antibody-antigen docking,” Protein Eng. Des. Sel., vol. 26, no. 10,
pp. 621–629, 2013, doi: 10.1093/protein/gzt043.

[16] E. Liberis, P. Velickovic, P. Sormanni, M. Vendruscolo, and P. Lio,
“Parapred: Antibody paratope prediction using convolutional and
recurrent neural networks,” Bioinformatics, vol. 34, no. 17, pp.
2944–2950, 2018, doi: 10.1093/bioinformatics/bty305.

[17] A. Deac, P. Velickovic, and P. Sormanni, “Attentive Cross-Modal
Paratope Prediction,” J. Comput. Biol., vol. 26, no. 6, pp. 536–545,
2019, doi: 10.1089/cmb.2018.0175.

[18] S. Daberdaku and C. Ferrari, “Antibody interface prediction with
3D Zernike descriptors and SVM,” Bioinformatics, vol. 35, no. 11,
pp. 1870–1876, 2018, doi: 10.1093/bioinformatics/bty918.

[19] S. Pittala and C. Bailey-Kellogg, “Learning context-aware struc-
tural representations to predict antigen and antibody binding in-
terfaces,” Bioinformatics, vol. 36, no. 13, pp. 3996–4003, 2020, doi:
10.1093/bioinformatics/btaa263.

[20] S. Ferdous and A. C. R. Martin, “AbDb: antibody struc-
ture database—a database of PDB-derived antibody structures,”
Database, vol. 2018, Jan. 2018, doi: 10.1093/database/bay040.

[21] J. Meiler, M. Müller, A. Zeidler, and F. Schmäschke, “Generation
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